200 éves a kerékpár. Pósfalvi Ödön Budapesti Műszaki és Gazdaságtudományi Egyetem
|
|
- Enikő Orbánné
- 7 évvel ezelőtt
- Látták:
Átírás
1 éves a kerékpár Pósfalv Ödön Budapest Műszak és Gazdaságtudomány Egyetem Pósfalv Ödön okl. közlekedésmérnök, c. egyetem docens. Pályafutása során műszak doktor és PhD. fokozatot szerzett a műszak tudomány területén és a párzs FEANI-tól EUR. ING. címet kapott. A BME-n évtzedekg egyetem hallgatókat és szakmérnököket oktatott és jegyzeteket írt. 5-ben a Brtannca Hungarca Vlágencklopéda pályázatán I. díjat kapott. Szakterülete a gumabroncs mechanka és a gépjárművek megbízhatóságának kutatása. A tanulmány témaválasztását a következő szempontok ndokolják.. Johann Bernoull ( ) 77-ben smertette a vrtuáls munka elvét éppen 3 évvel ezelőtt - a kerékpár főegyenletét az elv alapján vezetem le [] [].. Carl Dras von Sauerbronn (785 85) 87-ben - éppen évvel ezelőtt szabadalmaztatta a ma kerékpár ősét. A feltaláló abból a fzka felsmerésből ndult k, hogy a gyalogló ember súlypontja mnden egyes lépésnél kssé felemelkedk, majd lesüllyed és ez a folyamat az zomerőknek munkát okoz tehát energa pazarlást jelent azonban kerékpárra ülve súlypontja az úttal párhuzamosan mozog. 3. A kerékpár szakszerű és baleset-megelőző működtetésének egyk feltétele a kerékpár mechanka vselkedésének smerete. A statka és dnamka egyenletek alapján beteknthetünk ebbe a folyamatba. A kerékpár egynyomú, zomerővel és/vagy segédmotorral hajtott, kormányozható és fékezhető egyén közlekedés eszköz. A kerékpár közlekedés jellemzője a mozgás, amely az ember test és összetett járműszerkezet együttműködése térben és dőben. A klasszkus kerékpárváz merev rudakból összeállított járműszerkezet, csukló, rugó és lengéscsllapító nncs benne. A kormánymű és a pedál csapágyazott tengely. Ma már egyes kerékpárvázakba csuklót, rugót és lengéscsllapítókat építenek be, ezek a járműelemek a kerékpár dnamka vselkedésére hatást gyakorolnak. Legyen az úttest vízszntes, sík, szlárd, érdes lemez. Ha a kerékpárt földúton vagy terepen használják, akkor a gumabroncs alatt a pálya deformálódk, az lyen eset tárgyalása a talajmechanka bevonásával végezhető el. A gumabroncs és a szlárd út között mndg jelen van egy anyagkeverék, am többféle talaj, víz, hó, jég, növény hulladék és szennyeződés lehet, ez a kompoztum az abroncs tapadásra hatással van. A kompoztum matt az u. n. tapadás tényező - am az út és a gumabroncs kapcsolat egyk paramétere véletlenül vesz fel értéket. Legyen az F tapadás erő arányos az N útreakcóval, az arányosság tényező a µ tapadás tényező a következő egyenlet szernt. Legyen az F = µn ( =, a kerekek jele) () Kerékpározás közben a gumabroncs állapotát a gördülő-tapadás jellemz. A szlárd úton az abroncs összenyomódk és deformálódk. A gumabroncs felfekvése az úton nem
2 szmmetrkus dom, ezért az N pályareakcó erő f karral a haladás rányába tolódk el, ez okozza a gördülés ellenállás nyomatékát, am a jelen esetben fxn = fn ( =, a kerekek jele) () A gumabroncsos kerék működése közben mndg s> szlppel gördül és a kerékpár jellemzője, hogy a hajtott (első) kerék és a hajtó (hátsó) kerék szlpje különbözk egymástól (< s ). Az s= adat blokkolt, fékezett kerékre vonatkozk. A hajtott kerék s szlp egyenlete a következő összefüggés s R x (3) A hajtó kerék s szlp egyenlete s x R (4) ahol x (=,) a kerék tömegközéppont gyorsulása, R a kerék sugara, a kerék szöggyorsulása A kerékpár statkája Az ember-kerékpár rendszer az mg szabaderő és az F F N N kényszer erők hatására van egyensúlyban (. ábra). ábra A kerékpár statkája M> és az erők vektorábrája mg+f+f+n+n= (5) A K(xy) derékszögű koordnáta rendszer kezdőpontját a két test tömegközéppontjában vesszük fel, az x tengely vízszntes. A vrtuáls munka jellemzőt a következő skalárokkal írjuk le: δx, δy az elmozdulás, δφ, δφ, δα a szögelfordulás jele. Működjön a hajtókerékre M> határnyomaték, hatására a rendszer nyugalomban van. Ekkor az erők és nyomatékok
