Vagyoneloszlás a társadalmakban - egy fizikus megközelítése -
|
|
- Viktória Borbélyné
- 8 évvel ezelőtt
- Látták:
Átírás
1 Vagyoneloszlás a társadalmakban - egy fizikus megközelítése - Néda Zoltán Babeş-Bolyai Tudományegyetem Fizika Kar, Kolozsvár Fizika szakkollégium, BBTE, 2006
2 Fizika a XX. század előtt: az érzékelhető dolgok fizikája - klasszikus és elméleti mechanika, elektromosságtan és mágnesesség, optika, hőtan és termodinamika A fizika módszereinek az alapjai: kísérletek, mérések, modellálás, absztraktizálás, matematikai leírás, általánosságok keresése, determinisztikus folyamatok előrejelzése, modellek és elméletek tesztelése A XX. század fizikája: a szélsőségek fizikája a mikróvilág: - atomfizika, nukleáris fizika, elemirész fizika, kvantumfizika a makróvilág: - kozmológia, általános relativitáselmélet nagyon sok részecske: - statisztikus fizika szélsőséges hőmérsékletek és nyomások: - szilárdtest-fizika, gázok, folyadékok és plazmák fizikája, a kvark-gluon plazma nagy sebességek: - általános relativitáselmélet szélsőséges mérések: - mikroelektronika, elektromikroszkópia, atomerő és tunel mikroszkópia, részecskegyorsítók, óriás teleszkópok, precíz spektroszkópia, magmágneses rezonancia, elektronspin rezonancia, röntgendiffrakció,... extrém számítási sebességek: - személyi számítógépek, szuper-számítógépek, párhuzamos számítások A XXI. század fizikája: az interdiszciplinaritás fizikája A fizika módszereinek és eszközeinek az alkalmazása más tudományágakban: - biológia, kémia, anyagtudományok, orvostudományok, meterológia, geológia, számítástechnika, szociológia, közgazdaságtan
3 Fizika a közgazdaságtanban: az ökonofizika (econophysics) divatos ága a Komplex Rendszerek Fizikájának Közgazdaság és a társadalomtudományok makróskálán egy megfelelő rendszer a fizika egyes módszereinek az alkalmazására (makróskála: az egyének individualitása elhanyagolható és átlagos viselkedéssel helyetesíthető) -olyan folyamatok amelyben sok egyed komplikált módon kölcsönhat - vannak nyilvánvaló ok-okozati kapcsolatok, habár egy bizonyos makrószinten a folyamatok stochasztikusnak (véletlenszerűnek) tünnek - vannak univerzális és ismétlődő törvényszerűségek - lehet mérni, modellezni és kísérletezni ezen rendszerekben - létezik egy általános elv amely ezen rendszerek evolucióját vezérli: a maximális nyereség elve Néhány divatos ökonofizika téma: Kondor Imre Bank és kockázat (Mindentudás Egyeteme, 2004, május 24) fizikusi értelemben komplex rendszer komplex modellekkel megközelíthető -tözsdeindexek és árak fluktuációinak a tanulmányozása, korrelációk ezek között... -a piac és tözsde modellezése -gazdasági és kereskedelmi kapcsolatok hálójának leírása és modellezése, ezen kapcsolathálókon levő tranzakciók és infomáció-áramlások modellezése -banki kockázatok tanulmányozása és kezelése - a társadalomban levő pozíciók, jövedelmek és vagyoneloszlások leírása és modellezése
4 A Pareto törvény* vagyonleszlás a társadalmakban -Az össz társadalmi vagyonnak a nagy része egy aránylag kis társadalmi réteg kezében öszpontosul -A híres törvény: a társadalom 20% -a az össz vagyon 80%-át birtokolja... (a vagyoneloszláson kivül sok más társadalmi vagy gazdasági folyamatra igaz...) -A Pareto törvény a társadalmi vagyoneloszlás skála-invariáns matematikai formájából ered. -Pareto mérései szerint a társadalom gazdag rétegeire (álatalában a felső 5-10%-ra) igaz, hogy: annak a valószínűsége, hogy egy egyénnek a vagyona nagyobb legyen mint egy w érték hatványfüggvényszerűen esik (a: a Pareto exponens), általában: α [1,2.5] társadalmakként változik -A Pareto-törvény szerint, ha sorba rakjuk a társadalom tagjait vagyonok szerint, majd az i sorszámot a w i vagyon függvényében ábrázoljuk akkor i ~ P w = >= ( i ) K w -A Pareto törvény igaz a jövedelmek eloszlására is α i P ( w = > ) C α w Vilfredo Pareto ( ) ln[ P ( w)] = lnc α ln[ w] > * V. Pareto, Cours d Economie Politique, vol. 2, Macmillian, Paris, 1897
