Munka- és energiatermelés November 26. Bányai István
|
|
- Gyula Szalai
- 8 évvel ezelőtt
- Látták:
Átírás
1 Munka- és energiatermelés 2015.November 26. Bányai István
2 Joule tétele: adiabatikus munka A XIX. Sz. legnagyobb kihívása a munka Emberi erőforrás (rabszolga, szolga, bérmunkás, erkölcs?, ár!) Állati erőforrás (kevésbé erkölcssértő?, drága!) Gép (de akkor mi marad az embernek, ludisták) Adiabatikus munka Van olyan belső mennyisége a rendszernek, amely izolált körülmények között teljesen munkává alakul. du=-pdv W 12 =U 2 -U 1
3 Rendszer: Az I. főtétel (hő és munka fogalma) U = U + U du = du + du A B A B Ami munkavégzés történik, a dugattyú mozogása: diatermikus A B du = du + du = dw A B Az A rendszer belső energiája: du = du + dw A B adiabatikus Mivel A merev falú csak energiaátadás történik: du = dq + dw A A A belső energia és a hő definíciója Környezeti fizikai kémia 3
4 Tanulságok Zárt rendszer belső energiája dua = dqa + dw A végzett munka már attól függ van-e pl. surlódás, mert az környezetbe megy!! Biztatás dw 0 dq 0 du = 0= dw + dq Mégis csak lehet körfolyamatban munkát nyerni, ha az nem adiabatikus
5 A második főtétel Környezetétől elszigetelt rendszer entrópiája csak nőhet, ha benne valós (irreverzíbilis) folyamatok játszódnak le. Q rev d ds = 0 T Tankönyvi példa: dugattyú izolálva, de a külső nyomás kisebb mint a belső benne tökéletes gázzal. (Itt a kiszámítás nagyon fontos, mert az adiabatikus folyamatokban a kicserélt hő zérus. Mivel az entrópia állapotfüggvény így egy más folyamattal helyettesítjük) De ezzel nem sokra megyünk!(?) Környezeti fizikai kémia 5
6 Kelvin tétele (II. főtétel) Nem készíthető olyan eszköz, amely körfolyamatban munkát végez, miközben a környezetét (azaz a hőtartályt) hűti. (Nincs 100 %-os hatásfokú gép) Nem készíthető olyan hűtőgép, amely munkavégzés nélkül hűt (Clausius)
7 Kelvin tétele (eredeti) Lehetetlen olyan élettelen anyagi eszköz készítése, amely mechanikai munkát végez úgy, hogy bármilyen részét egy anyagnak hidegebbre hűt, mint a környezet leghidegebb pontja. (hajózás) (d W ) 0 T Az, hogy a körintegrál reverzíbilis folyamatban zérus, a azt jelenti, hogy létezik egy állapot függvény, amely teljesen munkává alakítható. Ez az izoterm termodinamikai potenciál, vagy szabad energia. (d W) = (d F) T T
8 Az elegancia (Carathédory, 1909) Vannak olyan állapotok, amelyek egy homogén rendszerben, adiabatikus úton nem érhetők el, akár reverzíbilis, akár irreverzíbilis módon vezetjük a folyamatot. Legyen egy kétlépéses körfolyamat benne egy (1)-es és egy (2)-es állapot. Az első lépésben izoterm módon jussunk el (1)-ből a (2)-be: U2 U1 = U = Q1,2 + W1,2 Majd adiabatikus (Q =0) úton vigyük vissza a rendszert (2)-ből (1)-be. U1 U2 = U = W2,1 W = dw = W + W = Q 1,2 2,1 12 Ez azonban nem lehetséges, mert tulajdonképpen egy hőtartályt hűtünk, és körfolyamatban munkát végzünk.
9 Az ideális hőerőgép Mechanikai sík, azaz a munkát mutatja η = T m T m T a A hatásfok 1, ha T a = 0 0 ha T a = T m Környezeti fizikai kémia 9
10 Energia sík T T 1 d W = W = ( T T ) S d W = ( T T) S S T 2 S Clausius: Nem lehet olyan gépet építeni, amely körfolyamatban üzemel, hőt vesz fel, azt teljesen munkává alakítva visszatér a kezdeti állapotba úgy, hogy nem ad le hőt egy hidegebb hőtartálynak (1-es hatásfok) T=0 (1865) Környezeti fizikai kémia 10
11 Munkák II, egyéb gépeink, (Gibbs) a nyitott rendszerek du = d Q + dw reverzíbilis, p = áll: du= TS d pv d + Fl d Udq+ µ dn e i i du TS d + pv d = Fl d Udq+ µ dn= dg e i i dh TS d = Fl d Udq+ µ dn= dg e i i Elemek: töltés áramlása feszültség között U e dq Ember: anyagáram kémiai potenciál között Hőerőgép: entrópia áramlása hőmérsékletkülönbség között Környezeti fizikai kémia 11
12 Kémiai gép µ n µ 1 Fl d + µ idni = dg F n µ 1 µ 2 Ahol a mechanika munka az izom összehúzódása, az ok pedig anyagáram két különböző kémiai potenciálú állapot között. µ 2 l
13 Hőerőgép I.: gőzgép A Töltés (p 1 ) B p 1 T 1 izoterm izobár kazán C turbina(dugattyú) p 2 T 1 hűtő kondenzátor D p 2 T 2 E tápszivattyú Környezeti fizikai kémia 13
14 Dugattyús gőzgép és működési diagramja A töltés (izobár) B expanzió (adiabatikus) p friss gőz be (nyomásugrás fel) C fár adt gőz ki (nyomása leesik) D E dugattyú kiszor ítja a gőzt (izobár) Mechanikai hatásfok 90 %, a termikus hatásfok 15% V Környezeti fizikai kémia 14
15 Robbanó motorok (gázgépek) B 1.Szívás: benzin levegő be E A 2. Sűrítés: két szelep zárva A B 3. Munkaütem: robbanás B C D 4.Kipuffogás D A Környezeti fizikai kémia 15
16 Munkadiagram C p robbanás B sűr ítés munkvégzés D kipuffogás E szívás A V V e /V a =1/6 p b /p c = 10/30(bar) T c = 1500 o C, T d = 600 Hat. fok= 50 % (Carnot 80 %) Környezeti fizikai kémia 16
17 Dízel motor
18 Üzemanyag (mivel fejlesztjük a hőt) Környezeti fizikai kémia 18
19 Magfúzió
20 Példa a fúzióra Ehhez Bethe számításai szerint a hidrogénatomok hőmérsékletét 100 millió C fölé kell emelni, és olyan kis térrészbe összenyomni, hogy a hidrogénatomok összeütközzenek és hélium jöjjön létre (1939) Spitzer (Princeton) mágneses térrel 0,5 s-ig képes volt létrehozni fúziót.
