Változók eloszlása, középértékek, szóródás

Hasonló dokumentumok
Statisztikai alapok. Leíró statisztika Lineáris módszerek a statisztikában

Leíró statisztika. Adatok beolvasása az R-be és ezek mentése

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Segítség az outputok értelmezéséhez

Feladatok: pontdiagram és dobozdiagram. Hogyan csináltuk?

Kutatásmódszertan és prezentációkészítés

Biomatematika 2 Orvosi biometria

A leíró statisztikák

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

Elemi statisztika fizikusoknak

[Biomatematika 2] Orvosi biometria

A valószínűségszámítás elemei

Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék

Biomatematika 2 Orvosi biometria

6. Előadás. Vereb György, DE OEC BSI, október 12.

Vargha András Károli Gáspár Református Egyetem Budapest

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés

Normális eloszlás tesztje

Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

[Biomatematika 2] Orvosi biometria

Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév

Mi az adat? Az adat elemi ismeret. Az adatokból információkat

Biostatisztika Összefoglalás

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése

GRADUÁLIS BIOSTATISZTIKAI KURZUS február hó 22. Dr. Dinya Elek egyetemi docens

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás

Biostatisztika Összefoglalás

A sokaság elemei közül a leggyakrabban előforduló érték. diszkrét folytonos

Bevezetés az SPSS program használatába

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok.

[Biomatematika 2] Orvosi biometria

Microsoft Excel Gyakoriság

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus

Populációbecslések és monitoring

Dr. Nagy Zita Barbara igazgatóhelyettes KÖVET Egyesület a Fenntartható Gazdaságért november 15.

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok.

Matematikai statisztika

Statisztikai becslés

Adatok statisztikai értékelésének főbb lehetőségei

Biostatisztika VIII. Mátyus László. 19 October

A statisztika alapjai - Bevezetés az SPSS-be -

STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba

A Statisztika alapjai

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok

Valószínűségszámítás összefoglaló

Vizuális adatelemzés

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Kettőnél több csoport vizsgálata. Makara B. Gábor

Populációbecslések és monitoring

18. modul: STATISZTIKA

Vizuális adatelemzés

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

Valószínűségi változók. Várható érték és szórás

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,

Az első számjegyek Benford törvénye

Elemi statisztika. >> =weiszd= << december 20. Szerintem nincs sok szükségünk erre... [visszajelzés esetén azt is belerakom] x x = n

Bevezetés a hipotézisvizsgálatokba

STATISZTIKA. A Föld pályája a Nap körül. Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)

A sokaság/minta eloszlásának jellemzése

3/29/12. Biomatematika 2. előadás. Biostatisztika = Biometria = Orvosi statisztika. Néhány egyszerű definíció:

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás

STATISZTIKA I. A változók mérési szintjei. Nominális változók. Alacsony és magas mérési szint. Nominális változó ábrázolása

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás

7, 6, 0, 4, 0, 1, 5, 2, 2, 16, 1, 0, 2, 3, 9, 2, 4, 10, 3, 1, 2, 12, 4, 1

Vizsgáljuk elôször, hogy egy embernek mekkora esélye van, hogy a saját

ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN!

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Statisztikai alapfogalmak

[Biomatematika 2] Orvosi biometria

Grafikonok az R-ben március 7.

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:

Kettőnél több csoport vizsgálata. Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet

Bevezetés. 1. előadás, február 11. Módszerek. Tematika

BIOSTATISZTIKA ÉS INFORMATIKA. Leíró statisztika

Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016

Populációbecslés és monitoring. Eloszlások és alapstatisztikák

Egyszempontos variancia analízis. Statisztika I., 5. alkalom

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat

STATISZTIKA KÉSZÍTETTE: TAKÁCS SÁNDOR

Az értékelés a következők szerint történik: 0-4 elégtelen 5-6 elégséges 7 közepes 8 jó 9-10 jeles. A szóbeli vizsga várható időpontja

A statisztika alapfogalmai Kovács, Előd, Pannon Egyetem

Matematika osztályozó vizsga témakörei 9. évfolyam II. félév:

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

Példák: tojások száma egy madárfészekben (egy adott madárfaj esetén), egy egyed testhőmérséklete (adott faj és ivar esetén), a következő buszon az uta

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.

