Bevezetés a L A T E X használatába (2)
|
|
- Attila Székely
- 7 évvel ezelőtt
- Látták:
Átírás
1 Bevezetés a L A T E X használatába (2) TÁMOP 2012 képz k képzése Wettl Ferenc BME Algebra Tanszék, június 15. Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
2 1 Matematikai és m szaki szövegek szedése 2 Tételszer környezetek 3 Illusztrációk beágyazása, szedése 4 A f szöveg járulékos részei Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
3 1 Matematikai és m szaki szövegek szedése 2 Tételszer környezetek 3 Illusztrációk beágyazása, szedése 4 A f szöveg járulékos részei Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
4 Szövegközi és kiemelt mód Az e iπ + 1 = 0 egy szövegközi képlet, míg a egy kiemelt képlet. n=0 f (n) (x 0 ) (x x 0 ) n n! Az $e^{i\pi}+1=0$ egy \emph{szövegközi képlet}, míg a \[ \sum_{n=0}^\infty \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n \] egy \emph{kiemelt képlet}. Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
5 Szövegközi és kiemelt képlet megadása Szövegközi képlet megadása $képlet$ \(képlet\) \begin{math}képlet\end{math} Egysoros kiemelt képlet megadása \[ képlet \] \begin{equation*} képlet \end{equation*} amsmath csomag $$ képlet $$ (a T E X eredeti parancsa, LA TE X-ben ne használjuk) \begin{displaymath} képlet \end{displaymath} Egysoros kiemelt képlet sorszámmal \begin{equation}\label{eq:...} képlet \end{equation} Kiemelt képlet igazítása alapértelmezésben középre, ha balra akarjuk igazítani, akkor \documentclass[fleqn]{article} A sorszám alapértelmezésben a jobb oldalon, egyébként \documentclass[leqno]{article} Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
6 Kiemelt többsoros képletek megadása Ha matematikát írunk, az amsmath csomagot mindig töltsük be. A környezet neve A környezet tömör leírása \[ \], \begin{equation*} egysoros képlet sorszámozatlanul \begin{equation} egysoros képlet sorszámozva \begin{multline*} egysoros képlet több sorba törve \begin{gather*} több képlet egymás alatt \begin{align*} egyenletek több sorban és oszlopban igazítva \begin{alignat*} mint az el z, de az oszloptávolság megadandó \begin{flalign*} mint align, de a sorban széthúzva \begin{gathered} \begin{aligned} \begin{alignedat} \begin{split} \begin{subequations} mint gather, de részformulára mint align, de részformulára mint alignat, de részformulára egy sornyi képlet eltörése több sorba több sorszámozott képlet részsorszámozással Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
7 Sortörés egysoros képlet több sorba Kiemelt módon belül 100 = = = (1) \begin{equation}\label{eq:split} \begin{split} 100 &= = {}\\ &= {}\\ &\quad \end{split} \end{equation} Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
8 Több képlet igazítás nélkül Kiemelt módként x + y, (2) x 2 + xy + y 2. (3) \begin{gather} x+y, \\ x^2+xy+y^2. \end{gather} Kiemelt módon belül \[ \begin{gathered} x+y, \\ x^2+xy+y^2. \end{gathered} \] x + y, x 2 + xy + y 2. Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
9 Több képlet igazítással, széthúzva Jobbra-balra igazításokkal x = y + z (1) = bd + bc mivel ac = bd = 1000 behelyettesítve \begin{align*} x&=y+z && (\ref{eq:split}) \\ &=bd+bc && \text{mivel }ac=bd \\ &=1000 && \text{behelyettesítve} \end{align*} Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
10 Több képlet igazítással, szorosan Jobbra-balra igazításokkal 13x + 4y = 9 3x 12y + 23z = 14 \begin{alignat*}{4} 13x &+{} & 4y & & & ={} & 9\\ 3x &-{} & 12y &+{} & 23z & ={} &14 \end{alignat*} mi a hiba? 13x+ 4y = 9 3x 12y+23z =14 Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
11 Amit tilos használni! helytelen: = = 9 helyes: = = 9 \begin{eqnarray*} %% NE HASZNÁLJUK 1+3 & = & 4\\ & = & 9 \end{eqnarray*} \begin{align*} %% EZ PL. JÓ 1+3 & = 4\\ & = 9 \end{align*} Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
12 Az egyenletek sorszámaira való hivatkozás The inequality (5) follows from the equation (4). x = ac + bc (4) A (4) egyenletb l következik az (5) egyenl tlenség. The inequality \eqref{eq:2} follows from the equation (\ref{eq:1}). \begin{gather} x=ac+bc \label{eq:1}\\ y>dc \label{eq:2} \end{gather} \Aref({eq:1}) egyenletb l következik \aref({eq:2}) egyenl tlenség. y > dc (5) Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
13 Hivatkozás + részsorszámozás The inequality (6b) follows from the equation (6a). x = ac + bc y > dc (6a) (6b) A (6a) egyenletb l következik a (6b) egyenl tlenség. The inequality \eqref{eq:sub2} follows from the equation (\ref{eq:sub1}). \begin{subequations} \begin{gather} x=ac+bc \label{eq:sub1}\\ y>dc \label{eq:sub2} \end{gather} \end{subequations} \Aref({eq:sub1}) egyenletb l következik \aref({eq:sub2}) egyenl tlenség. Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
