Anyagtudomány: hagyományos szerkezeti anyagok és polimerek

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Anyagtudomány: hagyományos szerkezeti anyagok és polimerek"

Átírás

1 Anyagtudomány: hagyományos szerkezeti anyagok és polimerek Fémek szerkezete és tulajdonságai Fizikai Kémia és Anyagtudományi Tanszék BME Műanyag- és Gumiipari Laboratórium H ép. I. emelet

2 Vázlat Bevezetés Fémek alaptulajdonságai Mechanika Fémek terhelés alatti alakváltozása Deformáció Deformáció mechanizmus Összefoglalás Deformáció alaptípusai és jellegzetességei A fémek derormációjának mechanizmusa, diszlokáció, kontinuum mechanika Diszlokációk kölcsönhatásai és annak következményei 2

3 Bevezetés Csoportosítás, technológia Kiindulási anyag Alaptulajdonságok A szerkezet átalakul a technológiától függően Megváltozott tulajdonságok Szerkezet Feldolgozás, Technológia Optimális tulajdonságok Az anyagok alaptulajdonságainak jellegzetességei Fémek Termék Beavatkozási Ellenőrzési Mérhető lehetőség lehetőség mennyiség 3

4 Bevezetés Fémek alaptulajdonságainak elhelyezkedése Nagy merevség, szívósság, sűrűség és vezetőképesség 4

5 Fémek A fémek legfontosabb tulajdonságai Szobahőmérsékleten szilárd anyagok Kivétel: Hg, Ga, Na Kiválóan alakíthatók A mechanizmus azonban nem triviális Jó elektromos vezetők Vajon mi okozza ezt a tulajdonságot? Jó hővezetők A tulajdonságok mindig az anyag felépítésétől és atomi jellegétől függ. De hogyan? 5

6 Fémek alakíthatósága Alapok Egy alkatrész elkészítéséhez a fémet alakítani kell Melegalakítás (T > T m /2) Öntés, présöntés, hideg-meleg hengerelés, kovácsolás Hidegalakítás (T < T m /2) Húzás, összenyomás, csavarás, hajlítás, forgácsolás Az alakváltozás sebessége széles határok között változik Technológia l vt v 1 10 v 10 t l t l l s o o o Hőmérséklet, munkamennyiség, ciklusszám??? A tulajdonságok függnek a megmunkálás folyamatától is nem csak a kialakított szerkezettől Rába teherautó hátsó tengelyhíd eleme

7 Fémek alakváltozása Feszültség megnyúlás görbe KÉPLÉKENY Nagy deformáció Összetett görbe Kettős folyáshatár (Cottrell felhő) RIDEG Kis deformáció Nagy merevség 7

8 Fémek deformációja Rugalmas nyújtás Jellemző paraméterek l lo F l 1 F E A l E A F A o E, o o o l l o l lo F l 1 F G A l G A, o o o A deformáció hangsebességgel (hullámszerűen) terjed a mintában A rácspontokban lévő atomok nem mozgathatók egyedileg A rugalmas állandó a rácspotenciáltól függ F A o G l l o Potenciális energia, U 0 E~ df dr E Távolság, r u 2 L r0 cr 8

9 Fémek tulajdonságai Merevség olvadáspont Mindkét mennyiség az fémrács atomjai között ható erő függvénye E ~ T m!!! 9

10 Fémek deformációja Anelasztikus deformáció Általában a rugalmas deformáció mellett fellép anelasztikus deformáció is Állandó deformáció mellett E t = σ t ε 0 Deformáció, E modulus σ feszültség ε 0 deformáció Kismértékű csökkenés (E) Feszültség, 0 Idő, t t 10

11 Fémek deformációja Anelasztikus deformáció Reális anyag állandó feszültség mellett Ideálisan rugalmas (a) Anelasztikus (b) Viszkoelasztikus (c) Lineáris Feszültség, D t = 1 E t D érzékenység = ε t σ 0 Deformáció, c) Kúszás b) a) a a k k Idő, t 11

12 Fémek deformációja Képlékeny deformáció Nagy terhelés mellett Maradó alakváltozás Fémek alakítási görbéje Fűtéscsövek deformációja Távvezeték problémája Acél: jó kúszási ellenállás, de rossz vezető Alumínium: jó vezető, de rossz mechanikai szilárdság Megoldás: Acélsodronyon körbetekercselt alumínium 12

13 Fémek deformációja A klasszikus egyenletek határa Elasztikus tulajdonságok (Hook törvény) Anelasztikus, relaxációs folyamatok Leírhatók klasszikus egyenletekkel (kontinuum mechanika, rácselmélet) Az egyenletek jól visszaadják a kísérleti adatokat Képlékeny alakváltozás Bonyolult Elmélet nem teljesen tisztázott Mechanizmus? Hőfejlődés (esetenként)? Egyedi jelenségek 13

14 Alakváltozás fémekben Elméleti szilárdság A fématomok egyensúlyi távolságának megváltoztatása σ = Eε 2σ = E 0,25r 0 r 0 = E 4 σ = E 8 A rácspotenciálból számítva σ E 15 14

15 Alakváltozás fémekben Kristálysíkok nyírása A legegyszerűbb mechanizmus τ = A sin 2π b x, τ A 2π b x = G x a A = G 2π b a G 2π τ max = G 2π τ mért ~ τ max Óriási különbség az elmélet és gyakorlat között Más mechanizmus kell diszlokációk Orován, Polányi és Taylor

16 Diszlokációk fogalma Rácshibák Éldiszlokáció Burgers vektor diszlokáció vonala Roesler, J., Harders, H., Baeker, M.: Mechanical behavior of engineering materials: Metals, Ceramics, Polymers and Composites. Springer, Berlin,

17 Diszlokációk fogalma Rácshibák Csavardiszlokáció Burgers vektor diszlokáció vonala Roesler, J., Harders, H., Baeker, M.: Mechanical behavior of engineering materials: Metals, Ceramics, Polymers and Composites. Springer, Berlin,

18 Diszlokációk mozgása Képlékeny alakváltozás mechanizmusa Kristálysíkok elmozdulása a diszlokációk mentén Roesler, J., Harders, H., Baeker, M.: Mechanical behavior of engineering materials: Metals, Ceramics, Polymers and Composites. Springer, Berlin,

