A kálium-permanganát és az oxálsav közötti reakció vizsgálata
|
|
- Gábor Mészáros
- 7 évvel ezelőtt
- Látták:
Átírás
1 A kálium-permanganát és az oxálsav közötti reakció vizsgálata Vesztergom Soma mérési leírása alapján Mérésleírás a Fizikai kémia labor (kvc4fz5) és Fizikai kémia labor () (kvc4fzp) kurzusokhoz... Bevezetés A mérés tekintetében ez a leírás az irányadó! Jelen leírásban nem tárgyaljuk, de elvárjuk az alábbiak ismeretét: Reakciókinetikából: reakciósebesség, elemi lépés, összetett reakció, reakciórend, bruttó rend, elsőrendű reakció sebességi egyenletei, felezési idő, konszekutív reakciók, sebességmeghatározó lépés, katalízis, autokatalízis, reakciósebesség hőmérsékletfüggése (Arrhenius-egyenlet). Elektrolitoldatok jellemzői közül: ionerősség, az aktivitási koefficiens és az ionerősség közti összefüggés a Debye Hückel-elmélet szerint. Látható spektrofotometriából: transzmittancia, abszorbancia, Lambert Beer-törvény feltételeivel együtt, spektrofotométer alapvető részegységei és működési elve. Statisztikából: várható érték, szórás, konfidencia-intervallum és kiszámításuk, abszolút hiba, relatív hiba... A mérés elve Az oxálsav és a kálium-permanganát között savas közegben lejátszódó reakció bruttó egyenlete: 3H SO MnSO CO 8H O K SO. KMnO4 5 COOH () E folyamat még ma sem teljesen tisztázott mechanizmus szerint, több lépésben játszódik le; erre utal az is, hogy a reakció bruttó rendűsége nem egész szám. A folyamat köztitermékeként egy Mn III -at tartalmazó instabil komplex, a 3 3 írják le. A képződés bruttó egyenlete: Mn C O 4 keletkezik. Az instabil komplex képződését és bomlását 3. egyenletek 3 MnO 8H 5MnC O 4H O, 4Mn 5 COO ()
2 míg a bomlásé: 3 MnC O MnC O COO CO (3) A Mn III -at tartalmazó komplex bomlása az oxálsav és kálium-permanganát között lejátszódó reakció sebességmeghatározó lépése. A bruttó folyamat autokatalitikus, hiszen a végtermékként keletkező Mn + ionok részt vesznek a Mn III -komplex képződésében. A Mn III -komplex és a MnO 4 ion színes, ezért fényabszorpció-méréssel koncentrációváltozásuk vizsgálható, a reakció előrehaladása ezáltal követhető. A koncentrációk vizsgálatához felhasználjuk a Lambert Beer-törvényt, mely szerint adott komponens abszorbanciája és koncentrációja egyenesen arányos egymással. A mérések során feltételezhető, hogy az oldat más alkotói e két ion mérését abszorpciójukkal csak elhanyagolható mértékben zavarják. 3.. A mérés módja 3... A mérési feladat A mérés során különböző kiindulási összetételű reakcióelegyeket készítünk el, és vizsgáljuk a reakció időbeli előrehaladását az egyes esetekben. A kiindulási összetételeket az alábbi szempontoknak megfelelően választjuk meg: - A reakció autokatalitikus jellegének megfigyelése érdekében készítünk egy olyan reakcióelegyet, mely Mn + -ionokat kezdetben nem tartalmaz. Követjük a permanganátion fogyását. - Annak érdekében, hogy képet kapjunk a reakció sebességéről, megvizsgáljuk a Mn III -komplex koncentrációja és bruttó bomlási sebessége közti összefüggést. Eltérő Mn III -komplex koncentrációjú oldatok előállítása céljából oldatot készítünk, melyek azonos arányban, de különböző koncentrációban tartalmazzák a kiindulási anyagokat. Követjük a Mn III -komplex koncentrációjának időbeli változását. Az azonos mértékű átalakuláshoz szükséges időkből kiszámítjuk a reakció bruttó rendjét. (Méréseink során szem előtt kell tartanunk, hogy vizsgált reakciónk oldatban zajlik, ionok között. Emiatt a sebesség koncentráció összefüggések vizsgálatakor figyelembe kell venni bizonyos tényezőket. Ezek közül az egyik legfontosabb az ionok közötti elektrosztatikus kölcsönhatás. Ahhoz, hogy ez a kísérleteink során használt viszonylag híg oldatokban közelítőleg állandó erősségű legyen, az ionerősség állandó értéken tartását kell megoldanunk; ezt inert só (nátriumszulfát) adagolásával fogjuk biztosítani. Érdeklődők az ionerősség reakciósebesség összefüggéssel kapcsolatosan további információkat találnak pl. Michael J. Pilling Reakciókinetika c. könyvének fejezetében. Az itt találhatók ismerete a laboron nem követelmény.)
