L A T E X. Móra Péter. Informatika 1 el adás, november 17.
|
|
- Máté Orbán
- 8 évvel ezelőtt
- Látták:
Átírás
1 L A T E X Móra Péter Informatika 1 el adás, november 17. 1
2 1. Graka a TikZ csomaggal Tikz csomagról általában A tikz ábrákat pdflatex paranccsal fordítsuk! Két lehet ségünk van: 1. A tex fájlban beillesztjük a tikz kódot, mint esetünkben. Ekkor csak pdf -et tudunk fordítani a pdflatex paranccsal. 2. Egy speciális preambulummal ellátott tex fájlban elkészítjük a rajzot, majd pdf fájlt generálunk bel le (ekkor a lap szélessége, magassága pontosan akkora lesz, mint az ábra). Ebb l lehet eps fájlt konvertálni. A készített kép vektorgrakus kép, tehát a mérete kicsi lesz. Részletes leírást tettem fel a wiki-re EPS ábra készítése TikZ csomaggal LaTeXben címmel. Fordíthatunk latex paranccsal dvi fájlt, ám az általam kipróbált dvi megjelenít k (YaP, evince, kdvi, xdvi) egyike sem tudta megfelel en megjeleníteni a node paranccsal megjelenített szöveget. Van még lehet ség arra, hogy az így fordított dvi fájlt dvips vagy dvipdfm paranccsal (utóbbi nekem nem ment) ps vagy pdf formátumba konvertáljuk. Ennek körülményessége miatt én a fent említett két módszert ajánlanám. Nem kell tudni ábrát rajzolni a ZH-ban. Olyan kérdés lehet, hogy mit rajzol egy kódrészlet. A házi feladatokhoz van egy 560 oldalas leírás: Vonalak, körök, színezés Az alábbi parancsokhoz szükséges, hogy betöltsük a tikz csomagot és pdatex paranccsal fog csak jól fordulni. \usepackage{tikz} Az alábbi példában egy négyzetet rajzolunk. A parancsokat érdemes úgy felfogni, mintha szegmenseket adnánk meg: a (0,0) pontból indulunk, majd mindegyik parancs -- (x,y) alakú. Jelentésük: az el z szegmens végér l húz egy vonalat a megadott koordinátához. \draw (0,0) -- (2,0) -- (2,2) -- (0,2) -- (0,0); 2
3 A koordináták alapértelmezés szerint cm-ben értend ek. Van lehet ség például pontban (1 pont 1/72 inch, pl. (5pt,5pt)) és mm-ben (pl. (5mm,5mm)) is megadni koordinátákat. \draw[line width=5pt] (0,0)--(2,0)--(2,2)--(0,2)--(0,0); \draw[line width=5pt] (6,0)--(8,0)--(8,2)--(6,2)--cycle; 3
4 \draw (0,5) -- (4,5); \draw[thick] (0,4) -- (4,4); \draw[thick,->] (0,3) -- (4,3); \draw[thick,->>] (0,2) -- (4,2); \draw[thick,<->] (0,1) -- (4,1); \draw[thick,<-] (0,0) -- (4,0); \draw (0,0) circle (0.5); \draw[dashed] (2,0) circle (1.5); 4
5 A arc parancs egy ívet rajzol. Els re fura lehet, hogy azt a koordinátát kell megadni, ahonnan kezdje az ívet, és nem a kör középpontját. Ez összhangban van az els példánál látott szegmensekb l való építkezéssel. A paraméterek: az ívet meghatározó szögek illetve a kör sugara. \draw (0,0) arc (0:180:1); \draw (0,0) arc (180:360:1.5); \draw[thick,color=red] (0,0) circle (0.5); \draw[thick,fill=red] (1,0) circle (0.5); 5
6 1.2. Node \draw[thick] (0,0) -- (2,0); \draw (0,0) node {abc}; \draw (2,0) node {$y^2$}; abc y 2 A node alapértelmezés szerint középre igazít. Ezt felülírhatjuk a left, right, above, below opciókkal. \draw[thick] (0,0) -- (2,0); \draw (0,0) node[left] {balra}; \draw (0,0) node[above] {fent}; \draw (2,0) node[right] {jobbra}; \draw (2,0) node[below] {lent}; balra fent jobbra lent 6
7 Ha a node parancsot egy szegmens után tesszük (például vonal után), akkor a pos opcióval meghatározhatjuk, hogy hova igazítsa a szöveget az el z szegmensen belül. A sloped paraméter hatására a szöveg döntését a vonaléhoz igazítja. \draw (0,4) -- (2,5) node[pos=0] {eleje}; \draw (0,3) -- (2,4) node[pos=0.33] {harmad}; \draw (0,2) -- (2,3) node[pos=1] {vége}; \draw (0,1) -- (2,2) node[pos=0.5,sloped] {közép}; \draw (0,0) -- (2,1) node[pos=0.5,sloped,above] {közép}; eleje harmad vége közép közép 7
8 Nem csak szöveget illeszthetünk be a node paranccsal, hanem képet és képletet is. A képletek beillesztésére csak a $ jelek között van mód szövegközi képletként (kiemelt képletnél nem a megadott koordinátához igazítaná). Ekkor jön jól, hogy szövegközi módon belül a \displaystyle paranccsal átválthatunk kiemelt módra. \draw (0,0) node {\includegraphics[scale=0.6]{sin}}; \draw (2,2) node {$\displaystyle \sum_{k=0}^{\infty} \frac{(-1)^kx^{2k+1}}{(2k+1)!}$}; k=0 ( 1) k x 2k+1 (2k + 1)! 8