Átírás:

Változók eloszlása, középértékek, szóródás

Populáció jellemzése Empirikus kutatás (statisztikai elemzés) célja: a mintából a populációra következtetni. Minta: egy adott változó a megfigyelési egységeken mért értékei. Minta elemzése/jellemzése: leíró statisztika. A leíró statisztikában megállapított jellemzők: Gyakoriság, Eloszlás, Középérték, Szóródás.

Változók populációbeli eloszlása Statisztikai elemzés célja: a mintából a populációra következtetni Egy megfigyelési egység: nő vagy férfi populáció: nem nő v. ffi hanem x%-a nő a populációt nem a kategóriák, hanem az összetétel jellemzi Változó eloszlása: Egy populáció egy adott változó szerinti jellegét az adja meg, hogy annak egyes értékei milyen gyakran fordulnak elő az adott populációban. a

Eloszlás A változó eloszlása elvben elégséges ahhoz, hogy a változó populációbeli viselkedését megismerjük: ebből meghatározható a leggyakoribb/legtipikusabb érték, a populáció átlaga, a populáció heterogenitásának foka, stb. Ez a valószínűségi alapú statisztikai elemzés alapja! Az eloszlás másként értelmezhető/számítható diszkrét és folytonos esetben.

Diszkrét változók eloszlása Diszkrét változó: értékei megszámolhatók, felsorolhatók. Diszkrét esetben az érték gyakorisága arány = kategória elemszáma/összes; százalékos arány = arány*100 Az egyes értékeket táblázatba foglaljuk.

Diszkrét változók eloszlása Mo. lakosságának iskolai végzettsége: alsófokú középfokú felsőfokú Gyakoriság: 3 150 000 4 500 000 1 800 000 Relatív gyakoriság: 35% 45% 20% (össz. 100%) Kumulatív gyakoriság (mediánhoz jön jól): 35% 80% 100% Az előfordulás valószínűsége: p = 0,35 p = 0,45 p = 0,20 (össz. 1)

Diszkrét változók eloszlása Mo. lakosságának iskolai végzettsége: alsófokú középfokú felsőfokú Gyakoriság: 3 150 000 4 500 000 1 800 000 A populációból Relatív gyakoriság: véletlenszerűen választott 35% 45% 20% (össz. 100%) személy 35% eséllyel lesz Kumulatív gyakoriság (mediánhoz jön jól): 35% 80% 100% alsófokú végzettségű. Az előfordulás valószínűsége: p = 0,35 p = 0,45 p = 0,20 (össz. 1)

Relatív gyakoriság (%) Diszkrét változók eloszlása Ábrázolás: oszlopdiagramon növénynév állatnév betűhossz Növény- (bal) és állatnevek (jobb) betűhosszának gyakorisága százalékos arányban kifejezve.

Folytonos változók eloszlása Folytonos változók: értékei a számegyenes egy adott intervallumán végtelen számosságúak lehetnek. Nem tudom megszámolni ( túl sok lenne az oszlop, ami csak 1 magasságú ). Megszámlálás helyett azt kellene megtudni, hogy az értékskála egyes övezeteibe a populáció hányad része esik. sűrűségfüggvény. Sűrűségfüggvény: Ez a fv. a változó minden x értékéhez egy nem negatív egész f(x) számot rendel: f(x) nagyobb azokra az x-ekre, melyek környezetében a populációbeli egyedek jobban sűrűsödnek.

