Fragmentációs függvények parametrizációja Tsallis Pareto-alakú eloszlásokkal
|
|
- Frigyes Dobos
- 9 évvel ezelőtt
- Látták:
Átírás
1 Eötvös Loránd Tudományegyetem V. Fizikus MSc Fragmentációs függvények parametrizációja Tsallis Pareto-alakú eloszlásokkal Témavezet : Dr. Barnaföldi Gergely Gábor MTA Wigner Fizikai Kutatóközpont június 25. Konzulens: Dr. Papp Gábor Eötvös Loránd Tudományegyetem
2 Motiváció LHC ALICE p + p ütközés (7 TeV)
3 Proton-proton ütközés a parton modellben
4 Fragmentációs függvények Deniáljuk a teljes fragmentációs függvényt: F h (z, Q 2 ) = 1 dσ(e + + e h + X), σ 0 dz ahol z az energiahányad: z = E hadron /E beam, Q 2 skálaparaméter. Megmutatható, hogy: F h (z, Q 2 ) = i C i (z, Q 2 ) D h i (z, Q 2 ), ahol a konvolúciós integrál: f(z) g(z) = 1 z 1 ( z ) x f(x) g dx. x
5 A partonikus fragmentációs függvények skálafüggése A DokshitzerGribovLipatovAltarelliParisi (DGLAP) egyenletek határozzák meg a fragmentációs függvények skálafüggését: [ ] [ ] [ ] D h S Pqq (z) 2N f P gq (z) D h S ln Q 2 D h g = α s(q 2 ) 2π P qg (z) P gg (z) D h g, ahol a szinglet függvények: D h S(z, Q 2 ) = q [ ] Dq h (z, Q 2 ) + D h q (z, Q 2 ). Megoldás: M. Hirai and S. Kumano, Comput. Phys. C. 183, 1002 (2012).
6 A fragmentációs függvények meghatározása A fragmentációs függvények meghatározásának lépései: deniálunk egy D h i (z, Q2 0 ) próbafüggvényt, a függvényt elfejlesztjük a kívánt Q 2 értékhez (DGLAP), kiszámítjuk az F h (x i, Q 2 ) teljes fragmentációs függvényt, azaz a C i (z, Q 2 ) együttható-függvényekkel vett konvolúciós integrálokat, beállítjuk a próbafüggvény paramétereit, úgy, hogy az eredmény minél jobban illeszkedjék a kísérleti adatokhoz. A paraméterek beállítása: deniálunk egy megfelel költségfüggvényt, majd minimalizáljuk.
7 Az illesztés és a program részletei Költségfüggvény: χ 2 = i ( F h (x i, Q 2 ) 2 ) y i (σ i ) 2. Minimumkeresés: standard NelderMead szimplex algoritmus. Lásd: J. A. Nelder and R. Mead, Computer Journal vol. 7, 308 (1965). Felhasznált numerikus könyvtár: GNU Scientic Library (GSL). Programozási nyelvek: C++ és Fortran.
8 Széles körben használt parametrizációk Polinomiális próbafüggvény: D h i (z, Q 2 ) = N h i z αh i (1 z) β h i. Közismert parametrizációk: HKNS: M. Hirai, S. Kumano, T.-H. Nagai, and K. Sudoh, Phys. Rev. D75, (2007). DSS07: D. de Florian, R. Sassot, and M. Stratmann, Phys. Rev. D76, (2007). AKK08: S. Albino, B. A. Kniehl, and G. Kramer, Nucl. Phys. B803, 42 (2008). Probléma: hol a zika?
9 Eredmények
10 Polinomiális próbafüggvény (LO) Adatpontok: HKNS, Phys. Rev. D75, (2007) alapján.
11 A TsallisPareto-alapú fragmentációs függvények Korábban beláttuk, hogy ez az eloszlás jól illeszthet a fragmentációs függvényekhez G. G. Barnaföldi, T. S. Biró, K. Ürmössy, and G. Kalmár, TsallisPareto-like distributions in hadron-hadron collisions, Proceedings of the Gribov '80 Memorial Workshop (2010) ( ) 1/(q 1) A próbafüggvény: f(z) = N 1 + q 1 T z