9 Van lehet ség a nodeok koordinátáját elmenteni. \draw (0,0) node (A) {abc}; \draw (4,2) node (B) {dfghijk}; \draw[very thick,->] (A) -- (B); dfghijk abc \draw (0,0) node[draw] (A) {abc}; \draw (4,2) node[draw,circle] (B) {dfghijk}; \draw[very thick,->] (A) -- (B) node[pos=0.5,above,sloped] {nyíl}; \draw (A) to [->,dashed,bend right=90] (B); dfghijk nyíl abc 9
10 1.3. Hasznos dolgok Ha szeretnénk az ábrát nagyítani, kicsinyíteni, akkor nem kell a koordinátákat egyessével átírni, hanem van lehet ség globálisan a scale opcióval ezt megtenni. A bet k méretét, a vonalak vastagságát ez a parancs nem befolyásolja. [scale=0.5] \draw (0,0) node[draw] (A) {\tiny{abc}}; \draw (4,2) node[draw,circle] (B) {dfghijk}; \draw[very thick,->] (A) -- (B); \draw (A) to [->,dashed,bend right=90] (B); dfghijk abc 10
11 A clip paranccsal megadhatunk egy területet. Azt követ rajzolásokból csak a megadott területbe es részeket jeleníti meg. A láthatóság kedvéért el ször körberajzoljuk a kivágott területet. \draw (0,-1) -- (2,1) arc (-45:135:1.4142) -- (-2,1) -- cycle; \clip (0,-1) -- (2,1) arc (-45:135:1.4142) -- (-2,1) -- cycle; \draw (0,0) node {\includegraphics[scale=0.6]{sin}}; \draw (2,2) node {$\displaystyle \sum_{k=0}^{\infty} \frac{(-1)^kx^{2k+1}}{(2k+1)!}$}; k=0 ( 1) k x (2k Beágyazás gure környezetbe \begin{figure} \begin{center} \draw (0,0) node {\includegraphics[scale=0.6]{sin}}; \draw[->,thick] (2,2) node[above] {$\pi \approx 3, $} -- (0,0); \draw[->,thick] (-1,-2) node[below] {$\displaystyle\frac{\pi}{2}$} -- (-1.7,0); 11
12 π 3, π 2 s3 1. ábra. A sin(x) függvény \end{center} \caption{a $sin(x)$ függvény} \end{figure} Lásd az 1. ábra. 2. Bibliográa L A TEXben a hivatkozások kezelésére két módszer van: A tex fájl végén soroljuk fel azokat a m veket, amelyekre hivatkozunk. Ez egyszer bb, ám nekünk kézzel kell formáznunk a bibliográát. Külön bib fájlt használunk, amelyet bibtex programmal kell lefordítanunk. Ezen külön fájl tartalmazhat egy hatalmas adatbázist, és csak 12
13 azok a hivatkozások kerülnek be a dokumentumunkba, amelyekre ténylegesen hivatkoztunk. Az els megoldást tárgyaljuk. A \cite parancsnak van \acite és \Acite megfelel je. Két független véletlen Cantor halmaz algebrai különbségének \cite{deksim} vizsgálatához hasznos lehet a véletlen környezetben fejl d elágazó folyamatok elmélete \cite[theorem 3.]{Ath}. Két független véletlen Cantor halmaz algebrai különbségének [2] vizsgálatához hasznos lehet a véletlen környezetben fejl d elágazó folyamatok elmélete [1, Theorem 3.]. Az alábbiakban sajnos egy nem szokványos dolgot kell csinálnunk: segítenünk kell a formázásban. A \bibitem-et követ részen belül is (\textit hatására dönti meg a bet ket), továbbá a \begin{thebibliography}{9} parancsban a 9 nem számot reprezentál, hanem azt jelenti, hogy 1 karakter széles lehet az összes bibliográai elem sorszáma. Ha legalább 10 hivatkozásunk van, akkor ezt a számot ki kell cserélnünk egy két bet b l álló tetsz leges szóra. \begin{thebibliography}{9} \bibitem{ath} K.~B.~Athreyam, S.~Karlin, On branching processes with random environments: I, Extinction probabilities \textit{the Annals of Mathematical Statistics}, 42(5): , \bibitem{deksim} F.M. Dekking and K.~Simon., On the size of the algebraic difference of two random Cantor sets. 13
14 \textit{random Structures and Algorithms}, 32, (2008) \end{thebibliography} Hivatkozások Ath [1] K. B. Athreyam, S. Karlin, On branching processes with random environments: I, Extinction probabilities The Annals of Mathematical Statistics, 42(5): , DekSim [2] F.M. Dekking and K. Simon., On the size of the algebraic dierence of two random Cantor sets. Random Structures and Algorithms, 32, (2008)
TikZ, a L A T E X grakája
TikZ, a L A T E X grakája Informatika 1. L A TEX Móra Péter, Wettl Ferenc BME Algebra Tanszék, http://www.math.bme.hu/~wettl 2013-12-04 Móra Péter, Wettl Ferenc (BME) TikZ, a LATEX grakája 2013-12-04 1
Ábrák készítése TikZ-ben
Ábrák készítése TikZ-ben TÁMOP 4.1.2.A/1-11/0064 - képzők képzése Tóth László tothl@math.bme.hu 2013. február 6. Tóth László (BME) Ábrák készítése TikZ-ben 2013. február 6. 1 / 1 \begin{tikzpicture} \draw
Egy jó kép felér ezer szóval.