Sűrűség Sűrűségfüggvény Folytonos változóra. Egy adott intervallumhoz eső területszelet területe egyenlő az a és b érték közti intervallumra eső értékekkel jellemezhető személyek és a populáció arányával az adott értékek valószínűsége. A fenti okból a sűrűségfüggvény grafikonja alatti összterület mindig 1 (= a populáció 100%-a).

Sűrűség Sűrűségfüggvény értelmezése életkor 5 9 T (a,b) = a populációban az 5 és 9 év köztiek aránya Pl.: T = 0,63, akkor a populáció 63 %-a esik ebbe az életkori sávba T = 0,63 a valószínűsége (azaz 63%), hogy ennyi idős embert választok, ha véletlenszerűen választok.

Eloszlás jelentése és jelentősége Sorrendbe állított elemek milyen gyakran fordulnak elő. Legalább ordinális adatok kellenek hozzá! Előállítás: folytonos vagy diszkrét értékek közti interpolációval. Interpoláció: a függvénytan (matematika) eszköze, nem ismert értékekre ismert értékek alapján ad becslést. Eloszlás jelentősége: ez a valószínűségi statisztikai elemzés alapja!

Tapasztalati vagy empirikus eloszlás A változó populációbeli eloszlását valójában sosem ismerjük (a populáció elméleti, végtelen halmaz). A változó populációbeli eloszlására az adott mintánk eloszlásából következtetünk, azaz a változó tapasztalati vagy empirikus eloszlásából.

Valószínűségek és statisztika kapcsolata Valószínűségszámítás: ismerem a világot (populációt). Egy betegség előfordulási gyakorisága 20%. Mekkora a valószínűsége, hogy egy 50 elemű véletlenszerűen kiválasztott mintában négy beteget találunk? Statisztika: nem ismerem a világot (populációt), hanem a mintából próbálok következtetni rá. Ha 50 véletlenül kiválasztott egyed között 4 beteget találunk, mit állíthatunk a betegség előfordulási gyakoriságáról a populációban?

Eloszlások összehasonlítása Empirikus vizsgálatokban, statisztika elemzésben központi kérdés: Egyenlő-e két populáció a vizsgált változó szempontjából (vagy az egyikben nagyobbak a vizsgált változó értékei, mint a másikban), vagy másként A vizsgált változó szempontjából két populációról vagy egy populációról van-e szó?

Eloszlások összehasonlítása Egyenlő-e két populáció a vizsgált változó szempontjából? Ennek megítélésére vagy a konkrét értékeket, vagy a számok nagyságszintjét, nagyságrendjét hasonlíthatjuk össze, ez utóbbit méri a statisztika a középértékekkel. Középérték: hova esik az adatok sűrűje. A leggyakoribb statisztikai tesztek egy jó részében a középértékeket hasonlítjuk össze.

Statisztikai modellek A mintaadatainkból a populációra akarunk következtetni, és a populációra vonatkozó állításainkat (hipotéziseinket) tesztelni. Ez úgy lehetséges, ha megfigyeljük a minta tulajdonságait, és ez alapján építünk egy statisztikai modellt, azaz becsüljük a populáció tulajdonságait. Ahogyan pl. építhetünk hidat is már létező hidak megfigyelésével, a lényegesnek látszó részletekkel. Kérdés: a modell mennyire reprezentálja a valóságot (populációt) ez a fit of the model azaz a belőle nyerhető predikciók mennyire megbízhatók. A modell egy pont is lehet pl. a mintaátlaggal modellezzük a mintát és becsüljük aztán a populációt. (bár sem a populációátlag ((sem a mintaátlag!)) nem mindig ténylegesen része a mintának!), Majd azt, hogy milyen jól illeszkedik a modell, megmérhetjük pl. az adatok eltérésével az átlagtól. (l. mindjárt a szóródási mutatókat)

1. Középértékek

Mintabeli középértékek A különböző skáláknak megfelelően többféle középérték számolható. Átlag: értékek számtani közepe. Medián: a növekvő sorba rendezett adatok közül a középső. Ha az elemszám páros, a két középső érték átlaga. Módusz: a legnagyobb gyakorisággal előforduló érték.