14 Formulák bet készlete Félkövér: \mathbf, Duplázott (blackboard bold): \mathbb R, a + b, n i =1 a i + η, n i =1 a i + η \newcommand{\r}{\mathbb{r}} $\R$ \newcommand{\vkt}{\mathbf} $\vkt{a}+\vkt{b}$, $\boldsymbol{\sum_{i=1}^n a_i+\eta}$, $\bm{\sum_{i=1}^n a_i+\eta}$ %%% \usepackage{bm} x(t) + ẋ(t) + ẍ(t), z = ẑ $x(t)+\dot{x}(t)+\ddot{x}(t)$, $\tilde{z}=\hat{z}$ α, ξ, ψ, Ω, ℵ $\alpha$, $\xi$, $\psi$, $\Omega$, $\aleph$ ɛ, ε, θ, ϑ, $\epsilon$, $\varepsilon$, $\theta$, $\vartheta$ Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
15 M veleti jelek, m veletek A \ (B C) = A D, (b c) = b c, x 3 ± y 3 = (x ± y)(x 2 xy + y 2 ), A B. $A \setminus ( B \cup C ) = A \cap D$,\\ $\lnot(b\lor c) = \lnot b\land\lnot c$,\\ $x^3\pm y^3 = (x\pm y)(x^2\mp xy+y^2)$,\\ $\mathfrak A \oplus \mathfrak B$. %% eufrak csomag a b, a bc, a b, a b c $a^b$, $a^{b^c}$, $a_b$, $a_{b^c}$ a, ( a b b), $\frac ab$, $\binom ab$ Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
16 Operátorok, függvények Szövegközi képletben: n i=1 a i, b f. Kiemelt képletben: a n i=1 a i, b a f, b a f. Szövegközi képletben: $\sum_{i=1}^{n}a_i$, $\int_a^b f$. Kiemelt képletben: \[\sum_{i=1}^{n}a_i,\ \int_a^b f,\ \int\limits_a^b f.\] tg, Trace: tg 2 x, Trace F. K \DeclareMathOperator{\tg}{tg} % preambulumba \DeclareMathOperator*{\Trace}{Trace} % teend \[ \tg^2 x, \Trace_KF. \] Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
17 Relációjelek a < b, a c, a d, a c, x := a + 1, $a<b$, $a\ne c$, $a\ge d$, $a\gg c$, $x:=a+1$, 2 n, 2 n, e f, x R +, y / Z, A B, B C. $2\mid n$, $2\nmid n$, $e\parallel f$, $x\in \mathbb{r}^+$, $y\notin\mathrm{z}$, $A\subset B$, $B\supseteq C$. Az aρb három tényez szorzata, az a ρ b viszont egy reláció. \newcommand{\ro}{\mathrel{\rho}} Az $a\rho b$ három tényez szorzata, az $a\ro b$ viszont egy reláció. A f B, f (x) def = x 2 1. $A \stackrel{f}{\longrightarrow} B$, $f(x) \stackrel{\textrm{def}}{=} x^2-1$ Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
18 Zárójelek \left, \right: x = + x, x = +x $ -x = +x $, $\left -x\right =\left +x\right $ ( 1 + (1 + (1 + x) 2) ) 2 2 $\left(1+\left(1+\left(1+x\right)^2\right)^2\right)^2$ a, b $\left<a,b\right>$ mi a hiba? < a, b > egy fontos példa: b a n + 1 x n dx = x n+1 \newcommand{\dx}{\,\mathrm{d}x} %%% preambulumba \int_a^b x^n \dx = \left. \frac{x^{n+1}}{n+1} \right _a^b b a Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
19 Esetszétválasztás f (x) = { 0 ha x racionális, 1 ha x irracionális. \[ f(x) = \begin{cases} 0 & \text{ha $x$ racionális,}\\ 1 & \text{ha $x$ irracionális.} \end{cases} \] Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
20 Épített jelek Gyökjel: 3 α, \sqrt[3]{\alpha}, \sqrt{ 2+\sqrt{ 2+\sqrt{ 2+\sqrt{2}}}} hármaspontok:...,...,,.,... \dots, matematikai módban: \ldots, \cdots, \vdots, \ddots többsoros index: 1 i<j j J a ij, \sum_{\substack{ 1\le i < j\\ j\in J }} a_{ij}, Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
21 Tömbök, mátrixok az array környezet: 1 λ λ 13 2b λ \left[ \begin{array}{@{}ccc@{}} 1-\lambda & 3 & 10 \\ 13 & 2-\lambda & 13-2b \\ -7 & 2 & 16-\lambda \end{array} \right] Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
22 Tömbök, mátrixok amsmath-tal matrix, pmatrix (), bmatrix [], vmatrix. \begin{bmatrix} 1-\lambda & 3 & 10 \\ 13 & 2-\lambda & 13-2b \\ -7 & 2 & 16-\lambda \end{bmatrix} 1 λ λ 13 2b λ Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
23 1 Matematikai és m szaki szövegek szedése 2 Tételszer környezetek 3 Illusztrációk beágyazása, szedése 4 A f szöveg járulékos részei Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
24 Tételek, deníciók,... Tételszer környezet deniálása (a környezet neve a denícióra def nem lehet). Magyar babellel jól együttm ködik, de ha csomagokat használunk (pl. ntheorem), nekünk kell gondoskodni a magyarításról. \newtheorem{theorem}{tétel} \newtheorem{defin}{definíció} A tételszer környezet használata: \begin{theorem} Végtelen sok prímszám létezik. \end{theorem} \begin{theorem}[euklidesz] Végtelen sok prímszám létezik. \end{theorem} Žsszámláló és közös számláló megadása \newtheorem{theorem}{tétel}[chapter] \newtheorem{defin}[theorem]{definíció} Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
25 Magyarítás egy lehet sége ntheorem csomag esetén A cím és a sorszám cseréje (change az alapértelmezett angolhoz képest) a tételszer környezetek deníciója elé teend : \usepackage{ntheorem} \theoremstyle{change} \newtheorem{theorem}{tétel}[chapter] \newtheorem{defin}[theorem]{definíció} a tételszer környezetek deníciója után a számláló megjelenítésének újradeniálása, hogy a végén is legyen pont: \renewcommand{\thetheorem}{\thechapter.\arabic{theorem}.} \renewcommand{\theproblem}{\thesection.\arabic{problem}.} Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