19 Diszlokációk megfigyelése Diszlokációk okozta csúszási lépcsők (Si, SiC) 19

20 Diszlokációk megfigyelése HRTEM TiAl Source: Beverly Inkson, PhD Thesis, University of Cambridge,

21 Diszlokációk megfigyelése Atomi felbontású kép 21

22 Diszlokációk leírása A csószósík definíciója n bl Éldiszlokáció Csavardiszlokáció bl0 bl0 Burgers vektor megmaradási tétel A diszlokáció vonala zárt görbe lehet, vagy a felszínen végződhet Egy csomópontban felhasadhat b 1 +b 2 = b3 Torzulás a rácsban deformációs, illetve feszültségteret hoz létre. Kölcsönhatások 22

23 Diszlokációk leírása Lehetőségek és problémák A diszlokációk matematikai kezelése Diszkrét rácsmodell alkalmazása Nehézkes, nagyon bonyolult Csak abban az esetben alkalmazható, ha szigorúan periodikus rendet tételezünk fel A diszlokáció mint hibahely pont ezt rontja el Kontimuum modell (folytonos anyag) Elveszik a rácsállandó A Burgers vektort utólag kell figyelembe venni Szingularitások jelennek meg Másik megközelítés 23

24 Kontinuum mechanika Bevezetés Elmozdulás ux, y, z u r Egy merev test elmozdulása mindig leírható egy eltolási és forgatási vektorral Deformációt okoz bármely olyan elmozdulás, ahol két pont közötti távolság megváltozik Két szomszédos pont közötti távolság megváltozása dl dl ij dx idx j j1 i1 ij 1 2 u x i j u x i j 24

25 Kontinuum mechanika Deformációs tenzor A tér különböző irányaiban felírható a deformáció ε xx xy xz yx yy yz zx zy zz Az egyes elemek fizikai jelentése A vegyes index a nyírásokat jelöli u u u u 2 x x x u1 x x u1 x 11 x relatív hosszváltozás 1 uy 1 ux y u x x 1 x 2 y x 2 y 2 y 25

26 Kontinuum mechanika Relatív térfogatváltozás A deformáció során a térfogat is megváltozik A deformáció hatására feszültségek ébrednek Feszültség tenzor Vegyes index: nyírás Azonos index: húzás nyomás Általánosított Hooke törvény 3 3 C ik iklm lm l1 m1 C rugalmas állandók tenzora (tartalmazza a szimmetriaviszonyokat) V V σ Homogén izotróp anyag: λ, μ xx xy xz yx yy yz zx zy zz 3 2 ik ll ik ik l1 26

27 Kontimuum mechanika Egyéb paraméterek Poisson szám (harántösszehúzódás) Kompresszibilitás K T h l, h l 0 1, 2 1 V 1 V, KS V p V p T S 3, K A rugalmas állandók közötti összefüggések E 3 2. G E, E 27

28 Kontinuum mechanika Testekre ható külső és belő erők Külső erők Térfogati erők Gravitációs Elektromos Mágneses Belső erők A deformáció hatására fellépő belső feszültségekből származó erő divσf 0 A belső feszültségekből és térfogati erők összege bármely tetszőleges térfogatra zérus Határfeltételek Kis méretű testeken elhanyagolhatóan kicsik, de Hidak, nagy fémszerkezetek esetében nem xx xy xz f x 0 x y z yx yy yz f x 0 x y z zx zy zz f x 0 x y z 28

29 Diszlokációk a kontinuumban Határfeltételekkel definiáljuk a diszlokációkat A Hooke törvény definiálható és a diszlokáció feszültségtere számítható Megjósolható a diszlokációk kölcsönhatása és annak eredménye 29

30 Diszlokációk feszültségtere Számítás Végtelen hosszú diszlokáció Csavardiszlokáció xz xz yz yz b cos 2 r b sin 2 r b sin 2 r b cos 2 r xx Éldiszlokáció b 2 1 yy xy sin 2 cos 2 b sin cos r zz b 1 r sin r b cos cos r 30

31 Diszlokációk feszültségtere Éldiszlokáció normált σ xx komponens 31

32 Diszlokációk feszültségtere Éldiszlokáció normált σ xy komponens 32

33 Diszlokációk mozgása Mozgás leírása a kontinuumban Petch-Koehler erő Mindig merőleges a diszlokációra df σb ˆ dl F σb ˆ l Csavardiszlokáció Pl.: csavardiszlokáció b l 0,0,,, ,0,,,, b σ l σb b Éldiszlokáció b l,0,0,, b σ l σb b 0,0,,,, F σbl bl i bl j F σbl bl i bl j

34 Diszlokációk mozgásformái Csúszó (glide) nyírófeszültség Kúszó (climb) húzó, vagy nyomófeszültség Csúszás gyors Kúszás (creep) lassú (diffúziókontroll) 34

35 Diszlokációk mozgása Peach-Koehler erő következménye A diszlokáció alakja a terhelés alatt 35

36 Diszlokációk mozgása Sokszorozódás Frank-Read forrás Si Al 36

37 Diszlokációk kölcsönhatása Alapok Csavardiszlokációk Burgers vektor iránya Azonos előjelűek taszítás Ellenkező előjelűek vonzás Éldiszlokációk A kölcsonhatás függ a bezárt szögtől F~ ± μ b 1b 2 r F~ ± μ b 1b 2 r g θ Egyéb rácshibák Diszlokáció zónái 37

38 Diszlokációk kölcsönhatása Következmények Kölcsönhatás atomokkal Cottrell felhő Akadályozza a diszlokációk mozgását (kettős folyáshatár) Egymással Alakítási keményedés Tulajdonságok változtatása Szemcsehatárral Feldolgozás szerkezetmódosítás tulajdonságok 38

Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások

Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások Miskolci Egyetem Műszaki Anyagtudományi Kar Anyagtudományi Intézet Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások Dr.Krállics György krallics@eik.bme.hu

Részletesebben

MECHANIKA I. rész: Szilárd testek mechanikája

MECHANIKA I. rész: Szilárd testek mechanikája Egészségügyi mérnökképzés MECHNIK I. rész: Szilárd testek mechanikája készítette: Németh Róbert Igénybevételek térben I. z alapelv ugyanaz, mint síkban: a keresztmetszet egyik oldalán levő szerkezetrészre

Részletesebben

Fogorvosi anyagtan fizikai alapjai 6.