5 Az eloszlásfüggvény 1. Diszkrét eloszlású valószínűségi változó estén (pl. kockadobás) P i =1/6 eloszlásfüggvény P >= (i), P <= (i) kummulatív eloszlásfüggvények 2. Folytonos eloszlású valószínűségi változó esetén (pl. egy véletlenszerűen kiválasztott felnőtt egyén magassága) P i nincs értelme (0) P(h, h+dh) P(h, h+dh)=r(h) Dh r(h) eloszlás sűrűség-függvénye >= h) = h P ( ρ( h) dh h kummulatív eloszlásfüggvények P< ( h) = 1 P>= ( h) = ρ( h) dh 0 A vagyon (w) folytonos eloszlású valószínűségi változó, értelmezhető: r(w) és P >= (w) C K Ha w >> w P w =, >= ( ) ρ ( w) = α + α w w 1 ln[ P ( w)] = ln( C) α ln( w) >= w< w P ( w) = C exp( βw) >= ln[ P( w)] = ln( C) βw
6 A Pareto törvény t különböző társadalmakban 1. A jövedelem j eloszlására nézve Évi jövedelem eloszlása az egész emberi társadalomra (2000)
7 Évi övedelem eloszlása az Egyesült Államokban (2000)
8 Évi jövedelem eloszlása Japánban ( ) Évi jövedelem eloszlása Olaszországban ( ) Kummulatív eloszlásfüggvények logaritmikus skálán
9 A Pareto törvény t különböző társadalmakban 2. A vagyoneloszlásra nézve Kevesebb kísérleti adat (nehezen és általában csak indirekt módon mérhető) Kummulatív vagyoneloszlás a magyar nemesség körében 1500 körül * (logaritmikus skála) Vagyoneloszlás az ókori Egyiptomban (az adott nemesi család birtokában levő jobbágyporták alapján) * Hegyi Géza & Néda Zoltán (BBTE, Fizika Kar)
10 Vagyoneloszlás az India társadalom leggazdagabb 100 családja között (2002, 2003) Vagyoneloszlás Nagy Brittániában (2000), (az örökösödési adatokból) * Kummulatív eloszlásfüggvény Vagyon a sorszám függvényében logaritmikus skálán a kapott hatványfüggvény a Pareto törvényt igazolja * R. Coelho, Z. Neda and M.A. Santos, 2005
11 Mérési adatok a Pareto exponensre Pareto eredeti mérései a-ra V. Pareto, Cours d Economie Politique, vol. 2, Macmillian, Paris, 1897 C P >= ( w) = a: a Pareto exponens α w Évi jövedelem eloszlása Japánban ( ) aœ[1.8, 2.2] Évi jövedelem eloszlása Olaszországban ( ) aœ[1.6,1.9] Évi övedelem eloszlása az Egyesült államokban (2000) a=2.1 Vagyoneloszlás a magyar nemesség körében 1500 körül a=0.95 Vagyoneloszlás az India társadalom leggazdagabbjai között (2002, 2003) a=0.81; a=0.93 Vagyoneloszlás Nagy Brittániában (2000), (az örökösödési adatokból) a=2.52 α : 0.8 Minnél élénkebb gazdasági kapcsolatok vannak a vizsgált társadalom tagjai között annál nagyobb a Pareto exponens! 2.6
12 Pareto törvényhez hasonló más társadalmi törvények 1. Városok nagyság szerinti eloszlása r(x)~1/x 2 ; P >= (x)~1/x 2. Weblapok felhasználok száma szerinti eloszlása r(x)~1/x 2 USA nagyvárosok nagyság szerinti eloszlása 4. webdokumentumok nagyság szerinti eloszlása 3. Nevek gyakoriságának az eloszlása
13 Miért érdekes a Pareto törvény egy fizikus számára? 1. Egy univerzális törvényszerűség nagyszámú kölcsönható egyedből álló rendszerre 2. Hatványfüggvény eloszlás skálainvariancia egy elég nagy doméniumban (a fizikában általában kritikus állapotban levő, vagy spontánul önszerveződő rendszerekben jelenik meg) 3. A Pareto törvényhez hasonló eloszlások a fizikában is ismertek: lavinák nagyság szerinti eloszlása, földrengések nagyság szerinti eloszlása (1) és (2) alapján a statisztikus fizika módszerei megfelelőnek igérkeznek 5. Modellezés lehetősége (a feladat megértéséhez releváns leglényegesebb paraméterek és jelenségek felismerése) 6. A modellek analitikus és számítógép-szimulációs tanulmányozása 7. A modell eredményeinek a tesztelése sok kísérleti adat léte
14 A Pareto törvény t fizikusi megközelítése -egy analitikus átlagtér elmélet- - Mindenki mindenkivel kölcsönhat (vagyont cserél)! W i : az egyedek vagyonai; J(i,j) az egyedek közti kölcsönhatás erőssége; h i (t): egy normális (Gauss) eloszlású véleltlenszerű változó 2 i η i ( t) = 0 2 η ( t) η ( t) = 2σ i J.-P. Bouchod, M. Mezard; Physica A, vol. 282, pp (2000) 2 A feladat másztersz egyenlete (a vagyonok időbeli evolucióját vezérlő egyenlet) dw dt i = η ( t) W i =1,2,...N i i + j( i) J ( j, i) W N j j( i) J ( i, j) W i az átlagtér közelítés: az átlagtér megoldás: J α = 1+ σ 2 J ( i, j) = J N ( α 1) exp[ ] w w ρ ech( w) = A 1+ α Pareto exponens