21 , Szellemi környezetszennyezés
22 , A hidrogén (tüzelőanyag) elem
23 A találmány lényege A gépek vizet tankolnak, és a kipufogó gáz az égéstermék hőenergiáját visszafordítva kinetikai energiává alakul át, és ezáltal mivel zárt rendszerben van- egy plazmás állapot keletkezik a vízben. A víz vegyi képlete H 2 O. Látható, hogy hidrogénből is áll. A hidrogén itt is elégethető, akárcsak a benzin esetében, azzal a különbséggel, hogy az utóbbinál, lévén szénhidrogén, a szénnel együtt ég a hidrogén. A víz esetében pedig oxigénnel. A benzin rosszabb hatásfokkal ég, szén-tartalmának legfeljebb 40 %-a ég el, a többi mérgező gázok formájában távozik a levegőbe. A víz, vagyis a hidrogén égése tökéletes. A kipufogón át mindössze víz távozik, a felhasznált víz nem vész előbb utóbb vízzé alakul ,
24 A szellemi környezetszennyezés felismerése 1. A BME tájékoztatója: a vízhajtású autóról A Budapesti Műszaki és Gazdaságtudományi Egyetem tájékoztatja a közvéleményt, hogy az egyetemünk két docense által kiadott szakvéleményeket megtévesztő módon használja fel a Vízenergia Alapítvány, amely társadalmi célú hirdetésekben kéri az adófizetőket, hogy adójuk 1 %-ával is támogassák működését. Nyomatékosan felhívjuk a figyelmet arra, hogy az alapítvány által kitűzött célok ("... a víz nukleáris energiájának hasznosítása a robbanómotorok, kazánok, sugárhajtóművek, áramtermelő aggregátorok stb., üzemeltetésében.") megvalósíthatóságát, vagy az ilyen elven készített berendezés működőképességét igazoló szakvéleményt sem a Budapesti Műszaki és Gazdaságtudományi Egyetem, sem munkatársai nem adtak ki. Ezzel szemben a munkatársaink által készített szakvélemények rámutatnak a célkitűzések indoklásának megfogalmazásában a természettudományos képtelenségekre ,
25 A tipikus jelek Eleve védekező indulás: rögtön a hivatalos tudomány elleni támadással kezd Nemzeti köntösbe öltözik: a magyar népnek akarja eladni a találmányát ( az orosz csoport ellopta (ruszofóbia) a NASA oltalom alá helyezte (amerikamánia) Valamiféle erkölcsi piedeszta nagyhatalmak multik ,
26 Rafinéria A tudományos szakértők: A műszaki és a szabadalom: si.pdf ,
27 A víz fogyasztása A durva változat (kilátszik a lóláb): Alkalmazás: A két Neodym mágnest a beépítési útmutató szerint, párhuzamosan és egymással szembe egyszerűen helyezze a fővezetékre és rögzítse a csomagolásban található szalagokkal. Törekedjen a pontosságra! A felszerelés 2 perc, elképesztően egyszerű, nem kell szakember, nem kell szerszám! , Egy egység elegendő: nem mágnesezhető anyagokon 2" ( 50mm), acélcső esetén 1" ( 25mm) átmérőig. Nagyobb átmérők, extrém módon magas ásványi anyag tartalom (ph érték) vagy 50m 3 /hónap vízfogyasztás felett egyszerűen használjon több egységet. (2" azaz 50mm átmérőig 2 MAX egység megoldja a problémát) A fenti szélsőségeket meghaladó esetekre kérjen megoldási ajánlatot!