12 TsallisPareto-alapú próbafüggvény (LO) Adatpontok: HKNS, Phys. Rev. D75, (2007) alapján.
13 TsallisPareto-alapú próbafüggvény (LO) Adatpontok: HKNS, Phys. Rev. D75, (2007) alapján.
14 A mikrokanonikus TsallisPareto-alapú FF (LO) Adatpontok: HKNS, Phys. Rev. D75, (2007) alapján.
15 A mikrokanonikus TsallisPareto-alapú FF (LO) Adatpontok: HKNS, Phys. Rev. D75, (2007) alapján.
16 Összegzés és kitekintés Összegzés: dolgozatomban bemutattam a fragmentációs függvények TsallisPareto-eloszlásokon alapuló parametrizációját, beláttam, hogy a TsallisPareto-alapú parametrizáció jobban illeszkedik a kísérleti adatokhoz, mint a szakirodalmiak, megmutattam, hogy a nem-extenzív statisztikus zikai háttér lehet vé teszi a paraméterek zikai interpretációját. További feladatok: a paraméterek bizonytalanságának meghatározása, a TsallisPareto-alapú fragmentációs függvény-parametrizáció parton modellben való alkalmazása.
17 Köszönöm a gyelmet!
Parton statisztika RHIC, LEP és LHC energián
Parton statisztika RHIC, LEP és LHC energián Ürmössy Károly 1 Témavezető: Kollégák: Biró Tamás Sándor Barnaföldi G. G., Ván P., Kalmár G. Simonyi nap 2013. október 21. 1, Wigner FK, RMI e-mail: karoly.uermoessy@cern.ch
Doktori értekezés tézisei
Doktori értekezés tézisei Doktorjelölt: Ürmössy Károly Elméleti Fizikai Osztály, Wigner FK, Budapest Elméleti Fizika Tanszék, ELTE, Budapest Az értekezés címe: Nem-extenzív statisztikus fizikai módszerek
Az LHC kísérleteinek helyzete
Az LHC kísérleteinek helyzete 2012 nyarán Csörgő Tamás fizikus MTA Wigner Fizikai Kutatóközpont Részecske és Magfizikai Intézet, Budapest 7 (vagy 6?) LHC kísérlet ALICE ATLAS CMS LHCb LHCf MoEDAL TOTEM
Z bozonok az LHC nehézion programjában
Z bozonok az LHC nehézion programjában Zsigmond Anna Julia MTA Wigner FK Max Planck Institut für Physik Fizikus Vándorgyűlés Szeged, 2016 augusztus 24-27. Nehézion-ütközések az LHC-nál A-A és p-a ütközések
Egzakt hidrodinamikai megoldások alkalmazása a nehézionfizikai fenomenológiában néhány új eredmény
Egzakt hidrodinamikai megoldások alkalmazása a nehézionfizikai fenomenológiában néhány új eredmény Csanád Máté, Nagy Márton, Lőkös Sándor ELTE Atomfizikai Tanszék Magfizikus Találkozó Jávorkút 2012. szeptember
Nemlineáris optimalizálási problémák párhuzamos megoldása grafikus processzorok felhasználásával
Nemlineáris optimalizálási problémák párhuzamos megoldása grafikus processzorok felhasználásával 1 1 Eötvös Loránd Tudományegyetem, Informatikai Kar Kari TDK, 2016. 05. 10. Tartalom 1 2 Tartalom 1 2 Optimalizálási
EGYSZERŰ, SZÉP ÉS IGAZ
EGYSZERŰ, SZÉP ÉS IGAZ AVAGY EGY FIZIKUS (FIZIKATANÁR?) VILÁGKÉPE Trócsányi Zoltán Eötvös Loránd Tudományegyetem és MTA-DE Részecskefizikai Kutatócsoport 62. Országos Fizikatanári Ankét és Eszközbemutató,
ALICE: az Univerzum ősanyaga földi laboratóriumban. CERN20, MTA Budapest, 2012. október 3.
ALICE: az Univerzum ősanyaga földi laboratóriumban CERN20, MTA Budapest, 2012. október 3. Barnaföldi Gergely Gábor, CERN LHC ALICE, Wigner FK ,,Fenomenális kozmikus erő......egy icipici kis helyen! Disney
Pósfay Péter. arxiv: [hep-th] Eur. Phys. J. C (2015) 75: 2 PoS(EPS-HEP2015)369
arxiv:1604.01717 [hep-th] Eur. Phys. J. C (2015) 75: 2 PoS(EPS-HEP2015)369 Pósfay Péter ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. Motiváció FRG módszer bemutatása Kölcsönható Fermi-gáz
Az InCites használata az intézményi produktivitás
Az InCites használata az intézményi produktivitás mérésére A Web of Science, mint adatháttér Horváth Dániel MTA KIK TTO 2014. szeptember 24. Korábbi tapasztalatok Tisztítás nélküli és tisztított megoszlások,
GROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15.