26 Bizonyítások, bizonyítás vége Tétel vagy bizonyítás végének jelzésére: \usepackage{amsmath,amssymb} \usepackage[amsmath,thmmarks]{ntheorem} Bizonyítás-környezet deniálása ntheorem csomaggal: \theoremstyle{nonumberplain} \theorembodyfont{\upshape} \theoremsymbol{\rule{1ex}{1ex}} \newtheorem{biz}{bizonyítás} Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
27 1 Matematikai és m szaki szövegek szedése 2 Tételszer környezetek 3 Illusztrációk beágyazása, szedése 4 A f szöveg járulékos részei Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
28 Bizonyítások, bizonyítás vége Képek beágyazásához: \usepackage{graphicx} Képek beágyazása \includegraphics{file.jpg} (pdatex esetén lehet PDF, PNG, JPG formátumú). Ekkor a kép, mint egyetlen bet, bekerül a szövegbe. A képeket általában úszó objektumként érdemes kezelni, amihez a gure környezet használandó. Opcionális paraméterei az elhelyezést szabályozzák: h (here), t (top), b (bottom), p (page külön oldalra),! (kérés, hogy néhány szabálytól tekintsen el, csak hogy ide kerüljön). \begin{figure}[!h] \centering %%% hogy az ábra középre kerüljön \includegraphics{kep.jpg} \caption{ábraaláírás} \label{pic:els } \end{figure} A környezetbe kell tenni egy ábraaláírást (\caption), és hogy hivatkozhassunk rá, egy címkét (\label). Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
29 Rajz készítése TikZ Rajz készíthet a L A TEX saját \begin{picture} környezetével (csak nagyon egyszer rajzokra képes), és a TikZ csomaggal (ezt ajánljuk), valamint küls programokkal. Egyetlen egyszer példa: \begin{tikzpicture}[scale=.8] \draw[gray, very thin] (-2.2,-2.2) grid (2.2,2.2); \draw (0,0) circle (1) node[below left] {$O$}; \draw[fill=green!40] (-1,1) ellipse (1 and.5); \draw[very thick,->] (0,0) -- (1,1) node[above,fill=white] {$\mathbf a$}; \draw[fill=blue] (-1.5,-2) rectangle (-1,-.5); \draw[thick] (1,0) -- +(-30:1) arc(-30:-90:1) -- cycle; \end{tikzpicture} O a Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
30 1 Matematikai és m szaki szövegek szedése 2 Tételszer környezetek 3 Illusztrációk beágyazása, szedése 4 A f szöveg járulékos részei Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
31 Jegyzetek Lábjegyzet 1 kerül ide. Lábjegyzet\footnote{lábjegyzet} kerül ide. Széljegyzet (könyvoldalon itt nem): Széljegyzet\marginpar{széljegyzet} kerül a margóra. 1 lábjegyzet Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
32 Jegyzékek Tartalomjegyzék: \tableofcontents, ábrák jegyzéke: \listoffigures, táblázatok jegyzéke: \listoftables A tartalomjegyzék mélységének befolyásolása: \setcounter{tocdepth}{4} A tartalomjegyzékhez f zés: \section*{el szó} \addcontentsline{toc}{section}{el szó} Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
33 Irodalomjegyzék Irodalomjegyzék a prezentáción: Donald E. Knuth, The T E Xbook, Addison-Wesley, Reading, Leslie Lamport, L A T E X A Document Preparation System, 2nd ed. Addison-Wesley, Ugyanez a kód cikkben [1], [2] generált címkével kezd dik. A kód: \begin{thebibliography}{9} \bibitem{textbook} Donald E. Knuth, \textit{the \TeX book}, Addison-Wesley, Reading, \bibitem{latexbook} Leslie Lamport, \textit{\latex\ A Documen Preparation System}, 2nd ed. Addison-Wesley, \end{thebibliography} Könyvbeli irodalomjegyzékre hivatkozás módjai: Lásd Knuth könyvében \cite[120.\oldal]{textbook}. Lásd \acite{latexbook} könyvben. Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
34 BibT E X \documentclass{article} \begin{document} The book \cite{book}, and the \cite{art}. \bibliography{mybib} \bibliographystyle{plain} \end{document} Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
35 BibT E X author = {Almond, W. E. and Biggs, A. D.}, title = {Title of article}, year = {1983}, journal = {Journal of Something}, volume = {10}, number = {2}, pages = { } author = "Joe Smith and Tom Johns", title = "Title of the book", publisher = "Nice books", year = 2010, } Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
36 Index \documentclass{article} \makeindex \begin{document} Ez a szó\index{szó} bekerül az indexbe. \input{file.ind} %<<ide kerül az index \end{document} Angol szöveg esetén a fordítás után makeindex file, magyar szöveg esetén husort.pl file, majd még egy fordítás. Wettl Ferenc (BME) Bevezetés a LATEX használatába (2) június / 36
Matematika a L A T E X-ben
Matematika a L A T E X-ben Informatika 1 Wettl Ferenc BME Algebra Tanszék, http://www.math.bme.hu/~wettl 2014. november 24. Wettl Ferenc (BME) Matematika a LATEX-ben 2014. november 24. 1 / 36 1 Matematikai
INFO1 Matematika szedése L A TEX-ben
INFO1 Matematika szedése L A TEX-ben Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M October 18, 2016
Tippek és trükkök matematika szedése
Tippek és trükkök matematika szedése TÁMOP 4.1.2.A/111/0064 képz k képzése Wettl Ferenc BME Algebra Tanszék, http://www.math.bme.hu/~wettl 2013. június 8. Wettl Ferenc (BME) Tippek és trükkök matematika
L A T E X. Móra Péter. Informatika 1 el adás, október 26.