Bevezetés Egy jó kép felér ezer szóval. Képek és rajzok elősegítik az előadás tartalmának jobb megértését. uegy dián egy kép Felhasznált anyagok: Jan-Philipp Kappmeier How to Tik Z? Meik Hellmund PGF/TikZ-
x 2 3 y 5 6 x + y 7 9
Táblázat készítése Táblázat: tabular a tabular első paraméterében meghatározzuk, hogy a táblázat oszlopai hogyan helyezkednek el a cellájukon belül. c: középen; l: balra zárva; r: jobbra zárva stb. Közéjük
4_Gnuplot1. October 11, Jegyzetben az 3. fejezet (36-től 52.-ig oldalig).
4_Gnuplot1 October 11, 2016 1 Gnuplot Jegyzetben az 3. fejezet (36-től 52.-ig oldalig). http://stegerjozsef.web.elte.hu/teaching/szamalap.pdf 1.1 Előkészületek Hozzunk létre a latex mappában egy fig nevű
Csima Judit március 9. és 16.
Grafika Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2017. március 9. és 16. Csima Judit Grafika 1 / 18 Grafika általában Grafika az R-ben Van néhány alapvető package az ábrázolásra:
Java és web programozás
Budapesti M szaki Egyetem 2015. 03. 18. 6. El adás Graka Java-ban Emlékezzünk kicsit vissza a tikz-re: \begin{tikzpicture \draw (0,0) node[draw,circle] (S) {s; \draw (3,2) node[draw,circle] (A) {a; \draw
Megjegyzés: A Gnuplot rendelkezik előre definiált függvényekkel, mint a sin(x), cos(x), tan(x), erf(x), atan(x), exp(x) stb.
Gnuplot Jegyzetben az 3. fejezet (36-től 52. oldalig). http://stegerjozsef.web.elte.hu/teaching/szamalap.pdf (http://stegerjozsef.web.elte.hu/teaching/szamalap.pdf) A gnuplot egy sokoldalú parancssorvezérelt
Tanári kézikönyv az Informatika az 1. és 2. évfolyam számára című munkafüzetekhez és a PC Peti oktatóprogramokhoz TANMENETJAVASLAT 2.
Tanári kézi az Informatika az 1. és 2. évfolyam számára című munkafüzetekhez és a PC Peti oktatóprogramokhoz 31 1. Szabályok a számítógépteremben 2. Év eleji ismétlés I. 3. Év eleji ismétlés II. 4. Jel
13. Oldja meg a valós számok halmazán az alábbi egyenleteket!
A 13. Oldja meg a valós számok halmazán az alábbi egyenleteket! a) b) sin 2 x 1 2cos x a) 6 pont b) 6 pont 12 pont írásbeli vizsga, II. összetev 4 / 16 2011. október 18. 14. Egy felmérés során két korcsoportban
A Vonallánc készlet parancsai lehetővé teszik vonalláncok és sokszögek rajzolását.
11. Geometriai elemek 883 11.3. Vonallánc A Vonallánc készlet parancsai lehetővé teszik vonalláncok és sokszögek rajzolását. A vonallánc egy olyan alapelem, amely szakaszok láncolatából áll. A sokszög
Tóth László október 15.
Technikai útmutató a Matematikai és zikai képzés a természettudományos, a m szaki és az informatikai fels oktatásban TÁMOP 4.1.2.A/1-11/0064 pályázat szerz inek Tóth László tothl@math.bme.hu 2012. október
Pólya-féle urnamodell II.
2012. szeptember 5, 15:30 KöMaL, 2012. szeptember (1. lap) Pólya-féle urnamodell II. 4. Egyéb önmegerősítő folyamatok 4.1. Végtelen sok szín az urnában Korábban ígértük, hogy szót ejtünk arról, hogyan
HTML alapok. A HTML az Internetes oldalak nyelve.
A HTML az Internetes oldalak nyelve. HTML alapok Karakteres szövegszerkesztővel (pl. Jegyzettömb) szerkeszthető. FONTOS, hogy az elkészült oldal kiterjesztése ne txt, hanem html legyen! Felépítése: Két
MATLAB alapismeretek III.
Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. MATLAB alapismeretek III. Z= F(x,y) alakú kétváltozós függvények rajzolása Több objektum rajzolása egy ábrába Kombináljuk
2. A ξ valószín ségi változó eloszlásfüggvénye a következ : x 4 81 F (x) = x 4 ha 3 < x 0 különben
1 feladatsor 1 Egy dobozban 20 fehér golyó van Egy szabályos dobókockával dobunk, majd a következ t tesszük: ha a dobott szám 1,2 vagy 3, akkor tíz golyót cserélünk ki pirosra; ha a dobott szám 4 vagy
Flex tutorial. Dévai Gergely
Flex tutorial Dévai Gergely A Flex (Fast Lexical Analyser) egy lexikáliselemz -generátor: reguláris kifejezések sorozatából egy C/C++ programot generál, ami szövegfájlokat képes lexikai elemek sorozatára
Függvények Függvények
teknőc parancsok ismétlése függvények fogalma, használata grafikon rajzoló program Reversi játékprogram függvények lokális változói rekurzió és fraktál-szerű ábrák rajzolása Emlékeztető töbszörös elágazás
MATLAB alapismeretek II.
Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. MATLAB alapismeretek II. Feladat: Plottoljuk a sin(x) függvényt a 0 x 4π tartományban Rajzoltassuk az e -x/3 sin(x) függvényt
ÁR kulcsrakész ÁR lapraszerelt
Szélesség (cm) 90 Magasság (cm) 85 52 266 Ft 39 412 Ft 54 057 Ft 41 203 Ft 54 095 Ft 41 005 Ft 54 455 Ft 41 365 Ft 55 143 Ft 42 052 Ft 57 396 Ft 44 305 Ft 56 886 Ft 43 795 Ft 58 146 Ft 45 055 Ft 55 316
Trigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1
Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Trigonometria Szögfüggvények alkalmazása derékszög háromszögekben 1. Az ABC hegyesszög háromszögben BC = 14 cm, AC = 1 cm, a BCA szög nagysága
mintásfal 60 40 2 2 mintásfal :m :sz :dbjobbra :dbfel
6.osztály 1.foglalkozás 6.osztály 2.foglalkozás kocka kockafal :db minta Készítsd el ezt a mintát! A minta hosszú oldala 60 a rövid oldala 40 egység hosszú. A hosszú oldal harmada a négyzet oldala! A háromszög
ArcGIS 8.3 segédlet 5. Dr. Iványi Péter
ArcGIS 8.3 segédlet 5. Dr. Iványi Péter Térképek prezentálása Tartalomjegyzék Az elkészített analízis eredményeit, vagy egyszerűen magát a térképet prezentálni is kell. Ez azt jelenti, hogy össze kell
Mechatronika segédlet 3. gyakorlat
Mechatronika segédlet 3. gyakorlat 2017. február 20. Tartalom Vadai Gergely, Faragó Dénes Feladatleírás... 2 Fogaskerék... 2 Nézetváltás 3D modellezéshez... 2 Könnyítés megvalósítása... 2 A fogaskerék
Érettségi feladatok: Koordináta-geometria 1/5
Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból
6. Alkalom. Kép ClipArt WordArt Szimbólum Körlevél. K é p
6. Alkalom Kép ClipArt WordArt Szimbólum Körlevél K é p Képet már létezı képállományból vagy a Word beépített CLIPART képtárgyőjteményébıl illeszthetünk be. Képállományból kép beillesztése A szövegkurzort
Érettségi feladatok Koordinátageometria_rendszerezve / 5
Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!
A Microsoft OFFICE. EXCEL táblázatkezelő. program alapjai. 2013-as verzió használatával
A Microsoft OFFICE EXCEL táblázatkezelő program alapjai 2013-as verzió használatával A Microsoft Office programcsomag táblázatkezelő alkalmazása az EXCEL! Aktív táblázatok készítésére használjuk! Képletekkel,
Programozás 7.o Az algoritmus fogalma (ismétlés)
Programozás 7.o Az algoritmus fogalma (étlés) Az algoritmus olyan leírás, felsorolás, amely az adott feladat megoldásához szükséges jól definiált utasítások s számú sorozata. Egy probléma megoldására kidolgozott
Halmazok. Halmazelméleti lapfogalmak, hatványhalmaz, halmazm veletek, halmazm veletek azonosságai.