3 - Az oldatsorozat megadott tagjára vonatkozóan megvizsgáljuk a reakció időbeli lefutását; megnézzük, hogy milyen eredményt kapunk elsőrendű modell feltételezésével, és hogyan lehet kiszűrni a hibás modellalkotást. FIGYELEM! Az egyes ionok méréséhez használt hullámhossz megválasztását az otthoni felkészülés során el kell végezni. Ehhez rendelkezésre áll egy-egy spektrumsorozat mindkét fent említett mérési feladatról (autokatalízis vizsgálata,.a ábra és reakciórend meghatározása,.b ábra). A spektrumsorozatokon jól követhető az egyes abszorpciós sávok megjelenése illetve eltűnése. Ezek alapján válassza meg az egyes alkotók méréséhez legalkalmasabb hullámhosszt, a következő négy szempont figyelembevételével: i.) a szóban forgó részecske fényelnyelése a lehető legnagyobb legyen; ii.) más részecske számottevően ne nyeljen a választott hullámhosszon; iii.) a műszeren történő hullámhossz-beállítás pontatlansága a lehető legkisebb hibát okozza az abszorbancia mérésében; iv.) a műszerek 3 4 körüli abszorbanciaértékeket már csak nagy hibával tudnak mérni.. ábra. Az idő függvényében mért spektrumsorozatok (a) az autokatalízis vizsgálatakor és (b) a reakciórend tanulmányozása során. Állapítsa meg, a két esetben mely hullámhosszakon végezne kvantitatív kiértékelhetőséget biztosító mérést! 3... A mérés kivitelezése A mérés során desztillált víz, nátrium-szulfát oldat (, mol/dm 3 ), oxálsav oldat (, mol/dm 3 ), kálium-permanganát oldat (, mol/dm 3 ) és mangán(ii)-szulfát oldat (, mol/dm 3 ) felhasználásával állítunk elő különböző összetételű reakcióelegyeket, részben az autokatalízis vizsgálatához, részben a reakciórend megállapításához, az. táblázat adatainak megfelelően. Az oldatok összemérésekor célszerű az. táblázatban megadott sorrendet követni. A műszert mérés előtt nullázni (kalibrálni) kell, ami a megfelelő referenciaoldatok segítségével történik. A mérési paraméterek beállításához ld. A Metertech sp88 spektrofotométer kezelése című leírást. A méréseknél használjunk desztillált vizet referenciaként. A megfelelő optikai úthosszú küvettát a spektrofotométer fényútjába helyezve és a megfelelő (az otthoni felkészülés során megállapított) hullámhosszt beállítva nullázzuk a készüléket. Ügyeljünk arra, hogy a küvetta megfelelő oldala legyen merőleges a fényútra, bizonytalanság esetén kérjen segítséget a gyakorlatvezetőtől. A nullázást minden új hullámhossz beállítása után el kell végezni. 3
4 A kalibráció után a küvettát desztillált vízzel alaposan kiöblítjük, és a mérőhelyen található speciális papírvattával szárazra töröljük. A mérendő oldat összeállításához csak ezután kezdjünk hozzá! Az oldatokat mindig közvetlenül a mérés előtt, főzőpohárban mérjük össze; az összemérést követően (lehetőleg gyorsan) az oldatot alaposan megkeverjük és feltöltjük vele küvettát (a folyadék szintje kb. a küvetta magasságának kétharmada és háromnegyede közé essen). A küvettát a spektrofotométer fényútjába helyezzük (ismételten ügyeljünk arra hogy a küvetta megfelelő oldala legyen merőleges a fényútra), a fotométer fedelét lecsukjuk, és megkezdjük az abszorbancia időfüggésének vizsgálatát a megfelelő hullámhossz értékeken. A méréshez használt Metertech SP88 spektrofotométer kezeléséhez az oktató nyújt segítséget. A mért adatokat tartalmazó fájlok neveit, illetve a méréshez választott hullámhossz értékeket (a választás indoklásával együtt) a jegyzőkönyvbe a mérés helyszínén feljegyezzük. (Ennek hiánya formai hibás jegyzőkönyvet eredményez.) Mérés száma, célja Bemérendő térfogat / cm 3 Deszt. víz Na SO 4 (COOH) KMnO 4 MnSO 4 ΣV / cm 3 Küvetta vastagsága / cm. Autokatalízis vizsgálata 5,, 7,5,5, 5,. Reakciórend meghatározása,,, 4, 8, 4, 3. Reakciórend meghatározása 9, 5,, 4, 8, 48,. táblázat. Az oldatok összetétele, és az összeméréskor követendő sorrend. 4.. A mérési adatok feldolgozása 4... Az autokatalízis vizsgálata Az autokatalízis vizsgálatához ábrázoljuk az abszorbancia idő függvényt a. ábrához hasonló módon. Láthatjuk, hogy az abszorbancia változása két lineáris szakasszal, és egy köztük lévő átmeneti periódussal jellemezhető. Az átmeneti periódus az autokatalitikus felgyorsulás; a második egyenes szakaszon a reakció sebessége láthatóan nagyobb, mint az első, kis meredekségű szakaszon.. ábra. Az autokatalízis vizsgálata 4