L A T E X Móra Péter Informatika 1 el adás, 2009. október 26. 1 1. Matematikai formulák szerkesztése 1.1. Képletek Az alábbi parancsok közül néhányhoz be kell tölteni az alábbi három csomagot: \usepackage{amsmath}
TikZ, a L A T E X grakája
TikZ, a L A T E X grakája Informatika 1. L A TEX Móra Péter, Wettl Ferenc BME Algebra Tanszék, http://www.math.bme.hu/~wettl 2013-12-04 Móra Péter, Wettl Ferenc (BME) TikZ, a LATEX grakája 2013-12-04 1
Mintapélda. Szerzők, Hát Mi. 2010. november 12. 1.1. Példák bekezdésekre, kiemelésre, elválasztásra... 1 1.2. Ábrák... 2
Mintapélda Szerzők, Hát Mi 200. november 2. Tartalomjegyzék. Ismerkedés a L A TEX programmal.. Példák bekezdésekre, kiemelésre, elválasztásra............2. Ábrák................................. 2 2. Matematikai
L A T E X. Móra Péter. Informatika 1 el adás, november 17.
L A T E X Móra Péter Informatika 1 el adás, 2008. november 17. 1 1. Graka a TikZ csomaggal 1.0.1. Tikz csomagról általában A tikz ábrákat pdflatex paranccsal fordítsuk! Két lehet ségünk van: 1. A tex fájlban
Ábrák készítése TikZ-ben
Ábrák készítése TikZ-ben TÁMOP 4.1.2.A/1-11/0064 - képzők képzése Tóth László tothl@math.bme.hu 2013. február 6. Tóth László (BME) Ábrák készítése TikZ-ben 2013. február 6. 1 / 1 \begin{tikzpicture} \draw
Informatika 1 A L A TEX alapjai
Informatika 1 A L A TEX alapjai Borbély Gábor Wettl Ferenc diái alapján 2018.10.13 Borbély Gábor Informatika 1 A LATEX alapjai 2018.10.13 1 / 55 Amit megtanulunk TEX, L A TEX alapjai, különböző disztribúciók
Tóth László október 15.
Technikai útmutató a Matematikai és zikai képzés a természettudományos, a m szaki és az informatikai fels oktatásban TÁMOP 4.1.2.A/1-11/0064 pályázat szerz inek Tóth László tothl@math.bme.hu 2012. október
INFO1 A L A TEX alapjai
INFO1 A L A TEX alapjai Wettl Ferenc 2016-10-11 Wettl Ferenc INFO1 A LATEX alapjai 2016-10-11 1 / 68 Bevezetés 1 Bevezetés 2 TEX és L A TEX Az alapok Szerkesztés, fordítás, megtekintés Dokumentumformátumok
x 2 3 y 5 6 x + y 7 9
Táblázat készítése Táblázat: tabular a tabular első paraméterében meghatározzuk, hogy a táblázat oszlopai hogyan helyezkednek el a cellájukon belül. c: középen; l: balra zárva; r: jobbra zárva stb. Közéjük
Prezentáció L A T E X-hel
Prezentáció L A T E X-hel A Beamer dokumentumosztály Till Tantau Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G
BUJDOSO GYÖNGYI FAZEKAS ATTILA // / / KEZDOLEPESEK TERTIA KIADÓ
BUJDOSO GYÖNGYI FAZEKAS ATTILA // / / KEZDOLEPESEK TERTIA KIADÓ Tartalomjegyzék Előszó 13 1. A plaintex 19 Bevezető 21 1. Alapvető tudnivalók 23 1.1. A TgK használata vázlatosan 23 1.2. Betűk és jelek
L A TEX kezdőlépések E5N. Peti bá' október 28. PetiTEX, 2017.