3 vrtuáls munkaegyenlete a (6) összefüggés. A jobboldalon a másodk és a harmadk tag az F tapadás erők vrtuáls munkája (=,). δw=mδφ-f(δx-rδφ)-f(rδφ-δx)+( N-mg)δy- fnδφ+ [h(f-f)-(l+f)n+(l-f)n]δα= (=,) (6) A (6) egyenletben hét smeretlen van, ezek a következők: F F N N fn fn M A (6) egyenlet öt egymástól független egyenletet foglal magában, ezért a megoldáshoz az alább két összefüggés tartozk. F- µn= F- µn= (7) A (6) (7) egyenlet alapján a kerékpáros erőrendszere statkalag határozott. A kerékpár dnamkája A hajtókerékben működő T>M> nyomaték hatására a kerékpáros elndul. (. ábra). ábra A kerékpár dnamka T>M> A rendszer δw vrtuáls munkaegyenlete a tehetetlenség törvény fgyelembe vételével a (8) összefüggés. x R F R x N mg y W T m xx F f N I hf F l fn l f N I (=,) (8) ahol I a kerekek tehetetlenség nyomatéka a forgástengelyre (=,). A (8) egyenletben klenc smeretlen van, ezek a következők:
4 F F N N f N f N x Mvel a (8) munkaegyenletből öt fő egyenlet vezethető le, ezért a megoldáshoz az alább segédegyenleteket írjuk fel. x s R R s x (9) F N F N () A (8) (9) () egyenletek alapján a kerékpár dnamkalag határozott közlekedés eszköz. A kerékpár fékezése A kerékpár működése közben a legfontosabb mozgásállapot a fékezés, amnek oka lassítás, megállás szándék vagy baleset elhárítása lehet. A kerékpáros beavatkozása szernt a fékezésnél többféle eset fordulhat elő, ezért a következő fékezés módokat vzsgáljuk meg. Fékezés két kerékkel. Ekkor az első kerékre T<, a hátsó kerékre T< féknyomaték működk (3. ábra) 3. ábra A kerékpár fékezése T<; T< A fékezés δw vrtuáls munka egyenlete a () összefüggés. W m xx F x R N mg y I f N T F F l f N l f N I h (=,) () A () munkaegyenletből a következő fő egyenleteket kapjuk
5 F N F m x N mg F F l f N l f N I I h () F F R fn T I R f N T I A () fő egyenletrendszerben klenc smeretlen van, ezek a következők F F N N f N f N x Az smeretlenek kszámítására a () főegyenletekhez a (3) (4) segédegyenleteket csatoljuk. x s R s R x (3) F- µn= F- µn= (4) A fékezett kerékpár dnamkalag határozott rendszer. A kétkerekes fékezés () (3) (4) egyenletrendszeréből vezetjük le az egykerekes fékezés esetet. Csak elsőkerék fékezésnél a következő féknyomatékok működnek: T<; T=. Hátsókerék fékezésnél a fékhatást T=; T< nyomatékok okozzák. Összehasonlítva a kétféle fékezés módot megállapítható, hogy az elsőkerék fékezés erősebb fékhatást valósít meg, mnt a hátsókerék fékezés, ugyanakkor ksebb menetstabltást bztosít a kerékpárosnak. Hátsókerék fékezésnél nagyobb a kerékpáros stabltása és ez az állapot kedvező a baleset-megelőzés és a közlekedésbztonság szempontjából. A kerékpáros úgy s fékezhet, hogy az elsőkerék blokkol és csúszk az úton. Ekkor s= μ=μ ahol μ a gumabroncs csúszás tényezője. Ez az állapot különösen veszélyes, mert a kerékpáros átbukhat az első keréken. Lehet olyan fékezés mód, amkor az első kerék blokkolva fékez és a hátsó kerék már éppen elválk az úttól. E fékezés jellemző: s= μ=μ N= F=. Ez az eset éppen azt az esetet írja le, amkor a kerékpáros átbukása bendul az első keréken. Intenzív fékezésnél a T<; T< féknyomatékok a kerekek egydejű blokkolását és csúszását okozhatják. Ha ez az állapot létrejön, akkor ezt s=s= μ=μ=μ paraméterek jellemzk. A statkus és dnamkus állapot és fékezés egyenletrendszerét célszerű az
6 Ax=a (5) alakú mátrxegyenlettel megoldan, ahol x az smeretlenek oszlopvektora. Ekkor a végső megoldás x=a - a (6) A kerékpár a szárazföld közlekedés eszközök halmazában olyan egyszerű gép, amely sokféle célra használható. Az zomerővel történő kerékpározás kímél környezetünket és energatakarékos közlekedést valósít meg. A lejtős úton végrehajtott fékezés paramétere a bemutatott kerékpár modell adaptácójával kszámíthatók, továbbá a kanyarban történő kerékpározás erőjátéka térbel erőrendszer alapján vzsgálható. A szövegszerkesztés Stelcz Gyula okl. nformatkus mérnök munkája. Összefoglalás A tanulmány a kerékpár mechanka vselkedését írja le, a statka a dnamka és a fékezés fő egyenletet a vrtuáls munka elve alapján tárgyalja. Részletesen foglalkozk a gumabroncsos kerék menettulajdonságaval. A kerékpáros a közlekedés egyk résztvevője, ezért a bckl fékezés egyes esetet az ember élet védelme szempontjából elemz. Irodalom. Korány I.: Tartók sztatkája. Tankönyvkadó, Budapest, Tasnád P., Skrapts L., Bérces Gy.: Mechanka I. Dóm-Dalóg Campus Kadó, Budapest-Pécs, 3 3. Németh F.: A kerékpár fékezésének fzkája. ELTE. Természettudomány Kar, Budapest, Szakdolgozat, Lovass-Nagy V.: Mátrxszámítás. Tankönyvkadó, Budapest, Budó Á.: Mechanka. Tankönyvkadó, Budapest, Zobory I.: Általános járműgéptan. Typotex Könyvkadó, Budapest,. 7. Jankó D.: Közút közlekedésbztonság. Novadat, Győr, 977.