15 Az átlagtér közelítésen túl... Egy család ádhálóáló modell * -A valódi társadalmakban a vagyoncsere nem egy teljesen összekötött hálon történik (nem mindenki mindenkivel hat kölcsön). - A társadalmi háló fogalma és topologiája (szerkezete) fontos a vagyoncsere mechanizmusának a leírásához! (ki kivel van összekötve?) - A vagyoncsere mechanizmusában a családi háloknak van kitüntetett szerepe! - Milyen a családi hálónak a szerkezete??? - A családi háló és vagyoneloszlás között szoros kapcsolat van! Barabási Albert László, A hálozatok csodálatos világa, (Mindentudás Egyeteme, 2005 okt. 10) családháló vagyoneloszlás -Egy helyes (komplex) modellnek generálnia kell úgy a helyes vagyoneloszlást mint az őt meghatározó társadalmi hálót - A modellnek realisztikus és lehetőleg egyszerű törvényszerűségeket kell tartalmaznia - A modell a bonyolult hálószerkezet miatt valószínűleg analitikusan nem tanulmányozható - Monte Carlo tipusú számítógépes szimulációk szükségesek... * R. Coelho, Z. Neda, J.J. Ramasco şi M.A. Santos; Physica A, 2005 Szociális Háló, V. Hugo Nyomorultak
16 a csomópontok a kötések A családháló modell a családok az elsőrangú családi kapcsolatok minden (i) csomópontnak van vagyona W(i) + és kora A(i) A modell állandói: - a családok száma - az összvagyon a rendszerben Kezdeti feltételek: - egy véletlenszerű háló - a vagyonok egyenletes eloszlása a (0,1) intervallumon - a családok kora a csomópontok (i) sorszáma A modell dinamikája (1) A legöregebb csomópontot (i) eltávolítjuk. A vagyonát egyenletesen elosztjuk azon csomópontok között amellyel kötései voltak (ha nincs kötése senkivel, akkor a vagyonát preferenciálisan szétosztjuk az összes csomópont között) az örökösödési folyamat (2) Az eltávolított csomópont (i) 0 korral visszakerül (születés), és két olyan (j és k) csomóponthoz kapcsolódik amelyeknek a vagyona nagyobb mint: q (egy új család megalakítása pénzbe kerül). A q vagyon levónódik j és k vagyonából és preferenciálisan szétosztódik a családok között (az új család megalapításából a társadalomnak nyeresége van). A j és k családok a megmaradt vagyonuk p-ed részét az új i családnak adják (megindulási vagyon) (3) Minden csomópont kora egységgel nő. Kétparaméteres modell: q és p W W W ' ( i ) ' ( k ) ' ( j ) = = [ W = [ W [ W ( j ) ( k ) ( j ) q ] p q ]( 1 q ]( 1 + [ W p ) p ) ( k ) q ] p (2)
17 A vagyoneloszlás A családháló modell eredményei A modell a helyes vagyoneloszlást és a hálóstrukturát is generálja! - q= és p= értékekre a P >= (w) kummulatív vagyonelszolás görbék megfelelőek - a társadalom felső 10%-ra érvényes a Pareto törvény - a kis vagyonok esetén P >= (w) exponenciális -az a-ra kapott értékek: Számítógép-szimulációs eredmény a családháló modellre. Kummulatív eloszlásfüggvény log-log skálán. - p=0.3, q=0.7 (N=10000 csomópont, 10 generációs szimuláció) A számított Pareto exponens a=1.8
18 A családháló topológiája -A P(k) fokszám-eloszlás (a csomópontokból kiinduló kötések számának, k, eloszlása) exponenciális - k prob =2; <k>=1.9 (realisztikus) - a kialakuló családháló kis-világ (small-word) tipusú (általában ez jellemző a valós társadalmi hálókra) Számítógép-szimulációs eredmények a generált háló fokszámeloszlására. Normál-log skála, N=10000 család (csomópont ) és 10 generációs szimuláció
19 Korreláció a vagyon és fokszám között -kis p esetén (p=0.1) hosszú távon pozítiv korreláció (rövid időre azonban anti-korreláció) - p>0.2 és q>0.7 esetén antikorreláció p=0.1 p=0.3 p=0.3 Számítógép-szimulációs eredmények a fokszám és vagyon közti korrelációra. N=10000 családra való szimuláció, 10 generáció után