5 Illesszünk egy-egy egyenest a grafikon két egyenes szakaszára. Az egyenes szakaszok végpontjainak megválasztása bizonyos szempontból önkényes, de azoknak a görbe egyenes részére kell esniük. A. ábrán bemutatott módon becsüljük meg az autokatalitikus felgyorsulás hozzávetőleges időintervallumát! A jegyzőkönyvben szerepelnie kell egy, a. ábrán látotthoz hasonló grafikonnak és az autokatalitikus felgyorsulás becsült időintervallumának A reakciórend megállapítása. A rendűség meghatározásához a Mn III -komplex 3. mérésekből kapott abszorbancia idő adatpárjait használjuk fel! A reakció felezési idejére ismert összefüggéshez hasonlóan felírható a reakció tetszés szerinti (x%-os) előrehaladási (átalakulási) idejének a kezdeti koncentrációtól való függésére vonatkozó egyenlet: r t x Bc, (4) ahol c a kezdeti koncentráció, r a reakciórend és B egy arányossági tényező. Két különböző kezdeti koncentráció esetén képezhető a t xi értékek hányadosa: t t x x r c. (5) r c Az egyenletet logaritmálva és átrendezve: tx lg tx r. (6) c lg c A reakciórend meghatározásához tehát úgy járhatunk el, hogy leolvassuk az abszorbancia idő grafikonokról az x = 5%-os, 5%-os, 75%-os átalakulásokhoz tartozó időket. Használjuk fel, hogy pl. x = 5% esetén c t5% =,75 c, és ennek megfelelően A t5% =,75 A! A kapott időadatokból számoljuk ki a reakciórendet! Az eredményekből számítsunk r-re egy átlagot, és adjuk meg a 95%-os statisztikus biztonsághoz tartozó konfidencia-intervallumot is! A jegyzőkönyvben szerepelnie kell a három abszorbancia idő görbének, a leolvasott időadatoknak és kezdeti abszorbanciáknak táblázatosan, a kapott r értékeknek táblázatosan, az értékek átlagának és a konfidencia-intervallumnak. 5
6 4.3.. A modell vizsgálata A modellalkotás vizsgálatához a. mérés adatait használjuk fel. Feltételezve, hogy a reakció elsőrendű kinetika szerint zajlik, az abszorbancia idő függvény alakja: kt kt A t) A( t )e A e. (7) ( Illesszünk e feltételezés alapján adatsorunkra görbét (k és A értékét a nemlineáris illesztésből határozzuk meg)! Számítsuk ki minden egyes mért adatpontra a mért érték és az illesztésből kapott érték különbségét! Ábrázoljuk ezt az idő függvényében! A fenti egyenletből kifejezhetjük a k sebességi együttható értékét mint: A k ln. (8) t A( t) Felhasználva mért adatainkat A, A(t), t ábrázoljuk az így számolható k-t is az idő függvényében! A jegyzőkönyvben szerepeljen: az eredeti abszorbancia idő adatsort és az illesztett exponenciálist tartalmazó ábra; az illesztett görbe egyenlete; az illeszkedés szöveges értékelése (Jól illeszkedik-e a görbe a mért pontokra? Megalapozott-e ez alapján az elsőrendű kinetika?); a reziduális eltérés idő görbe és szöveges értékelése (Származhat-e a kapott görbe pusztán a mérés véletlenszerűnek tekintett hibájából, esetleg van-e tendencia benne? Megalapozott-e ez alapján az elsőrendű kinetika?); a számolt k időfüggését bemutató ábra és szöveges értékelése (Milyen alakú lenne a görbe elsőrendű kinetika esetén? Milyen alakú valójában? Megalapozott-e ez alapján az elsőrendű kinetika?); a háromféle vizsgálat eredményeinek összevetése. 6
7 4.4.. A termosztálás hiányából fakadó hiba becslése A termosztálás hiányából fakadó hibát az alábbi módon becsülhetjük meg: A sebességi együttható hibáját az Arrhenius-egyenletből a Gauss-féle hibaterjedési függvénnyel írhatjuk fel, mely szerint egy f (x,x, ) függvény abszolút hibája a változóinak abszolút hibájával az alábbi módon fejezhető ki: f f f x x... (9) x x A reakció sebességi együtthatójának hőmérsékletfüggésére a következő közelítést fogadjuk el: k k T K T (T = 98,5 K). () A. egyenlet és az Arrhenius-egyenlet összevetésével meghatározott aktiválási energiát pontosnak tételezzük fel. Ez alapján: becsüljük meg, hogy mennyit ingadozhat a hőmérséklet, ha azt akarjuk, hogy k relatív hibája 5%-nál kisebb legyen; becsüljük meg k relatív hibáját, ha a hőmérséklet, C-ot ingadozik Néhány jó tanács a kiértékeléshez.. A grafikonon a vonalak vastagsága lehetőleg normális vonalvastagság legyen.. Ajánlott a mérés kiértékelését úgy készíteni, hogy annak legyen eleje, közepe és vége. Elvárható, hogy annak felépítése logikai sorrendet kövessen (pl. a fájlok neveit ne a kiértékelés fejezetbe írjuk, hanem a jegyzőkönyvi űrlap elejére). Az egyes feladatok (sor)számát (a nem kötelező feladatét is) egyértelműen jelezze! 3. Mindenhol, ahol célszerű és indokolt, a mérési eredményeket értelmezni kell; erre a leírás a megfelelő helyeken fel is hívta a figyelmet. 4. Figyeljünk a megadott eredményekben az értékes jegyek számára! A konfidencia-intervallum megadásánál a hibát értékes jegyre adjuk meg, az értéket pedig ezzel egyeztetve. Amikor becsült adatról van szó, pl. az időintervallum meghatározásánál, ne adjuk meg az eredményt túl sok értékes jegyre, csak amennyit a becslés indokol! GGL 6 7