Fogorvosi anyagtan fizikai alapjai 6. Fogorvosi anyagtan fizikai alapjai 6. Mechanikai tulajdonságok 1. Kiemelt témák: Rugalmas alakváltozás Merevség és összefüggése a kötési energiával A geometriai tényezők szerepe egy test merevségében Tankönyv

Részletesebben

Reális kristályok, kristályhibák

Reális kristályok, kristályhibák Reális kristályok, kristályhibák Gyakorlati fémek szilárdsága kevesebb, mint 1 %-a az ideális modell alapján számítható szilárdságnak Tiszta Si villamos vezetőképességét 10-8 tömegszázalék bór adalékolása

Részletesebben

Tematika. Az atomok elrendeződése Kristályok, rácshibák

Tematika. Az atomok elrendeződése Kristályok, rácshibák Anyagtudomány 2013/14 Kristályok, rácshibák Dr. Szabó Péter János szpj@eik.bme.hu Tematika 1. hét: Bevezetés. 2. hét: Kristályok, rácshibák. 3. hét: Ötvözetek. 4. hét: Mágneses és elektromos anyagok. 5.

Részletesebben

GEOTECHNIKA I. LGB-SE TALAJOK SZILÁRDSÁGI JELLEMZŐI

GEOTECHNIKA I. LGB-SE TALAJOK SZILÁRDSÁGI JELLEMZŐI GEOTECHNIKA I. LGB-SE005-01 TALAJOK SZILÁRDSÁGI JELLEMZŐI Wolf Ákos Mechanikai állapotjellemzők és egyenletek 2 X A X 3 normál- és 3 nyírófeszültség a hasáb oldalain Y A x y z xy yz zx Z A Y Z ZX YZ A

Részletesebben

merevség engedékeny merev rugalmasság rugalmatlan rugalmas képlékenység nem képlékeny képlékeny alakíthatóság nem alakítható, törékeny alakítható

merevség engedékeny merev rugalmasság rugalmatlan rugalmas képlékenység nem képlékeny képlékeny alakíthatóság nem alakítható, törékeny alakítható Értelmező szótár: FAFA: Tudományos elnevezés: merev B mn 1. Nem rugalmas, nem hajlékony . Rugalmasságát, hajlékonyságát vesztett . merevség engedékeny merev Young-modulus, E (Pa)

Részletesebben

ahol m-schmid vagy geometriai tényező. A terhelőerő növekedésével a csúszó síkban fellép az un. kritikus csúsztató feszültség τ

ahol m-schmid vagy geometriai tényező. A terhelőerő növekedésével a csúszó síkban fellép az un. kritikus csúsztató feszültség τ Egykristály és polikristály képlékeny alakváltozása A Frenkel féle modell, hibátlan anyagot feltételezve, nagyon nagy folyáshatárt eredményez. A rácshibák, különösen a diszlokációk jelenléte miatt a tényleges

Részletesebben

Lemez- és gerendaalapok méretezése

Lemez- és gerendaalapok méretezése Lemez- és gerendaalapok méretezése Az alapmerevség hatása az alap hajlékony merev a talpfeszültség egyenletes széleken nagyobb a süllyedés teknıszerő egyenletes Terhelés hatása hajlékony alapok esetén

Részletesebben

Szilárd testek rugalmassága

Szilárd testek rugalmassága Fizika villamosmérnököknek Szilárd testek rugalmassága Dr. Giczi Ferenc Széchenyi István Egyetem, Fizika és Kémia Tanszék Győr, Egyetem tér 1. 1 Deformálható testek (A merev test idealizált határeset.)

Részletesebben

FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév

FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév A kollokviumon egy-egy tételt kell húzni az 1-10. és a 11-20. kérdések közül. 1. Atomi kölcsönhatások, kötéstípusok.

Részletesebben

Merev testek kinematikája

Merev testek kinematikája Merev testek kinematikája Egy pontrendszert merev testnek tekintünk, ha bármely két pontjának távolsága állandó. (f=6, Euler) A merev test tetszőleges mozgása leírható elemi transzlációk és elemi rotációk

Részletesebben

Reális kristályok, rácshibák. Anyagtudomány gyakorlat 2006/2007 I.félév Gépész BSC

Reális kristályok, rácshibák. Anyagtudomány gyakorlat 2006/2007 I.félév Gépész BSC Reális kristályok, rácshibák Anyagtudomány gyakorlat 2006/2007 I.félév Gépész BSC Valódi, reális kristályok Reális rács rendezetlenségeket, rácshibákat tartalmaz Az anyagok tulajdonságainak bizonyos csoportja

Részletesebben

ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK. Anyagismeret 2016/17. Szilárdságnövelés. Dr. Mészáros István Az előadás során megismerjük

ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK. Anyagismeret 2016/17. Szilárdságnövelés. Dr. Mészáros István Az előadás során megismerjük ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK Anyagismeret 2016/17 Szilárdságnövelés Dr. Mészáros István meszaros@eik.bme.hu 1 Az előadás során megismerjük A szilárságnövelő eljárásokat; Az eljárások anyagszerkezeti

Részletesebben

Pere Balázs október 20.

Pere Balázs október 20. Végeselem anaĺızis 1. előadás Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2014. október 20. Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)?

Részletesebben

Ábragyűjtemény levelező hallgatók számára

Ábragyűjtemény levelező hallgatók számára Ábragyűjtemény levelező hallgatók számára Ez a bemutató a tanszéki Fizika jegyzet kiegészítése Mechanika I. félév 1 Stabilitás Az úszás stabilitása indifferens a stabil, b labilis S súlypont Sf a kiszorított

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Szilárdságnövelés. Az előadás során megismerjük. Szilárdságnövelési eljárások

Szilárdságnövelés. Az előadás során megismerjük. Szilárdságnövelési eljárások Anyagszerkezettan és anyagvizsgálat 2015/16 Szilárdságnövelés Dr. Szabó Péter János szpj@eik.bme.hu Az előadás során megismerjük A szilárságnövelő eljárásokat; Az eljárások anyagszerkezeti alapjait; Technológiai

Részletesebben

Mechanika, dinamika. p = m = F t vagy. m t

Mechanika, dinamika. p = m = F t vagy. m t Mechanika, dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség.

Részletesebben

MUNKA- ÉS ENERGIATÉTELEK

MUNKA- ÉS ENERGIATÉTELEK MUNKA- ÉS ENERGIAÉELEK 1. előadás: Alapfogalmak; A virtuális elmozdulások tétele 2. előadás: Alapfogalmak; A virtuális erők tétele Elmozdulások számítása a virtuális erők tétele alapján 3. előadás: Az

Részletesebben

tervezési szempontok (igénybevétel, feszültségeloszlás,

tervezési szempontok (igénybevétel, feszültségeloszlás, Elhasználódási és korróziós folyamatok Bagi István BME MTAT Biofunkcionalitás Az élő emberi szervezettel való kölcsönhatás biokompatibilitás (gyulladás, csontfelszívódás, metallózis) aktív biológiai környezet

Részletesebben

A szerkezeti anyagok tulajdonságai és azok vizsgálata

A szerkezeti anyagok tulajdonságai és azok vizsgálata A szerkezeti anyagok tulajdonságai és azok vizsgálata 1 Az anyagok tulajdonságai fizikai tulajdonságok, mechanikai, termikus, elektromos, mágneses akusztikai, optikai 2 Minıség, élettartam A termék minısége

Részletesebben

Molekuláris dinamika I. 10. előadás

Molekuláris dinamika I. 10. előadás Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,

Részletesebben

Végeselem analízis. 1. el adás

Végeselem analízis. 1. el adás Végeselem analízis 1. el adás Pere Balázs Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2016. szeptember 7. Mi az a VégesElem Analízis (VEA)? Parciális dierenciálegyenletek (egyenletrendszerek)

Részletesebben

Anyagtudomány: hagyományos szerkezeti anyagok és polimerek

Anyagtudomány: hagyományos szerkezeti anyagok és polimerek Anyagtudomány: hagyományos szerkezeti anyagok és polimerek Alapfogalmak Fizikai Kémia és Anyagtudományi Tanszék BME Műanyag- és Gumiipari Laboratórium H ép. I. emelet Vázlat Kötések Ionos, kovalens és

Részletesebben

Anyagvizsgálatok. Mechanikai vizsgálatok

Anyagvizsgálatok. Mechanikai vizsgálatok Anyagvizsgálatok Mechanikai vizsgálatok Szakítóvizsgálat EN 10002-1:2002 Célja: az anyagok egytengelyű húzó igénybevétellel szembeni ellenállásának meghatározása egy szabványosan kialakított próbatestet

Részletesebben

Fogorvosi anyagtan fizikai alapjai 8. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17

Fogorvosi anyagtan fizikai alapjai 8. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17 rugalmas B mn 1. A rá ható erő következtében megváltozott alakját a hatás megszűntével visszanyerő. Vmihez hozzáütődve róla visszapattanó. merev B mn 1. Nem rugalmas, nem hajlékony . Rugalmasságát,

Részletesebben

Fogorvosi anyagtan fizikai alapjai 7. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17

Fogorvosi anyagtan fizikai alapjai 7. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17 rugalmas B mn 1. A rá ható erő következtében megváltozott alakját a hatás megszűntével visszanyerő. Vmihez hozzáütődve róla visszapattanó. merev B mn 1. Nem rugalmas, nem hajlékony . Rugalmasságát,

Részletesebben

Fogorvosi anyagtan fizikai alapjai 7.

Fogorvosi anyagtan fizikai alapjai 7. Fogorvosi anyagtan fizikai alapjai 7. Mechanikai tulajdonságok 2. Kiemelt témák: Szilárdság, rugalmasság, képlékenység és szívósság összefüggései A képlékeny alakváltozás mechanizmusa kristályokban és

Részletesebben

Fogorvosi anyagtan fizikai alapjai 7. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17

Fogorvosi anyagtan fizikai alapjai 7. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17 rugalmas B mn 1. A rá ható erő következtében megváltozott alakját a hatás megszűntével visszanyerő. Vmihez hozzáütődve róla visszapattanó. merev B mn 1. Nem rugalmas, nem hajlékony . Rugalmasságát,

Részletesebben

Mikropillárok plasztikus deformációja 3.

Mikropillárok plasztikus deformációja 3. Mikropillárok plasztikus deformációja 3. TÁMOP-4.2.1/B-09/1/KMR-2010-0003 projekt Visegrád 2012 Mikropillárok plasztikus deformációja 3.: Ultra-finomszemcsés Al-30Zn ötvözet plasztikus deformációjának

Részletesebben

Kondenzált anyagok fizikája 1. zárthelyi dolgozat

Kondenzált anyagok fizikája 1. zárthelyi dolgozat Név: Neptun-kód: Kondenzált anyagok fizikája 1. zárthelyi dolgozat 2015. november 5. 16 00 18 00 Fontosabb tudnivalók Ne felejtse el beírni a nevét és a Neptun-kódját a fenti üres mezőkbe. Minden feladat

Részletesebben

Molekuláris dinamika. 10. előadás

Molekuláris dinamika. 10. előadás Molekuláris dinamika 10. előadás Mirőlis szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten? Hogyan tudjuk megérteni a folyadékok, gázok, szilárdtestek makroszkópikus

Részletesebben

5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás. BME Szilárdságtani és Tartószerkezeti Tanszék

5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás. BME Szilárdságtani és Tartószerkezeti Tanszék MAGASÉPÍTÉSI ACÉLSZERKEZETEK 5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás. FERNEZELYI SÁNDOR EGYETEMI TANÁR Az acél szakító diagrammja Lineáris szakasz Arányossági határnak

Részletesebben

Szilárd anyagok mechanikája. Karádi Kristóf Fogorvosi biofizika Biofizikai Intézet, PTE ÁOK

Szilárd anyagok mechanikája. Karádi Kristóf Fogorvosi biofizika Biofizikai Intézet, PTE ÁOK Szilárd anyagok mechanikája Karádi Kristóf Fogorvosi biofizika Biofizikai Intézet, PTE ÁOK 2016. 10. 15. Fogak esetén a legközvetlenebb terhelés típus mindig mechanikai: az élelmet mechanikai módon szedi

Részletesebben

A talajok összenyomódásának vizsgálata

A talajok összenyomódásának vizsgálata A talajok összenyomódásának vizsgálata Amit már tudni kellene Összenyomódás Konszolidáció Normálisan konszolidált talaj Túlkonszolidált talaj Túlkonszolidáltsági arányszám,ocr Konszolidáció az az időben

Részletesebben

A Hamilton-Jacobi-egyenlet

A Hamilton-Jacobi-egyenlet A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P

Részletesebben

Anyagszerkezettan és anyagvizsgálat 2015/16. Törés. Dr. Krállics György

Anyagszerkezettan és anyagvizsgálat 2015/16. Törés. Dr. Krállics György Anyagszerkezettan és anyagvizsgálat 2015/16 Törés Dr. Krállics György krallics@eik.bme.hu Az előadás során megismerjük az állapottényezők hatását; a törések alapvető fajtáit, mechanikai és fraktográfiai

Részletesebben

Az alacsony rétegződési hibaenergia hatása az ultrafinom szemcseszerkezet kialakulására és stabilitására

Az alacsony rétegződési hibaenergia hatása az ultrafinom szemcseszerkezet kialakulására és stabilitására Az alacsony rétegződési hibaenergia hatása az ultrafinom szemcseszerkezet kialakulására és stabilitására Z. Hegedűs, J. Gubicza, M. Kawasaki, N.Q. Chinh, Zs. Fogarassy and T.G. Langdon Eötvös Loránd Tudományegyetem

Részletesebben

Szemcsehatárcsúszás és sebességérzékenységi tényező ultra-finomszemcsés Al-30Zn ötvözet plasztikus deformációjában. Visegrád 2011

Szemcsehatárcsúszás és sebességérzékenységi tényező ultra-finomszemcsés Al-30Zn ötvözet plasztikus deformációjában. Visegrád 2011 Szemcsehatárcsúszás és sebességérzékenységi tényező ultra-finomszemcsés Al-30Zn ötvözet plasztikus deformációjában Visegrád 2011 Al-Zn rendszer Eutektikus Zn-5%Al Eutektoidos Zn-22%Al Al-Zn szilárdoldatok

Részletesebben

Energiatételek - Példák

Energiatételek - Példák 9. Előadás Húzott rúd potenciális energiája: Hooke-modell: σ = Eε Geom. hetséges Geometriai egyenlet: + geom. peremfeltételek: u εx = ε = x u(0) = 0 ul () = 0 du dx Energiatételek Példák = k l 0 pudx l

Részletesebben

Gyakorlati példák Dr. Gönczi Dávid

Gyakorlati példák Dr. Gönczi Dávid Szilárdságtani számítások Gyakorlati példák Dr. Gönczi Dávid I. Bevezető ismeretek I.1 Definíciók I.2 Tenzoralgebrai alapismeretek I.3 Bevezetés az indexes jelölésmódba I.4 A lineáris rugalmasságtan általános

Részletesebben

Polimerek vizsgálatai

Polimerek vizsgálatai SZÉCHENYI ISTVÁN EGYETEM ANYAGTUDOMÁNYI ÉS TECHNOLÓGIAI TANSZÉK Polimerek vizsgálatai DR Hargitai Hajnalka Rövid idejű mechanikai vizsgálat Szakítóvizsgálat Cél: elsősorban a gyártási körülmények megfelelőségének

Részletesebben

A szerkezeti anyagok tulajdonságai és azok vizsgálata

A szerkezeti anyagok tulajdonságai és azok vizsgálata A szerkezeti anyagok tulajdonságai és azok vizsgálata 1 Az anyagok tulajdonságai fizikai tulajdonságok, mechanikai, termikus, elektromos, mágneses akusztikai, optikai 2 Minőség, élettartam A termék minősége

Részletesebben

A= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező

A= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező Statika méretezés Húzás nyomás: Amennyiben a keresztmetszetre húzó-, vagy nyomóerő hat, akkor normálfeszültség (húzó-, vagy nyomó feszültség) keletkezik. Jele: σ. A feszültség: = ɣ Fajlagos alakváltozás:

Részletesebben

Reológia Mérési technikák

Reológia Mérési technikák Reológia Mérési technikák Reológia Testek (és folyadékok) külső erőhatásra bekövetkező deformációját, mozgását írja le. A deformációt irreverzibilisnek nevezzük, ha a az erőhatás megszűnése után a test

Részletesebben

Rugalmasságtan. Műszaki Mechanikai Intézet Miskolci Egyetem 2015

Rugalmasságtan. Műszaki Mechanikai Intézet Miskolci Egyetem 2015 Rugalmasságtan Műszaki Mechanikai Intézet attila.baksa@uni-miskolc.hu Miskolci Egyetem 05 Példák (folyt.) 5. feladat Fajlagos térfogatváltozás DDKR-ben és HKR-ben. dv = [ e x e y e z]dxdydz dv = [( a x

Részletesebben

SOIL MECHANICS BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GEOTECHNIKAI TANSZÉK KONSZOLIDÁCIÓ

SOIL MECHANICS BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GEOTECHNIKAI TANSZÉK KONSZOLIDÁCIÓ 2008 PJ-MA SOIL MECHANICS BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GEOTECHNIKAI TANSZÉK KONSZOLIDÁCIÓ Tanszék: K épület, mfsz. 10. & mfsz. 20. Geotechnikai laboratórium: K épület, alagsor 20. BME

Részletesebben

CAD technikák Mérnöki módszerek gépészeti alkalmazása

CAD technikák Mérnöki módszerek gépészeti alkalmazása Mérnöki módszerek gépészeti alkalmazása XI. előadás 2008. április 28. MI A FEM/FEA? Véges elemeken alapuló elemzési modellezés (FEM - Finite Element Modeling) és elemzés (FEA - Finite Element Analysis).

Részletesebben

A forgácsolás alapjai

A forgácsolás alapjai A forgácsolás alapjai Dr. Igaz Jenő: Forgácsoló megmunkálás II/1 1-43. oldal és 73-98. oldal FONTOS! KÉREM, NE FELEDJÉK, HOGY A PowerPoint ELŐADÁS VÁZLAT NEM HELYETTESÍTI, CSAK ÖSSZEFOGLALJA, HELYENKÉNT

Részletesebben

A szerkezeti anyagok mechanikai tulajdonságai

A szerkezeti anyagok mechanikai tulajdonságai A szerkezeti anyagok mechanikai tulajdonságai Szerkezeti anyagok igénybevételei Az elemzés szükséges: A szerkezeti anyagok tulajdonságainak meghatározásához, A károsodási folyamatok megértéséhez, Ahhoz,

Részletesebben

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13.

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13. Fizika Nyitray Gergely (PhD) PTE PMMIK 017. február 13. A lejtő mint kényszer A lejtő egy ún. egyszerű gép. A következő problémában először a lejtőt rögzítjük, és egy m tömegű test súrlódás nélkül lecsúszik

Részletesebben

Bevezetés a modern fizika fejezeteibe. 1.(a) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 1.(a) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 1.(a) Rugalmas hullámok Utolsó módosítás: 2012. szeptember 28. 1 A deformálható testek mozgása (1) A Helmholtz-féle kinematikai alaptétel: A deformálható test elegendően

Részletesebben

Polimerek vizsgálatai 1.

Polimerek vizsgálatai 1. SZÉCHENYI ISTVÁN EGYETEM ANYAGISMERETI ÉS JÁRMŰGYÁRTÁSI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimerek vizsgálatai 1. DR Hargitai Hajnalka Szakítóvizsgálat Rövid idejű mechanikai vizsgálat Cél: elsősorban

Részletesebben

Statikailag határozatlan tartó vizsgálata

Statikailag határozatlan tartó vizsgálata Statikailag határozatlan tartó vizsgálata Készítette: Hénap Gábor henapg@mm.bme.hu E E P MT A y F D E E d B MT p C x a b c Adatok: a = m, p = 1 N, b = 3 m, F = 5 N, c = 4 m, d = 5 mm. m A kés bbikekben

Részletesebben

Anyagtudomány: hagyományos szerkezeti anyagok és polimerek

Anyagtudomány: hagyományos szerkezeti anyagok és polimerek Anyagtudomány: hagyományos szerkezeti anyagok és polimerek Társított rendszerek (fémek és kerámiák) Fizikai Kémia és Anyagtudományi Tanszék BME Műanyag- és Gumiipari Laboratórium H ép. I. emelet Vázlat

Részletesebben

A szerkezeti anyagok mechanikai tulajdonságai. Kalmár Emília ÓE Kandó MTI

A szerkezeti anyagok mechanikai tulajdonságai. Kalmár Emília ÓE Kandó MTI A szerkezeti anyagok mechanikai tulajdonságai Kalmár Emília ÓE Kandó MTI Szerkezeti anyagok igénybevételei Az elemzés szükséges: A szerkezeti anyagok tulajdonságainak meghatározásához, A károsodási folyamatok

Részletesebben

Polimerek reológiája

Polimerek reológiája SZÉCHENYI ISTVÁN EGYETEM ANYAGTUDOMÁNYI ÉS TECHNOLÓGIAI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimerek reológiája DR Hargitai Hajnalka REOLÓGIA Az anyag deformációjának és folyásának a tudománya. rheo -

Részletesebben

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés 1_5. Bevezetés Végeselem-módszer Végeselem-módszer 1. A geometriai tartomány (szerkezet) felosztása (véges)elemekre.. Lokális koordináta-rendszer felvétele, kapcsolat a lokális és globális koordinátarendszerek

Részletesebben

Kondenzált anyagok csoportosítása

Kondenzált anyagok csoportosítása Szilárdtestfizika Kondenzált anyagok csoportosítása 1. Üvegek Nagy viszkozitású olvadék állapotú anyagok, amelyek nagyon lassan szilárd állapotba mennek át. Folyékony állapotból gyors hűtéssel állíthatók

Részletesebben

Ejtési teszt modellezése a tervezés fázisában

Ejtési teszt modellezése a tervezés fázisában Antal Dániel, doktorandusz, Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szabó Tamás, egyetemi docens, Ph.D., Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szilágyi Attila, egyetemi adjunktus,

Részletesebben

Szilárdság (folyáshatár) növelési eljárások

Szilárdság (folyáshatár) növelési eljárások Képlékeny alakítás Szilárdság (folyáshatár) növelési eljárások Szemcseméret csökkentés Hőkezelés Ötvözés allotróp átalakulással rendelkező ötvözetek kiválásos nemesítés diszperziós keményítés interstíciós

Részletesebben

Kristályos szerkezetű anyagok

Kristályos szerkezetű anyagok Kristályos szerkezetű anyagok Rácspontok, ideális rend, periodikus szerkezet Rendezettség az atomok között tulajdonságok Szimmetria, síklapok, hasadás, anizotrópia Egyatomos gáz Nincs rend, pl.: Ar Kristályos

Részletesebben

Anyagtudomány: hagyományos szerkezeti anyagok és polimerek

Anyagtudomány: hagyományos szerkezeti anyagok és polimerek Anyagtudomány: hagyományos szerkezeti anyagok és polimerek Bevezetés Menyhárd Alfréd +36-1-463-3477 amenyhard@mail.bme.hu Fizikai Kémia és Anyagtudományi Tanszék BME Műanyag- és Gumiipari Laboratórium

Részletesebben

Kizárólag oktatási célra használható fel!

Kizárólag oktatási célra használható fel! DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK Acélszerkezetek II III. Előadás Vékonyfalú keresztmetszetek nyírófeszültségei - Nyírófolyam - Nyírási középpont - Shear lag hatás - Csavarás Összeállította:

Részletesebben

Bevezetés a modern fizika fejezeteibe. 1. (b) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 1. (b) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 1. (b) Rugalmas hullámok Utolsó módosítás: 2012. szeptember 28. 1 Síkhullámok végtelen kiterjedésű, szilárd izotróp közegekben (1) longitudinális hullám transzverzális

Részletesebben

PÉLDÁK ERŐTÖRVÉNYEKRE

PÉLDÁK ERŐTÖRVÉNYEKRE PÉLÁ ERŐTÖRVÉNYERE Szabad erők: erőtörvénnyel megadhatók, általában nem függenek a test mozgásállapotától (sebességtől, gyorsulástól) Példák: nehézségi erő, súrlódási erők, rugalmas erők, felhajtóerők,

Részletesebben

A szerkezeti anyagok mechanikai tulajdonságai

A szerkezeti anyagok mechanikai tulajdonságai Ez a kép most nem jeleníthető meg. 2012.11.19. Szerkezeti anyagok igénybevételei A szerkezeti anyagok mechanikai tulajdonságai Az elemzés szükséges: A szerkezeti anyagok tulajdonságainak meghatározásához,

Részletesebben

Pótlap nem használható!

Pótlap nem használható! 1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. november 29. Neptun kód:... Pótlap nem használható! g=10 m/s 2 ; εε 0 = 8.85 10 12 F/m; μμ 0 = 4ππ 10 7 Vs/Am; cc = 3

Részletesebben

A forgácsolás alapjai

A forgácsolás alapjai NGB_AJ012_1 Forgácsoló megmunkálás (Forgácsolás és szerszámai) A forgácsolás alapjai Dr. Pintér József 2017. FONTOS! KÉREM, NE FELEDJÉK, HOGY A PowerPoint ELŐADÁS VÁZLAT NEM HELYETTESÍTI, CSAK ÖSSZEFOGLALJA,

Részletesebben

W = F s A munka származtatott, előjeles skalármennyiség.

W = F s A munka származtatott, előjeles skalármennyiség. Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem

Részletesebben

A végeselem módszer alapjai. 2. Alapvető elemtípusok

A végeselem módszer alapjai. 2. Alapvető elemtípusok A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,

Részletesebben

KÉPLÉKENYALAKÍTÁS ELMÉLETI ALAPJAI

KÉPLÉKENYALAKÍTÁS ELMÉLETI ALAPJAI KÉPLÉKENYALAKÍTÁS ELMÉLETI ALAPJAI ANYAGMÉRNÖK ALAPKÉPZÉS KÉPLÉKENYALAKÍTÁSI SZAKIRÁNY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR FÉMTANI, KÉPLÉKENYALAKÍTÁSI ÉS NANOTECHNOLÓGIA

Részletesebben

BME Gépészmérnöki Kar 3. vizsga (112A) Név: 1 Műszaki Mechanikai Tanszék január 11. Neptun: 2 Szilárdságtan Aláírás: 3

BME Gépészmérnöki Kar 3. vizsga (112A) Név: 1 Műszaki Mechanikai Tanszék január 11. Neptun: 2 Szilárdságtan Aláírás: 3 BME Gépészmérnöki Kar 3. vizsga (2A) Név: Műszaki Mechanikai Tanszék 2. január. Neptun: 2 Szilárdságtan Aláírás: 3. feladat (2 pont) A vázolt befogott tartót a p intenzitású megoszló erőrendszer, az F

Részletesebben

ÉPÍTŐANYAGOK REOLÓGIAI TULAJDONSÁGAINAK VIZSGÁLATA A DE-ATC-MFK MÉLY- ÉS SZERKEZETÉPÍTÉSI TANSZÉKÉN

ÉPÍTŐANYAGOK REOLÓGIAI TULAJDONSÁGAINAK VIZSGÁLATA A DE-ATC-MFK MÉLY- ÉS SZERKEZETÉPÍTÉSI TANSZÉKÉN ÉPÍTŐANYAGOK REOLÓGIAI TULAJDONSÁGAINAK VIZSGÁLATA A DE-ATC-MK MÉLY- ÉS SZERKEZETÉPÍTÉSI TANSZÉKÉN Dr. Kovács Imre PhD. tanszékvezető főiskolai docens 1 Vizsgálataink szintjei Numerikus szimuláció lineáris,

Részletesebben

Polimer alkatrészek méretezésének alapjai

Polimer alkatrészek méretezésének alapjai Polimer alkatrészek méretezésének alapjai Polimer alkatrészek terhelésre adott válaszreakcióinak befolyásoló tényezői: - terhelés paramétereitől: o terhelés nagysága o terhelés jellege (statikus, dinamikus,

Részletesebben

Törés. Az előadás során megismerjük. Bevezetés

Törés. Az előadás során megismerjük. Bevezetés Anyagszerkezettan és anyagvizsgálat 015/16 Törés Dr. Krállics György krallics@eik.bme.hu Az előadás során megismerjük az állapottényezők hatását; a törések alapvető fajtáit, mechanikai és fraktográfiai

Részletesebben

Segédlet: Főfeszültségek meghatározása Mohr-féle feszültségi körök alkalmazásával

Segédlet: Főfeszültségek meghatározása Mohr-féle feszültségi körök alkalmazásával Segédlet: Főfeszültségek meghatározása Mohr-féle feszültségi körök alkalmazásával Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 212. október 16. Frissítve: 215. január

Részletesebben

Anyagok az energetikában

Anyagok az energetikában Anyagok az energetikában BMEGEMTBEA1, 6 krp (3+0+2) Környezeti tényezők hatása, időfüggő mechanikai tulajdonságok Dr. Tamás-Bényei Péter 2018. szeptember 19. Ütemterv 2 / 20 Dátum 2018.09.05 2018.09.19

Részletesebben

KÉPLÉKENYALAKÍTÁS ELMÉLET

KÉPLÉKENYALAKÍTÁS ELMÉLET KÉPLÉKENYALAKÍTÁS ELMÉLET KOHÓMÉRNÖK MESTERKÉPZÉS KÉPLÉKENYALAKÍTÁSI SZAKIRÁNY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR ANYAGTUDOMÁNYI INTÉZET Miskolc, 2008. 1. TANTÁRGYLEÍRÁS

Részletesebben

Szélsőérték-számítás

Szélsőérték-számítás Szélsőérték-számítás Jelölések A következő jelölések mind az f függvény x szerinti parciális deriváltját jelentik: Ugyanígy az f függvény y szerinti parciális deriváltja: f x = xf = f x f y = yf = f y

Részletesebben

Kúszás, szuperképlékenység

Kúszás, szuperképlékenység Anyagszerkezettan és anyagvizsgálat 2015/16 Kúszás, szuperképlékenység Dr. Krállics György krallics@eik.bme.hu Az előadás során megismerjük: Az időtől függő (kúszás) és időtől független alakváltozási mechanizmusokat;

Részletesebben

Kúszás, szuperképlékenység

Kúszás, szuperképlékenység Alakváltozás Anyagszerkezettan és anyagvizsgálat 205/6 Kúszás, szuperképlékenység Dr. Krállics György krallics@eik.bme.hu Az előadás során megismerjük: Az időtől függő (kúszás) és időtől független alakváltozási

Részletesebben

5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás.

5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás. MAGASÉPÍTÉSI ACÉLSZERKEZETEK 5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás. KÉSZÜLT FERNEZELYI SÁNDOR EGYETEMI TANÁR ELŐADÁSI JEGYZETEI ÉS AZ INTERNETEN ELÉRHETŐ MÁS ANYAGOK

Részletesebben

Járműelemek. Rugók. 1 / 27 Fólia

Járműelemek. Rugók. 1 / 27 Fólia Rugók 1 / 27 Fólia 1. Rugók funkciója A rugók a gépeknek és szerkezeteknek olyan különleges elemei, amelyek nagy (ill. korlátozott) alakváltozás létrehozására alkalmasak. Az alakváltozás, szemben más szerkezeti

Részletesebben

SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL

SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL MAGYAR TUDOMÁNY NAPJA KONFERENCIA 2010 GÁBOR DÉNES FŐISKOLA CSUKA ANTAL TARTALOM A KÍSÉRLET ÉS MÉRÉS JELENTŐSÉGE A MÉRNÖKI GYAKORLATBAN, MECHANIKAI FESZÜLTSÉG

Részletesebben

Mechanikai tulajdonságok és vizsgálatuk

Mechanikai tulajdonságok és vizsgálatuk Anyagszerkezettan és anyagvizsgálat 215/16 Mechanikai tulajdonságok és vizsgálatuk Dr. Krállics György krallics@eik.bme.hu Az előadás fő pontjai Bevezetés Rugalmas és képlékeny alakváltozás Egyszerű igénybevételek

Részletesebben

EC4 számítási alapok,

EC4 számítási alapok, Öszvérszerkezetek 2. előadás EC4 számítási alapok, beton berepedésének hatása, együttdolgozó szélesség, rövid idejű és tartós terhek, km. osztályozás, képlékeny km. ellenállás készítette: 2016.10.07. EC4

Részletesebben

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor

Részletesebben

A beton kúszása és ernyedése

A beton kúszása és ernyedése A beton kúszása és ernyedése A kúszás és ernyedés reológiai fogalmak. A reológia görög eredetű szó, és ebben az értelmezésben az anyagoknak az idő folyamán lejátszódó változásait vizsgáló műszaki tudományág

Részletesebben

Az atomok elrendeződése

Az atomok elrendeződése Anyagtudomány 2015/16 Kristályok, rácshibák, ötvözetek, termikus viselkedés (ismétlés) Dr. Szabó Péter János szpj@eik.bme.hu Az atomok elrendeződése Hosszú távú rend (kristályok) Az atomok elhelyezkedését

Részletesebben

Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével

Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2013. szeptember 23. Javítva: 2013.10.09.

Részletesebben

Rugalmasságtan. Műszaki Mechanikai Intézet Miskolci Egyetem 2015

Rugalmasságtan. Műszaki Mechanikai Intézet Miskolci Egyetem 2015 Rugalmasságtan Műszaki Mechanikai Intézet attila.baksa@uni-miskolc.hu Miskolci Egyetem 2015 Egyenletek a hengerkoordináta-rendszerben (HKR) SP = OQ = r z QP = z e r = cos ϕ e x + sin ϕ e y e ϕ = sin ϕ

Részletesebben

A SZILÁRDTEST FOGALMA. Szilárdtest: makroszkópikus, szilárd, rendezett anyagdarab. molekula klaszter szilárdtest > σ λ : rel.

A SZILÁRDTEST FOGALMA. Szilárdtest: makroszkópikus, szilárd, rendezett anyagdarab. molekula klaszter szilárdtest > σ λ : rel. A SZILÁRDTEST FOGALMA Szilárdtest: makroszkópikus, szilárd, rendezett anyagdarab. a) Méret: b) Szilárdság: molekula klaszter szilárdtest > ~ 100 Å ideálisan rugalmas test: λ = 1 E σ λ : rel. megnyúlás

Részletesebben

Q 1 D Q 2 (D x) 2 (1.1)

Q 1 D Q 2 (D x) 2 (1.1) . Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol

Részletesebben

Fa- és Acélszerkezetek I. 1. Előadás Bevezetés. Dr. Szalai József Főiskolai adjunktus

Fa- és Acélszerkezetek I. 1. Előadás Bevezetés. Dr. Szalai József Főiskolai adjunktus Fa- és Acélszerkezetek I. 1. Előadás Bevezetés Dr. Szalai József Főiskolai adjunktus Okt. Hét 1. Téma Bevezetés acélszerkezetek méretezésébe, elhelyezés a tananyagban Acélszerkezetek használati területei

Részletesebben

Hegesztett gerinclemezes tartók

Hegesztett gerinclemezes tartók Hegesztett gerinclemezes tartók Lemezhorpadások kezelése EC szerint dr. Horváth László BME Hidak és Szerkezetek Tanszéke Bevezetés Gerinclemezes tartók vékony lemezekből: Bevezetés Összetett szelvények,

Részletesebben

Nemlineáris anyagviselkedés peridinamikus modellezése. Ladányi Gábor, PhD hallgató

Nemlineáris anyagviselkedés peridinamikus modellezése. Ladányi Gábor, PhD hallgató Nemlineáris anyagviselkedés peridinamikus modellezése Ladányi Gábor, PhD hallgató ladanyi@uniduna.hu Tartalom Bevezetés Motiváció A peridinamikus anyagmodell Irodalmi áttekintés Korábbi kutatási eredmények

Részletesebben

Öszvér oszlopok kialakítása, THÁ, nyírt kapcsolatok, erőbevezetés környezete. 2. mintapélda - oszlop méretezése.

Öszvér oszlopok kialakítása, THÁ, nyírt kapcsolatok, erőbevezetés környezete. 2. mintapélda - oszlop méretezése. Öszvérszerkezetek 4. előadás Öszvér oszlopok kialakítása, THÁ, nyírt kapcsolatok, erőbevezetés környezete. 2. mintapélda - oszlop méretezése. készítette: 2012.10.27. Tartalom Öszvér oszlopok szerkezeti

Részletesebben

TERMÉKSZIMULÁCIÓ I. 9. elıadás

TERMÉKSZIMULÁCIÓ I. 9. elıadás TERMÉKSZIMULÁCIÓ I. 9. elıadás Dr. Kovács Zsolt egyetemi tanár Végeselem típusok Elemtípusok a COSMOSWorks Designer-ben: Lineáris térfogatelem (tetraéder) Kvadratikus térfogatelem (tetraéder) Lineáris

Részletesebben