20 Következtetések A modern fizika jelentős mértékben túllépte klasszikus határait... A fizikai klasszikus módszerei (modellezés, analitikus számítások és számítógépszimulációk) sikerrel alkalmazhatók a társadalom-tudományok terén a makró-skálán levő folyamatok megértésére. A jelen előadásban példaként egy konkrét feladatot tekintettünk: a Pareto törvény megértését és egy modell kidolgozását amely realisztikusan írja le a társadalmi vagyoneloszlást. Két különböző megközelítést mutattunk be, amelyekkel a Pareto törvény magyarázható és modellezhető Mindkét esetben a kísérleti eredményekkel jól egyező eredményeket kaptunk. A családháló modellünk segítségével sikerült generálnunk úgy a helyes vagyoneloszlás görbét mint a családháló realisztikus topologiáját.
Babeş-Bolyai Tudományegyetem Fizika Kar, Kolozsvár. Hegyi Géza. Filozofia és Történelem Kar, Kolozsvár. M.A. Santos, R. Coelho és J.J.
Vagyoneloszlás a társadalmakban - egy fizikus megközelítése Néda Zoltán Babeş-Bolyai Tudományegyetem Fizika Kar, Kolozsvár Hegyi Géza Babeş-Bolyai Tudományegyetem Filozofia és Történelem Kar, Kolozsvár
Véletlen gráfok szerkesztésekor n csomópontból indulunk ki. p valószínűséggel két csomópontot éllel kötünk össze.
9. előadás P(k) k Véletlen gráfok szerkesztésekor n csomópontból ndulunk k. p valószínűséggel két csomópontot éllel kötünk össze. A fokszámok Posson eloszlásúak P( k) = e pn ( pn) k! k http://www.ct.nfn.t/cactus/applets/gant%20component.html
Szociális hálozatok és a vagyoneloszlás a társadalmakban. Néda Zoltán. Babeş-Bolyai Tudományegyetem Elméleti Fizika Tanszék
Szociális hálozatok és a vagyoneloszlás a társadalmakban Néda Zoltán Babeş-Bolyai Tudományegyetem Elméleti Fizika Tanszék Világunkban létező hálozatok közül, talán számunkra a legnyilvánvalóbbak a mindennapi
Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás
Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Démon algoritmus az ideális gázra időátlag fizikai mennyiségek átlagértéke sokaságátlag E, V, N pl. molekuláris dinamika Monte
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
Osztatlan fizikatanár képzés tanterve (5+1) és (4+1) A képzési és kimeneti követelményeknek való megfelelés bemutatása
Osztatlan fizikatanár képzés tanterve (5+) és (+) A képzési és kimeneti követelményeknek való megfelelés bemutatása KÖZÉP- ÉS ÁLTALÁNOS ISKOLAI FIZIKA X-TANÁR KÉPZÉS: KÖZÖS SZAKASZ Tantárgy neve Félév
Osztatlan fizikatanár képzés tanterve (5+1) és (4+1) A képzési és kimeneti követelményeknek való megfelelés bemutatása
Osztatlan fizikatanár képzés tanterve (5+1) és (+1) A képzési és kimeneti követelményeknek való megfelelés bemutatása KÖZÉP- ÉS ÁLTALÁNOS ISKOLAI FIZIKA X-TANÁR KÉPZÉS: KÖZÖS SZAKASZ Előfeltétel 1 2 5
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Osztatlan fizikatanár képzés tanterve (5+1) és (4+1) A képzési és kimeneti követelményeknek való megfelelés bemutatása
Osztatlan fizikatanár képzés tanterve (5+1) és (4+1) A képzési és kimeneti követelményeknek való megfelelés bemutatása KÖZÉP- ÉS ÁLTALÁNOS ISKOLAI FIZIKA X-TANÁR KÉPZÉS: KÖZÖS SZAKASZ Tantárgy neve Félév
Doktori disszertáció. szerkezete
Doktori disszertáció tézisfüzet Komplex hálózatok szerkezete Szabó Gábor Témavezető Dr. Kertész János Elméleti Fizika Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2005 Bevezetés A tudományos
Hálózatok fejlődése A hatványtörvény A preferential attachment A uniform attachment Vertex copy. SZTE Informatikai Intézet
Hálózattudomány SZTE Informatikai Intézet Számítógépes Optimalizálás Tanszék Előadó: London András 4. Előadás Hogyan nőnek a hálózatok? Statikus hálózatos modellek: a pontok száma (n) fix, az éleket valamilyen
Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza
Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza odor@mfa.kfki.hu 1. Bevezetõ, dinamikus skálázás, kritikus exponensek, térelmélet formalizmus, renormalizáció, topológius fázis diagrammok,
Valószínűségszámítás összefoglaló
Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:
Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =
Statisztikai módszerek a skálafüggetlen hálózatok
Statisztikai módszerek a skálafüggetlen hálózatok vizsgálatára Gyenge Ádám1 1 Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Számítástudományi és Információelméleti
Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ
Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.