28 Mágneses vízkezelés Tudomány Nemzetközi linkek helyen találtam a lenti hivatkozást Irodalmi túlterhelése az olvasónak eatment_myth_magic_or_mainstream_science/ A hazai csoda: ,
29 A gyógyító mágnes A mágnesek és a mágnesség jelensége az, aminek történetét nem az ókorból, vagy a bibliából eredeztetik a tudománytörténészek, hanem a középkorból. Ennek oka a jelenség ritkaságából ered, hiszen az elektromosság és a mágnesség kapcsolatának felismerése előtt a jelenséget a mágneskőhöz kötötték (magnetit vas(ii)-vas(iii) vegyes oxid), azaz nem tekintették általános természeti jelenségnek. [1] Az első alapos munka William Gilberttől ( ) származik, aki az állandó mágnesek tulajdonságait és a föld mágneses terét már jelen tudásunkhoz hasonlóan írta le, A De Magnete, Magneticisque Corporibus et De Magno Magnete Tellure (1600, A mágnes, a mágneses testek és a Föld az óriás mágnes) című könyvében ,
30 A csalók Zsörtölődve megjegyzi, hogy rengeteg butaság terjedt el a mágnesekről, úgymint a fokhagymával megdörzsölt mágneses vaskő nem vonzza a vasat (Plinius, Ptolemaiosz). Ahogyan írja: és a tévedések állandóan elterjedtek és elfogadták őket mint a rossz és ártalmas növények is a legburjánzóbb növekedésűek mind a mai napig, minthogy sok szerző terjeszti azokat írásaiban, akik hogy könyveik a kívánt vastagságra növekedjenek, leírnak és lemásolnak mindenfélét, amiről semmi biztosat nem tudnak a kísérlet fényében ,
31 Tudomány? _with_magnetic_therapy.html?id=mf77f7z5 mjgc&redir_esc=y Sarah Brewer tudományos újságíró cation/qa/magnet.html A szkeptikusok ,
32 A tudomány 1. De nézzük, mit képvisel a hivatalos tudomány. Elsőre fellélegezhetnek a mágnessel kuruzslók, hiszen 1997-ben megjelent az első nagyon precízen kivitelezett tudományos közlemény (Arch. Phys. Med. Rehabil. 78, 1200, 1997), amely un. kettős vak kísérletet végzett 50 gyermekbénulás következtében állandó fájdalommal élő paciensen. A kettős vak kísérletben 0,03-0,05 T erősségű mágneslapokat helyeztek el a fájdalom helyén a csoport egyik felének. Nem mágneses, de azonos külsejű lapokat a csoport másik felének. Sem az orvosok, sem a betegek nem tudták melyik mágnes, melyik nem. Az eredmény nagyon meglepő volt, 45 perc után a mágnessel kezelt betegek jelentős fájdalomcsökkenésről számoltak be, míg akik placebót viseltek, azok nem. Sőt azt is kijelentették a betegek kikérdezése alapján, hogy a mágnes csak akkor hatásos, ha fájdalom helyére kerül ,
33 Cáfolat Michael I. Weintraub, a New York-i egészségügyi központ neurológiai intézetéből válaszolt. (Arch. Phys. Med. Rehabil. 79, 469, 1998 ). Szerinte a szerzők több megállapítása is helytelen volt. Először is a gyermekbénulásból visszamaradt fájdalom, nem általános jelenség, nem egyforma eredetű, és nem állapítható meg a fájdalom helye egyértelműen. A fájdalom inkább a bénulás következtében kialakult sajátos mozgás miatti ízületi gyulladás, és ha arra helyre egy mágneses (vagy nem mágneses) fémlapot helyeznek, a mozgás megváltozik, ami eredményezhet olyan érzést, mintha csökkenne a fájdalom. Mindamellett elismerte a szerzők bátorságát, hogy ebbe a darázsfészekbe a tudomány eszközével belenyúltak. A kritizáló orvos (Michael I. Weintraub és munkatársai, Arch. Phys. Med. Rehabil. 84, 736, 2003) később pozitív eredményekről számolt be és mivel nem túlságosan drága így az alkalmazás mellett foglalt állást ,
34 Az üzlet az üzlet ( vagy A mágneses terápia bizonyos eszközök mágneses terének hatása az emberi szervezetre. Fizikai testre ható terápiáról van tehát szó, amelynél nagy kiterjedésű, pulzáló, alacsonyfrekvenciájú mágneses tért generálnak. A pulzáló mágneses tér hatással van a sejthártyák áteresztőképességére, és ezzel az anyagcsere fokozódását, sebességének növekedését váltja ki. Jelentősen növekszik a vérellátás és a pulzáló mágneses tér hatása alatt lévő testrészek oxigénellátása. Az anyagcsere fokozódásának és a szövetek oxigéndús vérrel való ellátásnak következményeként kialakulnak a gyógyulás és regeneráció optimális feltételei. Fontos tudni, hogy a mágneses tér az egész szervezeten áthalad és ezáltal minden sejtre hatással van ,
35 A sikertelenség oka ( Biorezonancia terápiás kezeléssel tehát nem gyógyítunk, viszont a fent említettek fényében sikeresen aktiválhatjuk a szervezet öngyógyító mechanizmusát, melynek végső kimenetele a gyógyulttá válás. Szükségünk van a páciens pozitív hozzáállására is, mert a hatékonyság növelésében nagy szerepe van a kezelt személynek Azaz, aki nem hisz benne, az ne csodálkozzon azon ha nem hat! ,
36 A sajtó szerepe di_vilagszenzacio_a_gyogyito_magnes/ / ,
37 Hideg fúzió d.html html ,
Munka- és energiatermelés. Bányai István
Munka- és energiatermelés Bányai István Joule tétele: adiabatikus munka A XIX. Sz. legnagyobb kihívása a munka Emberi erőforrás (rabszolga, szolga, bérmunkás, erkölcs?, ár!) Állati erőforrás (kevésbé erkölcssértő?,
Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly
Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly Bányai István DE TTK Kolloid- és Környezetkémiai Tanszék 2015.09.23. Környezeti fizikai kémia 1 A fizikai-kémia és környezeti kémia I. A
Energiatermelés. Rövid áttekintés ,
Energiatermelés Rövid áttekintés Energiatartalék Az energiatermelés 1. Miért termelünk energiát Fűtés- hűtés, étkezés (életfeltételek-komfort érzés) Munka termelése Kémiai folyamatok irányváltoztatása
Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly
Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly Bányai István DE TTK Kolloid- és Környezetkémiai Tanszék 2013.01.11. Környezeti fizikai kémia 1 A fizikai-kémia és környezeti kémia I. A
Termodinamikai bevezető
Termodinamikai bevezető Alapfogalmak Termodinamikai rendszer: Az univerzumnak az a részhalmaza, amit egy termodinamikai vizsgálat során vizsgálunk. Termodinamikai környezet: Az univerzumnak a rendszeren
Hőtan I. főtétele tesztek
Hőtan I. főtétele tesztek. álassza ki a hamis állítást! a) A termodinamika I. főtétele a belső energia változása, a hőmennyiség és a munka között állaít meg összefüggést. b) A termodinamika I. főtétele
FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István
Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:
A TERMODINAMIKA I. AXIÓMÁJA. Egyszerű rendszerek egyensúlya. Első észrevétel: egyszerű rendszerekről beszélünk.
A TERMODINAMIKA I. AXIÓMÁJA Egyszerű rendszerek egyensúlya Első észrevétel: egyszerű rendszerekről beszélünk. Második észrevétel: egyensúlyban lévő egyszerű rendszerekről beszélünk. Mi is tehát az egyensúly?
FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István
Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:
Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK március 27.
Fizika Nyitray Gergely (PhD) PTE PMMIK 2017. március 27. Az entrópia A természetben a mechanikai munka teljes egészében átalakítható hővé. Az elvont hő viszont nem alakítható át teljes egészében mechanikai
Az energia bevezetése az iskolába. Készítette: Rimai Anasztázia
Az energia bevezetése az iskolába Készítette: Rimai Anasztázia Bevezetés Fizika oktatása Energia probléma Termodinamika a tankönyvekben A termodinamikai fogalmak kialakulása Az energia fogalom története
Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK március 20.
Fizika Nyitray Gergely (PhD) PTE PMMIK 2017. március 20. A termodinamikai rendszer fogalma Termodinamika: Nagy részecskeszámú rendszerek fizikája. N A 10 23 db. A rendszer(r): A világ azon része, amely
Belső energia, hőmennyiség, munka Hőtan főtételei
Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.
Termodinamika. Belső energia
Termodinamika Belső energia Egy rendszer belső energiáját az alkotó részecskék mozgási energiájának és a részecskék közötti kölcsönhatásból származó potenciális energiák teljes összegeként határozhatjuk
1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:
Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál
1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1
1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy
Megjegyzések (észrevételek) a szabad energia és a szabad entalpia fogalmához
Dr. Pósa Mihály Megjegyzések (észrevételek) a szabad energia és a szabad entalpia fogalmához 1. Bevezetés Shillady Don professzor az Amerikai Kémiai Szövetség egyik tanácskozásán felhívta a figyelmet a
1. Feladatok a termodinamika tárgyköréből
. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással.. Feladat: (HN 9A-5) Egy épület téglafalának mérete: 4 m 0 m és, a fal 5 cm vastag. A hővezetési együtthatója λ = 0,8 W/m K. Mennyi
ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK
ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK HŐTÁGULÁS lineáris (hosszanti) hőtágulási együttható felületi hőtágulási együttható megmutatja, hogy mennyivel változik meg a test hossza az eredeti hosszához képest, ha
Műszaki hőtan I. ellenőrző kérdések
Alapfogalmak, 0. főtétel Műszaki hőtan I. ellenőrző kérdések 1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és zárt termodinamikai rendszer? A termodinamikai rendszer (TDR) az anyagi
f = n - F ELTE II. Fizikus 2005/2006 I. félév
ELTE II. Fizikus 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 2. (X. 25) Gibbs féle fázisszabály (0-dik fıtétel alkalmazása) Intenzív állapotothatározók száma közötti összefüggés: A szabad intenzív paraméterek
Hőtan főtételei. (vázlat)
Hőtan főtételei (vázlat) 1. Belső energia oka, a hőtan I. főtétele. Ideális gázok belső energiája 3. Az ekvipartíció elve 4. Hőközlés és térfogati munka, a hőtan I. főtétele ideális gázokra 5. A hőtan
Kvantum termodinamika
Kvantum termodinamika Diósi Lajos MTA Wigner FK Budapest 2014. febr. 4. Diósi Lajos (MTA Wigner FKBudapest) Kvantum termodinamika 2014. febr. 4. 1 / 12 1 Miért van 1 qubitnek termodinamikája? 2 QuOszcillátor/Qubit:
A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.
11. Transzportfolyamatok termodinamikai vonatkozásai 1 Melyik állítás HMIS a felsoroltak közül? mechanikában minden súrlódásmentes folyamat irreverzibilis. disszipatív folyamatok irreverzibilisek. hőmennyiség
Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete
Hőtan III. Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak. Rugalmasan ütköznek egymással és a tartály
Az energia. Energia : munkavégző képesség (vagy hőközlő képesség)
Az energia Energia : munkavégző képesség (vagy hőközlő képesség) Megjelenési formái: Munka: irányított energiaközlés (W=Fs) Sugárzás (fényrészecskék energiája) Termikus energia: atomok, molekulák véletlenszerű
Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.
SZABÓ JÁNOS: Fizika (Mechanika, hőtan) I. TARTALOMJEGYZÉK Előszó.. Bevezetés. 1. A fizikai megismerés alapjai... 2. Tér is idő. Hosszúság- és időmérés. MECHANIKA I. Az anyagi pont mechanikája 1. Az anyagi
Termodinamika (Hőtan)
Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi
Osztályozó vizsga anyagok. Fizika
Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes
Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete
Fizika feladatok 2014. november 28. 1. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással 1.1. Feladat: (HN 19A-23) Határozzuk meg egy 20 cm hosszú, 4 cm átmérőjű hengeres vörösréz
2. (d) Hővezetési problémák II. főtétel - termoelektromosság
2. (d) Hővezetési problémák II. főtétel - termoelektromosság Utolsó módosítás: 2015. március 10. Kezdeti érték nélküli problémák (1) 1 A fél-végtelen közeg a Az x=0 pontban a tartományban helyezkedik el.
1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és a zárt termodinamikai
3.1. Ellenőrző kérdések 1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és a zárt termodinamikai rendszer? Az anyagi valóság egy, általunk kiválasztott szempont vagy szempontrendszer
Fizika minta feladatsor
Fizika minta feladatsor 10. évf. vizsgára 1. A test egyenes vonalúan egyenletesen mozog, ha A) a testre ható összes erő eredője nullával egyenlő B) a testre állandó értékű erő hat C) a testre erő hat,
6. Termodinamikai egyensúlyok és a folyamatok iránya
6. ermodinamikai egyensúlyok és a folyamatok iránya A természetben végbemenő folyamatok kizárólagos termodinamikai hajtóereje az entróia növekedése. Minden makroszkoikusan észlelhető folyamatban a rendszer
ALKALMAZOTT MŰSZAKI HŐTAN
ÁMOP-...F-//KONV-05-0006 Duális és moduláris képzésfejlesztés ALKALMAZO MŰSZAKI HŐAN Prof. Dr. Keszthelyi-Szabó Gábor ÁMOP-...F-//KONV-05-0006 Duális és moduláris képzésfejlesztés Aktí hőtranszport. etszőleges
Mérnöki alapok 8. előadás
Mérnöki alapok 8. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június
1. Egyenes vonalú mozgások kinematikája mozgásokra jellemzı fizikai mennyiségek és mértékegységeik. átlagsebesség egyenes vonalú egyenletes mozgás egyenes vonalú egyenletesen változó mozgás mozgásokra
ELTE II. Fizikus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 9. (XI. 23)
ELE II. Fizikus, 005/006 I. félév KISÉRLEI FIZIKA Hıtan 9. (XI. 3) Kémiai reakciók Gázelegyek termodinamikája 1) Dalton törvény: Azonos hımérséklető, de eltérı anyagi minıségő és V térfogatú gázkeverékben
Spontaneitás, entrópia
Spontaneitás, entrópia 6-1 Spontán folyamat 6-2 Entrópia 6-3 Az entrópia kiszámítása 6-4 Spontán folyamat: a termodinamika második főtétele 6-5 Standard szabadentalpia változás, ΔG 6-6 Szabadentalpia változás
Feladatlap X. osztály
Feladatlap X. osztály 1. feladat Válaszd ki a helyes választ. Két test fajhője közt a következő összefüggés áll fenn: c 1 > c 2, ha: 1. ugyanabból az anyagból vannak és a tömegük közti összefüggés m 1
Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv
Fizikai kémia és radiokémia B.Sc. László Krisztina 18-93 klaszlo@mail.bme.hu F ép. I. lépcsőház 1. emelet 135 http://oktatas.ch.bme.hu/oktatas/konyvek/fizkem/kornymern Követelmények: 2+0+1 f - részvétel
Kérdések Fizika112. Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika
Kérdések Fizika112 Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika 1. Adjuk meg egy tömegpontra ható centrifugális erő nagyságát és irányát!
Szabadentalpia nyomásfüggése
Égéselmélet Szabadentalpia nyomásfüggése G( p, T ) G( p Θ, T ) = p p Θ Vdp = p p Θ nrt p dp = nrt ln p p Θ Mi az a tűzoltó autó? A tűz helye a világban Égés, tűz Égés: kémiai jelenség a levegő oxigénjével
Makroszkópos tulajdonságok, jelenségek, közvetlenül mérhető mennyiségek leírásával foglalkozik (például: P, V, T, összetétel).
Mire kell? A mindennapi gyakorlatban előforduló jelenségek (például fázisátalakulások, olvadás, dermedés, párolgás) értelmezéséhez, kvantitatív leírásához. Szerkezeti anyagok tulajdonságainak változása
2. Energodinamika értelmezése, főtételei, leírási módok
Energetika 7 2. Energodinamika értelmezése, főtételei, leírási módok Az energia fogalmának kialakulása történetileg a munkavégzés definícióához kapcsolódik. Kezdetben az energiát a munkavégző képességgel
Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia
Kémiai változások Energia Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia Potenciális (helyzeti) energia: a részecskék kölcsönhatásából származó energia. Energiamegmaradás
Perpetuum mobile. A nem szervezett innováció
Villamosenergetikai Intézet Perpetuum mobile avagy A nem szervezett innováció Dr. Kádár Péter kadar.peter@kvk.uni-obuda.hu Innováció és szélhámosság 1 Perpetuum mobile Az örökmozgó (perpetuum mobile) olyan
Mérnöki alapok 11. előadás
Mérnöki alapok 11. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334.
Előzmény: TD módszer, hőmérséklet, I. főtétel / ideális gáz, speciális állapotvált
Előzmény: D módszer, hőmérséklet, I. főtétel / ideális gáz, speciális állapotvált ermodinamika:. Kölcsönhatások intenzív és extenzív állapotjelzőkkel írhatók le. Fundamentális egyenlet: du ds p d + Σμ
MŰSZAKI HŐTAN I. 1. ZÁRTHELYI. Termodinamika. Név: Azonosító: Helyszám: Munkaidő: 80 perc I. 50 II. 50 ÖSSZ.: 100. Javította: Képzési kódja:
Képzési kódja: MŰSZAKI HŐTAN I. 1. ZÁRTHELYI N- Név: Azonosító: Helyszám: Jelölje meg aláhúzással vagy keretezéssel a Gyakorlatvezetőjét! Dobai Attila Györke Gábor Péter Norbert Vass Bálint Termodinamika
Spontaneitás, entrópia
Spontaneitás, entrópia 11-1 Spontán és nem spontán folyamat 11-2 Entrópia 11-3 Az entrópia kiszámítása 11-4 Spontán folyamat: a termodinamika második főtétele 11-5 Standard szabadentalpia változás, ΔG
összetevője változatlan marad, a falra merőleges összetevő iránya ellenkezőjére változik, miközben nagysága ugyanakkora marad.
A termodinamika 2. főtétele kis rendszerekben Osváth Szabolcs Semmelweis Egyetem Statisztikus sokaságok Nyomás Nyomás: a tartály falával ütköző molekulák, a falra erőt fejtenek ki Az ütközésben a részecske
9. évfolyam. Osztályozóvizsga tananyaga FIZIKA
9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni
Légköri termodinamika
Légköri termodinamika Termodinamika: a hőegyensúllyal, valamint a hőnek, és más energiafajtáknak kölcsönös átalakulásával foglalkozó tudományág. Meteorológiai vonatkozása ( a légkör termodinamikája): a
A TételWiki wikiből 1 / 17
1 / 17 A TételWiki wikiből 1 Az egyensúly állapota, nulladik főtétel, hőmérséklet 1.1 Nulladik főtétel 1.2 Empirikus hőmérsékleti skálák 1.3 Hőmennyiség 2 Első főtétel 3 Entalpia, reakcióhő 4 Különböző
TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra
TANMENET FIZIKA 10. osztály Hőtan, elektromosságtan Heti 2 óra 2012-2013 I. Hőtan 1. Bevezetés Hőtani alapjelenségek 1.1. Emlékeztető 2. 1.2. A szilárd testek hőtágulásának törvényszerűségei. A szilárd
Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola
Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola 1047 Budapest, Langlet Valdemár utca 3-5. www.brody-bp.sulinet.hu e-mail: titkar@big.sulinet.hu Telefon: (1) 369 4917 OM: 034866 Osztályozóvizsga részletes
Orvosi Fizika 11. Transzportfolyamatok termodinamikai vonatkozásai. Dr. Nagy László
Orvosi Fizika 11. Transzportfolyamatok termodinamikai vonatkozásai Dr. Nagy László Egyensúlyi termodinamika A termodinamika a klasszikus értelezés szerint a hőserével együtt járó kölsönhatások tudománya.
Égéshő: Az a hőmennyiség, amely normál állapotú száraz gáz, levegő jelenlétében CO 2
Perpetuum mobile?!? Égéshő: Az a hőmennyiség, amely normál állapotú száraz gáz, levegő jelenlétében CO 2,- SO 2,-és H 2 O-vá történő tökéletes elégetésekor felszabadul, a víz cseppfolyós halmazállapotban
A termodinamika törvényei
A termodinamika törvényei 2009. 03. 23-24. Kiss Balázs Termodinamikai Természeti környezetünk meghatározott tulajdonságú falakkal leválasztott része. nincs kölcsönhatás a környezettel izolált kissb3@gmail.com
Sztehlo Gábor Evangélikus Óvoda, Általános Iskola és Gimnázium. Osztályozóvizsga témakörök 1. FÉLÉV. 9. osztály
Osztályozóvizsga témakörök 1. FÉLÉV 9. osztály I. Testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás; átlagsebesség, pillanatnyi sebesség 3. Gyorsulás 4. Szabadesés, szabadon eső test
www.electromega.hu AZ ELEKTROMOS AUTÓZÁS ELŐNYEI, JÖVŐJE
AZ ELEKTROMOS AUTÓZÁS ELŐNYEI, JÖVŐJE MI AZ AUTÓK LÉNYEGE? Rövid szabályozott robbanások sorozatán eljutni A -ból B -be. MI IS KELL EHHEZ? MOTOR melyben a robbanások erejéből adódó alternáló mozgást először
Evans-Searles fluktuációs tétel Crooks fluktuációs tétel Jarzynski egyenlőség
Evans-Searles fluktuációs tétel Crooks fluktuációs tétel Jarzynski egyenlőség Osváth Szabolcs Evans-Searles fluktuációs tétel Denis J Evans, Ezechiel DG Cohen, Gary P Morriss (1993) Denis J Evans, Debra
Hidraulika. 1.előadás A hidraulika alapjai. Szilágyi Attila, NYE, 2018.
Hidraulika 1.előadás A hidraulika alapjai Szilágyi Attila, NYE, 018. Folyadékok mechanikája Ideális folyadék: homogén, súrlódásmentes, kitölti a rendelkezésre álló teret, nincs nyírófeszültség. Folyadékok
Carnot körfolyamat ideális gázzal:
ELTE II. Fizikus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 4. (XI. 8) Carnot körfolyamat ideális gázzal: p E körfoly. = 0 IV I III II V Q 1 + Q 2 + W I + W II + W III + W IV = 0 W I + W II + W III + W
FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Fizika emelt szint ÉRETTSÉGI VIZSGA 03. október 5. FIZIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A dolgozatokat az útmutató utasításai szerint,
A Fenntartható fejlődés fizikai korlátai. Késíztette: Rosta Zoltán Témavezető: Dr. Martinás Katalin Egyetemi Docens
A Fenntartható fejlődés fizikai korlátai Késíztette: Rosta Zoltán Témavezető: Dr. Martinás Katalin Egyetemi Docens Fenntartható fejlődés 1987-ben adja ki az ENSZ Környezet és Fejlődés Világbizottsága a
rendszer: a világ általunk vizsgált, valamilyen fallal (részben) elhatárolt része környezet: a világ rendszert körülvevő része
I. A munka fogalma, térfogati és egyéb (hasznos) munka. II. A hő fogalma. molekuláris értelmezése. I. A termodinamika első főtételének néhány megfogalmazása.. Az entalpia fogalma, bevezetésének indoklása.
Modern Fizika Labor. 2. Elemi töltés meghatározása
Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely
Visy Csaba Kredit 4 Heti óraszám 3 típus AJÁNLOTT IRODALOM. P. W. Atkins: Fizikai kémia I.
A tárgy neve FIZIKAI KÉMIA 1. Meghirdető tanszék(csoport) SZTE TTK FIZIKAI KÉMIAI TANSZÉK Felelős oktató: Visy Csaba Kredit 4 Heti óraszám 3 típus Előadás Számonkérés Kollokvium Teljesíthetőség feltétele
Az úszás biomechanikája
Az úszás biomechanikája Alapvető összetevők Izomerő Kondíció állóképesség Mozgáskoordináció kivitelezés + Nem levegő, mint közeg + Izmok nem gravitációval szembeni mozgása + Levegővétel Az úszóra ható
Vizsgatémakörök fizikából A vizsga minden esetben két részből áll: Írásbeli feladatsor (70%) Szóbeli felelet (30%)
Vizsgatémakörök fizikából A vizsga minden esetben két részből áll: Írásbeli feladatsor (70%) Szóbeli felelet (30%) A vizsga értékelése: Elégtelen: ha az írásbeli és a szóbeli rész összesen nem éri el a
W = F s A munka származtatott, előjeles skalármennyiség.
Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem
Összefoglaló kérdések fizikából 2009-2010. I. Mechanika
Összefoglaló kérdések fizikából 2009-2010. I. Mechanika 1. Newton törvényei - Newton I. (a tehetetlenség) törvénye; - Newton II. (a mozgásegyenlet) törvénye; - Newton III. (a hatás-ellenhatás) törvénye;
V e r s e n y f e l h í v á s
A természettudományos oktatás módszertanának és eszközrendszerének megújítása a Sárospataki Református Kollégium Gimnáziumában TÁMOP-3.1.3-11/2-2012-0021 V e r s e n y f e l h í v á s A Sárospataki Református
MŰSZAKI TERMODINAMIKA 1. ÖSSZEGZŐ TANULMÁNYI TELJESÍTMÉNYÉRTÉKELÉS
MŰSZAKI TERMODINAMIKA. ÖSSZEGZŐ TANULMÁNYI TELJESÍTMÉNYÉRTÉKELÉS 207/8/2 MT0A Munkaidő: 90 perc NÉV:... NEPTUN KÓD: TEREM HELYSZÁM:... DÁTUM:... KÉPZÉS Energetikai mérnök BSc Gépészmérnök BSc JELÖLJE MEG
Műszaki termodinamika I. 2. előadás 0. főtétel, 1. főtétel, termodinamikai potenciálok, folyamatok
Műszaki termodinamika I. 2. előadás 0. főtétel, 1. főtétel, termodinamikai potenciálok, folyamatok Az előadás anyaga pár napon belül pdf formában is elérhető: energia.bme.hu/~imreattila (nem kell elé www!)
KF-II-6.8. Mit nevezünk pirolízisnek és milyen éghető gázok keletkeznek?
Körny. Fiz. 201. november 28. Név: TTK BSc, AKORN16 1 K-II-2.9. Mik egy fűtőrendszer tagjai? Mi az energetikai hatásfoka? 2 KF-II-6.. Mit nevezünk égésnek és milyen gázok keletkezhetnek? 4 KF-II-6.8. Mit
Mérnöki alapok 8. előadás
Mérnöki alapok 8. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Windcraft Development L.L.C. Környezetkímélő Energetikai Rendszer Fejlesztése
Windcraft Development L.L.C. Hungary - 1181 Budapest, Üllői u. 431. +36 30 235 2062 Fax: +36 1 294 0750 Környezetkímélő Energetikai Rendszer Fejlesztése Rövid leírás A projekt célja A szélenergia hasznosításán
ATMH A: / A: / A: / B: / B: / B: / HŐTAN ÍRÁSBELI RÉSZVIZSGA Munkaidő: 150 perc. Dátum: Tisztelt Vizsgázó! Pontszám: SZ: J.V.: i.j.v.
A vastagon bekeretezett részt a vizsgázó tölti ki!................................................... Név (a személyi igazolványban szereplő módon) Hallgatói azonosító: Dátum: Tisztelt Vizsgázó! N-AM0
Értékelési útmutató az emelt szint írásbeli feladatsorhoz
Értékelési útmutató az emelt szint írásbeli feladatsorhoz 1. C 1 pont 2. B 1 pont 3. D 1 pont 4. B 1 pont 5. C 1 pont 6. A 1 pont 7. B 1 pont 8. D 1 pont 9. A 1 pont 10. B 1 pont 11. B 1 pont 12. B 1 pont
Az elektromágneses tér energiája
Az elektromágneses tér energiája Az elektromos tér energiasűrűsége korábbról: Hasonlóképpen, a mágneses tér energiája: A tér egy adott pontjában az elektromos és mágneses terek együttes energiasűrűsége
Tájékoztató. Értékelés Összesen: 60 pont
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
JELENTÉS. MPG-Cap és MPG-Boost hatásának vizsgálata 10. Üzemanyag és Kenőanyag Központ Ukrán Védelmi Minisztérium
JELENTÉS MPG-Cap és MPG-Boost hatásának vizsgálata 10. Üzemanyag és Kenőanyag Központ Ukrán Védelmi Minisztérium 1. Termék leírás Az MGP-Cap és MPG-Boost 100%-ban szerves vegyületek belső égésű motorok
Munkaközegek. 6. előadás körfolyamatok (Flash, trilateral flash, szerves flash, Otto; zárt Otto, Stirling)
Munkaközegek 6. előadás körfolyamatok (Flash, trilateral flash, szerves flash, Otto; zárt Otto, Stirling) Előző előadás Rankine szerves Rankine transzkritikus Rankine szuperkritikus Rankine Joule- Brayton
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek
A termodinamika alapfogalmai
Bevezetés A fizika által vizsgált jelenségekben kisebb vagy nagyobb mértékben szerepet játszik a nem makroszkopikus munkavégzéssel történő energiaátadás, ami igen gyakran a résztvevő testek melegedésével
Dr. Berta Miklós egyetemi adjunktus Széchenyi István Egyetem Fizika és Kémia Tanszék
Dr. Berta Miklós egyetemi adjunktus Széchenyi István Egyetem Fizika és Kémia Tanszék Egy fizikai rendszer energiája alatt értjük azt a képességet, hogy ez a rendszer munkát képes végezni egy másik fizikai
Robbanáselleni védelem alapelvei
É Härtlein Károly Róka András Robbanáselleni védelem alapelvei Levegő (oxigén) Veress Árpád prezentációjának felhasználásával Az égés feltételei kémia éghető anyag halmazállapot égést tápláló közeg (pl.
Termodinamika. Tóth Mónika
Termodinamika Tóth Mónika 2012.11.26-27 monika.a.toth@aok.pte.hu Hőmérséklet Hőmérséklet: Egy rendszer részecskéinek átlagos mozgási energiájával arányos fizikai mennyiség. Különböző hőmérsékleti skálák.
71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:
Összefüggések: 69. Lineáris hőtágulás: Hosszváltozás l = α l 0 T Lineáris hőtágulási Kezdeti hossz Hőmérsékletváltozás 70. Térfogati hőtágulás: Térfogatváltozás V = β V 0 T Hőmérsékletváltozás Térfogati
Földünk a világegyetemben
Földünk a világegyetemben A Tejútrendszer a Lokális Galaxiscsoport egyik küllős spirálgalaxisa, melyben a Naprendszer és ezen belül Földünk található. 200-400 milliárd csillag található benne, átmérője
Fizika vizsgakövetelmény
Fizika vizsgakövetelmény A tanuló tudja, hogy a fizika alapvető megismerési módszere a megfigyelés, kísérletezés, mérés, és ezeket mindig valamilyen szempont szerint végezzük. Legyen képes fizikai jelenségek
A TERMODINAMIKA II., III. ÉS IV. AXIÓMÁJA. A termodinamika alapproblémája
A TERMODINAMIKA II., III. ÉS IV. AXIÓMÁJA A termodinamika alapproblémája Első észrevétel: U, V és n meghatározza a rendszer egyensúlyi állapotát. Mi történik, ha változás történik a rendszerben? Mi lesz
Termokémia. Termokémia Dia 1 /55
Termokémia 6-1 Terminológia 6-2 Hő 6-3 Reakcióhő, kalorimetria 6-4 Munka 6-5 A termodinamika első főtétele 6-6 Reakcióhő: U és H 6-7 H indirekt meghatározása: Hess-tétel 6-8 Standard képződési entalpia
MŰSZAKI HŐTAN I. 1. ZÁRTHELYI
MŰSZAKI HŐAN I.. ZÁRHELYI Név: Kézési kód: _N_ Azonosító: Helyszám: Jelölje meg aláhúzással vagy keretezéssel a Gyakorlatvezetőjét! Both Ambrus Dr. Cséfalvay Edit Györke Gábor Lengyel Vivien Pa Máté Gábor
Nettó ár [HUF] 38.000,00
/2 2/2 Termék: Növényi, ásványi és használt olajszármazék elgázosító dobkályha Rövid leírás: Nemzetközi kutatómunka eredményeként létrejött forradalmian új technológia. ezésének köszönhetően az olajszármazékokat
Háztartási kiserőművek. Háztartási kiserőművek
Háztartási kiserőművek Háztartási kiserőművek FINANSZÍROZÁS BEFEKTETÉS ENERGIATERMELÉS MCHP 50 kwe Mikro erőmű Hőenergia termelés hagyományos kazánnal Hatékonyabb hőenergia termelés kondenzációs kazánnal
Kompresszorok energetikai és üzemviteli kérdései Czékmány György, Optimus Plus Kft.
Kompresszorok energetikai és üzemviteli kérdései Czékmány György, Optimus Plus Kft. 1. A kompresszorok termodinamikája Annak érdekében, hogy teljes egészében tisztázni tudjuk a kompresszorok energetikai