Az Arbitrázs és árazó funkcionálok pénzügyi piacokon c. OTKA pályázat (F 49094) zárójelentése
|
|
- Alfréd Dániel Szilágyi
- 9 évvel ezelőtt
- Látták:
Átírás
1 Az Arbitrázs és árazó funkcionálok pénzügyi piacokon c. OTKA pályázat (F 49094) zárójelentése Kutatásaimban tőzsdei származékos termékek (például opciók) árazását vizsgáltam. A pénzügyi matematika egyik alapfeltételezése az, hogy a piacok arbitrázsmentesek; ezért létezik helyes árazó funkcionál; sőt, általában ilyenek egész sokasága, melyből ki kell választani a számunkra legmegfelelőbbet. A választás alapjául a befektetők kockázathoz való viszonya, illetve a piaci termékek ára és hozama közt megfigyelt összefüggések szolgálhatnak. A klasszikus elmélet árazó funkcionáljai olyan valószínűségi mértékek, melyekre nézve a részvényárfolyamok martingálok. Ez az elmélet azonban idealizálja a kereskedést, figyelmen kívül hagyva a portfoliókra vonatkozó megszorításokat, a tranzakciós költségeket, valamint a likviditási problémákat. Az elvégzett kutatómunkát az előző bekezdésben felmerült szempontok szerint csoportosítva mutatom be. Optimális befektetések, folytonosság, kockázatkerülés A mikroökonómia egy befektető pénzhez való viszonyát általában egy konkáv, monoton növő U ún. hasznossági függvénnyel írja le. A függvény értelmezési tartománya lehet R (pl. U(x) = e x ) vagy R + (például U(x) = x p, 0 < p < 1). Az utóbbi esetben a veszteséges pozíciókat eleve kizárjuk vizsgálatainkból, ami általában könnyebb matematikához vezet. Adott U hasznossági függvényből és adott részvényár-dinamikából többféle árazó mérték származtatható: a hasznosság-semleges ár, a minimális (általánosított) entrópia mérték vagy a Davis-féle ún. helyes ár. Itt most nem bocsátkozom definíciókba; elég megjegyezni, hogy ezen árfogalmak mindegyike pénzügyi-közgazdaságtani vagy információelméleti megfontolások alapján került bevezetésre. Optimális befektetések létezését igazoltuk az eddigi legenyhébb feltételek mellett diszkrét időparaméterű modellekben a [28] és [29] cikkekben a dom(u) = R ill. a dom(u) = R + esetben társszerzőmmel, Lukasz Stettnerrel. A [9] cikkben egy olyan algoritmust adtunk meg, amely portfoliónk növekedési rátáját optimalizálja hosszú távon, tranzakciós költségek mellett. Ezután azt vizsgáltuk, vajon folytonosan függ-e az optimális befektetés az adott befektető hasznossági függvényétől. Matematikailag megfogalmazva: ha adva vannak a részvényárfolyamok és az U n függvénysorozat tart U-hoz (pontonkénti konvergencia), akkor a kapcsolódó optimális befektetések konvergálnak-e (1 valószínűséggel)? Az első ilyen irányú eredményt [13] érte el a közismert Black-Scholes modellben, ahol az árfolyamat geometriai Brown-mozgást követ. Az U n függvények értelmezési tartományát R + -nak feltételezték. 1
2 Kolléganőmmel, Laurence Carassus-sal diszkrét időparaméterű folyamatok egy széles osztályában és R-en értelmezett hasznossági függvényekre igazoltuk ezt az eredményt. Beláttuk azt is, hogy a befektetők által számolt árak (hasznosságsemleges ill. Davis ár) is konvergálnak, sőt, a Davis-ár ugyanolyan gyorsan, ahogyan az U n tart U-hoz (a pontos definíciót itt mellőzöm). Az eredmény gyakorlati tartalma az, hogy ha pontatlanul határozzuk is meg U-t, és utána ezzel a közelítéssel számolunk, a kapott árak hibája arányos a kezdeti becslés hibájával. Más szóval, a hasznossági függvényeken alapuló árazás robusztus az U perturbációira nézve. A problémát azóta többen tárgyalták folytonos ill. diszkrét idejű modellekben (lásd [22], [21], [17], [19] és [20]), hivatkozva a mi eredményünkre is. Ezidáig a miénk az egyetlen cikk, amely a dom(u) = R esetet tárgyalja, a többi közlemény mind a pozitív tengelyen definiált hasznossági függvényekkel foglalkozik. A befektető hasznossági függvényétől független az ún. szintetizálási költség (angolul superhedging/superreplication price ). Ez a legkisebb kezdeti tőke amiből 1 valószínűséggel (azaz kockázatmentesen) biztosítható az adott származékos termék (opciós szerződés) kifizetése. A befektetők szubjektív kockázatkerülését az r(x) = U (x)/u (x) függvénnyel szokás jellemezni. Természetesen fölmerül a kérdés: vajon ha ez a függvény (pontonként) végtelenhez tart, abból következik-e, hogy egy adott opció hasznosság-semleges ára a szintetizálási költséghez tart? A kezdeti eredmények mind az exponenciális függvényekre születtek, azaz ha U α (x) = e αx. Ilyenkor r α (x) = α