Gazdasági matematika II. vizsgadolgozat megoldása, június 10
Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett
Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László
Gyakorló feladatok Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László I/. A vizsgaidőszak második napján a hallgatók %-ának az E épületben, %-ának a D épületben,
összetevője változatlan marad, a falra merőleges összetevő iránya ellenkezőjére változik, miközben nagysága ugyanakkora marad.
A termodinamika 2. főtétele kis rendszerekben Osváth Szabolcs Semmelweis Egyetem Statisztikus sokaságok Nyomás Nyomás: a tartály falával ütköző molekulák, a falra erőt fejtenek ki Az ütközésben a részecske
A valószínűségszámítás elemei
A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:
Kvantumszimulátorok. Szirmai Gergely MTA SZFKI. Graphics: Harald Ritsch / Rainer Blatt, IQOQI
Kvantumszimulátorok Szirmai Gergely MTA SZFKI Graphics: Harald Ritsch / Rainer Blatt, IQOQI A kvantummechanika körülvesz tranzisztor számítógép, mobiltelefon A kvantummechanika körülvesz tranzisztor számítógép,
Bevezetés a laboratóriumi gyakorlatokba
A fizika matematikai alapjai I. MT4008L Meghirdetés féléve 1 Összóraszám (elm+gyak) 6+12 Gyakorlati jegy Tantárgyfelelős neve Dr. Rozgonyi Tibor A részletes tantárgyleírást lásd: MT1008 Mechanika 1. FI4101L
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
Véletlenszám generátorok és tesztelésük. Tossenberger Tamás
Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
I. Adatlap. NYÍREGYHÁZI FŐISKOLA 7 Fizika BSc
I. Adatlap 3. Az indítandó alapszak megnevezése fizika alapszak 4. Az oklevélben szereplő szakképzettség megnevezése fizikus 5. Az indítani tervezett szakirány(ok) megnevezése tanári alkalmazott környezetfizikai
I. Adatlap. Berzsenyi Dániel Főiskola fizika alapképzési (Bachelor) szak indítási kérelme
I. Adatlap 3. Indítandó alapszak megnevezése: fizika alapképzési szak 4. Az oklevélben szereplő szakképzettség megnevezése: alapokleveles fizikus (szakiránnyal) 5. Az indítani tervezett szakirány megnevezése:
A talajok összenyomódásának vizsgálata
A talajok összenyomódásának vizsgálata Amit már tudni kellene Összenyomódás Konszolidáció Normálisan konszolidált talaj Túlkonszolidált talaj Túlkonszolidáltsági arányszám,ocr Konszolidáció az az időben
egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk
Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,
Loss Distribution Approach
Modeling operational risk using the Loss Distribution Approach Tartalom»Szabályozói környezet»modellezési struktúra»eseményszám eloszlás»káreloszlás»aggregált veszteségek»további problémák 2 Szabályozói
Molekuláris dinamika I. 10. előadás
Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,
Majomnyelv. Szavak előfordulási gyakoriságának modellezése nyelvi statisztikák alapján
Majomnyelv Szavak előfordulási gyakoriságának modellezése nyelvi statisztikák alapján Témavezető: Dr. Járai-Szabó Ferenc, egyetemi adjunktus Babeş-Bolyai Tudományegyetem Fizika kar Elméleti és számítógépes
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
A modern fizika születése
MODERN FIZIKA A modern fizika születése Eddig: Olyan törvényekkel ismerkedtünk meg melyekhez tapasztalatokat a mindennapi életből is szerezhettünk. Klasszikus fizika: mechanika, hőtan, elektromosságtan,
4. előadás. Kiegyenlítő számítások MSc 2018/19 1 / 41
4. előadás Kiegyenlítő számítások MSc 2018/19 1 / 41 Áttekintés Extrém érték elmélet Monte Carlo eljárások 2 / 41 Extrém érték elmélet Bevezetés Alapvető módszerek (GEV és POT) Extrém érték eloszlások