Halmazok Halmazelméleti lapfogalmak, hatványhalmaz, halmazm veletek, halmazm veletek azonosságai. 1. lapfogalmak halmaz és az eleme fogalmakat alapfogalmaknak tekintjük, nem deniáljuk ket. Jelölés: x H,
3. gyakorlat. 1/7. oldal file: T:\Gyak-ArchiCAD19\EpInf3_gyak_19_doc\Gyak3_Ar.doc Utolsó módosítás: 2015.09.17. 22:57:26
3. gyakorlat Kótázás, kitöltés (sraffozás), helyiségek használata, szintek kezelése: Olvassuk be a korábban elmentett Nyaraló nevű rajzunkat. Készítsük el az alaprajz kótáit. Ezt az alsó vízszintes kótasorral
Kisérettségi feladatgyűjtemény
Kisérettségi feladatgyűjtemény Halmazok 1. Egy fordítóiroda angol és német fordítást vállal. Az irodában 50 fordító dolgozik, akiknek 70%-a angol nyelven, 50%-a német nyelven fordít. Hány fordító dolgozik
Gyakorló feladatok 9.évf. halmaznak, írd fel az öt elemű részhalmazokat!. Add meg a következő halmazokat és ábrázold Venn-diagrammal:
Gyakorló feladatok 9.évf.. Mennyi az összes részhalmaza az A a c; d; e; f halmaznak, írd fel az öt elemű részhalmazokat!. Legyen U ;;;;;6;7;8;9, A ;;6;7; és B ;;8. Add meg a következő halmazokat és ábrázold
MATLAB. 5. gyakorlat. Polinomok, deriválás, integrálás
MATLAB 5. gyakorlat Polinomok, deriválás, integrálás Menetrend Kis ZH Polinomok Numerikus deriválás Numerikus integrálás (+ anonim függvények) pdf Kis ZH Polinomok Sok függvény és valós folyamat leírható
Tudáspróba Informatika felmérő feladatok
Tudáspróba Informatika felmérő feladatok 1. Vezesd a mágneslemezt a számítógépbe! 2. Párosítsd a nyilakat a gombokkal! BASCKSPACE T A B SHIFT ENTER 1 3. a) Írd az egyes eszközök alá a nevüket!....... 3.
Objektumok és osztályok. Az objektumorientált programozás alapjai. Rajzolás tollal, festés ecsettel. A koordinátarendszer
Objektumok és osztályok Az objektumorientált programozás alapjai Rajzolás tollal, festés ecsettel A koordinátarendszer A vektorgrafikában az egyes grafikus elemeket (pontokat, szakaszokat, köröket, stb.)
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
Programozás I gyakorlat
Programozás I. - 2. gyakorlat Változók, típusok, bekérés Tar Péter 1 Pannon Egyetem M szaki Informatikai Kar Rendszer - És Számítástudományi Tanszék Utolsó frissítés: September 21, 2009 1 tar@dcs.vein.hu
Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy:
Függvények 015. július 1. 1. Feladat: Határozza meg a következ összetett függvényeket! f(x) = cos x + x g(x) = x f(g(x)) =? g(f(x)) =? Megoldás: Összetett függvény el állításához a küls függvényben a független
Lemez 05 gyakorló feladat
Lemez 05 gyakorló feladat Kivágó (mélyhúzó) szerszám készítése, alkalmazása Feladat: Készítse el az ábrán látható doboz modelljét a mélyhúzással és kivágásokkal! A feladat megoldásához a mélyhúzó szerszámot
MATEMATIKA ÉRETTSÉGI május 3. EMELT SZINT I.
MATEMATIKA ÉRETTSÉGI 0. május. EMELT SZINT I. ) Hatjegyű pozitív egész számokat képezünk úgy, hogy a képzett számban szereplő számjegy annyiszor fordul elő, amekkora a számjegy. Hány ilyen hatjegyű számjegy
Kisérettségi feladatsorok matematikából
Kisérettségi feladatsorok matematikából. feladatsor I. rész. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) Ha két egész szám összege páratlan, akkor a szorzatuk páros. b)
New Default Standard.ipt
Adaptív modellezési technika használata Feladat: Készítse el az alábbi ábrán látható fejes szeg parametrikus modelljét! A kidolgozáshoz használja az MSZ EN 22341-es szabványban megadott értékeket! 1 1.
Egy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged
Egy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged A 01. május 8.-i emelt szintű matematika érettségin szerepelt az alábbi feladat. Egy háromszög oldalhosszai egy számtani sorozat egymást
Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36
Vektorok Wettl Ferenc 2014. október 20. Wettl Ferenc Vektorok 2014. október 20. 1 / 36 Tartalom 1 Vektorok a 2- és 3-dimenziós térben 2 Távolság, szög, orientáció 3 Vektorok koordinátás alakban 4 Összefoglalás
Bevezetés a vonalkódok elméletébe. Melis Zoltán BCS Hungary (C) 1992-2006
Bevezetés a vonalkódok elméletébe Melis Zoltán BCS Hungary (C) 1992-2006 Bevezetés A számítógépek általánosan valamilyen bemenő adathalmazon végeznek mûveleteket Az adatbevitel módja sokféle lehet Kézi
17. előadás: Vektorok a térben
17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett
MECHANIZMUSOK KINEMATIKAI VIZSGÁLATA
Multidiszciplináris tudományok 3. kötet (2013) 1. sz. pp. 21-26. MECHANIZMUSOK KINEMATIKAI VIZSGÁLATA Nándoriné Tóth Mária egyetemi docens, ME GÉIK Ábrázoló Geometriai tanszék 3515 Miskolc-Egyetemváros,
1. Példa. A gamma függvény és a Fubini-tétel.
. Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +
A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA ( SZAKKÖZÉPISKOLA ) Javítási-értékelési útmutató
OktatásiHivatal A 014/01. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA ( SZAKKÖZÉPISKOLA ) Javítási-értékelési útmutató 1. feladat: Adja meg az összes olyan (x,
Lakóház tervezés ADT 3.3-al. Segédlet
Lakóház tervezés ADT 3.3-al Segédlet A lakóház tervezési gyakorlathoz főleg a Tervezés és a Dokumentáció menüket fogjuk használni az AutoDesk Architectural Desktop programból. A program centiméterben dolgozik!!!