JKL rendszerek. Közúti járművek szerkezeti felépítése. Szabó Bálint
JKL rendszerek Közúti járművek szerkezeti felépítése Szabó Bálint 1 Közúti járművek szerkezeti felépítése Tartalom Bevezetés Járműdinamika Gépjárművek hajtásrendszerei Gépjármű fékrendszerek 2 2 Bevezetés
Merev testek kinematikája
Mechanka BL0E- 3. előadás 00. októbe 5. Meev testek knematkáa Egy pontendszet meev testnek tekntünk, ha bámely két pontának távolsága állandó. (f6, Eule) A meev test tetszőleges mozgása leíható elem tanszlácók
Mechanika és szilárdságtan (Mecanica şi rezistenţa materialelor) Egyetemi jegyzet. Dr. Szilágyi József
Mechanka és szlárdságtan (Mecanca ş rezstenţa materalelor) Egyetem jegyzet Dr. Szlágy József Tartalomjegyzék. Fejezet 3. Fogalomtár-termnológa 3. Fejezet 4.. Bevezetés 4.. Statka alapfogalmak 4.3 Az anyag
Mechanizmusok vegyes dinamikájának elemzése
echanzmuso vegyes dnamáána elemzése ntonya Csaba ranslvana Egyetem, nyagsmeret Kar, Brassó. Bevezetés Komple mechanzmuso nemata és dnama mozgásvszonyana elemzése nélülözhetetlen a termétervezés első szaaszaban.
TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ STATIKA
TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ STATIKA GEMET001-B Miskolci Egyetem Gépészmérnöki és Informatikai Kar Műszaki Mechanikai Intézet MM/37/2018. Miskolc, 2018. február 5. HIRDETMÉNY Statika(GEMET201NB és GEMET001-B)
Alapmőveletek koncentrált erıkkel
Alapmőveletek koncentrált erıkkel /a. példa Az.7. ábrán feltüntetett, a,5 [m], b, [m] és c,7 [m] oldalú hasábot a bejelölt erık terhelk. A berajzolt koordnátarendszer fgyelembevételével írjuk fel komponens-alakban
A Maxwell - kerékről. Maxwell - ingának is nevezik azt a szerkezetet, melyről most lesz szó. Ehhez tekintsük az 1. ábrát is!
1 A Maxwell - kerékről Maxwell - ingának is nevezik azt a szerkezetet, melyről most lesz szó. Ehhez tekintsük az 1. ábrát is! 1. ábra forrása: [ 1 ] Itt azt láthatjuk, hogy egy r sugarú kis hengerre felerősítettek
A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS-
A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS- Forgatónyomaték meghatározása G Á L A T A Egy erő forgatónyomatékkal hat egy pontra, ha az az erővel össze van kötve. Például
Az elektromos kölcsönhatás
TÓTH.: lektrosztatka/ (kbővített óravázlat) z elektromos kölcsönhatás Rég tapasztalat, hogy megdörzsölt testek különös erőket tudnak kfejten. Így pl. megdörzsölt műanyagok (fésű), megdörzsölt üveg- vagy
,...,q 3N és 3N impulzuskoordinátával: p 1,
Louvlle tétele Egy tetszőleges klasszkus mechanka rendszer állapotát mnden t dőpllanatban megadja a kanónkus koordnáták összessége. Legyen a rendszerünk N anyag pontot tartalmazó. Ilyen esetben a rendszer
DFTH november
Kovács Ernő 1, Füves Vktor 2 1,2 Elektrotechnka és Elektronka Tanszék Mskolc Egyetem 3515 Mskolc-Egyetemváros tel.: +36-(46)-565-111 mellék: 12-16, 12-18 fax : +36-(46)-563-447 elkke@un-mskolc.hu 1, elkfv@un-mskolc.hu
Mérnöki alapok 2. előadás
Mérnöki alapok. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
PÉLDÁK ERŐTÖRVÉNYEKRE
PÉLÁ ERŐTÖRVÉNYERE Szabad erők: erőtörvénnyel megadhatók, általában nem függenek a test mozgásállapotától (sebességtől, gyorsulástól) Példák: nehézségi erő, súrlódási erők, rugalmas erők, felhajtóerők,
TÁRGYLEÍRÁS 1. ALAPADATOK
TÁRGYLEÍRÁS 1. ALAPADATOK 1.1. Tantárgy neve A STATIKA ÉS DINAMIKA ALAPJAI 1.2. Azonosító (tantárgykód) BMEEOTMAT41 1.3. A tantárgy jellege kontaktórás tanegység 1.4. Óraszámok gyakorlat: 5 óra/hét 1.5.
v i = v i V. (1) m i m i (v i V) = i P = i m i V = m i v i i A V = P M
Mképpen függ egy pontrendszer mpulzusa a vonatkoztatás rendszertől? K-ban legyenek a részecskék sebessége v. K -ben mely K-hoz képest V sebességgel halad v = v V. (1) P = m v = m (v V) = m v m V = = P
Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!
Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18
Évszakváltás a közlekedésben
Évszakváltás a közlekedésben A közlekedésben a téli időszak tudatos felkészülést igényel. Megváltoznak az út- és látási viszonyok, amelyekhez a gyalogosoknak és a járművezetőknek egyaránt alkalmazkodniuk
A Hamilton-Jacobi-egyenlet
A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P
Robotirányítási rendszer szimulációja SimMechanics környezetben
Robotrányítás rendszer szmulácója SmMechancs környezetben 1. A gyakorlat célja A SmMechancs szoftvereszköz megsmerése, alkalmazása robotka rendszerek rányításának szmulácójára. Két szabadságfokú kar PID
Digitális tananyag a fizika tanításához
Digitális tananyag a fizika tanításához Ismétlés Erőhatás a testek mechanikai kölcsönhatásának mértékét és irányát megadó vektormennyiség. jele: mértékegysége: 1 newton: erőhatás következménye: 1N 1kg
Kényszerfeltételek február 10. F = ma
Kényszerfeltételek 2017. február 10. A dinamika alapegyenletei nagyon egyszer ek. Ha a testek forgását csak síkban vizsgáljuk (azaz a forgástengely mindig egy irányba mutat, nem tanulmányozzuk például
I. A közlekedési hálózatok jellemzői II. A közlekedési szükségletek jellemzői III. Analitikus forgalom-előrebecslési modell
Budapest Műszak és Gazdaságtudomány Egyetem Közlekedésmérnök és Járműmérnök Kar Közlekedésüzem Tanszék HÁLÓZATTERVEZÉSI MESTERISKOLA BEVEZETÉS A KÖZLEKEDÉS MODELLEZÉSI FOLYAMATÁBA Dr. Csszár Csaba egyetem
Erők (rug., grav., súly, súrl., közegell., centripet.,), forgatónyomaték, egyensúly Rugalmas erő:
Erők (rug., grav., súly, súrl., közegell., centripet.,), forgatónyomaték, egyensúly Rugalmas erő: A rugalmas test (pl. rugó) megnyúlása egyenesen arányos a rugalmas erő nagyságával. Ezért lehet a rugót
Merev test mozgása. A merev test kinematikájának alapjai
TÓTH : Merev test (kbővített óraválat) Merev test mogása Eddg olyan dealált "testek" mogását vsgáltuk, amelyek a tömegpont modelljén alapultak E aal a előnnyel járt, hogy nem kellett foglalkon a test kterjedésével
EGYSZERŰ GÉPEK. Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét.
EGYSZERŰ GÉPEK Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét. Az egyszerű gépekkel munkát nem takaríthatunk meg, de ugyanazt a munkát kisebb
Tömegpontok mozgása egyenes mentén, hajítások
2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel
Dr. Égert János Dr. Molnár Zoltán Dr. Nagy Zoltán ALKALMAZOTT MECHANIKA
Dr. Égert János Dr. Molnár Zoltán Dr. Nagy Zoltán ALKALMAZOTT MECHANIKA UNIVERSITAS-GYŐR Nonprofit Kft. Győr, 2010 SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR ALKALMAZOTT MECHANIKA TANSZÉK ALKALMAZOTT
1. Feladatok merev testek fizikájának tárgyköréből
1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló
Merev testek kinematikája
Merev testek kinematikája Egy pontrendszert merev testnek tekintünk, ha bármely két pontjának távolsága állandó. (f=6, Euler) A merev test tetszőleges mozgása leírható elemi transzlációk és elemi rotációk
Bevezetés a kémiai termodinamikába
A Sprnger kadónál megjelenő könyv nem végleges magyar változata (Csak oktatás célú magánhasználatra!) Bevezetés a kéma termodnamkába írta: Kesze Ernő Eötvös Loránd udományegyetem Budapest, 007 Ez az oldal
METROLÓGIA ÉS HIBASZÁMíTÁS
METROLÓGIA ÉS HIBASZÁMíTÁS Metrológa alapfogalmak A metrológa a mérések tudománya, a mérésekkel kapcsolatos smereteket fogja össze. Méréssel egy objektum valamlyen tulajdonságáról számszerű értéket kapunk.
Békefi Zoltán. Közlekedési létesítmények élettartamra vonatkozó hatékonyság vizsgálati módszereinek fejlesztése. PhD Disszertáció
Közlekedés létesítmények élettartamra vonatkozó hatékonyság vzsgálat módszerenek fejlesztése PhD Dsszertácó Budapest, 2006 Alulírott kjelentem, hogy ezt a doktor értekezést magam készítettem, és abban
Irányításelmélet és technika I.
Irányításelmélet és technika I. Mechanikai rendszerek dinamikus leírása Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010
Gépjárművek és mobilgépek I.