ELTE, MSc II. 2011.dec.15. Áttekintés Feladat Algoritmus Kvantum keresési algoritmus áttekintése Input: N = 2 n elemű tömb, Ψ 1 = 0 1 kezdőállapot, f x0 (x) orákulum függvény. Output: x 0 keresett elem
Vélemény Siklér Ferenc tudományos doktori disszertációjáról
Vélemény Siklér Ferenc tudományos doktori disszertációjáról 1. Bevezető megjegyzések Siklér Ferenc tézisében nehéz ionok és protonok nagyenergiás ütközéseit tanulmányozó részecskefizikai kísérletekben
Idegen atomok hatása a grafén vezet képességére
hatása a grafén vezet képességére Eötvös Loránd Tudományegyetem, Komplex Rendszerek Fizikája Tanszék Mahe Tisk'11 Vázlat 1 Kisérleti eredmények Kémiai szennyez k hatása a Fermi-energiára A vezet képesség
vizsgálata Hamar Gergő Fizika Doktori Iskola Részecskefizika és Csillagászat Program Dr. Varga Dezső MTA Wigner Fizikai Kutatóközpont Budapest, 2014.
Nagy impulzusú részecskék vizsgálata nehézion-ütközésekben doktori értekezés tézisei Hamar Gergő Fizika Doktori Iskola Részecskefizika és Csillagászat Program Témavezetők: Dr. Lévai Péter MTA Wigner Fizikai
Részecskefizika és az LHC: Válasz a kérdésekre
Horváth Dezső: Részecskefizika és az LHC Leövey Gimnázium, 2012.06.11. p. 1/28 Részecskefizika és az LHC: Válasz a kérdésekre TÁMOP-szeminárium, Leövey Klára Gimnázium, Budapest, 2012.06.11 Horváth Dezső
Gyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi
Gyakorló feladatok Agbeko Kwami Nutefe és Nagy Noémi 25 Tartalomjegyzék. Klasszikus hibaszámítás 3 2. Lineáris egyenletrendszerek 3 3. Interpoláció 4 4. Sajátérték, sajátvektor 6 5. Lineáris és nemlineáris
A gamma-kitörések vizsgálata. a Fermi mesterséges holddal
A gamma-kitörések vizsgálata Szécsi Dorottya Eötvös Loránd Tudományegyetem Természettudományi Kar Fizika BSc III. Témavezető: Horváth István Zrínyi Miklós Nemzetvédelmi Egyetem 1 Bevezetés és áttekintés
Els mérések a CMS detektorral
Els mérések a CMS detektorral NKTH-OTKA H07-B 74296, zárójelentés Az elért eredményeket két részre osztottam. Mivel az LHC indulása több, mint egy évet csúszott, alkalmam nyílt a CMS kísérlet által inspirált,
Adaptív dinamikus szegmentálás idősorok indexeléséhez
Adaptív dinamikus szegmentálás idősorok indexeléséhez IPM-08irAREAE kurzus cikkfeldolgozás Balassi Márton 1 Englert Péter 1 Tömösy Péter 1 1 Eötvös Loránd Tudományegyetem Informatikai Kar 2013. november
2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x
I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx
Indul az LHC: a kísérletek
Horváth Dezső: Indul az LHC: a kísérletek Debreceni Egyetem, 2008. szept. 10. p. 1 Indul az LHC: a kísérletek Debreceni Egyetem Kísérleti Fizikai Intézete, 2008. szept. 10. Horváth Dezső horvath@rmki.kfki.hu
1. Gauss-eloszlás, természetes szórás
1. Gauss-eloszlás, természetes szórás A Gauss-eloszlásnak megfelelő függvény: amely egy σ szélességű, µ középpontú, 1-re normált (azaz a teljes görbe alatti terület 1) görbét ír le. A természetben a centrális
Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ
Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.