3. Nevezetes ponthalmazok a síkban és a térben
3. Nevezetes ponthalmazok a síkban és a térben 1. 1. Alapfogalmak 2. Nevezetes sík- és térbeli alakzatok, definícióik 3. Thalész-tétel 4. Gyakorlati alkalmazás Pont: alapfogalom, nem definiáljuk Egyenes:
Forgásfelületek származtatása és ábrázolása
Forgásfelületek származtatása és ábrázolása Ha egy rögzített egyenes körül egy tetszőleges görbét forgatunk, akkor a görbe úgynevezett forgásfelületet ír le; a rögzített egyenes, amely körül a görbe forog,
15.KÚPKEREKEK MEGMUNKÁLÁSA ÉS SZERSZÁMAI
15.KÚPKEREKEK MEGMUNKÁLÁSA ÉS SZERSZÁMAI Alapadatok Egymást szög alatt metsző tengelyeknél a hajtást kúpkerékpárral valósítjuk meg (15.1 ábra). A gördülő felületek kúpok, ezeken van kiképezve a kerék fogazata.
CAD-CAM-CAE Példatár
CAD-CAM-CAE Példatár A példa megnevezése: A példa száma: A példa szintje: CAx rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: Tengely jellegű alkatrész CAD modellezése ÓE-A06a alap közepes
Microsoft Excel. Táblázatkezelés. Dr. Dienes Beatrix
Microsoft Excel Táblázatkezelés Dr. Dienes Beatrix A táblázatkezelı feladata: Táblázatosan elrendezett adatok hatékony és látványos kezelése. Nagy adathalmazok adatbázis-kezelı Legfontosabb szolgáltatások:
Mérési vázlat készítése Geoprofi 1.6 részletpont jegyzőköny felhasználásával
Mérési vázlat készítése Geoprofi 1.6 részletpont jegyzőköny felhasználásával A menüpont az ITR-4/Feliratok eszköztárán taláható. Készült Peremiczki Péter földmérő javaslata és segítsége alapján. A menüpont
Bevezetés a programozásba I.
Bevezetés a programozásba I. 6. gyakorlat C++ alapok, szövegkezelés Surányi Márton PPKE-ITK 2010.10.12. Forrásfájlok: *.cpp fájlok Fordítás: a folyamat, amikor a forrásfájlból futtatható állományt állítunk
6.1.1.2 Új prezentáció létrehozása az alapértelmezés szerinti sablon alapján.
6. modul Prezentáció A modul a prezentációkészítéshez szükséges ismereteket kéri számon. A sikeres vizsga követelményei: Tudni kell prezentációkat létrehozni és elmenteni különböző fájl formátumokban A
Érettségi feladatok: Síkgeometria 1/6
Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
Tananyag, tartalom, tevékenység - minimum és optimum
Informatika /2. osztály NAT Digitális kompetencia A digitális kompetencia felöleli az információs társadalom technológiáinak (Information Society Technology, a továbbiakban: IST) magabiztos és kritikus
4 = 0 egyenlet csak. 4 = 0 egyenletből behelyettesítés és egyszerűsítés után. adódik, ennek az egyenletnek két valós megoldása van, mégpedig
Oktatási Hivatal Az forduló feladatainak megoldása (Szakközépiskola) Melyek azok az m Z számok, amelyekre az ( m ) x mx = 0 egyenletnek legfeljebb egy, az m x + 3mx 4 = 0 egyenletnek legalább egy valós
21. szám 124. évfolyam 2009. július 3. TARTALOM. Utasítások 48/2009. (VII. 3. MÁV Ért. 21.) VIG számú
21. szám 124. évfolyam 2009. július 3. ÉRTESÍTÕ MAGYAR ÁLLAMVASUTAK ZÁRTKÖRÛEN MÛKÖDÕ RÉSZVÉNYTÁRSASÁG TARTALOM Oldal Utasítások 48/2009. (VII. 3. MÁV Ért. 21.) VIG számú vezérigazgatói utasítás a vonatok
1. Komárom. 40 pont. Név:... osztály:... Informatika középszint. gyakorlati vizsga 0921 4 / 16 2010. május 17.
1. Komárom Hozzon létre egy 2 oldalas dokumentumot a komáromi er drendszer történetének bemutatására! A dokumentumot a szövegszerkeszt program segítségével készítse el! Az egyszer szövegszerkeszt vel készített
Programozási nyelvek 4. előadás
Programozási nyelvek 4. előadás Fa rajzolása rekurzívan Logo fa variációk A fa egy törzsből áll, amelynek tetején két ág nő ki, s mindkettő tulajdonképpen egy-egy alacsonyabb, rövidebb törzsű fa. Az ábrában
INFORMATIKA EMELT SZINTŰ PRÓBAÉRETTSÉGI
INFORMATIKA EMELT SZINTŰ PRÓBAÉRETTSÉGI 2. feladatsor A gyakorlati vizsga időtartama: 240 perc Fontos tudnivalók A gyakorlati feladatsor megoldásához 240 perc áll rendelkezésére. A vizsgán használható
MATEMATIKAI KOMPETENCIATERÜLET A
MATEMATIKAI KOMPETENCIATERÜLET A Matematika 6. évfolyam TANULÓI MUNKAFÜZET 2. FÉLÉV A kiadvány KHF/4356-14/2008. engedélyszámon 2008.11.25. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő
Lehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van.
Geometria, sokszögek, szögek, -, 2004_01/5 Lili rajzolt néhány síkidomot: egy háromszöget, egy deltoidot, egy paralelogrammát és egy trapézt. A következő állítások ezekre vonatkoznak. Tegyél * jelet a
Hivatkozás hagyományos és elektronikus forrásokra
Hivatkozás hagyományos és elektronikus forrásokra Fogalmak: Referenciák (hivatkozások): Plagizálás (ollózás, irodalmi lopás) Referencia lista (hivatkozási jegyzék) Bibliográfia (felhasznált irodalom):
SCILAB programcsomag segítségével
Felhasználói függvények de niálása és függvények 3D ábrázolása SCILAB programcsomag segítségével 1. Felhasználói függvények de niálása A Scilab programcsomag rengeteg matematikai függvényt biztosít a számítások
5. Trigonometria. 2 cos 40 cos 20 sin 20. BC kifejezés pontos értéke?
5. Trigonometria I. Feladatok 1. Mutassuk meg, hogy cos 0 cos 0 sin 0 3. KöMaL 010/október; C. 108.. Az ABC háromszög belsejében lévő P pontra PAB PBC PCA φ. Mutassuk meg, hogy ha a háromszög szögei α,
0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2)
Legyen adott a P átmenetvalószín ség mátrix és a ϕ 0 kezdeti eloszlás Kérdés, hogy miként lehetne meghatározni az egyes állapotokban való tartózkodás valószín ségét az n-edik lépés múlva Deniáljuk az n-lépéses
BME MOGI Gépészeti informatika 15.
BME MOGI Gépészeti informatika 15. 1. feladat Készítsen alkalmazást a y=2*sin(3*x-π/4)-1 függvény ábrázolására a [-2π; 2π] intervallumban 0,1-es lépésközzel! Ezen az intervallumon a függvény értékkészlete
Feladat: Készítse el az alábbi ábrán látható térbeli vázszerkezet 3D-s modelljét az Inventor beépíte vázszerkezet tervező moduljának használatával!
Feladat: Készítse el az alábbi ábrán látható térbeli vázszerkezet 3D-s modelljét az Inventor beépíte vázszerkezet tervező moduljának használatával! 1 1. Hozza létre az alábbi térbeli vázlatot. A vázlatkészítés
20. tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek.
. tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek. Először megadom a síkbeli definíciójukat, mert ez alapján vezetjük le az egyenletüket. Alakzat
b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2
1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon
Bevezetés. Párhuzamos vetítés és tulajdonságai
Bevezetés Az ábrázoló geometria célja a háromdimenziós térben elhelyezkedő alakzatok helyzeti és metrikus viszonyainak egyértelműen és egyértelműen visszaállítható (rekonstruálható) módon történő való
Tárgy. Forgóasztal. Lézer. Kamera 3D REKONSTRUKCIÓ LÉZERES LETAPOGATÁSSAL
3D REKONSTRUKCIÓ LÉZERES LETAPOGATÁSSAL. Bevezetés A lézeres letapogatás a ma elérhet legpontosabb 3D-s rekonstrukciót teszi lehet vé. Alapelve roppant egyszer : egy lézeres csíkkal megvilágítjuk a tárgyat.
Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.
1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége
Próba érettségi feladatsor április 09. I. RÉSZ. 1. Hány fokos az a konkáv szög, amelyiknek koszinusza: 2
Név: osztály: Próba érettségi feladatsor 010 április 09 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti fehér hátterű
Add meg az összeadásban szereplő számok elnevezéseit!
1. 2. 3. 4. 5. Add meg az összeadásban szereplő Add meg a kivonásban szereplő Add meg a szorzásban szereplő Add meg az osztásban szereplő Hogyan függ két szám előjelétől a két szám szorzata, hányadosa?