Mintabeli középértékek A különböző skáláknak megfelelően többféle középérték számolható. Átlag: értékek számtani közepe (jel.: x = 63). Medián: a növekvő sorba rendezett adatok közül a középső. Ha az elemszám páros, a két középső érték átlaga. Módusz: a legnagyobb gyakorisággal előforduló érték.

Mintabeli középértékek A különböző skáláknak megfelelően többféle középérték számolható. Átlag: értékek számtani közepe (jel.: x = 63). Medián: a növekvő sorba rendezett adatok közül a középső. Ha az elemszám páros, a két középső érték átlaga (jelölése: M = 4) Módusz: a legnagyobb gyakorisággal előforduló érték.

Mintabeli középértékek A különböző skáláknak megfelelően többféle középérték számolható. Átlag: értékek számtani közepe (jel.: x = 63). Medián: a növekvő sorba rendezett adatok közül a középső. Ha az elemszám páros, a két középső érték átlaga (jelölése: M = 4). Módusz: a legnagyobb gyakorisággal előforduló érték (Mo = tollaslabda ).

Átlag vagy medián? I. FELADAT 1-5.: Hány ismerőse van a Facebook-os ismerőseimnek? 11 véletlenszerűen kiválasztott ismerősöm ismerőseinek száma: 546 388 724 269 113 467 682 178 149 382 196 EXCEL: átlag(), medián() MEGOLDÁS: Átlag = (546+388+724+269+113+467+682+178+149+382+196)/11 = 372,18. Mit jelent a,18? Sorba rendezett értékek: 113 149 178 196 269 382 388 467 546 682 724 Középső értek: 6. elem Medián = 382. 12 ismerős esetén a 6. es 7. elem átlaga a medián.

Medián vagy átlag? Módusz? FELADAT 2: Egy ismerősünk csak tegnap iratkozott fel a Facebook-ra, ezért még csak 11 ismerőse van. Egy másik híres színésznő, neki 5439 ismerőse van. 11 + 149 + 178 + 196 + 269 + 382 + 388 + 467 + 546 + 682 + 5429 átlag? medián? Átlag = 790,6364 Ha 11 helyett 111 ember adatait vizsgáljuk, kiderül, hogy keveseknek van 791 ismerőse, ez szélső vagy extrém érték. Érdemes ábrázolni az eloszlást, és átlag helyett mediánt számolni, mert az kevésbé érzékeny az extrém értékekre. A fenti adatok mediánja továbbra is 382.

Középértékek Ezek valójában a minta középértékei, azaz a tapasztalati középértékek. Elméleti átlag (medián, módusz): a populációt jellemzi. Elméleti átlag: az értékhez tartozó valószínűségekkel súlyozzuk az értékeket a számításhoz, majd összeadjuk, pl: Példa: ötfokú skálaváltozó diszkrét értékei és a hozzájuk tartozó valószínűségek: P(1) = 0,4096, P(2) = 0,4096, P(3) = 0,1536, P(4) = 0,0256, P(5) = 0,0016. Populáció elméleti átlaga (azaz a valószínűséggel súlyozott átlag): E(X) = Σ érték valószínűség = 1 0,4096 + 2 0,4096 + 3 0,1536 + 4 0,0256 + 5 0,0016 = 1,8.

Skálák és középértékek Metrikus skálák: átlag, medián (és az alacsonyabb rendűek) Ordinális skála: medián, módusz Nominális skála: módusz Alacsonyabb skálákra érvényes statisztikai módszerek mindig használhatók magasabb rendű skálákra, de info. vesztéssel járhatnak.