Véletlen gráfok, hálózatok
Véletlen gráfok, hálózatok Véletlen gráfok, hálózatok Csirik András 2018.04.25 Erdős-Rényi modell Watts-Strogatz modell Barabási-Albert modell Hálózatok a mindennapokban Hálózatok a világ minden területén
Társadalmi és gazdasági hálózatok modellezése
Társadalmi és gazdasági hálózatok modellezése 6. el adás Hálózatok növekedési modelljei: `uniform és preferential attachment' El adó: London András 2015. október 12. Hogyan n nek a hálózatok? Statikus
1. Név:... Neptun Kód:... Feladat: Egy összeszerel½o üzemben 3 szalag van. Mindehárom szalagon ugyanazt
1. Név:......................... Egy összeszerel½o üzemben 3 szalag van. Mindehárom szalagon ugyanazt a gyártmányt készítik. Egy gyártmány összeszerelési ideje normális eloszlású valószín½uségi változó
- Fizika - X tanári. Alkalmazott környezetfizika
Fizika alapszak - - Fizika - X tanári Alkalmazott környezetfizika szakirányok mintatanterve 2006. szeptemberétől "A" típusú tantárgyak Alkalmazott matematika és módszerei I. MTB1901 2 2 G 4 MI Dr. Blahota
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
Evans-Searles fluktuációs tétel
Az idő folyásának iránya Evans-Searles fluktuációs tétel Osváth Szabolcs Semmelweis Egyetem a folyamatok iránya a termodinamikai második főtétele alapján Nincs olyan folyamat, amelynek egyetlen eredménye,
Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban.
Kvantum statisztika A kvantummechanika előadások során már megtanultuk, hogy az anyagot felépítő részecskék nemklasszikus, hullámtulajdonságokkal is rendelkeznek aminek következtében viselkedésük sok szempontból
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 9. Együttes eloszlás, kovarianca, nevezetes eloszlások Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés, definíciók Együttes eloszlás Függetlenség
Pelletek térfogatának meghatározása Bayes-i analízissel
Pelletek térfogatának meghatározása Bayes-i analízissel Szepesi Tamás KFKI-RMKI, Budapest, Hungary P. Cierpka, Kálvin S., Kocsis G., P.T. Lang, C. Wittmann 2007. február 27. Tartalom 1. Motiváció ELM-keltés
Gazdasági matematika II. vizsgadolgozat, megoldással,
Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak
ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!
ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test
Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel
Fizika - X tanári Alkalmazott környezetfizika
Fizika alapszak - - Fizika - X tanári Alkalmazott környezetfizika szakirányok mintatanterve 2006. szeptemberétől "A" típusú tantárgyak Alkalmazott matematika és módszerei I. MTB1901 2 2 G 4 MI Dr. Blahota
Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió
SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás
A numerikus előrejelző modellek fejlesztése és alkalmazása az Országos Meteorológiai Szolgálatnál
A numerikus előrejelző modellek fejlesztése és alkalmazása az Országos Meteorológiai Szolgálatnál HORÁNYI ANDRÁS Országos Meteorológiai Szolgálat 1 TARTALOM A numerikus modellezés alapjai Kategorikus és
Logisztikai szimulációs módszerek
Üzemszervezés Logisztikai szimulációs módszerek Dr. Juhász János Integrált, rugalmas gyártórendszerek tervezésénél használatos szimulációs módszerek A sztochasztikus külső-belső tényezőknek kitett folyamatok
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév 1. A várható érték és a szórás transzformációja 1. Ha egy valószínűségi változóhoz hozzáadunk ötöt, mínusz ötöt, egy b konstanst,
Példa sejtautomatákra. Homokdomb modellek.