konstans. Speciális modellosztályok vizsgálata után ([31]) a [8] cikkben belátták, hogy α esetén a hasznosságsemleges árak tartanak a szintetizálási költséghez midőn a részvényárak általános (lokálisan korlátos) szemimartingál folyamatot követnek (és nincs arbitrázs). A [1] értekezésben hasznossági függvények néhány más osztályára is kiterjesztették ezt az eredményt. Továbbra is nyitott kérdés volt azonban, mi történik általános U n függvénysorozat esetén ha r n (x) minden x-re. Először a [2] cikkben sikerült egy ilyen eredményt igazolnunk a dom(u n ) = R + esetre, diszkrét időparaméterű piacmodellek egy nagy osztályára. A dom(u n ) = R eset jóval bonyolultabbnak bizonyult, ezt a [4] közleményben sikerült belátnunk, valamint azt is bizonyítottuk, hogy az optimális stratégiák sorozatának egyik (alkalmas módon definiált) torlódási pontja szintetizálja az opciót (azaz megfelelően kereskedve portfoliónk értéke 1 valószínűséggel legalább az opció értéke lesz). Hasonló eredményeket korábban csak egy lépéses modellekben ([6]) illetve véges valószínűségi mezőkön ([10]) értek el. Konvergencia általában nem remélhető (lásd [6] ellenpéldáját). A [4] és [3] cikkek részben hosszadalmas direkt becsléseken alapulnak. Felhasználva a [28] cikk eredményeit, belátjuk, hogy az adott feltételek mellett a feladat helyesen kitűzött (azaz a maximális elérhető hasznosság véges), valamint 2
3 az optimális stratégiák (n-ben egyenletesen) korlátosak. A [4] és [2] közleményekben egy másik fontos felhasznált tény a kereskedéssel elérhető portfolió értékek halmazának zártsága (valószínűségi változók egy alkalmas terében); ez a funkcionálanalízis technikáinak egyik alapvető alkalmazása a pénzügyi matematikában. A [3] közleményben lényeges szerepet játszik az implicit függvény tétel egy egyenletes változata. Teljesen más módszerrel sikerült [4] eredményét általános (lokálisan korlátos) szemimartingál árfolyamatok esetére kiterjeszteni, a készülő [5] cikkben. Arbitrázs nagy piacokon Az úttörő [30] cikkben a szerző olyan piacokat tekintett, melyeken nagyon sok (matematikailag megszámlálhatóan végtelen számú) termék van jelen. A gyakorlati életben például a különböző lejáratú kötvények sokasága modellezhető így. A [30] cikk fő eredménye szerint a piac arbitrázsmentességéből következik, hogy az egyes termékek hozama közel lineáris függvénye a tőzsdeindexszel való korrelációjuknak. Ez az észrevétel a mikroökonómia egyik sarokkövévé vált, amivel rengeteg közgazdaságtani cikk foglalkozott. A matematikai elméletet Yu. M. Kabanov és D. O. Kramkov új szempontok szerint tárgyalta, lásd a [14] cikket (illetve annak irodalomjegyzékét). A [30] konkrét modelljét részletesen vizsgáltam a [23] és [24] cikkeimben. Sikerült a régebbi, [30]-ban szereplő arbitrázs-fogalom és a modern pénzügyi matematikában használt definíció ekvivalenciáját belátnom, valamint martingálmérték létezését igazolnom, lásd még a [25] áttekintő cikket is. A Ross-féle modell hátránya, hogy igen szegényes kovariancia-struktúrát feltételez a piacról: minden egyes termék korrelált a tőzsdeindexszel (amit 0. termékként szokás szerepeltetni), de máskülönben saját, független véletlen forrás hajtja meg a dinamikáját. (Kicsit precízebben: az i. termék hozama a 0. termék hozamának és ε i -nek lineáris kombinációja, ahol ε i -k független valószínűségi változók. A [30]-beli modell megenged véges sok faktort is, azaz több tőzsdeindex -et, de ez még mindig csak egy nagyon speciális modellosztályt ölel fel és a gyakorlatban faktoranalízist tesz szükségessé.) Tényleges kötvénypiacok vizsgálatához elengedhetetlennek tűnik az általános kovariancia-struktúra vizsgálata. A [27] cikkem első lépésként olyan nagy piacokat vizsgál, ahol a termékek hozamai lognormális eloszlásúak tetszőleges kovarianciamátrixszal. Feltételt adtam a piac paramétereire (hozamok és korrelációk), mely elégséges (és plusz feltevések mellett szükséges is) ekvivalens martingálmérték (azaz árazó funkcionál) létezésére ebben a modellben. A feltétel empirikusan tesztelhető valódi hozamadatokon, faktoranalízist nem igényel és általánosítja a [30] cikk jól ismert összefüggéseit. A tétel egyik iránya véges dimenziós mértékcserén és egy kompaktsági lemmán alapul, a másik irány pedig a Parseval-egyenlőtlenségen. 3