AliROOT szimulációk GPU alapokon
AliROOT szimulációk GPU alapokon Nagy Máté Ferenc & Barnaföldi Gergely Gábor Wigner FK ALICE Bp csoport OTKA: PD73596 és NK77816 TARTALOM 1. Az ALICE csoport és a GRID hálózat 2. Szimulációk és az AliROOT
Nyitókonferencia Az SZTE szerepe a projekt megvalósításában. Kovács Attila
Ágazati felkészítés a hazai ELI projekttel összefüggő képzési és K+F feladatokra" Nyitókonferencia 2013. 07.17. Az SZTE szerepe a projekt megvalósításában Kovács Attila TÁMOP-4.1.1.C-12/1/KONV-2012-0005
OKOSTELE. 0 Ft. szükséges. KÉPE. 0 Ft. 80 cm. 0 Ft. kezdőrész
7 : 7 Ú f f f 7 ) ( : 7 f f ö ö f fö f f f ( : 7 7 ) f - 8 - - - 8 ) ( í f - - f -f f f ) ( : f - - f f f f í f f f ö f ö f - ú ö f - - f f: f ö ) f ( f ö f í - - f : ö ö - f f ú f ) 7 ( : ) 7 ( : Í Í
Drótposta: kovacsea@math.bme.hu ; edith_kovacs@yahoo.com ; Honlapom: http://www.math.bme.hu/diffe/staff/kovacse.shtml
Szakmai önéletrajz 1.1 Személyes adatok: Nevem: Kovács Edith Alice Születési idő, hely: 1971.05.18, Arad Drótposta: kovacsea@math.bme.hu ; edith_kovacs@yahoo.com ; Honlapom: http://www.math.bme.hu/diffe/staff/kovacse.shtml
Tényleg megvan a Higgs-bozon?
Horváth Dezső: Higgs-bozon CSKI, 2014.02.19. p. 1 Tényleg megvan a Higgs-bozon? CSFK CSI, 2014.02.19 Horváth Dezső horvath.dezso@wigner.mta.hu MTA Wigner Fizikai Kutatóközpont, Részecske- és Magfizikai
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
Kísérleti eszközök fejlesztése a nagyenergiájú fizika számára. Development of experimental methods for the high-energy physics.
Kísérleti eszközök fejlesztése a nagyenergiájú fizika számára Töltött Higgs-bozon keresése a CERN-i L3 detektornál és precíziós helyzetmeghatározó-rendszer építése a CERN-i CMS detektor Müon rendszeréhez
Gyakorló feladatok I.
Gyakorló feladatok I. a Matematika Aa Vektorüggvények tárgyhoz (D D5 kurzusok) Összeállította: Szili László Ajánlott irodalmak:. G.B. Thomas, M.D. Weir, J. Hass, F.R. Giordano: Thomas-féle KALKULUS I.,
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Alapvető polinomalgoritmusok
Alapvető polinomalgoritmusok Maradékos osztás Euklideszi algoritmus Bővített euklideszi algoritmus Alkalmazás: Véges testek konstrukciója Irodalom: Iványi Antal: Informatikai algoritmusok II, 18. fejezet.
BKT fázisátalakulás és a funkcionális renormálási csoport módszer
BKT fázisátalakulás és a funkcionális renormálási csoport módszer Nándori István MTA-DE Részecskefizikai Kutatócsoport, Debreceni Egyetem MTA-Atomki, Debrecen Wigner FK zilárdtestfizikai és Optikai Intézet,
Speciális mágnesek tervezése, szimulációja részecskegyorsítókhoz
Speciális mágnesek tervezése, szimulációja részecskegyorsítókhoz Barna Dániel Wigner Fizikai Kutatóközpont Tokyoi Egyetem, CERN (Varga Dezső tolmácsolásában) Részecskegyorsító hierarchia CMS LHC Egy gyűrű
Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1
Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése). Feladat. Határozzuk meg az f(x) x 2 függvény x 0 pontbeli differenciahányados
Big Data. A CERN, mint a. egyik bölcsője... Barnaföldi Gergely Gábor. Berényi Dániel & Biró Gábor & Nagy-Egri Máté Ferenc & Andrew Lowe
A CERN, mint a Big Data egyik bölcsője... Barnaföldi Gergely Gábor Berényi Dániel & Biró Gábor & Nagy-Egri Máté Ferenc & Andrew Lowe MTA Wigner FK Részecske- és Magfizikai Intézet & Wigner GPU Laboratórium