Eloszlás típusai Egyenletes. Pl. kockadobáskor a dobott számok (relatív) gyakorisága Ez 100 000 kockadobás eredménye. Ábrázolás: Diszkrét eset a) oszlopdiagram b) lehet sűrűségfv is, de ált. nem szokás, mert az értékek közt nem értelmezhető Folytonos eset a) hisztogram (oszlopdiagram egy alfaja): osztálygyakoriságokat ( bin ) ábrázol, nem az egyes értékek gyakoriságát, hanem az értékeken képzett csoportok gyakoriságait b) sűrűségfüggvény

Unimodális Egy módusza (leggyakoribb értéke) van Hasonlóság? Különbség? Szimmetrikus elolszlás Eltérő csúcsosság Ezeket lásd később. Eloszlás típusai

Eloszlás típusai Bimodális: két módusza van. Vajon mikor látunk ilyet? Bi- és multimodális eloszlásra standard statisztikai tesztek nem végezhetők el!

Valószínűségeloszlás típusai (példák) Poisson Binommiális Kevert normális Khi-négyzet ( 2 ) t F

2. Szóródás

Értékek szóródása Lehet, hogy egy változó középértéke két populációban ugyanakkora, de az eloszlás alakja más. Eltérés: a populáció hányad része esik közel a középérték által meghatározott centrumhoz. szóródás. Ugyanakkora átlag és a medián, eltérő szóródás.

Szóródási mutatók Legalább ordinális skála! Terjedelem: érték max érték min nagyon ki van téve az extrém értékeknek! Átlagos abszolút eltérés: a minta értékeinek a minta számtani közepétől (átlag) való távolsága (abszolút értékben), átlagolva (különben elemszámfüggő!). Variancia (s 2, V): értékek és átlag négyzetes eltéréseinek átlaga (jobb, mert ez mindig pozitív, nem kell az absz. értékekkel varázsolni). Szórás (s, SD): variancia gyöke (az eltérések átlagának gyöke!). Excel: szórása() Feladat! xls

Fő (db) Fő (db) II. Feladat 1-2 Számojuk ki a két facebook-felhasználó mintánk átlagát, szórását! Ábrázoljuk a két csoport átlagát és szórását oszlopdiagramon, bajuszokkal (whiskers)! 2500 2000 1500 1000 500 2500 2000 1500 1000 0-500 -1000 facebook_csop_1 facebook_csop_2 500 0 facebook_csop_1 facebook_csop_2

Szóródási mutatók A variancia (és a szórás) valójában arra is utalnak, hogy az átlag mennyire jó modellje a mintának, hiszen az átlag és az értékek közti átlagos különbséget mutatják.

Kvartilisek, interkvartilis tartomány Jelentőség: ordinális skálánál, ahol nem értelmezhető az átlag, ha az eloszlás ferde (nem ugyanannyi érték van tőle balra és jobbra), ekkor ugyanis más a (négyzetes/abszolút) eltérés az átlag alatt és fölött, ezért a szórás alul- ill. felülbecsüli az eloszlást. Interkvartilis tartomány: az X változó értékskálájának az a középen elterülő övezete, ahol a populáció 50%-a található (kumulatív gyakoriság!). 1. és 3. kvartilis közé esik.

Interkvartilis tartomány folytonos esetben 1. kvartilis: Osztópont a populáció 25% és 75%-a között 3. Kvartilis Osztópont a populáció 75% és 25%-a között 2. kvartilis = medián (folytonos és szimmetrikus esetben)

Interkvartilis tartomány (K3-K1) Jelentősége: A leggyakoribb érték körüli 50%

Interkvartilis tartomány diszkrét esetben Diszkrét esetben nem a 25% és 75%-ról van szó, hanem a pl. 100 sorba rendezett adat közül a 25., 50. és 75. adatról ez nem biztos hogy éppen a középső 50%-ot adja ki

Kvartilisek, interkvartilis tartomány Kumulatív gyakoriság szerint számolható (ahol az a Kum% átlépi a 25%-ot, majd a 75%-ot) Interkvartilis félterjedelem: IF = (K3-K1)/2 Ha a változó folytonos és az eloszlása szimmetrikus, az interkvartlis tartomány meghatározható az IF-ből így: (K1, K3) = Med(X) ± IF

Kvartilisek, interkvartilis tartomány Jelentőség (további): a mediánnál látott módon ez is kevésbé érzékeny a szélső értékekre. II. FELADAT 3: Számoljuk ki a kétféle facebook felhasználói csoport kvartiliseit! Excel: kvartilis.kizár() 1.: 113 149 178 196 269 382 388 467 546 682 724 2.: 11 149 178 196 269 382 388 467 546 682 5439

Kvartilisek, interkvartilis tartomány Jelentőség (további): a mediánnál látott módon ez is kevésbé érzékeny a szélső értékekre. II. FELADAT 3: Számoljuk ki a kétféle facebook felhasználói csoport kvartiliseit! Excel: kvartilis.kizár() 1.: 113 149 178 196 269 382 388 467 546 682 724 2.: 11 149 178 196 269 382 388 467 546 682 5439

Kvartilisek, interkvartilis tartomány Jelentőség (további): a mediánnál látott módon ez is kevésbé érzékeny a szélső értékekre. II. FELADAT 3: Számoljuk ki a kétféle facebook felhasználói csoport kvartiliseit! Excel: kvartilis.kizár() 1.: 113 149 178 196 269 382 388 467 546 682 724 2.: 11 149 178 196 269 382 388 467 546 682 5439

Interkvartilis tartomány Hol használjuk?

Dobozdiagram (boxplot) Mit figyelhetünk meg? Hová esik/milyen széles a megfigyelések középső 50%-ának tartománya? Eloszlás szimmetriája? Pontok: kilógó érték, azaz outlier: (IT 1,5-nél messzebb van az IT alsó vagy felső határától, azaz K1-től vagy K3-tól) K3 K2 K1

Feladatok az SPSS-ben Készítsünk dobozdiagramokat (boxplot) a két csoport adataiból az SPSS-ben! Készítsünk pontdiagramot (Scatter/Dot) ugyanezen adatokból! 1.: 113 149 178 196 269 382 388 467 546 682 724 2.: 11 149 178 196 269 382 388 467 546 682 5439

Dobozdiagram és pontdiagram

Házi feladat I: barátkozás az SPSS adatkezelési sajátosságaival Formázzuk meg tisztességesen az adatainkat! 1. Állítsunk be egyértelmű változóneveket (Name)! Vigyázat, ékezetes betűk, szóköz, írásjelek nem használhatók, csak ASCII karakterek!!! 2. Adjuk meg a változó típusát (Type) Lehetőségek: Numeric, String 3. Adjunk címkéket a változókhoz (Label)! Ábrázoláskor ezt fogja megjeleníteni a grafikonon! 4. Állítsuk be, hogy az értékeket hány tizedesjeggyel mutassa az SPSS (Decimal)! 5. Nominális változók esetén állítsuk be a kódok jelentését (Values)! Pl. Value: f1, Label 1. csoport 6. Állítsuk be a skála típusát (Measure)! Lehetőségek: nominal, ordinal, scale.

Házi feladat II: barátkozás az SPSS grafikonszerkesztőjével Formázzuk meg szépre a dobozdiagramot! 1. Készítsük el újra a dobozdiagramot! Figyelem, ha átállítottunk valamit az adatokban, pl. tizedesjegyek számát minden ábrát mindig újra el kell készíteni! 2. Tüntessük el az adatfeliratokat! 3. Növeljük meg az összes betű méretét (pl. 16-osra), és állítsuk az összes betűtípust Times New Romanra. 4. Állítsuk be a skálákat úgy, hogy a lehető legkevesebb üres terület maradjon az alsó és felső bajszok alatt! (az outlierünk lemarad!) 5. Állítsuk átlátszóra a grafikonterület háttérszínét! 6. Színezzük át a dobozokat (tetszés szerint;)), megváltoztathatjuk a vonalak színét is!