A kálium-permanganát és az oxálsav közötti reakció vizsgálata
A kálium-permanganát és az oxálsav közötti reakció vizsgálata Vesztergom Soma mérési leírása alapján Mérésleírás a Fizikai kémia labor kémiatanároknak (kk5t4fzp) című kurzushoz... Bevezetés A mérés tekintetében
RészletesebbenA kálium-permanganát és az oxálsav közötti reakció vizsgálata
A kálium-permanganát és az oxálsav közötti reakció vizsgálata A mérés tekintetében ez a leírás az irányadó! Jelen leírásban nem tárgyaljuk, de elvárjuk az alábbiak ismeretét: reakciókinetikából: reakciósebesség,
RészletesebbenA kálium-permanganát és az oxálsav közötti reakció vizsgálata 9a. mérés B4.9
A kálium-permanganát és az oxálsav közötti reakció vizsgálata 9a. mérés B4.9 Név: Pitlik László Mérés dátuma: 2014.12.04. Mérőtársak neve: Menkó Orsolya Adatsorok: M24120411 Halmy Réka M14120412 Sárosi
RészletesebbenA kálium-permanganát és az oxálsav közötti reakció vizsgálata
A kálium-permanganát és az oxálsav közötti reakció vizsgálata (Kovács Tamás, Puskás Zsófia, Rokob Tibor András) A mérés tekintetében ez a leírás az irányadó! Jelen leírásban nem tárgyaljuk, de elvárjuk
Részletesebben9 gyak. Acél mangán tartalmának meghatározása UV-látható spektrofotometriás módszerrel
9 gyak. Acél mangán tartalmának meghatározása UV-látható spektrofotometriás módszerrel A gyakorlat célja: Megismerkedni az UV-látható spektrofotometria elvével, alkalmazásával a kationok, anionok analízisére.
RészletesebbenReakciókinetika. Általános Kémia, kinetika Dia: 1 /53
Reakciókinetika 9-1 A reakciók sebessége 9-2 A reakciósebesség mérése 9-3 A koncentráció hatása: a sebességtörvény 9-4 Nulladrendű reakció 9-5 Elsőrendű reakció 9-6 Másodrendű reakció 9-7 A reakciókinetika
RészletesebbenKinetika. Általános Kémia, kinetika Dia: 1 /53
Kinetika 15-1 A reakciók sebessége 15-2 Reakciósebesség mérése 15-3 A koncentráció hatása: a sebességtörvény 15-4 Nulladrendű reakció 15-5 Elsőrendű reakció 15-6 Másodrendű reakció 15-7 A reakció kinetika
RészletesebbenFIZIKAI KÉMIA II. házi dolgozat. Reakciókinetikai adatsor kiértékelése (numerikus mechanizmusvizsgálat)
FIZIKAI KÉMIA II. házi dolgozat Reakciókinetikai adatsor kiértékelése (numerikus mechanizmusvizsgálat) Készítette: () Kémia BSc 2008 évf. 2010 1 A numerikus mechanizmusvizsgálat feladatának megfogalmazása
Részletesebben5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével
5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével 5.1. Átismétlendő anyag 1. Adszorpció (előadás) 2. Langmuir-izoterma (előadás) 3. Spektrofotometria és Lambert Beer-törvény
Részletesebben5. Laboratóriumi gyakorlat
5. Laboratóriumi gyakorlat HETEROGÉN KÉMIAI REAKCIÓ SEBESSÉGÉNEK VIZSGÁLATA A CO 2 -nak vízben történő oldódása és az azt követő egyensúlyra vezető kémiai reakció az alábbi reakcióegyenlettel írható le:
RészletesebbenReakciókinetika. aktiválási energia. felszabaduló energia. kiindulási állapot. energia nyereség. végállapot
Reakiókinetika aktiválási energia kiindulási állapot energia nyereség felszabaduló energia végállapot Reakiókinetika kinetika: mozgástan reakiókinetika (kémiai kinetika): - reakiók időbeli leírása - reakiómehanizmusok
RészletesebbenA kálium-permanganát és az oxálsav közötti reakció vizsgálata (Puskás Zsófia)
A kálium-permanganát és az oxálsav közötti reakció vizsgálata (Puskás Zsófia) A mérés végrehajtása A mérést a Praktikumtól eltéren Perkin-Elmer Lambda 2S, illetve Shimadzu UVmini1240 spektrofotométerrel
RészletesebbenFizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz
Fizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz A házi feladatok beadhatóak vagy papír alapon (ez a preferált), vagy e-mail formájában is az rkinhazi@gmail.com címre. E-mail esetén ügyeljetek a
RészletesebbenSók oldáshőjének és jég olvadáshőjének meghatározása anizotermés hővezetéses kaloriméterrel
Sók oldáshőjének és jég olvadáshőjének meghatározása anizotermés hővezetéses kaloriméterrel Előadó: Zsély István Gyula Készült Sziráki Laura, Szalma József 2012 előadása alapján Laborelőkészítő előadás,
RészletesebbenReakciókinetika és katalízis
Reakciókinetika és katalízis k 4. előadás: 1/14 Különbségek a gázfázisú és az oldatreakciók között: 1 Reaktáns molekulák által betöltött térfogat az oldatreakciónál jóval nagyobb. Nincs akadálytalan mozgás.