L A TEX kezdőlépések E5N Peti bá' 2017. október 28. Könyvnyomtatás Gutenberg, a XV. század közepe európai könyvnyomtatás kezdete Könyvnyomtatás Gutenberg, a XV. század közepe európai könyvnyomtatás kezdete
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
Prezentáció L A T E X-hel
Prezentáció L A T E X-hel A Beamer dokumentumosztály Till Tantau Wettl Ferenc Budapesti M szaki Egyetem Algebra Tanszék 2011-11-19 Wettl Ferenc (BME) Prezentáció LATEX-hel 2011-11-19 1 / 14 1 A prezentációkészítés
Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. (
FELADATOK A LEKÉPEZÉSEK, PERMUTÁCIÓK TÉMAKÖRHÖZ Diszkrét Matematika 4. LEKÉPEZÉSEK Értelmezési tartomány és értékkészlet meghatározása : Összefoglaló feladatgyűjtemény matematikából ( zöld könyv ): XIII.
1. Példa. A gamma függvény és a Fubini-tétel.
. Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +
Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31
Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós
FELVÉTELI VIZSGA, július 21. Írásbeli próba MATEMATIKÁBÓL A. RÉSZ
BABE -BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 9. július. Írásbeli próba MATEMATIKÁBÓL FONTOS MEGJEGYZÉS: ) Az A. részben megjelen feleletválasztós feladatok esetén
The elteikthesis osztály *
The elteikthesis osztály * Majoros Dániel 2011. május 17. Kivonat Latex osztály az Eötvös Loránd Tudományegyetem Informatikai Kari diplomamunkák és szakdolgozatok számára. 1. Bevezető A követelmények a
5. Trigonometria. 2 cos 40 cos 20 sin 20. BC kifejezés pontos értéke?
5. Trigonometria I. Feladatok 1. Mutassuk meg, hogy cos 0 cos 0 sin 0 3. KöMaL 010/október; C. 108.. Az ABC háromszög belsejében lévő P pontra PAB PBC PCA φ. Mutassuk meg, hogy ha a háromszög szögei α,
Thesis class for the Eszterházy Károly College Osztályfájl szakdolgozat készítéséhez az Eszterházy Károly Főiskola részére thesis-ekf.cls v1.
Thesis class for the Eszterházy Károly College Osztályfájl szakdolgozat készítéséhez az Eszterházy Károly Főiskola részére thesis-ekf.cls v1.1 Tómács Tibor tomacs@ektf.hu 2015. április 19. Since the Eszterházy
Utolsó el adás. Wettl Ferenc BME Algebra Tanszék, Wettl Ferenc (BME) Utolsó el adás / 20
Utolsó el adás Wettl Ferenc BME Algebra Tanszék, http://www.math.bme.hu/~wettl 2013-12-09 Wettl Ferenc (BME) Utolsó el adás 2013-12-09 1 / 20 1 Dierenciálegyenletek megoldhatóságának elmélete 2 Parciális
Tudományos dolgozat megírásához szükséges néhány hasznos tudnivaló
Tudományos dolgozat megírásához szükséges néhány hasznos tudnivaló Ru Laura 1. Bevezetés E rövid dokumentum tudományos dolgozat megírásához szeretne segítséget nyújtani. Felsorol néhány általános tudnivalót,
Programozási gyakorlatok L A T E Xés MATLAB. Kiss Olivér Rózemberczki Benedek
Programozási gyakorlatok L A T E Xés MATLAB Kiss Olivér Rózemberczki Benedek Kiss Olivér és Rózemberczki Benedek András ROZEMBERCZKI.WORDPRESS.COM A példatárban szereplő feladatok és problémák saját ötletek
9. Képaláírás, kereszthivatkozás, tárgymutató és jegyzékek
, kereszthivatkozás, tárgymutató és jegyzékek Schulcz Róbert schulcz@hit.bme.hu A tananyagot kizárólag a BME hallgatói használhatják fel tanulási céllal. Minden egyéb felhasználáshoz a szerző engedélye
Halmazok. Gyakorló feladatsor a 9-es évfolyamdolgozathoz
Halmazok 1. Feladat. Adott négy halmaz: az alaphalmaz, melynek részhalmazai az A, a B és a C halmaz: U {1, 2,,..., 20}, az A elemei a páros számok, a B elemei a hárommal oszthatók, a C halmaz elemei pedig
Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
Gazdasági matematika II. vizsgadolgozat megoldása, június 10
Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett
Matematika 8. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Hat évfolyamos Matematika 8. osztály I. rész: Algebra Készítette: Balázs Ádám Budapest, 2018 2. Tartalomjegyzék Tartalomjegyzék I. rész: Algebra................................
Polinomok (el adásvázlat, április 15.) Maróti Miklós
Polinomok (el adásvázlat, 2008 április 15) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: gy r, gy r additív csoportja, zéruseleme, és multiplikatív félcsoportja, egységelemes
Matematikai programok
Matematikai programok Mátrixalapú nyelvek MatLab Wettl Ferenc diái alapján Budapesti M szaki Egyetem Algebra Tanszék 2017.11.07 Borbély Gábor (BME Algebra Tanszék) Matematikai programok 2017.11.07 1 /
Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) 1. ábra
Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) Egy korábbi dolgozatunkban címe: Két egyenes körhenger a merőlegesen metsződő tengelyű körhengerek áthatási feladatával foglalkoztunk. Most
Arany Dániel Matematikai Tanulóverseny 2014/2015-ös tanév első (iskolai) forduló Haladók II. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 01/01-ös tanév első iskolai) forduló Haladók II. kategória Megoldások és javítási útmutató 1. Adott az alábbi két egyenletrendszer:
Matematikai programok
Matematikai programok Mátrixalapú nyelvek octave Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Wettl
LATEX nemcsak matematika szakosaknak
LATEX nemcsak matematika szakosaknak Kovács Zoltán Blahota István, Nagy Károly és Toledo Rodolfo közrem ködésével ver.: 2005. szeptember 14. Tartalomjegyzék Bevezetés 1 1. Minden kezdet... 4 2. Egy dokumentum
Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!
függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor
: s s t 2 s t. m m m. e f e f. a a ab a b c. a c b ac. 5. Végezzük el a kijelölt m veleteket a változók lehetséges értékei mellett!
nomosztással a megoldást visszavezethetjük egy alacsonyabb fokú egyenlet megoldására Mivel a 4 6 8 6 egyenletben az együtthatók összege 6 8 6 ezért az egyenletnek gyöke az (mert esetén a kifejezés helyettesítési
Lineáris algebra mérnököknek
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Vektorok 2019-09-10 MGFEA Wettl Ferenc ALGEBRA
Gazdasági matematika II. tanmenet
Gazdasági matematika II. tanmenet Mádi-Nagy Gergely A hivatkozásokban az alábbi tankönyvekre utalunk: T: Tóth Irén (szerk.): Operációkutatás I., Nemzeti Tankönyvkiadó 1987. Cs: Csernyák László (szerk.):
A Beamer alkotója. Till Tantau áprilisában a munkát Joseph Wright és Vedran Miletic vette át.
Tartalomjegyzék 1 Alapok Alkotó 2 Beamer tulajdonsága 3 Dokumentumosztály szerkezete 4 Beamer opciók 5 Egyszerű Szöveg megjelenése 6 Keretek 7 Blokkok 8 Listák 9 Kitakarások (overlay) Izsó Tamás (BME-HIT)
Dierenciálhányados, derivált
9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez
Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek
Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
4_Gnuplot1. October 11, Jegyzetben az 3. fejezet (36-től 52.-ig oldalig).
4_Gnuplot1 October 11, 2016 1 Gnuplot Jegyzetben az 3. fejezet (36-től 52.-ig oldalig). http://stegerjozsef.web.elte.hu/teaching/szamalap.pdf 1.1 Előkészületek Hozzunk létre a latex mappában egy fig nevű
MATEK-INFO UBB verseny április 6.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR MATEK-INFO UBB verseny 219. április 6. Írásbeli próba matematikából FONTOS MEGJEGYZÉS: 1) Az A. részben megjelenő feleletválasztós
2. sillabusz a Többváltozós függvények kurzushoz
Az implicitfüggvény-tétel 2. sillabusz a Többváltozós függvények kurzushoz Mi az hogy sillabusz? Ez egy olyan iromány ami segédanyagnak készült. Vázlatos pontatlan (szándékoltan) hiányos. Segíti a tanulást
MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY
MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY (Kezdő 9. évfolyam) A feladatokat a Borbás Lászlóné MATEMATIKA a nyelvi előkészítő évfolyamok számára című könyv alapján állítottuk össze. I. Számok, műveletek számokkal.
A PICI L A TEX KÉZIKÖNYV
A PICI L A TEX KÉZIKÖNYV BERTÓK CSANÁD 2012 bertok.csanad@gmail.com 1 Tartalomjegyzék TARTALOMJEGYZÉK 2 1. BEVEZETÉS 3 2. A PREAMBULUM 4 3. A KEZDETI LÉPÉSEK, ALAPVETŐ FORMÁZÁSOK 7 3.1. INDULÁS........................................
A matematika nyelvér l bevezetés
A matematika nyelvér l bevezetés Wettl Ferenc 2012-09-06 Wettl Ferenc () A matematika nyelvér l bevezetés 2012-09-06 1 / 19 Tartalom 1 Matematika Matematikai kijelentések 2 Logikai m veletek Állítások
Matematika alapjai; Feladatok
Matematika alapjai; Feladatok 1. Hét 1. Tekintsük a,, \ műveleteket. Melyek lesznek a.) kommutativok b.) asszociativak c.) disztributívak-e a, műveletek? Melyik melyikre? 2. Fejezzük ki a műveletet a \
Megoldások, megoldás ötletek (Jensen-egyenlőtlenség)
Megoldások, megoldás ötletek (Jensen-egyenlőtlenség) Mivel az f : 0; ; x sin x folytonos az értelmezési tartományán, ezért elég azt belátni, hogy szigorúan gyengén konkáv ezen az intervallumon Legyen 0
RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!
RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy
Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged
Magas szintű matematikai tehetséggondozás Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Ahhoz, hogy egy diák kimagasló eredményeket érhessen el matematika versenyeken, elengedhetetlenül
Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok
. fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális
Lagrange-féle multiplikátor módszer és alkalmazása
Eötvös Loránd Tudományegyetem Természettudományi Kar Nemesné Jónás Nikolett Lagrange-féle multiplikátor módszer és alkalmazása Matematika BSc, Matematikai elemz szakirány Témavezet : Szekeres Béla János,
Halmazelméleti alapfogalmak
Halmazelméleti alapfogalmak halmaz (sokaság) jól meghatározott, megkülönböztetett dolgok (tárgyak, fogalmak, stb.) összessége. - halmaz alapfogalom. z azt jelenti, hogy csak példákon keresztül magyarázzuk,
2019, Funkcionális programozás. 2. el adás. MÁRTON Gyöngyvér
Funkcionális programozás 2. el adás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2019, tavaszi félév Mir l volt szó? Követelmények, osztályozás Programozási
Bázistranszformáció és alkalmazásai 2.
Bázistranszformáció és alkalmazásai 2. Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Mátrix rangja 2 Mátrix inverze 3 Mátrixegyenlet Mátrix rangja Tartalom 1 Mátrix rangja
Végeselem analízis. 1. el adás
Végeselem analízis 1. el adás Pere Balázs Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2016. szeptember 7. Mi az a VégesElem Analízis (VEA)? Parciális dierenciálegyenletek (egyenletrendszerek)
FELVÉTELI VIZSGA, szeptember 12.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 08. szeptember. Írásbeli vizsga MATEMATIKÁBÓL FONTOS TUDNIVALÓK: A feleletválasztós feladatok,,a rész esetén egy
MM CSOPORTELMÉLET GYAKORLAT ( )
MM4122-1 CSOPORTELMÉLET GYAKORLAT (2008.12.01.) 1. Ismétlés szeptember 1.szeptember 8. 1.1. Feladat. Döntse el, hogy az alábbi állítások közül melyek igazak és melyek (1) Az A 6 csoportnak van 6-odrend
Nulladik laborgyakorlat Adminisztratív és egyéb kérdések
Nulladik laborgyakorlat Adminisztratív és egyéb kérdések Dokumentumszerkesztés LAT E X használatával 3 kredit Kurzusok: LA LAT E X L terem WO M$ Word J terem Mindenki ellenőrizze, hogy a megfelelő kurzusra
Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ
Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.
Szélsőérték feladatok megoldása
Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =
6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás)
Matematika Ac gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 017/18 ősz 6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás) 1. Írjunk fel egy olyan legalacsonyabbrendű valós,
Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!
A MATLAB alapjai. Kezdő lépések. Változók. Aktuális mappa Parancs ablak. Előzmények. Részei. Atomerőművek üzemtana
A MATLAB alapjai Kezdő lépések - Matlab Promt: >> - Help: >> help sqrt >> doc sqrt - Kilépés: >> quit >> exit >> Futó script leállítása: >> ctrl+c - Változók listásása >> who >> whos - Változók törlése
Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)
Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő
Másodfokú egyenletek, egyenlőtlenségek
Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:
Informatika 1 CSS. Kovács Kristóf, Pálovics Róbert, Wettl Ferenc november 4. Budapesti M szaki Egyetem
Informatika 1 CSS Kovács Kristóf, Pálovics Róbert, Wettl Ferenc Budapesti M szaki Egyetem 2014. november 4. CSS CSS: Cascading Style Sheets CSS CSS: Cascading Style Sheets Cél: a tartalom és a megjelenítés
(a b)(c d)(e f) = (a b)[(c d) (e f)] = = (a b)[e(cdf) f(cde)] = (abe)(cdf) (abf)(cde)
2. házi feladat 1.feladat a b)c d)e f) = a b)[c d) e f)] = = a b)[ecdf) fcde)] = abe)cdf) abf)cde) 2.feladat a) Legyen a két adott pontunk helyzete A = 0, 0), B = 1, 0), továbbá legyen a távolságok aránya
ANALÍZIS II. Példatár
ANALÍZIS II. Példatár Többszörös integrálok 3. április 8. . fejezet Feladatok 3 4.. Kett s integrálok Számítsa ki az alábbi integrálokat:...3. π 4 sinx.. (x + y) dx dy (x + y) dy dx.4. 5 3 y (5x y y 3
Informatika 1. Informatika el adás. Kovács Kristóf, Pálovics Róbert. Budapesti M szaki Egyetem november 13.
Informatika 1 9. el adás Kovács Kristóf, Pálovics Róbert Budapesti M szaki Egyetem 2013. november 13. CSS HTML formázasára, elhelyezésére szolgál Cél az újrafelhasználhatóság és könny módosítás CSS kód
Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36
Vektorok Wettl Ferenc 2014. október 20. Wettl Ferenc Vektorok 2014. október 20. 1 / 36 Tartalom 1 Vektorok a 2- és 3-dimenziós térben 2 Távolság, szög, orientáció 3 Vektorok koordinátás alakban 4 Összefoglalás
Mikroszkóp vizsgálata és folyadék törésmutatójának mérése (8-as számú mérés) mérési jegyzõkönyv
(-as számú mérés) mérési jegyzõkönyv Készítette:, II. éves fizikus... Beadás ideje:... / A mérés leírása: A mérés során egy mikroszkóp különbözõ nagyítású objektívjeinek nagyítását, ezek fókusztávolságát
Matematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
Egy forgáskúp metszéséről. Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben.
Egy forgáskúp metszéséről Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben. Az O csúcsú, O tengelyű, γ félnyílásszögű kúpot az ( XY ) sík itt két alkotóban
Lagrange és Hamilton mechanika
Lagrange és 2010. október 17. Lagrange és Tartalom 1 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek 2 3 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája
Matematikai statisztika 1.