Példa sejtautomatákra. Homokdomb modellek. Automaták egyszerű eszközök tulajdonságok: véges számú állapota van átmenet egyik állapotból a másikba érzékeli a környezetet esetleg megváltoztatja a környezetet
A maximum likelihood becslésről
A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának
A mérési eredmény megadása
A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű
i p i p 0 p 1 p 2... i p i
. vizsga, 06--9, Feladatok és megoldások. (a) Adja meg az diszkrét eloszlás várható értékének a definícióját! i 0... p i p 0 p p... i p i (b) Tegyük fel, hogy a rigófészkekben található tojások X száma
Molekuláris dinamika. 10. előadás
Molekuláris dinamika 10. előadás Mirőlis szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten? Hogyan tudjuk megérteni a folyadékok, gázok, szilárdtestek makroszkópikus
A valószínűségszámítás elemei
Alapfogalmak BIOSTATISZTIKA ÉS INFORMATIKA A valószínűségszámítás elemei Jelenség: minden, ami lényegében azonos feltételek mellett megismételhető, amivel kapcsolatban megfigyeléseket lehet végezni, lehet
2. A ξ valószín ségi változó eloszlásfüggvénye a következ : x 4 81 F (x) = x 4 ha 3 < x 0 különben
1 feladatsor 1 Egy dobozban 20 fehér golyó van Egy szabályos dobókockával dobunk, majd a következ t tesszük: ha a dobott szám 1,2 vagy 3, akkor tíz golyót cserélünk ki pirosra; ha a dobott szám 4 vagy
A mechanika alapjai. A pontszerű testek dinamikája
A mechanika alapjai A pontszerű testek dinamikája Horváth András SZE, Fizika Tsz. v 0.6 1 / 26 alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. alapi 2 / 26 Bevezetés alapi Bevezetés Newton
Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,
A Barabási-Albert-féle gráfmodell
A Barabási-Albert-féle gráfmodell és egyéb véletlen gráfok Papp Pál András Gráfok, hálózatok modelljei Rengeteg gráfokkal modellezhető terület: Pl: Internet, kapcsolati hálók, elektromos hálózatok, stb.
Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT
Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT Mi a véletlen? Determinisztikus vs. Véletlen esemény? Véletlenszám: számok sorozata, ahol véletlenszerűen követik egymást az elemek Pszeudo-véletlenszám
Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,
Mi az adat? Az adat elemi ismeret. Az adatokból információkat
Mi az adat? Az adat elemi ismeret. Tények, fogalmak olyan megjelenési formája, amely alkalmas emberi eszközökkel történő értelmezésre, feldolgozásra, továbbításra. Az adatokból gondolkodás vagy gépi feldolgozás
NEVEZETES FOLYTONOS ELOSZLÁSOK
Bodó Beáta - MATEMATIKA II 1 NEVEZETES FOLYTONOS ELOSZLÁSOK EXPONENCIÁLIS ELOSZLÁS 1. A ξ valószínűségi változó eponenciális eloszlású 80 várható értékkel. (a) B Adja meg és ábrázolja a valószínűségi változó
KÖZGAZDASÁGTAN I. BMEGT30A003 HÉTFŐ: 8:15 10:00 (Q-II) HÉTFŐ: 10:15 12:00 (QAF15) A CSERE 31. FEJEZET
KÖZGAZDASÁGTAN I. BMEGT30A003 HÉTFŐ: 8:15 10:00 (Q-II) HÉTFŐ: 10:15 12:00 (QAF15) A CSERE 31. FEJEZET Dr. Ligeti Zsombor ligetizs@kgt.bme.hu Fogadóóra: Kedd 12 14, QA215 2018.09.24. BMEGT30A003 - Ligeti
Folyadékszcintillációs spektroszkópia jegyz könyv
Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés
( 1) i 2 i. megbízhatóságú a levont következtetése? A matematikai statisztika eszközeivel értékelje a kapott eredményeket!
1. Név:......................... Egy szabályos pénzérmét feldobunk, ha az els½o FEJ az i-edik dobásra jön, akkor a játékos nyereménye ( 1) i i forint. Vizsgálja szimulációval a játékot, különböz½o induló
Sztochasztikus folyamatok alapfogalmak
Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos
Továbblépés. Általános, lineáris modell. Példák. Jellemzık. Matematikai statisztika 12. elıadás,
Matematikai statisztika. elıadás, 9.5.. Továbblépés Ha nem fogadható el a reziduálisok korrelálatlansága: Lehetnek fel nem tárt periódusok De más kapcsolat is fennmaradhat az egymáshoz közeli megfigyelések
Kvantitatív módszerek
Kvantitatív módszerek szimuláció Kovács Zoltán Szervezési és Vezetési Tanszék E-mail: kovacsz@gtk.uni-pannon.hu URL: http://almos/~kovacsz Mennyiségi problémák megoldása analitikus numerikus szimuláció
TANTÁRGYI PROGRAM Matematikai alapok II. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok II. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:
A MATEMATIKA NÉHÁNY KIHÍVÁSA
A MATEMATIKA NÉHÁNY KIHÍVÁSA NAPJAINKBAN Simon L. Péter ELTE, Matematikai Intézet Alkalmazott Analízis és Számításmatematikai Tsz. 1 / 20 MATEMATIKA AZ ÉLET KÜLÖNBÖZŐ TERÜLETEIN Kaotikus sorozatok és differenciálegyenletek,
Betekintés a komplex hálózatok világába
Betekintés a komplex hálózatok világába Dr. Varga Imre Debreceni Egyetem Informatikai Kar EFOP-3.6.1-16-2016-00022 Egyszerű hálózatok Grafit kristály Árpád házi uralkodók családfája LAN hálózat Komplex
Nemlineáris jelenségek és Kao2kus rendszerek vizsgálata MATHEMATICA segítségével. Előadás: 10-12 Szerda, 215 Labor: 16-18, Szerda, 215
Nemlineáris jelenségek és Kao2kus rendszerek vizsgálata MATHEMATICA segítségével Előadás: 10-12 Szerda, 215 Labor: 16-18, Szerda, 215 Célok: Ismerkedés a kao2kus dinamikával és ennek tanulmányozása. A
4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O
1. Mit nevezünk elemi eseménynek és eseménytérnek? A kísérlet lehetséges kimeneteleit elemi eseményeknek nevezzük. Az adott kísélethez tartozó elemi események halmazát eseménytérnek nevezzük, jele: X 2.
TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató 2015/2016. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:
Matematikai alapok és valószínőségszámítás. Normál eloszlás
Matematikai alapok és valószínőségszámítás Normál eloszlás A normál eloszlás Folytonos változók esetén az eloszlás meghatározása nehezebb, mint diszkrét változók esetén. A változó értékei nem sorolhatóak
Hajléktalanság keletkezése, megszűnése és alakváltozásai I.
Hajléktalanság keletkezése, megszűnése és alakváltozásai I. 2006-2011 Kit melyik évben, vagy években kérdeztünk 2006 2011 között Fluktuáció mérése a személyi azonosító alapján Melyik évben szerepel az
Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika
Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra
Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.
Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.
Teljesítés Tantárgyfelelős Tantárgyat ténylegesen kredit
Fizika BSc mintatanterv a 2009/2010. tanévtől belépő hallgatók számára (k) Nem természettudományi alapismeretek modul Európai alapismeretek 2 2 Kollokvium Aubert Antal Csapó János Közgazdaságtan 2 2 Kollokvium
Több valószínűségi változó együttes eloszlása, korreláció
Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...
Nemparaméteres próbák
Nemparaméteres próbák Budapesti Mőszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Mőegyetem rkp. 3. D ép. 334. Tel: 463-16-80 Fax: 463-30-91 http://www.vizgep.bme.hu
ÁRAMKÖRÖK SZIMULÁCIÓJA
ÁRAMKÖRÖK SZIMULÁCIÓJA Az áramkörök szimulációja révén betekintést nyerünk azok működésébe. Meg tudjuk határozni az áramkörök válaszát különböző gerjesztésekre, különböző üzemmódokra. Végezhetők analóg
vásárlót átlag 2 perc alatt intéz el (blokkolás, kártyaleolvasás), de ez az
1. Név:......................... Egy ABC-ben délután (5-t½ol 9 óráig) a vásárlók száma óránként 200 várható érték½u Poisson eloszlású valószín½uségi változó. A pénztáros egy vásárlót átlag 2 perc alatt
Véletlenszám generátorok. 6. előadás
Véletlenszám generátorok 6. előadás Véletlenszerű változók, valószínűség véletlen, véletlen változók valószínűség fogalma egy adott esemény bekövetkezésének esélye értékét 0 és között adjuk meg az összes
Abszolút folytonos valószín ségi változó (4. el adás)
Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t
Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata
Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata Reichardt, András 27. szeptember 2. 2 / 5 NDSM Komplex alak U C k = T (T ) ahol ω = 2π T, k módusindex. Időfüggvény előállítása
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)
Az α értékének változtatásakor tanulmányozzuk az y-x görbe alakját. 2 ahol K=10
9.4. Táblázatkezelés.. Folyadék gőz egyensúly kétkomponensű rendszerben Az illékonyabb komponens koncentrációja (móltörtje) nagyobb a gőzfázisban, mint a folyadékfázisban. Móltört a folyadékfázisban x;
EGYSZERŰ, SZÉP ÉS IGAZ
EGYSZERŰ, SZÉP ÉS IGAZ AVAGY EGY FIZIKUS (FIZIKATANÁR?) VILÁGKÉPE Trócsányi Zoltán Eötvös Loránd Tudományegyetem és MTA-DE Részecskefizikai Kutatócsoport 62. Országos Fizikatanári Ankét és Eszközbemutató,
Adatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
Gazdasági matematika II. vizsgadolgozat megoldása A csoport
Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége
Összefoglalás és gyakorlás
Összefoglalás és gyakorlás High Speed Networks Laboratory 1 / 28 Hálózatok jellemző paraméterei High Speed Networks Laboratory 2 / 28 Evolúció alkotta adatbázis Önszerveződő adatbázis = (struktúra, lekérdezés)