1. Határozza meg az alábbi határértéket! A válaszát indokolja!
Matematika (Analízis és dierenciálegyenletek), NGB_MA003_1, 2. zárthelyi 2014. 11. 20., 1A-csoport x 2 + 6x x 2 5 5x 2 f(x) = tg(2x + 1) 2 x + cos x x 16 5 x + 16 2 x 16 4. Határozza meg, hogy az f(x)
GPU alkalmazása az ALICE eseménygenerátorában
GPU alkalmazása az ALICE eseménygenerátorában Nagy Máté Ferenc MTA KFKI RMKI ALICE csoport ELTE TTK Fizika MSc Témavezető: Dr. Barnaföldi Gergely Gábor MTA KFKI RMKI ALICE csoport Elméleti Fizikai Főosztály
A Feldspar fordító, illetve Feldspar programok tesztelése
A Feldspar fordító, illetve Feldspar programok tesztelése [KMOP-1.1.2-08/1-2008-0002 társfinanszírozó: ERFA] Leskó Dániel Eötvös Loránd Tudományegyetem Programozási Nyelvek és Fordítóprogramok Tanszék
Komputeralgebra Rendszerek
Komputeralgebra Rendszerek Bevezető és történeti áttekintés Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. február 17. TARTALOMJEGYZÉK 1 of 73 TARTALOMJEGYZÉK 1 TARTALOMJEGYZÉK 2 Mi a komputeralgebra
A mérési eredmény megadása
A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű
Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!
MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:
A Fermi gammaműhold mozgásának vizsgálata
A Fermi gammaműhold mozgásának vizsgálata különös tekintettel a gamma-kitörésekre rárakódó háttér értékének alakulására Szécsi Dorottya fizikus MSc, I. évfolyam ELTE TTK Csillagász TDK 2010. december 2.
FELVÉTELI VIZSGA, szeptember 12.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 08. szeptember. Írásbeli vizsga MATEMATIKÁBÓL FONTOS TUDNIVALÓK: A feleletválasztós feladatok,,a rész esetén egy
n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )
Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )
A Standard modellen túli Higgs-bozonok keresése
A Standard modellen túli Higgs-bozonok keresése Elméleti fizikai iskola, Gyöngyöstarján, 2007. okt. 29. Horváth Dezső MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és ATOMKI, Debrecen Horváth
ELTE, matematika alapszak. Zempléni András oktatási igazgatóhelyettes Matematikai Intézet
ELTE, matematika alapszak Zempléni András oktatási igazgatóhelyettes Matematikai Intézet Matematika alapszak szerkezete 1. év NORMÁL Kb 60 fő (HALADÓ) Kb 50 fő INTENZÍV Kb 30 fő matematikai elemző 2. és
valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.
2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve
(1 + (y ) 2 = f(x). Határozzuk meg a rúd alakját, ha a nyomaték eloszlás. (y ) 2 + 2yy = 0,
Feladatok az 5. hétre. Eredményekkel és kidolgozott megoldásokkal. Oldjuk meg az alábbi másodrend lineáris homogén d.e. - et, tudva, hogy egy megoldása az y = x! x y xy + y = 0.. Oldjuk meg a következ
Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program
Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z
összetevője változatlan marad, a falra merőleges összetevő iránya ellenkezőjére változik, miközben nagysága ugyanakkora marad.
A termodinamika 2. főtétele kis rendszerekben Osváth Szabolcs Semmelweis Egyetem Statisztikus sokaságok Nyomás Nyomás: a tartály falával ütköző molekulák, a falra erőt fejtenek ki Az ütközésben a részecske
Line aris f uggv enyilleszt es m arcius 19.
Lineáris függvényillesztés 2018. március 19. Illesztett paraméterek hibája Eddig azt néztük, hogy a mérési hiba hogyan propagál az illesztett paraméterekbe, ha van egy konkrét függvényünk. a hibaterjedés
11. Előadás. 11. előadás Bevezetés a lineáris programozásba
11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez
NA61/SHINE: Az erősen kölcsönható anyag fázisdiagramja
NA61/SHINE: Az erősen kölcsönható anyag fázisdiagramja László András Wigner Fizikai Kutatóintézet, Részecske- és Magfizikai Intézet 1 Kivonat Az erősen kölcsönható anyag és fázisai Megfigyelések a fázisszerkezettel
Kalkulus I. NÉV: Határozzuk meg a következő határértékeket: 8pt
27.2.2. Kalkulus I. NÉV:... A csoport KÓD:.... Adjuk meg a b n = 3n 7 9 2n sorozat infimumát, szuprémumát. 8pt 2. Határozzuk meg a következő határértékeket: 8pt (a) ( lim n 2 3n n 2 n 3) n ( ) 3n 5 3 2n,
Ipari matematika 2. gyakorlófeladatok
Ipari matematika. gyakorlófeladatok. december 5. A feladatok megoldása általában többféle úton is kiszámítató. Interpoláció a. Polinom-interpoláció segítségével adjunk közelítést sin π értékére a sin =,
Bevezetés a részecskefizikába
Horváth Dezső: Válaszok a kérdésekre CERN, 2008. augusztus 22. 1. fólia p. 1 Bevezetés a részecskefizikába Válaszok a kérdésekre (CERN, 2008. aug. 22.) Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske
A klímaváltozás hatása a tartószerkezetekre és az építési szabványokra
A klímaváltozás hatása a tartószerkezetekre és az építési szabványokra Rózsás Árpád, Kovács Nauzika Ph.D., Vigh László Gergely Ph.D. Problémafelvetés, motiváció Épületek, civil infrastruktúra ~ 80% nemzeti
Mathcad. 2009. Június 25. Ott István. www.snt.hu/cad. S&T UNITIS Magyarország Kft.