Matematikai statisztika 1 segédanyag Daróczi Gergely Szociológia Intézet 2010 Matematikai statisztika 1 01 Mátrixok A mátrix vízszintes vonalban elhelyezked elemei sorokat, függ leges vonalban elhelyezked
Diszkrét matematika 1. középszint
Diszkrét matematika 1. középszint 2017. sz 1. Diszkrét matematika 1. középszint 3. el adás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Határozatlansági relációk származtatása az
az állapottér BME TTK Matematikus MSc. 1. évf. 2012. november 14. Vázlat: Történeti áttekintés Nemkommutatív (kvantum) valószín ségelmélet Az állapottér geometriája: Az állapottér mint Riemann-sokaság
1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1
numerikus analízis ii 34 Ezért [ a, b] - n legfeljebb n darab gyöke lehet = r (m 1) n = r m + n 1 19 B - SPLINEOK VOLT: Ω n véges felosztás S n (Ω n ) véges dimenziós altér A bázis az úgynevezett egyoldalú
2. Algebrai átalakítások
I. Nulladik ZH-ban láttuk: 2. Algebrai átalakítások 1. Mi az alábbi kifejezés legegyszerűbb alakja a változó lehetséges értékei esetén? (A) x + 1 x 1 (x 1)(x 2 + 3x + 2) (1 x 2 )(x + 2) (B) 1 (C) 2 (D)
1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0
I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)
MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR MATE-INFO UBB verseny, 218. március 25. MATEMATIKA írásbeli vizsga FONTOS TUDNIVALÓK: 1 A feleletválasztós feladatok,,a rész esetén
8. Mezőutasítások. Schulcz Róbert schulcz@hit.bme.hu. 8. Mezőutasítások. v2013.10.24.
Schulcz Róbert schulcz@hit.bme.hu A tananyagot kizárólag a BME hallgatói használhatják fel tanulási céllal. Minden egyéb felhasználáshoz a szerző engedélye szükséges! 1 Mezőutasítások (1) A Word lehetőségeit
differenciálegyenletek
Állandó együtthatójú lineáris homogén differenciálegyenletek L[y] = y (n) + a 1y (n 1) + + a ny = 0 a i R (1) a valós, állandó együtthatójú lineáris homogén n-ed rendű differenciálegyenlet Megoldását y
Tamás Ferenc: CSS táblázatok 2.
Tamás Ferenc: CSS táblázatok 2. Ez az írás azoknak készült, akik már értik a HTML és a CSS nyelveket, csak használat közben kellene egy adott tulajdonság vagy érték. Kérem, hogy senki se ezzel kezdje a
Németh László Matematikaverseny, Hódmezővásárhely április 8. A osztályosok feladatainak javítókulcsa
Németh László Matematikaverseny, Hódmezővásárhely 2013. április 8. A 9-10. osztályosok feladatainak javítókulcsa 1. Jelöljük x-szel az adott hónapban megkezdett 100 kb-s csomagok számát. Az első szolgáltatónál
ACTA AGRARIA DEBRECENIENSIS A kézirat elkészítésére vonatkozó elıírások
ACTA AGRARIA DEBRECENIENSIS A kézirat elkészítésére vonatkozó elıírások ACTA AGRARIA DEBRECENIENSIS Manuscript Editing Instructions (short version, see also the examples given in the full Hungarian version)
A véges forgatás vektoráról
A véges forgatás vektoráról Az idők során sokszor olvastuk azt a mondatot a mechanika - könyvekben hogy a végtelen kis szögelfordulások az elemi forgások vektornak tekinthetők [ ] Természetesen adódik
Egy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged
Egy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged A 01. május 8.-i emelt szintű matematika érettségin szerepelt az alábbi feladat. Egy háromszög oldalhosszai egy számtani sorozat egymást
Diplomamunka, Szakdolgozat, Projekt munka, Komplex tervezés felépítésének tartalmi és formai követelményei
Diplomamunka, Szakdolgozat, Projekt munka, Komplex tervezés felépítésének tartalmi és formai követelményei 1. Kötelezően leadandó Az Automatizálási és Infokommunikációs Intézet honlapján található tervezési
Másodfokú egyenletek, egyenlőtlenségek
Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.
Modellek és Algoritmusok - 2.ZH Elmélet
Modellek és Algoritmusok - 2.ZH Elmélet Ha hibát elírást találsz kérlek jelezd: sellei_m@hotmail.com A fríss/javított változat elérhet : people.inf.elte.hu/semsaai/modalg/ 2.ZH Számonkérés: 3.EA-tól(DE-ek)
MATEMATIKA FELADATGYŰJTEMÉNY
Pék Johanna MATEMATIKA FELADATGYŰJTEMÉNY Nem matematika alapszakos hallgatók számára Tartalomjegyzék Előszó iii. Lineáris algebra.. Mátrixok...................................... Lineáris egyenletrendszerek..........................
A csavarvonalról és a csavarmenetről
A csavarvonalról és a csavarmenetről A témáoz kapcsolódó korábbi dolgozatunk: Ricard I. A Gépészeti alapismeretek tantárgyban a csavarok mint gépelemek tanulmányozását a csavarvonal ismertetésével kezdjük.