Gépjárművek és mobilgépek I. II. Előadás Hajtási módok, kanyarodás, fékek Összeállította: Dr. Sarka Ferenc Hajtási módok Elsőkerék-hajtás Hátsókerék-hajtás Összkerékhajtás Hátsókerék-hajtás Orrmotoros
Környezetvédelmi analitika
Az anyag a TÁMOP-4...A/- /--89 téma keretében készült a Pannon Egyetemen. Környezetmérnök Tudástár Sorozat szerkesztő: Dr. Domokos Endre XXXIV. kötet Környezetvédelm analtka Rezgés spektroszkópa Blles
Elméleti kérdések 11. osztály érettségire el ı készít ı csoport
Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor
1.Tartalomjegyzék 1. 1.Tartalomjegyzék
1.Tartalomjegyzék 1 1.Tartalomjegyzék 1.Tartalomjegyzék...1.Beezetés... 3.A matematka modell kálasztása...5 4.A ékony lap modell...7 5.Egy más módszer a matematka modell kálasztására...10 6.A felületet
Szeretném felhívni figyelmüket a feltett korábbi vizsgapéldák és az azokhoz tartozó megoldások felhasználásával kapcsolatban néhány dologra.
Tisztelt Hallgatók! Szeretném felhívni figyelmüket a feltett korábbi vizsgapéldák és az azokhoz tartozó megoldások felhasználásával kapcsolatban néhány dologra. Az, hogy valaki egy korábbi vizsga megoldását
Ötvözetek mágneses tulajdonságú fázisainak vizsgálata a hiperbolikus modell alkalmazásával
AGY 4, Kecskemét Ötvözetek mágneses tulajdonságú fázsanak vzsgálata a hperbolkus modell alkalmazásával Dr. Mészáros István egyetem docens Budapest Műszak és Gazdaságtudomány Egyetem Anyagtudomány és Technológa
4 2 lapultsági együttható =
Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.
Fizika előkészítő feladatok Dér-Radnai-Soós: Fizikai Feladatok I.-II. kötetek (Holnap Kiadó) 1. hét Mechanika: Kinematika Megoldandó feladatok: I.
Fizika előkészítő feladatok Dér-Radnai-Soós: Fizikai Feladatok I.-II. kötetek (Holnap Kiadó) 1. hét Mechanika: Kinematika 1.5. Mennyi ideig esik le egy tárgy 10 cm magasról, és mekkora lesz a végsebessége?
Kerék gördüléséről. A feladat
1 Kerék gördüléséről Nemrégen egy órán szóba került a címbeli téma, középiskolások előtt. Úgy látszott, nem nagyon értik, miről van szó. Persze, lehet, hogy még nem tartottak ott, vagy csak aludtak a fizika
Newton törvények, erők
Newton törvények, erők Newton I. törvénye: Minden test megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja (amíg külső
Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK január 30.
Fizika Nyitray Gergely (PhD) PTE PMMIK 2017. január 30. Tapasztalatok az erővel kapcsolatban: elhajított kő, kilőtt nyílvessző, ásás, favágás Aristoteles: az erő a mozgás fenntartója Galilei: a mozgás
Optikai elmozdulás érzékelő illesztése STMF4 mikrovezérlőhöz és robot helyzetérzékelése. Szakdolgozat
Mskolc Egyetem Gépészmérnök és Informatka Kar Automatzálás és Infokommunkácós Intézet Tanszék Optka elmozdulás érzékelő llesztése STMF4 mkrovezérlőhöz és robot helyzetérzékelése Szakdolgozat Tervezésvezető:
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS
Mechanika I-II. Példatár
Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását
Fizika 1i, 2018 őszi félév, 4. gyakorlat
Fizika 1i, 018 őszi félév, 4. gyakorlat Szükséges előismeretek: erőtörvények: rugóerő, gravitációs erő, közegellenállási erő, csúszási és tapadási súrlódás; kényszerfeltételek: kötél, állócsiga, mozgócsiga,
6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás
ZÉHENYI ITVÁN EGYETE GÉPZERKEZETTN É EHNIK TNZÉK 6. EHNIK-TTIK GYKORLT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa Egy létrát egy verembe letámasztunk
Ehhez tekintsük a 2. ábrát is! A födém és a fal síkját tekintsük egy - egy koordinátasíknak, így a létra tömegközéppontjának koordinátái: ( 2 )
1 A lecsúszó létra mozgásáról Egy korábbi létrás dolgozatunkban melynek címe: Létra - feladat foglalkoztunk a csak önsúlyával terhelt, függőleges falnak támasztott, vízszintes födémen álló létra egyensúlyá
Villamosságtan. Dr. Radács László főiskolai docens A3 épület, II. emelet, 7. ajtó Telefon: 12-13 elkrad@uni-miskolc.hu www.uni-miskolc.
Vllamosságtan Dr. adács László főskola docens A3 épület,. emelet, 7. ajtó Telefon: -3 e-mal: Honlap: elkrad@un-mskolc.hu www.un-mskolc.hu/~elkrad Ajánlott rodalom Demeter Károlyné - Dén Gábor Szekér Károly
Az entrópia statisztikus értelmezése
Az entrópa statsztkus értelmezése A tapasztalat azt mutatja hogy annak ellenére hogy egy gáz molekulá egyed mozgást végeznek vselkedésükben mégs szabályszerűségek vannak. Statsztka jellegű vselkedés szabályok
Alkalmazott Mechanika Tanszék. Széchenyi István Egyetem
Széchenyi István Egyetem Szerkezetek dinamikája Alkalmazott Mechanika Tanszék Elméleti kérdések egyetemi mesterképzésben (MSc) résztvev járm mérnöki szakos hallgatók számára 2013. szeptember 6. 1. Folytonos
Komplex természettudomány 3.
Komplex természettudomány 3. 1 A lendület és megmaradása Lendület (impulzus): A test tömegének és sebességének a szorzata. Jele: I. Képlete: II = mm vv mértékegysége: kkkk mm ss A lendület származtatott
Chasles tételéről. Előkészítés
1 Chasles tételéről A minap megint találtunk valami érdekeset az interneten. Az [ 1 ] tankönyvet, illetve an - nak fejezetenként felrakott egyetemi internetes változatát. Utóbbi 20. fejezetében volt az,
Felhasznált irodalom: Puskás Ágnes Ultrahang Hanglencsék
A használt szennyezőanyagok esetén a meghatározások alapján megállapítható, hogy ezek a kataláz enzm aktvtását csökkentk, ezzel magyarázható, hogy a nagyobb onkoncentrácók esetén nagyobb mennységű hdrogén-peroxd
DIONYSIS KONSTANTINOU ANDREAS MEIER ZBIGNIEW TRZMIEL MARADJON A LEVEGŐBEN
46 DIONYSIS KONSTANTINOU ANDREAS MEIER ZBIGNIEW TRZMIEL MARADJON A LEVEGŐBEN MARADJON A LEVEGŐBEN 47 mozgás, forgás, gördülés, a transzlációs mozgás kinetikus energiája, forgási kinetikus energia, súrlódás
6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)
SZÉHNYI ISTVÁN GYT LKLZOTT HNIK TNSZÉK 6. HNIK-STTIK GYKORLT (kidolgozta: Triesz Péter egy. ts.; Tarnai Gábor mérnöktanár) Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa gy létrát egy
Általános egyensúly a kiterjesztett IS-LM modellben
Általános egyensúly a kterjesztett IS-LM modellben külső egyensúly NX = 0 szuffct defct + LM 1) IS m > IS m nytott zárt az elszvárgás M S = PM d (, ) E nettó export NX IS = C + I + G + (X IM) F belső egyensúly
Szerelési útmutató FKC-1 síkkollektor tetőre történő felszerelése Junkers szolár rendszerek számára
Szerelés útmutató FKC- síkkollektor tetőre történő felszerelése Junkers szolár rendszerek számára 604975.00-.SD 6 70649 HU (006/04) SD Tartalomjegyzék Általános..................................................
Nyeregetetős csarnokszerkezetek terhei az EN 1991 alapján
BME Hdak és Szerkezetek Tanszék Magasépítés acélszerkezetek tárgy Gyakorlat útmutató Nyeregetetős csarnokszerkezetek terhe az EN 1991 alapján Összeállította: Dr. Papp Ferenc tárgyelőadó Budapest, 2006.
Statisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás.
Statsztka próbák Paraméteres. A populácó paraméteret becsüljük, ezekkel számolunk.. Az alapsokaság eloszlására van kkötés. Nem paraméteres Nncs lyen becslés Nncs kkötés Ugyanazon problémára sokszor megvan
Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye
Folyadékok áramlása Folyadékok Folyékony halmazállapot nyíróerő hatására folytonosan deformálódik (folyik) Folyadék Gáz Plazma Talián Csaba Gábor PTE ÁOK, Biofizikai Intézet 2012.09.12. Folyadék Rövidtávú
Mérnöki alapok 1. előadás
Mérnöki alapok 1. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Fizika II. (Termosztatika, termodinamika)
Fzka II. (Termosztatka, termodnamka) előadás jegyzet Élelmszermérnök, Szőlész-borász mérnök és omérnök hallgatóknak Dr. Frtha Ferenc. árls 4. Tartalom evezetés.... Hőmérséklet, I. főtétel. Ideáls gázok...3
Integrált rendszerek n é v; dátum
Integrált rendszerek n é v; dátum.) Az dentfkálás (folyamatdentfkácó) a.) elsődleges feladata absztrahált leírás fzka modell formában b.) legfőbb feladata a struktúradentfkálás (modellszerkezet felállítása)
Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13.