4 Arbitrázs és árazás az idealizált modelleken túl A szabványos modellek figyelmen kívül hagyják a piac súrlódásait, azaz a különböző likviditási gondokat és a tranzakciós költségeket. A valóságot pontosabban leíró modellek vizsgálatával is foglalkoztam. A szabványos, súrlódásmentes modellekben (lásd [18]) az optimális befektetésekkel kapcsolatos problémák kulcsa gyakran nem a dinamikus programozás elve, hanem az ún. duális feladat vizsgálata. A kérdés most az, mik a duális objektumok (azaz árazó funkcionálok) tranzakciós költségek megléte esetén? Diszkrét idejű modellekben kielégítő eredményeket értek el [16], [15] és [32]: az arbitrázsmentesség arányos tranzakció költségek esetén (pl. a bróker részesedése mindig 1%) ekvivalens az ún. konzisztens árazási rendszerek létezésével (a [32] cikk által bevezetett terminológiával élve). A [15] cikk fő eredményére új bizonyítási módszert javasoltam [26]-ban. Folytonos idejű modelleket vizsgáltunk arányos tranzakciós költségekkel kollégáimmal, Paolo Guasonival és Walter Schachermayerrel együtt. Sikerült duális változókat (=árazó funkcionálokat) konstruálnunk a [11] cikkben egy széles folyamatosztályra, mely tartalmazza például a geometriai frakcionális Brown-mozgást is. Eredményünk jelentős visszhangra talált, a [7] cikken kívül már legalább 3 kéziratos közlemény hivatkozik rá. Új modellekre is kiterjesztettük a diffúziós árfolyamatokra jól ismert állítást, hogy tranzakciós költségek esetén egy európai vételi opció csak triviális kereskedéssel szintetizálható (azaz meg kell venni az adott részvényt a kereskedési periódus elején), lásd pl. [33]. További ilyen irányú vizsgálatainkat tartalmazza a [12] cikk. Mind [11], mind [12] magja egy direkt rekurzív konstrukció. Előnye, hogy igen általánosan működik, viszont nem szolgáltat analitikusan kezelhető folyamatokat (pl. sztochasztikus differenciálegyenletet). A fentebb ismertetett programot az OTKA 2005-től 2008-ig támogatta. E kutatás gyümölcsei a [2], [3], [4], [9], [11], [12], [26], [27], [28], [29] cikkek, valamint a [5] még kéziratban lévő közlemény. Az OTKA támogatás lehetővé tette, hogy számos külföldi konferencián ismertessem ezeket az eredményeket és konzultáljak szakterületem külföldi művelőivel. Szeretném ez úton is kifejezni hálás köszönetemet. Budapest, február 10. Rásonyi Miklós Hivatkozások [1] B. Bouchard. Stochastic control and applications in finance. PhD thesis, Université Paris 9,
5 [2] L. Carassus, M. Rásonyi: Convergence of utility indifference prices to the superreplication price. Mathematical Methods of Operations Research, vol. 64, , [3] L. Carassus, M. Rásonyi: Optimal strategies and utility-based price converge when agents preferences do. Mathematics of Operations Research, vol. 32, , [4] L. Carassus, M. Rásonyi: Convergence of utility indifference prices to the superreplication price: the whole real line case. Acta Applicandae Mathematicae, vol. 96, , [5] L. Carassus, M. Rásonyi: Risk-averse asymptotics for reservation prices. Manuscript, [6] Cheridito, P. and Summer, Ch. Utility-maximizing strategies under increasing risk aversion. Finance Stoch., 10, , [7] A. Cherny: Brownian moving averages have conditional full support. Ann. Appl. Probab., 18, , [8] F. Delbaen, P. Grandits, T. Rheinländer, D. Samperi, M. Schweizer, Ch. Stricker Exponential hedging and entropic penalties. Math. Finance, 12, , [9] L. Gerencsér, M. Rásonyi, Cs. Szepesvári, Zs. Vágó Logoptimal currency portfolios and control Lyapunov exponents. Proceedings of the 44th Conference on Decision and Control, December, Sevilla, , [10] Grandits, P. and Summer, Ch. Risk-averse asymptotics and the optional decomposition. Theory Probab. Appl., 51, , [11] P. Guasoni, M. Rásonyi and W. Schachermayer: Consistent price systems and face-lifting pricing under transaction costs, Annals of Applied Probability, 18, , [12] P. Guasoni, M. Rásonyi and W. Schachermayer: The fundamental theorem of asset pricing for continuous processes under small transaction costs. Forthcoming in Annals of Finance, [13] E. Jouini and C. Napp, Convergence of utility functions and convergence of optimal strategies, Finance Stoch. 8, , [14] Yu. M. Kabanov, D. O. Kramkov, Asymptotic arbitrage in large financial markets. Finance Stoch. 2, ,
6 [15] Kabanov, Yu. M., Rásonyi, M. and Stricker, Ch. No-arbitrage criteria for financial markets with efficient friction. Finance Stoch., 6, , [16] Kabanov, Yu. M. and Stricker, Ch. The Harrison-Pliska arbitrage pricing theorem under transaction costs. J. Math. Econom., 35, , [17] C. Kardaras, G. Žitković. Stability of the utility maximization problem with random endowment in incomplete markets. Preprint [18] D. Kramkov, W. Schachermayer. The condition on the Asymptotic Elasticity of Utility Functions and Optimal Investment in Incomplete Markets. Annals of Applied Probability, 9, , [19] R. Kucharski. Convergence of optimal strategies in a discrete time market with finite horizon. Applicationes Mathematicae, 33, 85 93, [20] R. Kucharski. Convergence of optimal strategies under proportional transaction costs. Advances in mathematics of finance. Ed. Lukasz Stettner, Banach Center Publications 83, , [21] K. Larsen. Continuity of utility-maximization with respect to preferences. To appear in Mathematical Finance [22] K. Larsen, G. Žitković: Stability of utility-maximization in incomplete markets. Stochastic Processes and their Applications, 117, , [23] M. Rásonyi: Equivalent martingale measures for large financial markets in discrete time. Mathematical Methods of Operations Research, vol. 58, , [24] M. Rásonyi: Arbitrage pricing theory and risk-neutral measures. Decisions in Economics and Finance, vol. 27, , [25] M.Rásonyi: Arbitrázs nagy pénzügyi piacokon. SZIGMA, vol. 35, , [26] M. Rásonyi: New methods in the arbitrage theory of financial markets with transaction costs, Séminaire de Probabilités XLI, Lecture Notes in Mathematics 1934, , Springer, Berlin, [27] M. Rásonyi: A note on arbitrage in term structure. Decisions in Economics and Finance, 31, 73 79,
7 [28] M. Rásonyi, L. Stettner: On utility maximization in discrete-time market models. Annals of Applied Probability, vol. 15, , [29] L. Stettner, M. Rásonyi: On the existence of optimal portfolios for the utility maximization problem in discrete time financial market models. In: From stochastic calculus to mathematical finance- the Shiryaev Festschrift, Ed. Yu. M. Kabanov, R. Liptser, J. Stoyanov, , Springer, [30] S. A. Ross: The arbitrage theory of asset pricing. Journal of Economic Theory, 13, , [31] R. Rouge, N. El Karoui. Pricing via utility maximization and entropy. Math. Finance, 10, , [32] Schachermayer, W. The fundamental theorem of asset pricing under proportional transaction costs in finite discrete time. Math. Finance, 14, 19 48, [33] Soner, H. M., Shreve, S. E., and Cvitanić, J. There is no nontrivial hedging portfolio for option pricing with transaction costs. Ann. Appl. Probab. 5, 2, ,
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,
Funkcionálanalízis. n=1. n=1. x n y n. n=1
Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok
Centrális határeloszlás-tétel
13. fejezet Centrális határeloszlás-tétel A valószínűségszámítás legfontosabb állításai azok, amelyek független valószínűségi változók normalizált összegeire vonatkoznak. A legfontosabb ilyen tételek a
Arbitrázs, kockázattal szembeni attitűd és az eszközárazás alaptétele
2011. TIZEDIK ÉVFOLYAM 4. SZÁM 325 BADICS TAMÁS Arbitrázs, kockázattal szembeni attitűd és az eszközárazás alaptétele Az arbitrázselmélet egyik legfőbb vonzereje abban áll, hogy explicit módon nem hivatkozik
14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull
14 A Black-choles-Merton modell Copyright John C. Hull 01 1 Részvényárak viselkedése (feltevés!) Részvényár: μ: elvárt hozam : volatilitás Egy rövid Δt idő alatt a hozam normális eloszlású véletlen változó:
f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva
6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
SZTOCHASZTIKUS RENDSZEREK ÉS
1 SZTOCHASZTIKUS RENDSZEREK ÉS PÉNZÜGYI PIACOK MODELLEZÉSE OTKA 047193 2004-2006 Zárójelentés Gerencsér László MTA SZTAKI 2007 2 Bevezető. A kutatások célja a sztochasztikus rendszerek legkorszerűbb módszereinek
Stippinger Marcell: Tőzsdei modellezés (Szeminárium 2. előadás)
1 2010. április 8. Cégvilág 2010, Wigner Jenő Kollégium nagytermében Pénzügy: elsősorban MC-szimulációés informatikai feladatok. Fizikusok keresettek, egzotikus nyelveket is el kell sajátítani. 2 3 Matematikai
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha
minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.
Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
Kockázatos pénzügyi eszközök
Kockázatos pénzügyi eszközök Tulassay Zsolt zsolt.tulassay@uni-corvinus.hu Tőkepiaci és vállalati pénzügyek 2006. tavasz Budapesti Corvinus Egyetem 2006. március 1. Motiváció Mi a fő különbség (pénzügyi
f(x) a (x x 0 )-t használjuk.
5. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 5.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az
A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.
Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ
Mádi-Nagy Gergely * A feladat pontos leírása. Tekintsünk darab tetszõleges eseményt, jelöljük ezeket a következõképpen: ,...,
Mádi-Nagy Gergely * AZ ESEMÉNYEK UNIÓJÁNAK VALÓSZÍNÛSÉGE BECSLÉS A TÖBBVÁLTOZÓS DISZKRÉT MOMENTUM PROBLÉMA SEGÍTSÉGÉVEL Az események uniója valószínûsége becslésére szolgáló elsõ fontos eredmények a Boole-
1 Határidős szerződések és opciók. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull 2012 1
1 Határidős szerződések és opciók 1 Mi egy származékos pénzügyi termék (derivative)? Értéke egy másik eszköz, vagyontárgy (asset) feltételezett jövőbeli értékétől függ. Pl.: határidős szerződés, opciók,
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:
Készítette: Fegyverneki Sándor
VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y
ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül
A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az
A Baire-tételről egy KöMaL feladat kapcsán
A Baire-tételről egy KöMaL feladat kapcsán Besenyei Ádám A következőkben a matematikának több ágában is fontos szerepet betöltő eszközével, a Baire kategória-tétellel és annak néhány alkalmazásával ismertetjük
Telefonszám(ok) +36-93-502-916 Mobil +36-30-396-8675 Fax(ok) +36-93-502-900. Egyetem u. 10., 8200 Veszprém. Tehetséggondozás (matematika)
Europass Önéletrajz Személyi adatok Vezetéknév(ek) / Utónév(ek) Bujtás Csilla Telefonszám(ok) +36-93-502-916 Mobil +36-30-396-8675 Fax(ok) +36-93-502-900 E-mail(ek) Szakmai tapasztalat bujtas@dcs.vein.hu
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 1. Bevezetés, függvények, sorozatok, határérték Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés, a biomatematika célja 2 Függvénytani alapfogalmak
Páros összehasonlítás mátrixokból számolt súlyvektorok Pareto-optimalitása
Páros összehasonlítás mátrixokból számolt súlyvektorok Pareto-optimalitása Bozóki Sándor 1,2, Fülöp János 1,3 1 MTA SZTAKI; 2 Budapesti Corvinus Egyetem 3 Óbudai Egyetem XXXI. Magyar Operációkutatási Konferencia
PANNON EGYETEM DOKTORI ISKOLA
PANNON EGYETEM GAZDÁLKODÁS- ÉS SZERVEZÉSTUDOMÁNYOK DOKTORI ISKOLA Badics Tamás ARBITRÁZS ÉS MARTINGÁLMÉRTÉK Tézisgyűjtemény Témavezető: Dr. Medvegyev Péter Veszprém, 2011. 2011. február 14. Tartalomjegyzék
AKADÉMIAI LEVELEZŐ TAGSÁGRA TÖRTÉNŐ AJÁNLÁS
AKADÉMIAI LEVELEZŐ TAGSÁGRA TÖRTÉNŐ AJÁNLÁS I. ADATLAP Név: CSÁKI ENDRE Születési hely, év, hó, nap: Budapest, 1935 január 7 Tudomány doktora fokozat megszerzésének éve: 1989 Szűkebb szakterülete: valószínűségszámítás
A származtatott termékek árazása és annak problémái az egyensúlyelmélet szempontjából
Közgazdasági Szemle, LVI. évf., 2009. szeptember (769 789. o.) MEDVEGYEV PÉTER A származtatott termékek árazása és annak problémái az egyensúlyelmélet szempontjából A szerző röviden összefoglalja a származtatott
Analízis I. beugró vizsgakérdések
Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók
Társadalmi és gazdasági hálózatok modellezése
Társadalmi és gazdasági hálózatok modellezése 9. el adás Bevezetés az ökonozikába El adó: London András 2015. november 2. Motiváció Komplex rendszerek modellezése statisztikus mechanika és elméleti zika
1000 forintos adósságunkat, de csak 600 forintunk van. Egyetlen lehetőségünk, hogy a
A merész játékok stratégiája A következő problémával foglalkozunk: Tegyük fel, hogy feltétlenül ki kell fizetnünk 000 forintos adósságunkat, de csak 600 forintunk van. Egyetlen lehetőségünk, hogy a még
A magyarországi befektetési alapok teljesítményét meghatározó tényezők vizsgálata 1
2014. TIZENHARMADIK ÉVFOLYAM 2. SZÁM 147 BÓTA GÁBOR A magyarországi befektetési alapok teljesítményét meghatározó tényezők vizsgálata 1 Az alábbi cikkben a magyarországi részvénybefektetési alapok teljesítményét
Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból
ÜTEMTERV Programozás-elmélet c. tárgyhoz (GEMAK233B, GEMAK233-B) BSc gazdaságinformatikus, programtervező informatikus alapszakok számára Óraszám: heti 2+0, (aláírás+kollokvium, 3 kredit) 2019/20-es tanév
Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK
Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK Sorozat fogalma Definíció: Számsorozaton olyan függvényt értünk, amelynek értelmezési tartománya a pozitív egész
Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév
Analízis II. Analízis II. Beugrók Készítette: Szánthó József kiezafiu kukac gmail.com 2009/20 10 1.félév Analízis II. Beugrók Függvények folytonossága: 1. Mikor nevez egy függvényt egyenletesen folytonosnak?
LIST OF PUBLICATIONS
Annales Univ. Sci. Budapest., Sect. Comp. 33 (2010) 21-25 LIST OF PUBLICATIONS Péter Simon [1] Verallgemeinerte Walsh-Fourierreihen I., Annales Univ. Sci. Budapest. Sect. Math., 16 (1973), 103-113. [2]
A portfólió elmélet általánosításai és következményei
A portfólió elmélet általánosításai és következményei Általánosan: n kockázatos eszköz allokációja HOZAM: KOCKÁZAT: variancia-kovariancia mátrix segítségével! ) ( ) ( ) / ( ) ( 1 1 1 n s s s p t t t s
Prediction of Hungarian mortality rates using Lee-Carter method, Acta Oeconomica, 57, pp
Gáll József Publikációs lista Referált folyóiratcikkek Gáll, J. (2003): Some possible stock price distributions under incompleteness of the market, Mathematical and Computer Modelling, 38(7-9), pp. 829
Yakov Amihud Haim Mendelson Lasse Heje Pedersen: Market Liquidity. Asset Pricing, Risk and Crises
Közgazdasági Szemle, LXII. évf., 2015. július augusztus (871 875. o.) Yakov Amihud Haim Mendelson Lasse Heje Pedersen: Market Liquidity. Asset Pricing, Risk and Crises Cambridge University Press, Cambridge,
PANNON EGYETEM DOKTORI ISKOLA
PANNON EGYETEM GAZDÁLKODÁS- ÉS SZERVEZÉSTUDOMÁNYOK DOKTORI ISKOLA Badics Tamás ARBITRÁZS ÉS MARTINGÁLMÉRTÉK PhD értekezés Témavezető: Dr. Medvegyev Péter Veszprém, 2011. ARBITRÁZS ÉS MARTINGÁLMÉRTÉK Értekezés
egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk
Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,
A kompetitív piac közelítése sokszereplős Cournot-oligopóliumokkal
A kompetitív piac közelítése sokszereplős Cournot-oligopóliumokkal Tasnádi Attila Kivonat Mikroökonómia tankönyvekből és példatárakból ismert, hogy egy homogén termékű Cournot-oligopol piacon a termelők
Feleségem Hizsnyik Mária, gyermekeim Gyula (1979) és Júlia (1981), unokáim Lola (2007), Kende (2010) és Márkó (2010)
Pap Gyula Születési hely és idő: Debrecen, 1954 Feleségem Hizsnyik Mária, gyermekeim Gyula (1979) és Júlia (1981), unokáim Lola (2007), Kende (2010) és Márkó (2010) TANULMÁNYOK, TUDOMÁNYOS FOKOZATOK Gimnáziumi
Approximációs algoritmusok
Approximációs algoritmusok Nehéz (pl. NP teljes) problémák optimális megoldásának meghatározására nem tudunk (garantáltan) polinom idejű algoritmust adni. Lehetőségek: -exponenciális futási idejű algoritmus
Beruházási és finanszírozási döntések
Beruházási és finanszírozási döntések Dr. Farkas Szilveszter PhD, egyetemi docens BGF, PSZK, Pénzügy Intézeti Tanszék farkas.szilveszter@pszfb.bgf.hu, http://dr.farkasszilveszter.hu Tematika és tananyag
Diszkrét matematika II., 8. előadás. Vektorterek
1 Diszkrét matematika II., 8. előadás Vektorterek Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2007.??? Vektorterek Legyen T egy test (pl. R, Q, F p ). Definíció.
1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák:
1. Absztrakt terek 1 1. Absztrakt terek 1.1. Lineáris terek 1.1. Definíció. Az X halmazt lineáris térnek vagy vektortérnek nevezzük a valós számtest (komplex számtest) felett, ha bármely x, y X elemekre
Differenciálegyenletek numerikus megoldása
a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek numerikus megoldása Fokozatos közeĺıtés módszere (1) (2) x (t) = f (t, x(t)), x I, x(ξ) = η. Az (1)-(2) kezdeti érték probléma ekvivalens
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás
STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x
A fontosabb definíciók
A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.
2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az
Hatékony piacok feltételei
Hatékony piacok feltételei Piacok töredékmentesek tranzakciós hatékonyság Tökéletes verseny van termékpiacon mindenki a minimális átlagköltségen termel, értékpapírpiacon mindenki árelfogadó Piacok informálisan
4. Fogyasztói preferenciák elmélete
4. Fogyasztói preferenciák elmélete (ld. Temesi J.: A döntéselmélet alapjai, 47-63) 4.1 Preferencia relációk Mit jelent a fogyasztó választása? Legyen X egy olyan halmaz amelynek az elemei azok a lehetőségek
PTE PMMFK Levelező-távoktatás, villamosmérnök szak
PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Neptun kód: KTA60220, KTA60850, TMME0408, KT30725, KT30320, T M3537
Opcióértékelés/Opcióelmélet kurzusok Neptun kód: KTA60220, KTA60850, TMME0408, KT30725, KT30320, T M3537 2013-14, I. félév tagozat: nappali Oktatók: Gáll József (előadás), jozsef.gall kukac econ.unideb.hu,
ACTA ACADEMIAE PAEDAGOGICAE AGRIENSIS
Separatum ACTA ACADEMIAE PAEDAGOGICAE AGRIESIS OVA SERIES TOM. XXII. SECTIO MATEMATICAE TÓMÁCS TIBOR Egy rekurzív sorozat tagjainak átlagáról EGER, 994 Egy rekurzív sorozat tagjainak átlagáról TÓMÁCS TIBOR
6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének
6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük
4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O
1. Mit nevezünk elemi eseménynek és eseménytérnek? A kísérlet lehetséges kimeneteleit elemi eseményeknek nevezzük. Az adott kísélethez tartozó elemi események halmazát eseménytérnek nevezzük, jele: X 2.
Markov-láncok stacionárius eloszlása
Markov-láncok stacionárius eloszlása Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Kiss Tamás 2013. április 11. Tartalom Markov láncok definíciója, jellemzése Visszatérési idők Stacionárius
Corvinus Egyetem Matematika Tanszéke
Egyetem Matematika Tanszéke Peter Matematika Tanszék Budapesti Egyetem email: tallos@uni-corvinus.hu, 2012. szeptember 26. Tartalom,, Bevezetés a pénzügyi matematikába Célkit zések: A pénzügyi matematika
Formális nyelvek - 5.
Formális nyelvek - 5. Csuhaj Varjú Erzsébet Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c E-mail: csuhaj@inf.elte.hu 1 Lineáris
A Markowitz modell: kvadratikus programozás
A Markowitz modell: kvadratikus programozás Harry Markowitz 1990-ben kapott Közgazdasági Nobel díjat a portfolió optimalizálási modelljéért. Ld. http://en.wikipedia.org/wiki/harry_markowitz Ennek a legegyszer
Valós függvények tulajdonságai és határérték-számítása
EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye
MATEMATIKA 2. dolgozat megoldása (A csoport)
MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f
K&H szikra abszolút hozamú származtatott nyíltvégű alap
K&H szikra abszolút hozamú származtatott nyíltvégű alap kereskedelmi kommunikáció 2014. november 2 háttér, piaci trendek 1Q12 2Q12 3Q12 4Q12 1Q13 2Q13 3Q13 4Q13 1Q14 2Q14 3Q14 4Q14 1Q15 2Q15 3Q15 4Q15
A Matematika I. előadás részletes tematikája
A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok
Analízis I. Vizsgatételsor
Analízis I. Vizsgatételsor Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v.0.6 RC 004 Forrás: Oláh Gábor: ANALÍZIS I.-II. VIZSGATÉTELSOR 2006-2007-/2
Változatos Véletlen Árazási Problémák. Bihary Zsolt AtomCsill 2014
Változatos Véletlen Árazási Problémák Bihary Zsolt AtomCsill 2014 Fizikus a befektetési bankban Remek társaság Releváns matematikai műveltség Számítástechnikai affinitás Intuitív gondolkodás Modellezési
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,
A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex
A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az
Válogatott fejezetek a közlekedésgazdaságtanból
Válogatott fejezetek a közlekedésgazdaságtanból 2. Választási modellek Levelező tagozat 2015 ősz Készítette: Prileszky István http://www.sze.hu/~prile Fogalmak Választási modellek célja: annak megjósolása,
Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka
Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza
(1939. január 3. 2008. június 11.)
Alkalmazott Matematikai Lapok 26 (2009), 143-149. STAHL JÁNOS (1939. január 3. 2008. június 11.) Amikor Stahl János jellegzetes alakját felidézzük a kés bb született olvasó számára, akkor fel kell idéznünk
1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy
/. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.
4.2. Tétel: Legyen gyenge rendezés az X halmazon. Legyen továbbá B X, amelyre
4.2. Tétel: Legyen gyenge rendezés az X halmazon. Legyen továbbá B X, amelyre Az értékelő függvény létezése (folytatás) p. 1/8 4.2. Tétel: Legyen gyenge rendezés az X halmazon. Legyen továbbá B X, amelyre
Hiszterézises káoszgenerátor vizsgálata
vizsgálata Csikja Rudolf 2007. november 14. 1 / 34 Smale-patkó Smale-patkó Smale-patkó Cantor-halmaz A végtelen sorozatok tere 2 / 34 Smale-patkó L S R L R T B 3 / 34 Smale-patkó f(x, y) = A [ ] [ ] x
Függvények határértéke és folytonossága
Függvények határértéke és folytonossága 7. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények határértéke p. / Függvény határértéke az x 0 helyen Definíció. Legyen D R, f
Előrenéző és paraméter tanuló algoritmusok on-line klaszterezési problémákra
Szegedi Tudományegyetem Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszék Dr. Németh Tamás Előrenéző és paraméter tanuló algoritmusok on-line klaszterezési problémákra SZTE TTIK, Móra Kollégium,
SZÉLSŐÉRTÉKKEL KAPCSOLATOS TÉTELEK, PÉLDÁK, SZAKDOLGOZAT ELLENPÉLDÁK. TÉMAVEZETŐ: Gémes Margit. Matematika Bsc, tanári szakirány
SZÉLSŐÉRTÉKKEL KAPCSOLATOS TÉTELEK, PÉLDÁK, ELLENPÉLDÁK SZAKDOLGOZAT KÉSZÍTETTE: Kovács Dorottya Matematika Bsc, tanári szakirány TÉMAVEZETŐ: Gémes Margit Műszaki gazdasági tanár Analízis tanszék Eötvös
Nemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással
pontos dualitással Imre McMaster University Advanced Optimization Lab ELTE TTK Operációkutatási Tanszék Folytonos optimalizálás szeminárium 2004. július 6. 1 2 3 Kvadratikus egyenlőtlenségrendszerek Primál
Túlreagálás - Az átlaghoz való visszatérés
Kerényi Péter http://www.cs.elte.hu/ keppabt 2011. április 7. T kepiaci hatékonyság 1. Fama: Ecient Capital Markets: a Review of Theory and Empirical Work Egységes modellé gyúrta a korábbi eredményeket.
Ellenőrző kérdések a Matematika I. tantárgy elméleti részéhez, 2. rész
Ellenőrző kérdések a Matematika I. tantárgy elméleti részéhez, 2. rész Mintakérdések a 2. ZH elméleti részéhez. Nem csak ezek a kérdések szerepelhetnek az elméleti részben, de azért hasonló típusú kérdések
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.
15. LINEÁRIS EGYENLETRENDSZEREK
15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
Kockázati Mértékek Instabilitása
Kockázati Mértékek Instabilitása Doktori értekezés tézisei Varga-Haszonits István ELTE TTK Fizika Doktori Iskola Statisztikus fizika, biológiai fizika és kvantumrendszerek fizikája program Iskolavezető:
Nem teljesen kitöltött páros összehasonlítás mátrixok sajátérték optimalizálása Newton-módszerrel p. 1/29. Ábele-Nagy Kristóf BCE, ELTE
Nem teljesen kitöltött páros összehasonlítás mátrixok sajátérték optimalizálása Newton-módszerrel Ábele-Nagy Kristóf BCE, ELTE Bozóki Sándor BCE, MTA SZTAKI 2010. november 4. Nem teljesen kitöltött páros
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. szeptember 21. 1. Diszkrét matematika 2. 2. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. szeptember 21. Gráfelmélet
Elszámolóár Szabályzat. HUDEX Magyar Derivatív Energiatőzsde Zrt.
Elszámolóár Szabályzat HUDEX Magyar Derivatív Energiatőzsde Zrt. Verzió 2.0 Érvényes: 2019.04.18. Megjelenés dátuma: 2019.04.11. Jóváhagyva a Vezérigazgató 12/2019 (IV/11) számú határozatával Tartalomjegyzék
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)
Valószínűségi modellellenőrzés Markov döntési folyamatokkal
Valószínűségi modellellenőrzés Markov döntési folyamatokkal Hajdu Ákos Szoftver verifikáció és validáció 2015.12.09. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
OPCIÓS PIACOK VIZSGA MINTASOR
OPCIÓS PIACOK VIZSGA MINTASOR ELMÉLET ÉS SZÁMOLÁS ELMÉLETI ÉS SZÁMOLÁSI KÉRDÉSEK 1. A devizára szóló európai call opciók a) belsőértéke mindig negatív. b) időértéke pozitív és negatív is lehet. c) időértéke
Többperiódusú befektetési stratégiák vizsgálata
Többperiódusú befektetési stratégiák vizsgálata Urbán András urban@finance.bme.hu Tézisfüzet 20 témavezető: Dr. Ormos Mihály Budapesti Műszaki és Gazdaságtudományi Egyetem, Gazdálkodás- és Szervezéstudományi
Vállalkozási finanszírozás kollokvium
Harsányi János Főiskola Gazdálkodási és Menedzsment Intézet Vállalkozási finanszírozás kollokvium H Név: soport: Tagozat: Elért pont: Érdemjegy: Javította: 43 50 pont jeles 35 42 pont jó 27 34 pont közepes
SZOFTVEREK A SORBANÁLLÁSI ELMÉLET OKTATÁSÁBAN
SZOFTVEREK A SORBANÁLLÁSI ELMÉLET OKTATÁSÁBAN Almási Béla, almasi@math.klte.hu Sztrik János, jsztrik@math.klte.hu KLTE Matematikai és Informatikai Intézet Abstract This paper gives a short review on software