Baran Ágnes. Gyakorlat Függvények, Matlab alapok
Matematika Mérnököknek 1. Baran Ágnes Gyakorlat Függvények, Matlab alapok Matematika Mérnököknek 1. A gyakorlatok fóliái: https://arato.inf.unideb.hu/baran.agnes/oktatas.html Feladatsorok: https://arato.inf.unideb.hu/baran.agnes/oktatas.html
Egyenes mert nincs se kezdő se végpontja
Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással
KissS. A l g o r i t m u s o k I m a g i n e L o g o b a n. Algoritmusok
Algoritmusok Ebben a tárgykörben a ComeniusLogo-val foglalkozunk. "A teknőc számítógéppel vezérelt kibernetikus lény." A Logo-filozófia: "Hogy valamit megtanulhass, először találd meg az értelmét." Maga
MATEMATIKA ÍRÁSBELI VIZSGA KÖZÉPSZINT% II. ÉRETTSÉGI VIZSGA május 3. MINISZTÉRIUM NEMZETI ERFORRÁS május 3. 8:00. Idtartam: 135 perc
a feladat sorszáma maximális elért összesen II./A rész 13. 12 14. 12 15. 12 II./B rész 17 17 m nem választott feladat ÖSSZESEN 70 maximális elért I. rész 30 II. rész 70 Az írásbeli vizsgarész a 100 dátum
Az 1.osztály követelményrendszere az 1. félévben. Az 1. osztály követelményrendszere a 2. félévben
Az 1.osztály követelményrendszere az 1. félévben A tanuló: Legyen képes a közvetlen környezetében önállóan megfigyeléseket végezni, a tapasztalatait tudja tanítói kérdések segítségével elmondani szóban,
Dr. Pétery Kristóf: AutoCAD LT 2002 Blokkok, Xrefek
2 Minden jog fenntartva, beleértve bárminemű sokszorosítás, másolás és közlés jogát is. Kiadja a Mercator Stúdió Felelős kiadó a Mercator Stúdió vezetője Lektor: Gál Veronika Szerkesztő: Pétery István
FELHASZNÁLÓI KÉZIKÖNYV
FELHASZNÁLÓI KÉZIKÖNYV BEVEZETÉS, ELSŐ LÉPÉSEK térinformatikai rendszer kezelőfelülete SZOFTVERKÖVETELMÉNYEK A Chrome rendszer használathoz Microsoft Internet Autodesk Explorer MapGuide 7.0+, Mozilla Enterprise
Függvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
V. osztály. Matematikai tehetségnap 2013. október 12. Megoldások
V. osztály 1. feladat. Ha leejtünk egy labdát, akkor az fele akkora magasságra pattan fel, mint ahonnan leejtettük. Milyen magasról ejtettük le a labdát, ha ötödik alkalommal 10cm magasra pattant fel?
Informatika 1 CSS. Kovács Kristóf, Pálovics Róbert, Wettl Ferenc november 4. Budapesti M szaki Egyetem
Informatika 1 CSS Kovács Kristóf, Pálovics Róbert, Wettl Ferenc Budapesti M szaki Egyetem 2014. november 4. CSS CSS: Cascading Style Sheets CSS CSS: Cascading Style Sheets Cél: a tartalom és a megjelenítés
Baran Ágnes. Gyakorlat Halmazok, függvények, Matlab alapok. Baran Ágnes Matematika Mérnököknek Gyakorlat 1 / 34
Matematika Mérnököknek 1. Baran Ágnes Gyakorlat Halmazok, függvények, Matlab alapok Baran Ágnes Matematika Mérnököknek 1. 1.-2. Gyakorlat 1 / 34 Matematika Mérnököknek 1. A gyakorlatok fóliái: https://arato.inf.unideb.hu/baran.agnes/oktatas.html
Zátonyi Sándor DÍJAZOTT KÍSÉRLETEIM
MAGYAR NUKLEÁRIS TÁRSASÁG ÖVEGES JÓZSEF DÍJA 2013. Zátonyi Sándor DÍJAZOTT KÍSÉRLETEIM Budapest 2013. december 5. Zátonyi Sándor: DÍJAZOTT KÍSÉRLETEIM Három pályázatot adtam be: Mérések lézeres távmérővel
KOORDINÁTA-GEOMETRIA
XIV. Témakör: feladatok 1 Huszk@ Jenő XIV.TÉMAKÖR Téma A pont koordinátageometriája A kör koordinátageometriája KOORDINÁTA-GEOMETRIA A projekt típus ú feladatok tartalmi szintézise A feladat sorszáma Oldal
Aronic Főkönyv kettős könyvviteli programrendszer
6085 Fülöpszállás, Kiskunság tér 4. Internet: www.cin.hu E-mail: software@cin.hu Tel: 78/435-081, 30/9-573-673, 30/9-593-167 kettős könyvviteli programrendszer v2.0 Szoftverdokumentáció Önnek is jár egy
Vizuális tervgazdálkodás
Minkó Mihály Vizuális tervgazdálkodás Egy úttörő grafikonkészítő összefoglaló munkája és rejtélyes munkássága A szocializmus kialakulásának első éveiben, amikor a tervgazdálkodás megvalósítása különös
P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
P R Ó B A É R E T T S É G I 0 0 4. m á j u s MATEMATIKA KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a
Ismétlődő műveletek elvégzésének automatizálása
Ismétlődő műveletek elvégzésének automatizálása Adatfeldolgozás közben gyakran előfordul, hogy Önnek ugyanazt, az elemi lépésekből álló, összetett műveletsort kell sokszor, esetleg nagyon sokszor és ami
MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész
MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.
Matematikai és matematikai statisztikai alapismeretek
Kézirat a Matematikai és matematikai statisztikai alapismeretek című előadáshoz Dr. Győri István NEVELÉSTUDOMÁNYI PH.D. PROGRM 1999/2000 1 1. MTEMTIKI LPOGLMK 1.1. Halmazok Halmazon mindig bizonyos dolgok