Mathcad 2009. Június 25. Ott István www.snt.hu/cad Matematika a gépészet nyelve Mit? Miért? 10 x 2 dx = 333 1 π cos ( x) + sin( x) dx = 2 0 i 3 1 4 i4 i 1 2 i3 + 1 4 i2 d ds ( 3s) 2 + s 2 18 s + 1 2 Pro/ENGINEER
FIZIKAI KÉMIA II. házi dolgozat. Reakciókinetikai adatsor kiértékelése (numerikus mechanizmusvizsgálat)
FIZIKAI KÉMIA II. házi dolgozat Reakciókinetikai adatsor kiértékelése (numerikus mechanizmusvizsgálat) Készítette: () Kémia BSc 2008 évf. 2010 1 A numerikus mechanizmusvizsgálat feladatának megfogalmazása
Virtuális Egér. Horváth Zsolt, Schnádenberger Gábor, Varjas Viktor. 2011. március 20.
Számítógépes Látás Projekt Virtuális Egér Horváth Zsolt, Schnádenberger Gábor, Varjas Viktor 011. március 0. Feladat kiírás: Egy olyan rendszer megvalósítása, melyben kamera értelmezi a kéz és az ujjak
ü ľ ź Í ę ü ą ĺĺ Ł ü ľ ćĺĺ ö ĺ ü ý ü ö ď ź ĺ ĺ ľ ö ü ý ö ú ű ú ľ ú ľ ú ź ö ľ źĺ ľ ö ź ú ý ĺ ĺ ľ ď ü ö Ĺ ľ ź ű ö ľü ľ ľ ľ ľ ü ö ĺ ü ö źí ĺ ľ ű ľ ľ ď ĺľ ú ź ü ú ö ú ö ĺ ú ľ ö ű ę ö ű ö ú ľ Á Á ĺ ź ĺ ö öľ
AKTUÁTOR MODELLEK KIVÁLASZTÁSA ÉS OBJEKTÍV ÖSSZEHASONLÍTÁSA
AKTUÁTOR MODELLEK KIVÁLASZTÁSA ÉS OBJEKTÍV ÖSSZEHASONLÍTÁSA Kovács Ernő 1, Füvesi Viktor 2 1 Egyetemi docens, PhD; 2 tudományos segédmunkatárs 1 Eletrotechnikai és Elektronikai Tanszék, Miskolci Egyetem
Kísérleti és elméleti TDK a nagyenergiás magfizikai területein
Kísérleti és elméleti TDK a nagyenergiás magfizikai területein Magyar ALICE Csoport & REGARD Téridő: Budapest, 2014. április 25. Web: http://alice.kfki.hu Vezető: Barnaföldi Gergely Gábor CERN LHC ALICE,
FELVÉTELI VIZSGA, július 21. Írásbeli próba MATEMATIKÁBÓL A. RÉSZ
BABE -BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 9. július. Írásbeli próba MATEMATIKÁBÓL FONTOS MEGJEGYZÉS: ) Az A. részben megjelen feleletválasztós feladatok esetén
Legkisebb négyzetek módszere, Spline interpoláció
Közelítő és szimbolikus számítások 10. gyakorlat Legkisebb négyzetek módszere, Spline interpoláció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján
I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25)
I. feladatsor () Határozza meg az alábbi függvények határozatlan integrálját: (a) f(x) = (b) f(x) = x + 4 9x + (c) f(x) = (d) f(x) = 6x + 5 5x + f(x) = (f) f(x) = x + x + 5 x 6x + (g) f(x) = (h) f(x) =
Matematika M1 1. zárthelyi megoldások, 2017 tavasz
Matematka M. zárthely megoldások, 7 tavasz A csoport Pontozás: + 7 + 7 + 7) + 3 + 6 5 pont.. Lehet-e az ux, y) e 3x cos3y) kétváltozós valós függvény egy regulárs komplex függvény valós része? Ha gen,
Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT
Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT Mi a véletlen? Determinisztikus vs. Véletlen esemény? Véletlenszám: számok sorozata, ahol véletlenszerűen követik egymást az elemek Pszeudo-véletlenszám
Matematika I. NÉV:... FELADATOK:
24.2.9. Matematika I. NÉV:... FELADATOK:. A tanult módon vizsgáljuk az a = 3, a n = 3a n 2 (n > ) rekurzív sorozatot. pt 2n 2 + e 2. Definíció szerint és formálisan is igazoljuk, hogy lim =. pt n 3 + n
Elfedett pulzációk vizsgálata a KIC fedési kettősrendszerben
Elfedett pulzációk vizsgálata a KIC 3858884 fedési kettősrendszerben Bókon András II. éves Fizikus MSc szakos hallgató Témavezető: Dr. Bíró Imre Barna tudományos munkatárs, 216. 11. 25. Csillagok pulzációja
Egyesített funkcionális renormálási csoport egyenlet
Egyesített funkcionális renormálási csoport egyenlet Nándori István MTA-DE Részecskefizikai Kutatócsoport, MTA-Atomki, Debrecen Magyar Fizikus Vándorgyűles, Debrecen, 2013 Kvantumtérelmélet Részecskefizika
A Fermi gammaműhold mozgásának vizsgálata
A Fermi gammaműhold mozgásának vizsgálata különös tekintettel a gamma-kitörésekre rárakódó háttér értékének alakulására Szécsi Dorottya ELTE fizikus MSc, I. évfolyam XXX. Jubileumi OTDK 211. április 27-29.
Hogyan kerül a kvarkanyag
Hogyan kerül a kvarkanyag a Rubik kockára? Csörgő Tamás fizikus, MTA Wigner FK és KRF, Gyöngyös A Rubik (bűvös) kocka feltalálásának 40. évfordulójára Fizikai Szemle 2013/6. sz. 205. o., 2013/7-8. sz.
A sz.ot.ag. III. Magyar Számítógépes Nyelvészeti Konferencia december 8. Bíró Tamás, ELTE, Budapest / RUG, Groningen, NL 1/ 16
A sz.ot.ag Optimalitáselmélet szimulált hőkezeléssel Bíró Tamás Humanities Computing, CLCG University of Groningen, Hollandia valamint Eötvös Loránd Tudományegyetem, Budapest birot@let.rug.nl, birot@nytud.hu
STATISZTIKAI PROBLÉMÁK A
STATISZTIKAI PROBLÉMÁK A HULLÁMTÉR REPRODUKCIÓ TERÜLETÉN 2012. május 3., Budapest Firtha Gergely PhD hallgató, Akusztikai Laboratórium BME Híradástechnikai Tanszék firtha@hit.bme.hu Tartalom A hangtér
TMDK-DOLGOZAT. Stacionárius és rádiófrekvenciás elektromágneses terek vizsgálata a momentumok módszerének segítségével
TMDK-DOLGOZAT Stacionárius és rádiófrekvenciás elektromágneses terek vizsgálata a momentumok módszerének segítségével Írta: M.Sc. szakos villamosmérnök hallgató Konzulens: Friedl Gergely doktorandusz hallgató,
Eötvös Loránd Tudományegyetem Tanárképző Központ és TÁMOP Országos koordinációval a pedagógusképzés megújításáért című projekt. Konferencia-program
Eötvös Loránd Tudományegyetem Tanárképző Központ és TÁMOP Országos koordinációval a pedagógusképzés megújításáért című projekt Tudós tanárok tanár tudósok Konferencia a minőségi tanárképzésről és Ember
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =
3. Lineáris differenciálegyenletek
3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra
Nyomkövető detektorok a részecskefizikától a vulkanológiáig
Nyomkövető detektorok a részecskefizikától a vulkanológiáig Varga Dezső, MTA Wigner FK RMI NFO Detektorfizika Kutatócsoport Simonyi Nap, 2017 okt. 16. Tartalmi áttekintés Nyomkövető detektorok a nagyenergiás
Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és
Végeselem modellezés alapjai 1. óra
Végeselem modellezés alapjai. óra Gyenge alak, Tesztfüggvény, Lagrange-féle alakfüggvény, Stiness mátrix Kivonat Az óra célja, hogy megismertesse a végeselem módszer (FEM) alkalmazását egy egyszer probléma,
Klasszikus és kvantum fizika
Klasszikus és kvantum fizika valamint a Wigner függvény T.S. Biró MTA Fizikai Kutatóközpont, Budapest 2017. november 13. T.S.Biró Wigner 115, Budapest, 2017. Nov. 15. Biró Klassz kvantum 1 / 22 Abstract
Turbulens áramlás modellezése háromszög elrendezésű csőkötegben
Turbulens áramlás modellezése háromszög elrendezésű csőkötegben Mayer Gusztáv mayer@sunserv.kfk.hu 2005. 09. 27. CFD Workshop 1 Tartalom - Vzsgált geometra Motvácó Az áramlás jellemző Saját fejlesztésű
Nehézion ütközések az európai Szupergyorsítóban
Nehézion ütközések az európai Szupergyorsítóban Lévai Péter MTA KFKI RMKI Részecske- és Magfizikai Kutatóintézet Az atomoktól a csillagokig ELTE, 2008. márc. 27. 17.00 Tartalomjegyzék: 1. Mik azok a nehézionok?