RészletesebbenReakciókinetika és katalízis
Reakciókinetika és katalízis 2. előadás: 1/18 Kinetika: Kísérletekkel megállapított sebességi egyenlet(ek). A kémiai reakció makroszkópikus, fenomenológikus jellemzése. 1 Mechanizmus: Az elemi lépések
Részletesebben23. Indikátorok disszociációs állandójának meghatározása spektrofotometriásan
23. Indikátorok disszociációs állandójának meghatározása spektrofotometriásan 1. Bevezetés Sav-bázis titrálások végpontjelzésére (a mőszeres indikáció mellett) ma is gyakran alkalmazunk festék indikátorokat.
RészletesebbenModern Fizika Labor. 11. Spektroszkópia. Fizika BSc. A mérés dátuma: dec. 16. A mérés száma és címe: Értékelés: A beadás dátuma: dec. 21.
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. dec. 16. A mérés száma és címe: 11. Spektroszkópia Értékelés: A beadás dátuma: 2011. dec. 21. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin
RészletesebbenKémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai
Kémiai átalakulások 9. hét A kémiai reakció: kötések felbomlása, új kötések kialakulása - az atomok vegyértékelektronszerkezetében történik változás egyirányú (irreverzibilis) vagy megfordítható (reverzibilis)
RészletesebbenReakciókinetika. Fizikai kémia előadások biológusoknak 8. Turányi Tamás ELTE Kémiai Intézet. A reakciókinetika tárgya
Reakciókinetika Fizikai kémia előadások biológusoknak 8. Turányi Tamás ELTE Kémiai Intézet A reakciókinetika tárgya Hogyan változnak a koncentrációk egy reaktív elegyben és miért? Milyen részlépésekből
Részletesebben6 Ionszelektív elektródok. elektródokat kiterjedten alkalmazzák a klinikai gyakorlatban: az automata analizátorokban
6. Szelektivitási együttható meghatározása 6.1. Bevezetés Az ionszelektív elektródok olyan potenciometriás érzékelők, melyek valamely ion aktivitásának többé-kevésbé szelektív meghatározását teszik lehetővé.
Részletesebbenv=k [A] a [B] b = 1 d [A] 3. 0 = [ ν J J, v = k J
Célja: Reakciók mechanizmusának megismerése, ami a részlépések feltárásából és azok sebességének meghatározásából áll. A jelenlegi konkrét célunk: Csak () az alapfogalmak, (2) a laboratóriumi gyakorlathoz
Részletesebben1. feladat Összesen: 7 pont. 2. feladat Összesen: 16 pont
1. feladat Összesen: 7 pont Gyógyszergyártás során képződött oldatból 7 mintát vettünk. Egy analitikai mérés kiértékelésének eredményeként a következő tömegkoncentrációkat határoztuk meg: A minta sorszáma:
RészletesebbenMérési jegyzőkönyv. 1. mérés: Abszorpciós spektrum meghatározása. Semmelweis Egyetem, Elméleti Orvostudományi Központ Biofizika laboratórium
Mérési jegyzőkönyv 1. mérés: Abszorpciós spektrum meghatározása A mérés helyszíne: Semmelweis Egyetem, Elméleti Orvostudományi Központ Biofizika laboratórium A mérés időpontja: 2012.02.08. A mérést végezte:
RészletesebbenFolyadékok és szilárd anyagok sűrűségének meghatározása különböző módszerekkel
Folyadékok és szilárd anyagok sűrűségének meghatározása különböző módszerekkel Név: Neptun kód: _ mérőhely: _ Labor előzetes feladatok 20 C-on különböző töménységű ecetsav-oldatok sűrűségét megmérve az
RészletesebbenKémia fogorvostan hallgatóknak Munkafüzet 11. hét
Kémia fogorvostan hallgatóknak Munkafüzet 11. hét Kinetikai kísérletek (120-124. oldal) Írták: Agócs Attila, Berente Zoltán, Gulyás Gergely, Jakus Péter, Lóránd Tamás, Nagy Veronika, Radó-Turcsi Erika,
RészletesebbenEcetsav koncentrációjának meghatározása titrálással
Ecetsav koncentrációjának meghatározása titrálással A titrálás lényege, hogy a meghatározandó komponenst tartalmazó oldathoz olyan ismert koncentrációjú oldatot adagolunk, amely a reakcióegyenlet szerint
RészletesebbenAbszorpciós spektroszkópia
Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses
RészletesebbenNYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS. Mérési feladatok
Hidrodinamikai Rendszerek Tanszék Készítette:... kurzus Elfogadva: Dátum:...év...hó...nap NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS Mérési feladatok 1. Csővezetékben áramló levegő nyomásveszteségének mérése U-csöves
RészletesebbenA REAKCIÓKINETIKA ALAPJAI
A REAKCIÓKINETIKA ALAPJAI Egy kémiai reakció sztöchiometriai egyenletének általános alakja a következő formában adható meg k i=1 ν i A i = 0, (1) ahol A i a reakcióban résztvevő i-edik részecske, ν i pedig
RészletesebbenFüggvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
RészletesebbenLabor elızetes feladatok
Oldatkészítés szilárd anyagból és folyadékok hígítása. Tömegmérés. Eszközök és mérések pontosságának vizsgálata. Név: Neptun kód: mérıhely: Labor elızetes feladatok 101 102 103 104 105 konyhasó nátrium-acetát
RészletesebbenTartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;
Részletesebben2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 24. Leadás dátuma: 2008. 10. 01. 1 1. Mérések ismertetése Az 1. ábrán látható összeállításban
Részletesebben2011/2012 tavaszi félév 3. óra
2011/2012 tavaszi félév 3. óra Redoxegyenletek rendezése (diszproporció, szinproporció, stb.); Sztöchiometria Vegyületek sztöchiometriai együtthatóinak meghatározása elemösszetétel alapján Adott rendezendő
RészletesebbenMérési hibák 2006.10.04. 1
Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség
RészletesebbenA fény tulajdonságai
Spektrofotometria A fény tulajdonságai A fény, mint hullámjelenség (lambda) (nm) hullámhossz (nű) (f) (Hz, 1/s) frekvencia, = c/ c (m/s) fénysebesség (2,998 10 8 m/s) (σ) (cm -1 ) hullámszám, = 1/ A amplitúdó
RészletesebbenTartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;
RészletesebbenFolyadékszcintillációs spektroszkópia jegyz könyv
Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés
Részletesebben1. feladat. Versenyző rajtszáma:
1. feladat / 4 pont Válassza ki, hogy az 1 és 2 anyagok közül melyik az 1,3,4,6-tetra-O-acetil-α-D-glükózamin hidroklorid! Rajzolja fel a kérdésben szereplő molekula szerkezetét, és értelmezze részletesen
Részletesebben[S] v' [I] [1] Kompetitív gátlás
8. Szeminárium Enzimkinetika II. Jelen szeminárium során az enzimaktivitás szabályozásával foglalkozunk. Mivel a klinikai gyakorlatban használt gyógyszerhatóanyagok jelentős része enzimgátló hatással bír
RészletesebbenMikroszkóp vizsgálata Folyadék törésmutatójának mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 8. MÉRÉS Mikroszkóp vizsgálata Folyadék törésmutatójának mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 12. Szerda délelőtti csoport
RészletesebbenMérési adatok illesztése, korreláció, regresszió
Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,
RészletesebbenKémiai reakciók sebessége
Kémiai reakciók sebessége reakciósebesség (v) = koncentrációváltozás változáshoz szükséges idő A változás nem egyenletes!!!!!!!!!!!!!!!!!! v= ± dc dt a A + b B cc + dd. Melyik reagens koncentrációváltozását
Részletesebben17. Diffúzió vizsgálata
Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.11.24. A beadás dátuma: 2011.12.04. A mérés száma és címe: 17. Diffúzió vizsgálata A mérést végezte: Németh Gergely Értékelés: Elméleti háttér Mi is
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenXXXVI. KÉMIAI ELŐADÓI NAPOK
Magyar Kémikusok Egyesülete Csongrád Megyei Csoportja és a Magyar Kémikusok Egyesülete rendezvénye XXXVI. KÉMIAI ELŐADÓI NAPOK Program és előadás-összefoglalók Szegedi Akadémiai Bizottság Székháza Szeged,
Részletesebbenb) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2
1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon
RészletesebbenBAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett
Részletesebben1. feladat Összesen: 7 pont. 2. feladat Összesen: 8 pont
1. feladat Összesen: 7 pont Hét egymást követő titrálás fogyásai a következők: Sorszám: 1. 2. 3. 4. 5. 6. 7. Fogyások (cm 3 ) 20,25 20,30 20,40 20,35 20,80 20,30 20,20 A) Keresse meg és húzza át a szemmel
RészletesebbenTermészetvédő 1., 3. csoport tervezett időbeosztás
Természetvédő 1., 3. csoport tervezett időbeosztás 4. ciklus: 2012. március 08. Optikai mérések elmélet. A ciklus mérései: 1. nitrit, 2. ammónium, 3. refraktometriax2, mérőbőrönd. Forgatási terv: Csoport
RészletesebbenE (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic
Abszorpciós spektroszkópia Abszorpciós spektrofotometria 29.2.2. Az abszorpciós spektroszkópia a fényabszorpció jelenségét használja fel híg oldatok minőségi és mennyiségi vizsgálatára. Abszorpció Az elektromágneses
Részletesebben5. gy. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL
5. gy. VIZES OLDAOK VISZKOZIÁSÁNAK MÉRÉSE OSWALD-FENSKE-FÉLE VISZKOZIMÉERREL A fluid közegek jellemző anyagi tulajdonsága a viszkozitás, mely erősen befolyásolhatja a bennük lejátszódó reakciók sebességét,
RészletesebbenBiomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
Részletesebbenc A Kiindulási anyag koncentrációja c A0 idő t 1/2 A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
c A Kiindulási anyag koncentrációja c A0 c A0 2 t 1/2 idő A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 A reakciókinetika tárgya A reakciókinetika a fizikai kémia egyik részterülete.
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenTermoelektromos hűtőelemek vizsgálata
KLASSZIKUS FIZIKA LABORATÓRIUM 4. MÉRÉS Termoelektromos hűtőelemek vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 30. Szerda délelőtti csoport 1. A mérés célja
RészletesebbenCompton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.
Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak
Részletesebben7. 17 éves 2 pont Összesen: 2 pont
1. { 3;4;5} { 3; 4;5;6;7;8;9;10} A B = B C = A \ B = {1; }. 14 Nem bontható. I. 3. A) igaz B) hamis C) igaz jó válasz esetén, 1 jó válasz esetén 0 pont jár. 4. [ ; ] Más helyes jelölés is elfogadható.
RészletesebbenKémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai
Kémiai átalakulások 9. hét A kémiai reakció: kötések felbomlása, új kötések kialakulása - az atomok vegyértékelektronszerkezetében történik változás egyirányú (irreverzibilis) vagy megfordítható (reverzibilis)
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenA mérési eredmény megadása
A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű
RészletesebbenHulladékos csoport tervezett időbeosztás
Hulladékos csoport tervezett időbeosztás 3. ciklus: 2012. január 16 február 27. január 16. titrimetria elmélet (ismétlés) A ciklus mérései: sav bázis, komplexometriás, csapadékos és redoxi titrálások.
RészletesebbenA viszkózus folyás aktiválási energiájának meghatározása Höppler-féle viszkoziméterrel.
A viszkózus folyás aktiválási energiájának meghatározása Höppler-féle viszkoziméterrel. Készítette: Vesztergom Soma. Mérésleírás a Fizikai kémia labor (kv1c4fz5) és Fizikai kémia labor (1) (kv1c4fzp) kurzusokhoz.
RészletesebbenMagspektroszkópiai gyakorlatok
Magspektroszkópiai gyakorlatok jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Deák Ferenc Mérés dátuma: 010. április 8. Leadás dátuma: 010. április 13. I. γ-spekroszkópiai mérések A γ-spekroszkópiai
RészletesebbenReakció kinetika és katalízis
Reakció kinetika és katalízis 1. előadás: Alapelvek, a kinetikai eredmények analízise Felezési idők 1/22 2/22 : A koncentráció ( ) időbeli változása, jele: mol M v, mértékegysége: dm 3. s s Legyen 5H 2
RészletesebbenAbszorpciós fotometria
abszorpció Abszorpciós fotometria Spektroszkópia - Színképvizsgálat Spektro-: görög; jelente kép/szín -szkópia: görög; néz/látás/vizsgálat Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2012. február Vizsgálatok
RészletesebbenAz egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27
Az egyensúly 6'-1 6'-2 6'-3 6'-4 6'-5 Dinamikus egyensúly Az egyensúlyi állandó Az egyensúlyi állandókkal kapcsolatos összefüggések Az egyensúlyi állandó számértékének jelentősége A reakció hányados, Q:
RészletesebbenModern Fizika Labor. 2. Elemi töltés meghatározása
Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely
RészletesebbenMÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI
MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
Részletesebben2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető
. Laboratóriumi gyakorlat A EMISZO. A gyakorlat célja A termisztorok működésének bemutatása, valamint főbb paramétereik meghatározása. Az ellenállás-hőmérséklet = f és feszültség-áram U = f ( I ) jelleggörbék
RészletesebbenAl-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása
l--si háromalkotós egyensúlyi fázisdiagram közelítő számítása evezetés Farkas János 1, Dr. Roósz ndrás 1 doktorandusz, tanszékvezető egyetemi tanár Miskolci Egyetem nyag- és Kohómérnöki Kar Fémtani Tanszék
RészletesebbenRugalmas állandók mérése
Rugalmas állandók mérése (Mérési jegyzőkönyv) Hagymási Imre 2007. április 23. (hétfő délelőtti csoport) 1. Young-modulus mérése behajlásból 1.1. A mérés menete A mérés elméleti háttere megtalálható a jegyzetben
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenKörnyezeti analitika laboratóriumi gyakorlat Számolási feladatok áttekintése
örnyezeti analitika laboratóriumi gyakorlat Számolási feladatok áttekintése I. A számolási feladatok megoldása során az oldatok koncentrációjának számításához alapvetıen a következı ismeretekre van szükség:
RészletesebbenAbszolút és relatív aktivitás mérése
Korszerű vizsgálati módszerek labor 8. mérés Abszolút és relatív aktivitás mérése Mérést végezte: Ugi Dávid B4VBAA Szak: Fizika Mérésvezető: Lökös Sándor Mérőtársak: Musza Alexandra Török Mátyás Mérés
RészletesebbenFOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK
FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK Légköri nyomanyagok forrásai: bioszféra hiroszféra litoszféra világűr emberi tevékenység AMI BELÉP, ANNAK TÁVOZNIA IS KELL! Légköri nyomanyagok nyelői: száraz
Részletesebben9. Fényhullámhossz és diszperzió mérése jegyzőkönyv
9. Fényhullámhossz és diszperzió mérése jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 008. 11. 1. Leadás dátuma: 008. 11. 19. 1 1. A mérési összeállítás A méréseket speciális szögmérő eszközzel
RészletesebbenAnyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek
Anyagvizsgálati módszerek Mérési adatok feldolgozása Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Statisztika 1/ 22 Mérési eredmények felhasználása Tulajdonságok hierarchikus
RészletesebbenÁltalános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n)
Általános kémia képletgyűjtemény (Vizsgára megkövetelt egyenletek a szimbólumok értelmezésével, illetve az egyenletek megfelelő alkalmazása is követelmény) Atomszerkezet Tömegszám (A) A = Z + N Rendszám
RészletesebbenHőmérsékleti sugárzás
Ideális fekete test sugárzása Hőmérsékleti sugárzás Elméleti háttér Egy ideális fekete test leírható egy egyenletes hőmérsékletű falú üreggel. A fala nemcsak kibocsát, hanem el is nyel energiát, és spektrális
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x
RészletesebbenMinta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion
Minta feladatsor A feladatok megoldására 90 perc áll rendelkezésére. A megoldáshoz zsebszámológépet használhat. 1. Adja meg a következő ionok nevét, illetve képletét! (8 pont) Az ion neve.. Szulfátion
RészletesebbenVizes oldatok ph-jának mérése
Vizes oldatok ph-jának mérése Név: Neptun-kód: Labor elızetes feladat Mennyi lesz annak a hangyasav oldatnak a ph-ja, amelynek koncentrációja 0,330 mol/dm 3? (K s = 1,77 10-4 mol/dm 3 ) Mekkora a disszociációfok?