Fizika Nyitray Gergely (PhD) PTE PMMIK 017. február 13. A lejtő mint kényszer A lejtő egy ún. egyszerű gép. A következő problémában először a lejtőt rögzítjük, és egy m tömegű test súrlódás nélkül lecsúszik
10. Transzportfolyamatok folytonos közegben. dt dx. = λ. j Q. x l. termodinamika. mechanika. Onsager. jóslás: F a v x(t) magyarázat: x(t) v a F
10. Transzportfolyamatok folytonos közegben Erőtörvény dff-egyenlet: Mérleg mechanka Newton jóslás: F a v x(t) magyarázat: x(t) v a F pl. rugó: mat. nga: F = m & x m & x = D x x m & x mg l energa-, mpulzus
Elosztott rendszerek játékelméleti elemzése: tervezés és öszönzés. Toka László
adat Távközlés és Médanformatka Tanszék Budapest Műszak és Gazdaságtudomány Egyetem Eurecom Telecom Pars Elosztott rendszerek játékelmélet elemzése: tervezés és öszönzés Toka László Tézsfüzet Témavezetők:
2.4. Coulomb-súrlódással (száraz súrlódással) csillapított szabad rezgések
58. FEJEZET. EGY SZABADSÁGI FOKÚ LENGŐRENDSZEREK.4. Coulomb-súrlódással (száraz súrlódással) csillapított szabad rezgések.4.1. Súrlódási modell A Coulomb-féle súrlódási modellben a súrlódási erő a felületeket
VEZÉRIGAZGATÓI UTASÍTÁS
Követeléskezelés Szabályzat Sgma Követeléskezelı Zrt. A Sgma Követeléskezelı Zrt. tevékenység köre A Sgma Követeléskezelı Zrt. 1923-ban, részvénytársaság formában került bejegyzésre, magánosítására 1988.
Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika
Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika 1. előadás Vonatkoztatási rendszer Hely-idő-tömeg standardok 3-dimenziós
Méréselmélet: 5. előadás,
5. Modellllesztés (folyt.) Méréselmélet: 5. előadás, 03.03.3. Út az adaptív elárásokhoz: (85) és (88) alapán: W P, ( ( P). Ez utóbb mndkét oldalát megszorozva az mátrxszal: W W ( ( n ). (9) Feltételezve,
2. E L Ő A D Á S D R. H U S I G É Z A
Mechatronika alapjai 2. E L Ő A D Á S D R. H U S I G É Z A elmozdulás erő nyomaték elmozdulás erő nyomaték Mechanizmusok Mechanizmus: általánosságban: A gép mechanikus elven működő részei Definíció: A
Mit nevezünk nehézségi erőnek?
Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt
1. ábra forrása:
1 A cérnaorsó, a kábeldob viselkedéséről A napokban láttam a tévében egy ismeretterjesztő műsort, ahol egy kábeldobot akartak nekigurítani egy roncsautónak. Különböző szögekben működtették a kábel szabad
A mágneses tér energiája, állandó mágnesek, erőhatások, veszteségek
A mágneses tér energája, állandó mágnesek, erőhatások, veszteségek A mágneses tér energája Egy koncentrált paraméterű, ellenállással és nduktvtással jellemzett tekercs Uáll feszültségre kapcsolásakor az
Fizika I. Dr. Gugolya Zoltán egyetemi adjunktus. Pannon Egyetem Fizika Intézet N. ép. II. em. 239. szoba E-mail: gug006@almos.vein.
Fzka I. Dr. Gugolya Zoltán egyete adjunktus Pannon Egyete Fzka Intézet N. ép. II. e. 39. szoba E-al: gug006@alos.ven.hu Tel: 88/64-783 Fzka I. Ajánlott rodalo: Vondervszt-Néeth-Szala: Fzka I. Veszpré Egyete
IPARI ROBOTOK. Kinematikai strukturák, munkatértípusok. 2. előadás. Dr. Pintér József
IPARI ROBOTOK, munkatértípusok 2. előadás Dr. Pintér József Az ipari robotok kinematikai felépítése igen sokféle lehet. A kinematikai felépítés alapvetően meghatározza munkaterének alakját, a mozgási sebességét,
ÁLTALÁNOS JÁRMŰGÉPTAN
ÁLTALÁNOS JÁRMŰGÉPTAN ELLENŐRZŐ KÉRDÉSEK 3. GÉPEK MECHANIKAI FOLYAMATAI 1. Definiálja a térbeli pont helyvektorát! r helyvektor előáll ortogonális (a 3 tengely egymásra merőleges) koordinátarendszer koordinátairányú
LINEÁRIS EGYENLETRENDSZEREK október 12. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak
LINEÁRIS EGYENLETRENDSZEREK 004. október. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László:
Osvald Ferenc. A súlypont szerepe - gépjármű közlekedés kicsit másként
Osvald Ferenc A súlypont szerepe - gépjármű közlekedés kicsit másként Több tűzoltó gépjármű baleset után heves érzelmi reakcióktól mentesen - érdemes megvizsgálni miben más ezek vezetése? Igazságügyi szakértőt
Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.
Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg
Philosophiae Doctores. A sorozatban megjelent kötetek listája a kötet végén található
Phlosophae Doctores A sorozatban megjelent kötetek lstája a kötet végén található Benedek Gábor Evolúcós gazdaságok szmulácója AKADÉMIAI KIADÓ, BUDAPEST 3 Kadja az Akadéma Kadó, az 795-ben alapított Magyar
IT jelű DC/DC kapcsolóüzemű tápegységcsalád
IT jelű DC/DC kapcsolóüzemű tápegységcsalád BALOGH DEZSŐ BHG BEVEZETÉS A BHG Híradástechnka Vállalat kutató és fejlesztő által kdolgozott napjankban gyártásban levő tárolt programvezérlésű elektronkus
BIZTONSÁG Autósiskola 5440 Kunszentmárton Rákóczi út 1. 06-30/484-3738 Ny.Sz: 16-0057-06
BIZTONSÁG Autósiskola 5440 Kunszentmárton Rákóczi út 1. 06-30/484-3738 Ny.Sz: 16-0057-06 Tisztelt Gépkocsivezető! A BIZTONSÁG Autósiskola nagy részt vállal a baleset megelőzésben, a vezetői engedéllyel
MECHANIKA I. /Statika/ 1. előadás SZIE-YMM 1. Bevezetés épületek, építmények fizikai hatások, köztük erőhatások részleges vagy teljes tönkremenetel használhatatlanná válás anyagi kár, emberáldozat 1 Cél:
2. A gépkocsi vezetése
2. A gépkocsi vezetése 1. Általában balról jobbra milyen sorrendben találjuk a gépkocsiban a gáz-, fékés a tengelykapcsoló pedálokat? a) Gáz fék tengelykapcsoló. b) Tengelykapcsoló fék gáz. c) Fék gáz
Műszaki folyamatok közgazdasági elemzése. Kevert stratégiák és evolúciós játékok
Műszak folyamatok közgazdaság elemzése Kevert stratégák és evolúcós átékok Fogalmak: Példa: 1 szta stratéga Vegyes stratéga Ha m tszta stratéga létezk és a 1 m annak valószínűsége hogy az - edk átékos
FIZIKA. Sörlei József (Zalaegerszeg) szerző: BME Gépészmérnöki Kar. főiskolai szintű képzés. kísérleti jegyzet
FIZIKA BME Gépészmérnök Kar főskola szntű képzés kísérlet jegyzet szerző: Sörle József (Zalaegerszeg) Mechanka. Knematka.. Matematka alapsmeretek Koordnátarendszerek Egy geometra pont helyét ll. mozgását
Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ
Írásbeli vizsgarész ELSŐ RÉSZ 1. Egy téglalap alakú háztömb egyik sarkából elindulva 80 m, 150 m, 80 m utat tettünk meg az egyes házoldalak mentén, míg a szomszédos sarokig értünk. Mekkora az elmozdulásunk?
Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását
Lagrange egyenletek Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását megnehezíti a δr i virtuális elmozdulások egymástól való függősége. (F i ṗ i )δx i = 0, i = 1, 3N. (1) i 3N infinitezimális
Mechanika, dinamika. p = m = F t vagy. m t
Mechanika, dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség.
A csoport. Statika ZH feladat. Határozza meg az erőrendszer nyomatékát a F pontra! a = 3 m b = 4 m c = 4 m
Stata ZH-1. 215. 1. 14. A csoport 1. feladat Határozza meg az erőrendszer nyomatéát a F pontra! a = 3 m b = 4 m c = 4 m F 1 = 5 N F 2 = 1 N M = 5 Nm M = + 4 + 3 4 F 1 = 2 = + 12 16 + 9 + 16 3 + 4 F 2 =
28. Nagy László Fizikaverseny Szalézi Szent Ferenc Gimnázium, Kazincbarcika február 28. március osztály
1. feladat a) A négyzet alakú vetítővászon egy oldalának hossza 1,2 m. Ahhoz, hogy a legnagyobb nagyításban is ráférjen a diafilm-kocka képe a vászonra, és teljes egészében látható legyen, ahhoz a 36 milliméteres
KOMMUNIKÁCIÓS DOSSZIÉ MECHANIKA. Anyagmérnök BSc Szak Évfolyamszintű tárgy. Miskolci Egyetem. Gépészmérnöki és Informatikai Kar
KOMMUNIKÁCIÓS DOSSZIÉ MECHANIKA Anyagmérnök BSc Szak Évfolyamszintű tárgy Miskolci Egyetem Gépészmérnöki és Informatikai Kar Műszaki Mechanikai Intézet 1. Tantárgyleírás Tantárgy neve: Mechanika Tantárgy
Biliárd ötkor. Játék és fizika 60 percben. Sasvári László ELTE Komplex Rendszerek Fizikája Tanszék. Az atomoktól a csillagokig 2014.
Biliárd ötkor Játék és fizika 60 percben Sasvári László ELTE Komplex Rendszerek Fizikája Tanszék Az atomoktól a csillagokig 2014. február 27 Adalék az előadás címéhez Heinrich Böll (1917-1985) Irodalmi
3. Fékezett ingamozgás
3. Fékezett ingamozgás A valóságban mindig jelen van valamilyen csillapítás. A gázban vagy folyadékban való mozgásnál, kis sebesség esetén a csillapítás arányos a sebességgel. Ha az vagy az ''+k sin =0,
RO-400750 Cluj, P.O. Box 358, Románia tel.: +40-264-401-827, fax.: +40-264-593-117 Lorand.Szabo@mae.utcluj.ro
VILLAMOS AKTUÁTOR MODELLEZÉSE SCILAB KÖRNYEZETBEN MODELLING ELECTRICAL ACTUATORS IN SCILAB ENVIRONMENT MODELAREA ACTUATOARELOR ELECTRICE ÎN MEDIUL SCILAB KOVÁCS Ernő 1, FÜVESI Vktor 2, SZALONTAI Levente
KÖZLEKEDÉSI ALAPISMERETEK
Közlekedési alapismeretek emelt szint 091 ÉRETTSÉGI VIZSGA 010. május 14. KÖZLEKEDÉSI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM