és vágánykapcsolás geometriai terve és kitűzési adatai
|
|
- Renáta Nikolett Szilágyiné
- 5 évvel ezelőtt
- Látták:
Átírás
1 Módosított összetett koszinusz átenetiíves kitérő és vágánykapcsoás geoetriai terve és kitűzési adatai iegner Nándor egyetei tanársegéd Budapesti Műszaki és Gazdaságtudoányi Egyete Út és Vasútépítési Tanszék. A ódosított összetett koszinusz átenetiíves kitérő és a vágánykapcsoás aapadatai Tervezési sebesség kitérő irányban: V = 8 k/h Vágánytengey távoság: p 4, Maxiáis odagyorsuás-vátozás: h =,4 /s Maxiáis szabad odagyorsuás: a =,65 /s Görbüetvátozást érzékeő hossz: d = 7, Nyotávoság: t = 45. A koszinusz átenetiíves etérítésű geoetria eghatározása Az etérítő ágban átenetiíves kitérő és vágánykapcsoás geoetriai tervezése a négy koszinusz átenetiívve történő vágányszéthúzás geoetriájára épü. Az átenetiív hosszát az = V p 4h [], () a iniáis görbüeti sugár értékét az R = [] () p összefüggésbő határozhatjuk eg, aho: []: R []: p []: V [k/h]: h =,4 /s : a vágánykapcsoás ásodik és haradik átenetiívének hossza; iniáis görbüeti sugár; vágánytengey távoság; tervezési sebesség az etérítő ágban; a axiáis engedéyezett odagyorsuás-vátozás. A koszinusz geoetria eején, a csúcssín hosszának csökkentése céjábó az eső és a negyedik átenetiív eejét eetsszük úgy, hogy a gyorsuásvátozás értéke ne haadja eg a axiáis engedéyezett értéket h ax =,4 /s. A kitérő eején a görbüeti sugár értéke az V = [] () hd R összefüggésbő száítható. A ódosított eetszett átenetiív hossza: V ( R R ) = [] (4) hrr A () - (4) képetek jeöései: []: a vágánykapcsoás ódosított eső és negyedik átenetiívének hossza; R []: iniáis görbüeti sugár; Műszaki Szee 7 9
2 R []: görbüeti sugár a ódosított átenetiív eején; V [k/h]:tervezési sebesség az etérítőágban; h =,4 /s : a axiáis engedéyezett odagyorsuás-vátozás. Az. fejezet kiinduási adatai aapján az () (4) ennyiségek értékei: Az átenetiív hossza: = 47,58 A ódosított átenetiívek hossza: =,8797 A koszinusz geoetria hossza: + = 68,46 Miniáis görbüeti sugár: R = 95,666 Görbüeti sugár a ódosított átenetiív eején: R = 6,84 Az eső és a negyedik átenetiív eejének eetszése iatt egyszerű vágánykapcsoás esetén a kapcsoás középső szakaszában a ásodik és a haradik átenetiívek között nagyságú egyenes adódik, aho p Y e = cv [] (5) sin cv Y cv []: p []: cv : a koszinusz geoetria végpontja a ásodik átenetiív eeje; a vágánytengey távoság; a koszinusz geoetria végérintőszöge. Párhuzaos vágány kiágazása esetén az e egyenes az összefüggésbő száítható. A vágánykapcsoás geoetriáját az 5.. ábra tünteti fe. Az eső átenetiív görbüeti viszonyait a a ásodik átenetiív görbüeti viszonyait a G p Y e = cv [] (6) sin R R ( ) I = + cos cv R, (7) görbüetfüggvénnye írhatjuk e. R R ( + ) = cos ( + ) GII (8) Az etérítő ág eső részében az eső átenetiívben ( ) az érintőszög függvénye: az ordináta függvénye: = GId = + sin, (9) R R R y I = d = + I cos []. () 4 R R R Az etérítőág ásodik átenetiívében ( + ) az érintőszög függvénye: 4 Műszaki Szee 7
3 II = + GII d = sin R R R R R ( + ). () Az érintőszög értéke a koszinusz geoetria végén a ásodik és a haradik átenetiív eején: = + + cv () R R A vágánykapcsoás középső részén a közbenső egyenes hajásszögét a () összefüggésbő határozhatjuk eg, értéke a (5) szerinti száadat. Az etérítőág ásodik átenetiívében ( + ) az ordináta függvénye: y II = y + II d = ( + ) cos 4R R R R 4R R () A (7)-() képetek jeöései: []: []: []: R []: R []: R []: az ívhossz paraéter; a vágánykapcsoás ásodik és haradik átenetiívének hossza; a vágánykapcsoás ódosított eső és negyedik átenetiívének hossza; iniáis görbüeti sugár; görbüeti sugár a ódosított átenetiív eején; az átagos görbüeti sugár, ey az R R R R R = [] (4) összefüggésbő száítható. Az. fejezet kiinduási adatai aapján, a (7) () összefüggésekbő a következő ennyiségek határozhatók eg: A ódosított átenetiív végpontjának koordinátái ( = ): x( ) =,8788 y( ) =,665 Az érintőszög értéke a ódosított átenetiív végpontjában ( = ): ( ) = ' 5," A koszinusz-geoetria végpont koordinátái ( = +): A koszinusz geoetria végérintőszöge: X c,v = 68,489 Y c,v =,97 c,v = ',5" (5) Műszaki Szee 7 4
4 A kitérő szerkezet végpont koordinátái (y =,75 ): x kit,v = 65,7 y kit,v =,75 A kitérő szerkezet végpontjában az ívhossz paraéter értéke (y =,75 ): Érintőszög értéke a kitérő végpontjában ( = ): kit,v = 65,58 kit,v = ' 7,7" Az ívhossz paraéter értéke az eéeti keresztezési pontban: Az eéeti keresztezési pont koordinátái: kr = 57,8964 x kr = 7,94 y kr =,775 Érintőszög értéke az eéeti keresztezési pontban: kr = ' 5,8" A kitérőt, a ódosított átenetiív és a koszinusz geoetria végpontjának heyzetét az 5. ábra szeéteti. A fenti adatok aapján, a vágánykapcsoás középső részén az e egyenes hajásszöge a koszinusz geoetria végérintőszöge ne egyezik eg a kitérő végének hajásszögéve. A ódosított-összetett átenetiív hossza ( +) nagyobb, int a kitérőé. A vágánykapcsoás eágazó ágában a kitérő után a vágánytengey átenetiívben foytatódik, eynek geoetriáját az 5.. ábra tünteti fe. A vágánykapcsoás görbüeti ábrája az 5.. ábrán átható. A kitérőirányban V = 8 k/h sebességge haadó járűben feépő odagyorsuás nagyságát az eső (ódosított) átenetiívben az a ásodik átenetiívben az a V R R R ( ) I = + cos, (6) s V R R ( + ) = cos ( + ) aii függvény írja e. A feépő odagyorsuás axiáis értéke s (7) a ax V = = Rin 8 =,545 /s, (8) 95,666 aho: a [/s ]: a szabad odagyorsuás, V [k/h]: sebesség, []: az ívhossz paraéter, []: a vágánykapcsoás ásodik és haradik átenetiívének hossza, []: a vágánykapcsoás ódosított eső és negyedik átenetiívének hossza, R []: iniáis görbüeti sugár, R []: görbüeti sugár a ódosított átenetiív eején. 4 Műszaki Szee 7
5 A kitérőívben V = 8 k/h sebességge haadó járűben feépő odagyorsuás ábrája az 5.. ábrán átható.. A csúcssín eetszés vizsgáata A csúcssín eetszés végpontjának azt a pontot tekintjük, aho a fő és a eékirány ordináta küönbsége y = 5. (9) A csúcssín eetszés végpontjában, (7) és (8) aapján az ívhossz paraéter értéke a végpont abszcisszája és a pontbei érintő hajása: =,98, x =,98 = 8' 4,8". () A csúcssín eetszés végpontjában a gyorsuás-vátozás értéke ne ehet nagyobb az engedéyezett axiáis értékné. A gyorsuás-vátozás értéke a képetbő száítható, aho : a csúcssín eetszés szöge; d 7 : a járű forgócsap távosága. () aapján a csúcssín eetszési szög axiáis értéke: V h [/s ] () d,eng = 6',8". () A csúcssín eetszési szög () értéke kisebb, int a () szerinti axiáis érték, ezért a csúcssín eetszés kineatikaiag egfee. A csúcssín eetszés vázata a. ábrán átható. Ennek figyeebe véteéve: y u = =,98 () tg aho: y =,5 : : a csúcssín eetszés végpontjának ordinátája; a csúcssín eetszés végpontjában az érintő hajása. A kitérő eejének távosága az eső átenetiív ateatikai eejétő: aho: x []: u []: Z = x u,9 =, (4) a csúcssín eetszés végpontjának abszcisszája; () aapján a. ábra szerint száítandó ennyiség. Műszaki Szee 7 4
6 .. ábra A csúcssín eetszés evi vázata 4. A kitérő tengeyábrája A kitérő tengeyábrája a 4.., a tengeyábra száításáná fehasznát ennyiségek a 4. ábrán áthatók. A főbb éretek: y kit, v b = = 9,567 sin a x kit, v, b cos Z = 4,4 = kit v kit, v A kitérő hossza: H = a + b = 6,969 A kitérő végérintő szöge: = ' 7,7". kit, v 4.. ábra A kitérő tengeyábrája 4.. ábra A kitérő tengeyábrájának száításáná fehasznát ennyiségek 44 Műszaki Szee 7
7 5. A vágánykapcsoás tengeyábrája A vágánykapcsoás tengeyábrája az 5.4. ábrán átható p = 5, vágánytengey távoság esetén. A vágánykapcsoás, a közbenső e egyenes hosszát és az ábra szerinti C J távoságot az 5.. tábázat tünteti fe p = 4,, 4,75 és 5, tengeytávoság esetén. 5.. tábázat: Az e egyenes, az 5.. ábra szerinti C J távoság, vaaint a vágánykapcsoás tejes hossza Vágánytengey távoság p [] Az e egyenes hossza [] C J távoság [] A vágánykapcsoás hossza [] 4, 6,748 9,65 4,7 4,75,47 7,4 56,6 5, 7,86,99 6,7 A vágánykapcsoás középső részén az e egyenes hajásszöge ne egyezik eg a kitérő végének hajásszögéve. A ódosított-összetett átenetiív hossza ( +) nagyobb, int a kitérőé. A vágánykapcsoás eágazó ágában a kitérő után a vágány átenetiívben foytatódik, eynek geoetriáját az 5.. ábra szeéteti. Az etérítő ág görbüetét az 5., a kitérőirányban V = 8 k/h sebességge haadó járűben feépő odagyorsuást az 5.. ábra tünteti fe. A vágánykapcsoás kitűzési vázata az 5.4. ábrán átható. 5.. ábra. A vágány geoetriája 5.. ábra. A vágánykapcsoás görbéje 5.. ábra. Az odagyorsuás ábrája (V=8k/h) Műszaki Szee 7 45
8 5.4. ábra. A vágánykapcsoás kitűzési ábrája Fehasznát irodao [.] A száítást és tervezést a Dr. Megyeri Jenő: Vasúti ozgásgeoetria, Műszaki Könyvkiadó, Budapest, 986 -ban kiadott szakkönyv 5. fejezete aapján végezte. 46 Műszaki Szee 7
Harmonikus rezgőmozgás
Haronikus rezgőozgás (Vázat). A rezgőozgás fogaa. Rezgőozgás eírását segítő ennyiségek 3. Kapcsoat az egyenetes körozgás és a haronikus rezgőozgás között 4. A haronikus rezgőozgás kineatikai egyenetei
BMEEOUVASE2 segédlet a BME Építőmérnöki Kar hallgatói részére. Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése 1
EUÓPAI UNIÓ STUKTUÁIS AAPOK V A S Ú T T E V E Z É S BMEEOUVASE segédet a BME Építőmérnöki Kar hagatói részére Az építész- és az építőmérnök képzés szerkezeti és tartami fejesztése HEFOP//../. dr. iegner
TARTÓSZERKEZETEK II készítette: Halvax Katalin. Széchenyi István Egyetem
TARTÓSZERKEZETEK II. 013.03.14. készítette: Hava Katain Szécheni István Egete Fééves tervezési feadat: Födéeez részetes statikai száítása A-A etszet Statikai váz eghatározása L G1 A L L1 A L1 G1 O1 z O1
Vágánykapcsolások. Szabványos vágánykapcsolások
Gyakorlati segédlet 003 3. óra (v1.) 10/1 Vágánykacsolások A vágányok kitérőkkel, illetve átszelésekkel történő összekacsolását nevezzük vágánykacsolásnak vagy vágánykacsolatnak. A vágánykacsolatok éítőelemei
Érettségi feladatok Koordinátageometria_rendszerezve / 5
Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!
Érettségi feladatok: Koordináta-geometria 1/5
Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból
A befogott tartóvég erőtani vizsgálatához III. rész
A befogott tartóvég erőtani vizsgáatához III. rész Az I. részben a befogott gerendavéget merevnek, a tehereoszást ineáris függvény szerintinek vettük. A II. részben a befogott gerendavéget rugamasan deformáhatónak,
B.3. MAGYARORSZÁGON ALKALMAZOTT SZABVÁNYOS KITÉRŐK
B.3. MAGYAOSZÁGON ALKALMAZOTT SZABVÁNYOS KITÉŐK 3.1. A MÁV t. szabványos kitérői A MÁV szabványos kitérőinek főbb adatai A kitérő jele Ívsugár [m] Hajlás Hajlásszög Hossz [m] XI 300 1:9 6-0-5 34,141 XII.
Az úttengely helyszínrajzi tervezése során kialakuló egyenesekből, átmeneti ívekből és körívekből álló geometriai vonal pontjait számszerűen pontosan
Úttengeyek számítása és kitűzése Az úttengey heyszínrajzi tervezése során kiaakuó egyenesekbő, átmeneti ívekbő és körívekbő áó geometriai vona pontjait számszerűen pontosan rögzíteni ke, hogy az a terepen
Kábel-membrán szerkezetek
Kábe-membrán szerkezetek Szereési aak meghatározása Definíció: Egy geometriai aak meghatározása adott peremfetéte és eőfeszítés esetén ameyné a beső erők egyensúyban vannak. Numerikus módszerek: Geometriai
Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1.
1 Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. Feladat Egy G gépkocsi állandó v 0 nagyságú sebességgel egyenes úton
KÚPKERÉKPÁR TERVEZÉSE
MISKOLCI EGYETEM GÉPELEMEK TANSZÉKE OKTATÁSI SEGÉDLET a GÉPELEMEK III. c. tantárgyhoz KÚPKERÉKPÁR TERVEZÉSE Összeállította: Dr. Szente József egyetei docens Miskolc, 007. Geoetriai száítások. A kiskerék
Az egyenes vonalú egyenletes mozgás
Az egyenes vonalú egyenletes ozgás Az egyenes vonalú ozgások egy egyenes entén ennek végbe. (Ki hitte volna?) Ha a ozgás egyenesét választjuk az egyik koordináta- tengelynek, akkor a hely egadásához elég
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
1.9. Feladatok megoldásai
Eektotechnikai aapiseetek Mágneses té 1.9. Feadatok egodásai 1. feadat: Mennyive vátozik eg a ágneses téeősség, az indukció és a ágneses fuxus, ha egy 1 beső átéőjű, 1 enetbő áó, 75 hosszú tekecstestbe
A hajlított fagerenda törőnyomatékának számításáról II. rész
A ajlított fagerenda törőoatékának száításáról II. rész Bevezetés Az I. részben egbeszéltük a úzásra ideálisan rugalas, oásra ideálisan rugalas - tökéletesen képléke aag - odell alapján álló törőoaték
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4
M M b tg c tg, Mókuslesen
Mókusesen A két egyforma magas fiú Ottó és András a sík terepen áó fenyőfa törzsén fefeé mászó mókust figyei oyan messzirő ahonnan nézve a mókus már csak egy pontnak átszik ára ára Amikor a mókus az M
Összefüggések egy csonkolt hasábra
Összefüggések egy sonkolt hasábra Az idők során ár többször készítettünk hasonló dolgozatokat. Ne baj: az isétlés sose árt. Most tekintsük az. ábrát!. ábra Eszerint úgy is képzelhetjük hogy egy téglalap
M13/I. A 2005/2006. tanévi. Országos Középiskolai Tanulmányi Verseny. első (iskolai) fordulójának. javítási-értékelési útmutatója
M3/I. A 005/006. tanévi Országos Középisoai Tanuányi Verseny eső (isoai) forduójána javítási-értéeési útutatója Fizia I. ategóriában A 005/006. tanévi Országos Középisoai Tanuányi Verseny eső forduójána
TEHETETLENSÉGI NYOMATÉKOK (kidolgozta: Fehér Lajos) A következőkben különböző merev testek tehetetlenségi nyomatékait fogjuk kiszámolni.
écheni István Egete kaaott Mechanika MECHNIK-MOZGÁTN TEHETETLENÉGI NYOMTÉKOK (kidogota: Fehér Lajos) követkeőkben küönböő erev testek tehetetenségi noatékait fogjuk kisáoni..1. Péda: Páca tehetetenségi
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria II.
Trigonometria II. A tetszőleges nagyságú szögek szögfüggvényeit koordináta rendszerben egységhosszúságú forgásvektor segítségével definiáljuk. DEFINÍCIÓ: (Vektor irányszöge) Egy vektor irányszögén értjük
Exponenciális és logaritmusos kifejezések, egyenletek
Eponenciális és logaritmusos kifejezések, egyenletek. Hatványozási azonosságok. Számítsd ki a következő hatványok pontos értékét! a) 8 b) 4 c) d) 7 e) f) 9 0, g) 0, 9 h) 6 0, 7,, i) 8 j) 6 k) 4 l) 49,.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
Koordináta-geometria feladatok (középszint)
Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy
Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010.
Nagy András Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 010. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 1) Döntsd el, hogy a P pont illeszkedik-e az e egyenesre
Koczog András Matematika - Az alapoktól az érettségin át az egyetemig. Szögfüggvények alapjai
Szögfüggvények alapjai Értelmezés derékszögű háromszögekben Két derékszögű háromszög hasonlóságát teljesen meghatározza egyik szögük nagysága, így oldalaik aránya mindig megegyezik, függetlenül hosszuktól.
2. Rugalmas állandók mérése
. Rugalas állandók érése PÁPICS PÉTER ISTVÁN csillagász, 3. évfolya 00.10.7. Beadva: 00.1.1. 1. A -ES, AZAZ AZ ABLAK FELLI MÉRHELYEN MÉRTEM. Ezen a laboron a férudak Young-oduluszát értük, pontosabban
Utak és környezetük tervezése
Dr. Fi István Utak és környezetük tervezése 3A előadás: Vonalvezetési elvek Vonalvezetési elvek Vonalvezetés az útvonalat alkotó egyenesek és ívek elrendezése. A vonalvezetés ismérve az ívesség (I) (lásd
A kör. A kör egyenlete
A kör egyenlete A kör A kör egyenlete 8 a) x + y 6 b) x + y c) 6x + 6y d) x + y 9 8 a) x + y 6 + 9 b) x + y c) x + y a + b 8 a) (x - ) + (y - ) 9, rendezve x + y - 8x - y + b) x + y - 6x - 6y + c) x +
Trigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1
Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Trigonometria Szögfüggvények alkalmazása derékszög háromszögekben 1. Az ABC hegyesszög háromszögben BC = 14 cm, AC = 1 cm, a BCA szög nagysága
a) Az első esetben emelési és súrlódási munkát kell végeznünk: d A
A 37. Mikola Sándor Fizikaverseny feladatainak egoldása Döntő - Gináziu 0. osztály Pécs 08. feladat: a) Az első esetben eelési és súrlódási unkát kell végeznünk: d W = gd + μg cos sin + μgd, A B d d C
egyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0.
Magyar Ifjúság. X. TRIGONOMETRIKUS FÜGGVÉNYEK A trigonometrikus egyenletrendszerek megoldása során kísérletezhetünk új változók bevezetésével, azonosságok alkalmazásával, helyettesítő módszerrel vagy más,
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Tekintsük az alábbi szabályos hatszögben a következő vektorokat: a = AB és b = AF. Add meg az FO, DC, AO, AC, BE, FB, CE, DF vektorok koordinátáit az (a ; b ) koordinátarendszerben! Alkalmazzuk
Koordináta - geometria I.
Koordináta - geometria I A koordináta geometria témaköre geometriai problémákat old meg algebrai módszerekkel úgy, hogy a geometriai fogalmaknak algebrai fogalmakat feleltet meg: a pontokat, vektorokat
Megerősített rézsűk vizsgálata Adatbev.
Megerősített rézsűk vizsgálata Adatbev. Projekt Dátu : 21.10.2011 Szerkezet geoetriája Töltés agasság Töltés hossza Takarás vastagsága h n l n t c 8,00 2,00 0,20 Név : Geoetria Fázis : 1 8,00 Anyag Takarás
Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik
Szögek, szögpárok és fajtáik Szögfajták: Jelölés: Mindkét esetben: α + β = 180 Pótszögek: Olyan szögek, amelyeknek összege 90. Oldalak szerint csoportosítva A háromszögek Általános háromszög: Minden oldala
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Határozd meg a szakasz hosszát, ha a végpontok koordinátái: A ( 1; ) és B (5; )! A szakasz hosszához számítsuk ki a két pont távolságát: d AB = AB = (5 ( 1)) + ( ) = 6 + 1 = 7 6,08.. Határozd
Vektorok és koordinátageometria
Vektorok és koordinátageometria Vektorral kapcsolatos alapfogalmak http://zanza.tv/matematika/geometria/vektorok-bevezetese Definíció: Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon,
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Oldd meg a következő egyenletet: cos (3x π 3 ) = 1 2! A koszinusz függvény az első és a negyedik negyedben pozitív. Táblázati érték (hegyesszög): 1 2 60 = π 3 Ezek alapján felírhatjuk az
I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?
1. Feladatsor I. rész 1. Adott két halmaz. A a 9-nél kisebb páros pozitív egészek; B a 30-nál kisebb, 6-tal osztható pozitív egészek halmaza. Adja meg az A B és a B \ A halmazokat!. Andi keresett két olyan
A kerék-sín között fellépő Hertz-féle érintkezési feszültség vizsgálata
A keréksín között fellépő Hertzféle érintkezési feszültség vizsgálata közúti vasúti felépítmények esetében Dr. Kazinczy László PhD. egyetemi docens i Műszaki és Gazdaságtudományi gyetem, Út és Vasútépítési
Szögfüggvények értékei megoldás
Szögfüggvények értékei megoldás 1. Számítsd ki az alábbi szögfüggvények értékeit! (a) cos 585 (f) cos ( 00 ) (k) sin ( 50 ) (p) sin (u) cos 11 (b) cos 00 (g) cos 90 (l) sin 510 (q) sin 8 (v) cos 9 (c)
1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)
1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)
Kosárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt.
osárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt. A feladat Az 1. ábrán [ 1 ] egy tornaterem hosszmetszetét
Megyei matematikaverseny évfolyam 2. forduló
Megyei matematikaverseny 0. 9. évfolyam. forduló. különbözı pozitív egész szám átlaga. Legfeljebb mekkora lehet ezen számok közül a legnagyobb? (A) (B) 8 (C) 9 (D) 78 (E) 44. 00 009 + 008 007 +... + 4
Koordinátageometria Megoldások
005-0XX Középszint Koordinátageometria Megoldások 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. és B 3 1; Írja fel az AB szakasz 1 3 + 4 + 1 3 F ; = F ;1 ) Egy kör sugarának
Lineáris algebrai alapok *
Lieáris geri po * dieziós átri: z soró és oszopó áó ós szátáázt. Jeöés: dieziós etor z soró és oszopó áó átri. Jeöés:, ho i z i-edi oordiát., ho i z i-edi sor -edi eee. dieziós etor z z dieziós etor, eye
3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1
Érettségi, M, I-es feladatsor, természettudomány.. Számítsd ki a C! összeget! log 4. Határozd meg a. Számítsd ki az egyenlet valós megoldásait! összeg értékét, ha és az 4. Adott az f : 0,, f. Adottak az
Érettségi feladatok: Trigonometria 1 /6
Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat
Schöck Isokorb Q, Q-VV, QP, QP-VV típus
Schöck Isokorb, -VV,, -VV típus Schöck Isokorb, -VV,, -VV típus Schöck Isokorb típus Aátámasztott erkéyekhez, pozitív nyíróerők fevéteére. Schöck Isokorb -VV típus Aátámasztott erkéyekhez, pozitív és negatív
Kalkulus S af ar Orsolya F uggv enyek S af ar Orsolya Kalkulus
Függvények Mi a függvény? A függvény egy hozzárendelési szabály. Egy valós függvény a valós számokhoz, esetleg egy részükhöz rendel hozzá pontosan egy valós számot valamilyen szabály (nem feltétlen képlet)
Multinomiális és feltételes logit modellek alkalmazásai Mikroökonometria, 10. hét Bíró Anikó Véletlen együtthatójú modell
Mutnoás és fetétees ogt odeek akaazása Mkroökonoetra,. hét Bíró Ankó Véeten együtthatóú ode Aggregát kereset becsése véeten együtthatóú MNL odee: Berry, Levnsohn, Pakes (BLP, 995 Econoetrca) Lényeg: rugaas
Vontatás I. 1. ábra. A feladat
Vontatás I. Érdekes, de a mechanikai szakirodaom tanumányozásának évtizedei során aig taákoztam vontatássa kapcsoatos munkákka. Persze, egynéhánnya igen [ 1 ], hiszen ez ekerüheteten pédáu a pótkocsis
Az éjszakai rovarok repüléséről
Erről ezt olvashatjuk [ ] - ben: Az éjszakai rovarok repüléséről Az a kijelentés, miszerint a repülés pályája logaritmikus spirális, a következőképpen igazolható [ 2 ].. ábra Az állandó v nagyságú sebességgel
a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.
2. Gyakorlat 25A-0 Tekintsünk egy l0 cm sugarú üreges fémgömböt, amelyen +0 µc töltés van. Legyen a gömb középpontja a koordinátarendszer origójában. A gömb belsejében az x = 5 cm pontban legyen egy 3
Egy újabb látószög - feladat
1 Egy újabb látószög - feladat A feladat Adott az O középpontú, R sugarú körön az α szöggel jellemzett P pont. Határozzuk meg, hogy mekkora ϑ szög alatt látszik a P pontból a vízszintes átmérő - egyenes
Exponenciális és logaritmusos kifejezések, egyenletek
Gyaorló feladato Eponenciális és logaritmusos ifejezése, egyenlete. Hatványozási azonosságo. Számítsd i a övetező hatványo pontos értéét! g) b) c) d) 7 e) f) 9 0, 9 h) 0, 6 i) 0,7 j), 6 ), l). A övetező
Megoldás A számtani sorozat első három eleme kifejezhető a második elemmel és a differenciával. Összegük így a 2. d =33, azaz 3a 2. a 2.
1. Egy 33-as létszámú zenetagozatos osztályban hegedülni és zongorázni tanulnak a diákok. Minden diák játszik legalább egy hangszeren. Azok száma, akik mindkét hangszeren játszanak, akik csak hegedülnek,
Gyakorlati útmutató a Tartók statikája I. tárgyhoz. Fekete Ferenc. 5. gyakorlat. Széchenyi István Egyetem, 2015.
Gyakorlati útmutató a tárgyhoz Fekete Ferenc 5. gyakorlat Széchenyi István Egyetem, 015. 1. ásodrendű hatások közelítő számítása A következőkben egy, a statikai vizsgálatoknál másodrendű hatások közelítő
Koordinátageometria. 3 B 1; Írja fel az AB szakasz felezőpontjának 2 ( ) = vektorok. Adja meg a b vektort a
1) Adott két pont: 1 A 4; és 2 3 B 1; Írja fl az AB szakasz flzőpontjának 2 2) Egy kör sugarának hossza 4, középpontja a B ( 3;5) pont. írja fl a kör gynltét! 3) Írja fl a ( 2;7 ) ponton átmnő, ( 5;8)
MÁGNESVASÚT MÜNCHENBEN
MÁGNESVASÚT MÜNCHENBEN Dr. Kazinczy László PhD. Egyetemi docens, BME Út és Vasútépítési Tanszék KÖZLEKEDÉSTUDOMÁNYI EGYESÜLET XI. NEMZETKÖZI ÉPÍTÉSTUDOMÁNYI KONFERENCIA Csíksomlyó, 2007. május 31-június
KOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA MATEmATIkA II 6 VI TÉRGÖRbÉk 1 Alapvető ÖSSZEFÜGGÉSEk A térgörbe (1) alakú egyenletével írható le Ez a vektoregyenlet egyenértékű az (2) skaláris egyenletrendszerrel A térgörbe három nevezetes
A bifiláris felfüggesztésű rúd mozgásáról
1 A bifiláris felfüggesztésű rúd mozgásáról A végein fonállal felfüggesztett egyenes rúd részleges erőtani vizsgálatát mutattuk be egy korábbi dolgozatunkban, melynek címe: Forgatónyomaték mérése - I.
Síkalap ellenőrzés Adatbev.
Síkalap ellenőrzés Adatbev. Projekt Dátu : 02.11.2005 Beállítások (bevitel az aktuális feladathoz) Anyagok és szabványok Beton szerkezetek : EN 199211 szerinti tényezők : Süllyedés Száítási ódszer : Érintett
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Koordináta-gomtria A szürkíttt háttrű fladatrészk nm tartoznak az érinttt témakörhöz, azonban szolgálhatnak fontos információval az érinttt fladatrészk mgoldásához!
A kör és ellipszis csavarmozgása során keletkező felületekről
1 A kör és ellipszis csavarmozgása során keletkező felületekről Előző dolgozatunkban melynek címe: Megint a két csavarfelületről levezettük a cím - beli körös felület - család paraméteres egyenletrendszerét,
IV. INTEGRÁLSZÁMÍTÁS Feladatok november
IV. INTEGRÁLSZÁMÍTÁS Feladatok 9. november Határozatlan integrálás Elemi függvények integrálja 4.5. 4.6. 3 4.7. ( ) 4.8. ( ) 4.9. + 4 4.. ( + )( + ) 4.4. + ( + ) 4.5. 4.6. 6 5 + 5 ln + 4.8. cos cos sin
Vágánykapcsolások. Készítette: Szűcs Tamás
Vágánykapcsolások Készítette: Szűcs Tamás 2016 I. Vágánykapcsolások Feladatuk: Lehetővé teszik a vasúti járművek, illetve szerelvények számára a vágányokon való áthaladást. Eszközei: a. kitérők, b. tolópadok,
Algoritmus a csigahajtások f7paramétereinek meghatározására. Dr. Antal Tibor Sándor, Dr. Antal Béla. Kolozsvári Mszaki Egyetem.
Algoritus a csigahajtások f7paraétereinek eghatározására Dr. Antal ibor Sánor, Dr. Antal Béla Kolozsvári Mszaki Egyete Abstract he gear esign can be achieve in several ways accoring to the publishe ethos
Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)
Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 19 XIX A HATÁROZOTT INTEGRÁL ALkALmAZÁSAI 1 TERÜLET ÉS ÍVHOSSZ SZÁmÍTÁSA Területszámítás Ha f az [a,b] intervallumon nemnegatív, folytonos függvény, akkor az görbe, az x tengely,
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria III.
Trigonometria III. TÉTEL: (Szinusz - tétel) Bármely háromszögben az oldalak és a velük szemközti szögek szinuszainak aránya egyenlő. Jelöléssel: a: b: c = sin α : sin β : sin γ. Megjegyzés: A szinusz -
Az elliptikus hengerre írt csavarvonalról
1 Az elliptikus hengerre írt csavarvonalról Erről viszonylag ritkán olvashatunk, ezért most erről lesz szó. Az [ 1 ] munkában találtuk az alábbi részt 1. ábra. 1. ábra Itt a ( c ) feladat és annak megoldása
Technológiai tervezés Oktatási segédlet
Miskolci Egyete Gépészérnöki és Inforatikai Kar Gépgyártástechnológiai Tanszék Technológiai tervezés Oktatási segédlet Műveleti éretek és ráhagyások eghatározása. Miskolc, 009 Összeállította: Dr. Maros
A loxodrómáról. Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra.
1 A loxodrómáról Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra. 1. ábra forrása: [ 1 ] Ezen a térképen a szélességi
Számítógépes Grafika mintafeladatok
Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk
1. Bevezetés a trigonometriába
1. Bevezetés a trigonometriába Ha egy háromszöget nagyítunk vagy kicsinyítünk, a szögei nem változnak. Az aránytartás következtében a megfelelőoldalak aránya szintén állandó. Ebből arra következtethetünk,
Feladatok MATEMATIKÁBÓL
Feladatok MATEMATIKÁBÓL a 1. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! a) b) 7 c) 5 d) 5 1 e) 6 1 6 f) ( 81 16 ) g) 0,00001 5. Írjuk fel gyökjelekkel a következő hatványokat!
Számítógépes Grafika mintafeladatok
Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk
Villamos gépek tantárgy tételei
10. tétel Milyen mérési feladatokat kell elvégeznie a kördiagram megszerkesztéséhez? Rajzolja meg a kördiagram felhasználásával a teljes nyomatéki függvényt! Az aszinkron gép egyszerűsített kördiagramja
Az egyszeres függesztőmű erőjátékáról
Az eyszeres üesztőmű erőjátékáró A címbei szerkezet az 1 ábrán szeméhető részeteive is 1 ábra orrása: [ 1 ] A szerkezet működésének jeemzése: ~ a vízszintes kötőerenda a két véén szabadon eekszik a közepén
Rugalmas láncgörbe alapvető összefüggések és tudnivalók I. rész
Rugalmas láncgörbe alapvető összefüggések és tudnivalók I rész evezetés rugalmas láncgörbe magyar nyelvű szakirodalma nem túl gazdag Egy viszonylag rövid ismertetés található [ 1 ] - ben közönséges ( azaz
2014/2015. tavaszi félév
Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés
A magától becsukódó ajtó működéséről
1 A magától becsukódó ajtó működéséről Az [ 1 ] műben találtunk egy érdekes feladatot, amit most mi is feldolgozunk. Az 1. ábrán látható az eredeti feladat másolata. A feladat kitűzése 1. ábra forrása:
2012. október 9 és 11. Dr. Vincze Szilvia
2012. október 9 és 11. Dr. Vincze Szilvia Egyváltozós valós függvények nevezetes osztályai I. Algebrai függvények Racionális egész függvények (polinomok) Racionális törtfüggvények Irracionális függvények
t, u v. u v t A kúpra írt csavarvonalról I. rész
A kúpra írt csavarvonalról I. rész Sokféle kúpra írt csavarvonal létezik. Ezek közül először a legegyszerűbbel foglalko - zunk. Ezt azért tesszük mert meglepő az a tény hogy eddig még szinte sehol nem
Vonatablakon át. A szabadvezeték alakjának leírása. 1. ábra
1 Vonatablakon át Sokat utazom vonaton, és gyakran elnézem a vonatablakon át a légvezeték(ek) táncát. Már régóta gondolom, hogy le kellene írni ezt a látszólagos mozgást. Most erről lesz szó. Ehhez tekintsük
17. előadás: Vektorok a térben
17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett
Skaláris szorzat: a b cos, ahol α a két vektor által bezárt szög.
1 Összeadás: Legyen a (7; 3) és b (- 2; 4), akkor az összegük a + b (7 + (-2); 3 + 4) = (5; 7) Kivonás: Legyen a (7; 3) és b (- 2; 4), akkor a különbségük a b (7 - (-2); 3-4)=(9; - 1) Valós számmal való
A késdobálásról. Bevezetés
A késdobáásró Beezetés Már sok ée annak, hogy kést dobátunk, több - keesebb sikerre. Ez tisztán tapasztaati úton működött. Femerütek bizonyos kérdések, ameyekre nem kaptunk áaszt sehon - nan. Ezek pédáu
Hatvány, gyök, normálalak
Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)
Trigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás:
Trigonometria Megoldások ) Oldja meg a következő egyenletet a valós számok halmazán! cos + cos = sin ( pont) sin cos + = + = ( ) cos cos cos (+ pont) cos + cos = 0 A másodfokú egyenlet megoldóképletével
NULLADIK MATEMATIKA szeptember 7.
A NULLADIK MATEMATIKA ZÁRTHELYI 0. szeptember Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható. Válaszait csak az üres mezőkbe írja! A javítók a szürke
Parabola - közelítés. A megoszló terhelés intenzitásának felvételéről. 1. ábra
Paraboa - közeítés A kötéstatikáva aktívan fogakozó Ovasónak az aábbiak ismétésnek tűnhetnek vagy nem Hosszabb tanakoás után úgy öntöttem, hogy a nem tejesen nyivánvaó ogokró éremes ehet szót ejteni Iyennek
JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Fizika középszint 08 ÉRESÉGI VIZSGA 008. ájus 4. FIZIKA KÖZÉPSZINŰ ÍRÁSBELI ÉRESÉGI VIZSGA JAVÍÁSI-ÉRÉKELÉSI ÚMUAÓ OKAÁSI ÉS KULURÁLIS MINISZÉRIUM A dolgozatokat az útutató utasításai szerint, jól követhetően
A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató
Oktatási Hivatal 04/0 tanévi Országos Középiskolai Tanulmányi Verseny első forduló MTEMTIK I KTEGÓRI (SZKKÖZÉPISKOL) Javítási-értékelési útmutató Határozza meg a tízes számrendszerbeli x = abba és y =
I. rész. 4. Határozza meg a valós számok halmazán értelmezett x x 2 4x függvény szélsőértékét és annak helyét! Válaszát indokolja!
Feladatsor I. rész Adott két halmaz. A a 9-nél kisebb páros pozitív egészek; B a 30-nál kisebb, 6-tal osztható pozitív egészek halmaza. Adja meg az A B és a B \ A halmazokat!. Adja meg az alábbi állítások
Példa: Normálfeszültség eloszlása síkgörbe rúd esetén
Példa: Normálfeszültség eloszlása síkgörbe rúd esetén Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. március 20. Az 1. ábrán vázolt síkgörbe rúd méretei és terhelése ismert.