RészletesebbenModern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte:
Modern Fizika Labor A mérés dátuma: 2005.10.26. A mérés száma és címe: 12. Infravörös spektroszkópia Értékelés: A beadás dátuma: 2005.11.09. A mérést végezte: Orosz Katalin Tóth Bence 1 A mérés során egy
RészletesebbenHOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA
HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA I. Az elektrokémia áttekintése. II. Elektrolitok termodinamikája. A. Elektrolitok jellemzése B. Ionok termodinamikai képződési függvényei C.
RészletesebbenV átlag = (V 1 + V 2 +V 3 )/3. A szórás V = ((V átlag -V 1 ) 2 + ((V átlag -V 2 ) 2 ((V átlag -V 3 ) 2 ) 0,5 / 3
5. gyakorlat. Tömegmérés, térfogatmérés, pipettázás gyakorlása tömegméréssel kombinálva. A mérési eredmények megadása. Sóoldat sőrőségének meghatározása, koncentrációjának megadása a mért sőrőség alapján.
RészletesebbenIvóvíz savasságának meghatározása sav-bázis titrálással (SGM)
Ivóvíz savasságának meghatározása sav-bázis titrálással (SGM) I. Elméleti alapok: A vizek savasságát a savasan hidrolizáló sók és savak okozzák. A savasságot a semlegesítéshez szükséges erős bázis mennyiségével
Részletesebben1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont
1. feladat Összesen: 8 pont 150 gramm vízmentes nátrium-karbonátból 30 dm 3 standard nyomású, és 25 C hőmérsékletű szén-dioxid gáz fejlődött 1800 cm 3 sósav hatására. A) Írja fel a lejátszódó folyamat
RészletesebbenJegyzőkönyv. Konduktometria. Ungvárainé Dr. Nagy Zsuzsanna
Jegyzőkönyv CS_DU_e 2014.11.27. Konduktometria Ungvárainé Dr. Nagy Zsuzsanna Margócsy Ádám Mihálka Éva Zsuzsanna Róth Csaba Varga Bence I. A mérés elve A konduktometria az oldatok elektromos vezetésének
RészletesebbenKiegészítő tudnivalók a fizikai mérésekhez
Kiegészítő tudnivalók a fizikai mérésekhez A mérési gyakorlatokra való felkészüléshez a Fizika Gyakorlatok c. jegyzet használható (Nagy P. Fizika gyakorlatok az általános és gazdasági agrármérnök hallgatók
RészletesebbenFázisátalakulások vizsgálata
KLASSZIKUS FIZIKA LABORATÓRIUM 6. MÉRÉS Fázisátalakulások vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. szeptember 28. Szerda délelőtti csoport 1. A mérés célja A mérés
RészletesebbenAnyagvizsgálati módszerek Elektroanalitika. Anyagvizsgálati módszerek
Anyagvizsgálati módszerek Elektroanalitika Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Optikai módszerek 1/ 18 Potenciometria Potenciometria olyan analitikai eljárások
RészletesebbenMéréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)
Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba
RészletesebbenÓn-ólom rendszer fázisdiagramjának megszerkesztése lehűlési görbék alapján
Ón-ólom rendszer fázisdiagramjának megszerkesztése lehűlési görbék alapján Készítette: Zsélyné Ujvári Mária, Szalma József; 2012 Előadó: Zsély István Gyula, Javított valtozat 2016 Laborelőkészítő előadás,
RészletesebbenModern Fizika Labor Fizika BSC
Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. május 4. A mérés száma és címe: 9. Röntgen-fluoreszencia analízis Értékelés: A beadás dátuma: 2009. május 13. A mérést végezte: Márton Krisztina Zsigmond
RészletesebbenModern Fizika Laboratórium Fizika és Matematika BSc 11. Spektroszkópia
Modern Fizika Laboratórium Fizika és Matematika BSc 11. Spektroszkópia Mérést végezték: Bodó Ágnes Márkus Bence Gábor Kedd délelőtti csoport Mérés ideje: 02/28/2012 Beadás ideje: 03/05/2012 Érdemjegy:
RészletesebbenC vitamin bomlása. Aszkorbinsav katalitikus oxidáció kinetikájának vizsgálata voltammetriás méréstechnikával
C vitamin bomlása Aszkorbinsav katalitikus oxidáció kinetikájának vizsgálata voltammetriás méréstechnikával Bevezetés Az aszkorbinsav reduktív sajátsága jól ismert, felhasználása széleskörő. Gyógyszerként
Részletesebben