Bevezetés az operációkutatásba A lineáris programozás alapjai
Bevezetés az operációkutatásba A lineáris programozás alapjai Alkalmazott operációkutatás 1. elıadás 2008/2009. tanév 2008. szeptember 12. Mi az operációkutatás (operations research)? Kialakulása: II.
Kvantum összefonódás és erősen korrelált rendszerek
Kvantum összefonódás és erősen korrelált rendszerek MaFiHe TDK és Szakdolgozat Hét Szalay Szilárd MTA Wigner Fizikai Kutatóközpont, Szilárdtest Fizikai és Optikai Intézet, Erősen Korrelált Rendszerek Lendület
1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor
. Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis
Grafikonok automatikus elemzése
Grafikonok automatikus elemzése MIT BSc önálló laboratórium konzulens: Orosz György 2016.05.18. A feladat elsődleges célkitűzései o eszközök adatlapján található grafikonok feldolgozása, digitalizálása
10. Előadás: A sztochasztikus programozás alap modelljei
10. Előadás: A sztochasztikus programozás alap modelljei I. 1. A pétervári probléma (Daniel Bernoulli, 1738) D. Bernoulli a Pétervári Akadémia folyóiratában 1738-ban közölt egy dolgozatot a következő címmel:
Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 7. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát (vonat
a) az O(0, 0) középpontú, r = 2 sugarú, negatív irányítasú körvonal P( 2, 2), Q( 2, 2) pontjait
06.05.7. Kalulus II. NÉV:... A csoport EHA:... FELADATOK. Határozzu meg a xy da integrált, ahol H az A(, ), B(0, 0) és C(, ) ponto által megha- y + 3 tározott háromszög. H 0pt. Oldju meg: y y + 5y = e
Megmérjük a láthatatlant
Megmérjük a láthatatlant (részecskefizikai detektorok) Hamar Gergő MTA Wigner FK 1 Tartalom Mik azok a részecskék? mennyi van belőlük? miben különböznek? Részecskegyorsítók, CERN mire jó a gyorsító? hogy
Teljesen elosztott adatbányászat pletyka algoritmusokkal. Jelasity Márk Ormándi Róbert, Hegedűs István
Teljesen elosztott adatbányászat pletyka algoritmusokkal Jelasity Márk Ormándi Róbert, Hegedűs István Motiváció Nagyméretű hálózatos elosztott alkalmazások az Interneten egyre fontosabbak Fájlcserélő rendszerek
Kevert állapoti anholonómiák vizsgálata
Kevert állapoti anholonómiák vizsgálata Bucz Gábor Témavezet : Dr. Fehér László Dr. Lévay Péter Szeged, 2015.04.23. Bucz Gábor Kevert állapoti anholonómiák vizsgálata Szeged, 2015.04.23. 1 / 27 Tartalom
Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés
Gépi tanulás a gyakorlatban Kiértékelés és Klaszterezés Hogyan alkalmazzuk sikeresen a gépi tanuló módszereket? Hogyan válasszuk az algoritmusokat? Hogyan hangoljuk a paramétereiket? Precízebben: Tegyük
Bevezetés a részecskefizikába
Horváth Dezső: Bevezetés a részecskefizikába II: Higgs CERN, 2014. augusztus 19. p. 1 Bevezetés a részecskefizikába Előadássorozat fizikatanárok részére (CERN, 2014 aug. 19.) (Pásztor Gabriella helyett)
Gépi tanulás a gyakorlatban. Lineáris regresszió
Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják