Bevezetés a kvantumfizikába:
|
|
- Ödön Magyar
- 6 évvel ezelőtt
- Látták:
Átírás
1 Bevezetés a kvantumfizikába: kiegészítő alfejezetek Patkós András a a Atomfizikai Tanszék, Eötvös Loránd Tudományegyetem, H-1117 Budapest 1 Atomi állapotok manipulálása üregrezonátorral 01-ben Serge Haroche és David Wineland olyan alapvető kísérleti eljárások kidolgozásáért nyerték el a Nobel-díjat, amelyekkel egyedi kvantumrendszereken lehetséges mérések végzése, illetve azok állapotának ellenőrzött megváltoztatása. Díjazott kísérleti módszereik bemutatásához néhány kvantumjelenség rövid előzetes ismertetése szükséges. Cirkuláris Rydberg-atom: Ha egy atom külső elektronjainak egyikét nagy n főkvantumszámú állapotba gerjesztik, akkor ez az elektron a leárnyékolt mag és a körülötte kialakult elektronfelhő együttesét közelítőleg egységnyi pozitív töltésű erőcentrumként észleli. Ha perdületüket is az l n nagy érték jellemzi, akkor a hidrogénszerű állapotfüggvényükből számított valószínűség-sűrűség nullától lényegesen különböző értékeivel kirajzolt tértartomány egyre jobban hasonlít a Bohr-modell pályáira, amelyek sugara az r Ry = n 4πɛ 0 e m (1) képlet szerint változik. Pl. Rb-atomot megfelelő hullámhosszú lézerfénnyel bevilágítva elérhető az n = 50 állapot létrejötte, amelynek 15 nm az átmérője. Rabi-oszcilláció: Alkalmas frekvenciával rezgő külső elektromos erőtérbe helyezve, nagy valószínűsége van annak, hogy a Rydberg-atom elnyel egy fotont és átlép az n + 1 = 51 főkvantumszámú állapotba. Miután a magasan gerjesztett állapotok energiakülönbsége gyorsan csökken n-nel, ezért igen keskeny sávszélességű lézerfényre van szükség. Haroche és munkatársai 1996-ban szupravezető nióbiumból (Nb) készítettek egy üregrezonátort address: patkos@hector.elte.hu (Patkós András). 13 December 016
2 Fig. 1. Az áthaladó atomok manipulálására két, egymástól,7 cm-re eltávolított félgömbből álló nyitott rezonátor alkalmas, amelynek félgömbjei között többszáz milliszekundumon át verődnek oda-vissza az MHz frekvenciatartományban betáplált fotonok, mielőtt elnyelődnek. (lásd 1. ábra), amelynek rezonancia frekvenciája éppen egyezett az átmenet ω n,n+1 = 13,6 ev ( ) 1 n 1, n = 50 () (n + 1) egyenlőségből számolható frekvenciájával. Az üreget nagyon alacsony, T=0,8 K hőmérsékleten működtetve, a véges élettartamú gerjesztett állapotból emittált foton hosszú élettartammal tud a rezonátorban továbbrezegni. Ez idő alatt nagy valószínűséggel bekövetkezik a fordított folyamat, az átmenet. Ezután újra kezdődik a most ismertetett ciklus, amelynek fennmaradását a fotonnak az üreg falában történő elnyelése korlátozza. A leírt periodikusan ismétlődő eseménysor a Rabi-oszcilláció, amely matematikailag a kvantummechanikai állapotfüggvény oszcillációját jelenti a két állapot között: Φ(t) = φ e cos(ω 50,51 t/) + φ g sin(ω 50,51 t/), (3) ahol φ e az n = 51, φ g pedig az n = 50 kvantumszámú állapot hullámfüggvényének helyfüggő része. Fontos jellemzője ennek a lineárkombinációnak a külső elektromágneses térrel intenzív kölcsönhatást eredményező jelentős elektromos dipólmomentuma. Ha a φ e kezdőállapotú atom τ idő alatt repül át a rezonátoron, akkor állapotfüggvényének fázisa δ = ω 50,51 τ fázisszöggel tolódik el és állapotát kilépéskor a Φ(τ) = φ e cos(δ/) + φ g sin(δ/) (4) kombináció adja meg. A lineárkombináció szabályozhatósága az alapja az atomok manipulációjára alább bemutatandó példáknak.
3 Fig.. Az n = 0, 1 fotonszám megállapítására konstruált elrendezés, amely a mérés során nem változtat a fotonszámon. Az S mikrohullámú forrás táplálja a mérő atomokat preparáló R 1 és az atomoknak a C üreg fotontartalmától függően megváltozott állapotát analizáló R rezonátorokat. 1.1 Fotonszám mérése foton-elnyelés nélkül Hagyományosan fotonokat úgy számlálnak, hogy ezt az információt az intenzitással arányos számú foton elnyelésével a számukkal arányos elektromos jelbe konvertálják. Ezzel az eljárással viszont a megváltozik a fotonszám, azaz a mérés egyben megsemmisíti annak tárgyát. Az atomok állapotának kvantumszintű szabályozása lehetővé teszi a rombolásmentes fotonszám-mérést. Mi töténik az atommal, ha elhangolt frekvenciájú üregrezonátoron vezetik keresztül? Ekkor elnyelés helyett atom-foton szórás következik be, amely a hullámfüggvényen fázistolást okoz: Ψ kezdő = αφ e + βφ g Ψ kilépő = αφ e e iδe + βφ g e iδg. (5) Az ütközések száma arányos az üregrezonátor elektromágneses terének erősségével, azaz a fotonok számával. A fázistolás szöge ezért érzékeny a fotonszámra. Az alábbiakban a nemdestruktív mérésnek azt a történetileg első változatát ismertetjük, amelyben az n = 0 és az n = 1 fotont tartalmazó állapotot ezen jellemző adat megváltoztatása nélkül sikerült egyértelműen megkülönböztetni. A. ábrán látható B jelű atomcsapdában lézerrel az n = 51 Rydberg-állapotba gerjesztik az atomsugarat, azaz az R 1 rezonátorba φ e állapotú atomok lépnek be. Az atomok R 1 -ben az e g átmenetet megvalósító frekvenciájú elektromágneses térrel δ = π/ fázistolást kapnak, azaz Ψ(R 1 ) = 1 (φ e + φ g ). (6) Az elhangolt C rezonátorban a fotonszám változása nélküli szórási folyamat zajlik, ha nem nulla benne az elektromágneses tér. Az elhangolás mértékét lehet úgy szabályozni, hogy a két állapotbeli szórási fázistolás különbsége éppen π legyen. Ekkor a C rezonátorból 3
4 kilépve Ψ(C, n = 1) = eiδg ( φ e + φ g ), Ψ(C, n = 0) = Ψ(R 1 ). (7) Az R rezonátorban újabb δ = π/ szögű fázistolás történik. Ha nem volt foton C-ben, akkor e manipuláció hatására a végállapot tisztán φ g. Ha ott volt a foton, akkor az állapot R -beli fejlődése Ψ(C, n = 1)-ből indul: Ψ(R ) = eiδg [cos(π/4)( φ e + φ g ) + sin(π/4)( φ e φ g )] = e iδg φ e. (8) Ezután az atomokat detektáló D eszköz segíségével eldönthető, hogy van-e foton C-ben. Ha φ e állapotot mér, akkor n = 1, ha φ g -t, akkor n = 0. A mérés pedig nem változtatott a fotonszámon. Ezt az elvet finomították tovább tetszőleges (kis)számú foton nem-romboló megszámlálására. 1. Két atom állapotának összefonása A két atom, amelynek állapotát az alább ismertetetendő eljárással összefont állapottá alakították, kezdetben szorzat-állapotban indul: Ψ(t = 0) = Φ(e 1, g, n foton = 0) = φ e (1)φ g ()ψ 0 (foton), (9) azaz az első atom a magasabbra gerjesztett, a második az alacsonyabb energiájú állapotban, a fotontér pedig gerjesztsmentes állapotában van. Első lépésként az első atomot úgy vezetik át a nióbium-üregen, hogy a t 1 repülési idő alatt δ = π/ fázistolást kapjon. Kilépéskor tehát 1 (φ e (1)ψ 0 (photon) + φ g (1)ψ 1 (photon)) (10) lineárisan kombinált állapotba került. Ahhoz a komponenshez, amely φ g -be megy át, szükségképpen társul az üregben egy kisugárzott elektromágneses kvantum. Ennek frekvenciája épp kielégíti az üreg rezonancia-feltételét és így hosszú élettartamra tesz szert (006- ra S. Haroche csoportja elérte a 130 ms-ot, azaz a foton a rezonátor két félgömbje között pattogva km-es utat tett meg elnyelődése előtt). Tehát az első atom preparálása után, a második elindítása előtt a teljes rendszer állapota a következő: Ψ(t = t 1 ) = 1 (Φ(e 1, g, n photon = 0) + Φ(g 1, g, n photon = 1)). (11) Ez már összefont állapot: az első atom és az üregbeli elektromágneses tér kvantumállapota van összefonva. A második atom áthaladási sebességét a rezonátoron az elsőnek felére választják meg: ω 50,51 t / = π/. Miután a g állapotból indul, annak együtthatója nullára csökken, viszont az e állapot együtthatója egységnyire nő. Ez csak úgy történhet meg, ha a második atom fotont vesz fel. Erre az előző lineárkombináció második tagjában van csak esély, az első taggal tehát ebben a lépésben nem történik változás, hiszen abban az 4
5 Fig. 3. Az oszcillátor és az elektronikus szabadsági fokok összefont állapotára vezető manipuláció-sorozat állapotban rezonátor üres: Ψ(t = t 1 + t ) = 1 [Φ(e 1, g, 0) + Φ(g 1, e, 0)]. (1) Elértük a kitűzött célt: immár a két atom állapota van összefonva. 1.3 Csapdázott ion transzlációs és elektronikus szabadsági fokának összefonása Az ioncsapdába fogott Be + ion nyugalmi helyzete körüli kis elmozduláskor harmonikus oszcillátor potenciált érez. Ennek alapállapotában Gauss-függvény írja le állapotának helyfüggését. Ugyanakkor elektronfelhője szelektíven gerjeszthető és üregrezonátorba helyezve kétállapotú rendszerként közelíthető, amelynek állapotait a, állapotvektorokkal jelöljük. Az alábbiakban grafikusan és képletekkel is végigkísérjük azt a manipuláció sort, amelynek eredményeként az oszcillátor és az elektronikus gerjesztési szabadsági fokok összefont állapotba kerülnek. Ez az eljárás szerepel David Wineland Nobel-díjjal elismert eredményeinek felsorolásában. Kiindulás: Az ion természetes állapotát a csapda középpontja körül centrált Gauss-függvény és adja meg (lásd 3.(a) ábra!). Képlettel: Φ = Ψ 0 (0), ahol Ψ argumentuma a Gauss-függvény centrumának helyzetét adja. 1. lépés: Egy alkalmas frekvenciájú rezonátor üzemeltetésével δ = π/ fázistolást idézünk elő. Ekkor a és állapotok egyenlő súlyú szuperpozíciója jön létre (lásd 3.(b) ábra!), az oszcillátor szabadsági fok állapota változatlan. Képlettel: Φ = ( + )Ψ 0 (0)/.. lépés: Lézerimpulzust alkalmaznak olyan frekvenciával, amelyet csak tud elnyelni. Az ehhez az állapothoz tartozó Gauss-görbével jellemzett oszcillátor állapot az elnyelt impulzus hatására eltolódik az oszcillátor potenciálban a +x 0 pontba. Ennek az állapotnak a neve koherens állapot. Az előző állapot-kombináció másik tagjának kifejezése változatlan. E manipuláció végeredménye a 3.(c) ábrán látható. Képlettel: Φ = ( Ψ 0 (0) + Ψ 0 (+x 0 ))/ 5
6 3. lépés: Rabi-oszcillációs szakasz, amelyben δ = π szögű fázistolás történik. Ennek hatására, azaz az elektronikus állapotfüggvények kicserélődnek: 3.(d) ábra. Képlettel: Φ = ( Ψ 0 (+x 0 ) + Ψ 0 (0))/ 4. lépés: Ellenkező irányú lézerimpulzussal ellenkező irányú kitérést érnek el az elektronikusan gerjesztett komponensre a x 0 pontba: 3.(e) ábra. Képlettel: Φ = ( Ψ 0 ( x 0 ) + Ψ 0 (+x 0 ))/ 5. lépés: Rabi-oszcillációs mikrohullámú impulzus δ = π/ fázistolással: 3.(f) ábra. Az eredmény a teljesen összefont koordináta és elektronikus állapot: Φ = 1 [ + ] [Ψ 0( x 0 ) + Ψ 0 (+x 0 )]. (13) A pontos matematikai tárgyalás fázisfaktor együtthatókat hoz be az egyes tagok elé. Ezt a fizikai szemléletesség érdekében az ismertetésben negligáltam. A kvantum hőerőgép A nanoméretű hűtőgépek tökéletesítésével lehetségessé vált T m =,7 K hőmérsékletű nanoméretű lapkák létrehozása. Egy ilyen objektum tulajdonságai esetében már dominálnak a kvatumfluktuációk. A lehűtött lapkákkal zárva le egy hasáb geometriájú mikroüreg egyik végét, csatolás jön létre a lapka rugalmas rezgési szabadsági foka és az üreget kitöltő elektromágneses tér között. Az N dof = szabadsági fokú rendszer alkalmas a motorok világából ismert Otto-körfolyamat (lásd 4. ábra!) mikroskálájú megvalósítására. A befektetett hőenergiából nyert mechanikai munka hatásfokát a termodinamika érvényességét feltételezve ki lehet számolni, illetve majd a jövőben meg is mérhető. Ennek alapján eldönthető, hogy a kvantumos jelenségek világában érvényben marad-e a termodinamika? Az elméleti vizsgálatok eddig ellentmondásos eredményekre vezettek. Egyes kvantumelméleti elemzések szerint sérül a hatásfok Carnot-képlete, mások szerint a két kvantum szabadsági fokú rendszerben is érvényesek a termodinamikai törvények. A témában közölt cikkek a fizikai kutatások egyik igen érdekes irányzatát képviselik. Alább a Quatum Optomechanical Heat Engine címmel megjelent cikket ismertetem (szerzők: K. Zhang, F. Bariani és P. Meystre; Phys. Rev. Lett. 11 (014) 15060). A nanoméretű rezonátor ω c frekvenciájú gerjeszthető módusát egy ω p frekvenciájú pumpáló lézer táplálja. Hatására α átlagértékű elektromágneses tér van jelen, amelynek idealizáltan nullának vehető a hőmérséklete. A rezonátor mozgatható rugalmas véglapjának helyzetét a külső nyomás és a fotonok fény-nyomásának egyensúlya állítja be. A záró véglap ω m 6
7 Fig. 4. Az Otto-motorok állandó térfogaton égetik el az üzemanyagot (4 1) és a dugattyú mozgásával változó térfogat adiabatikus folyamatként modellezhető (1 ). frekvenciájú mechanikai rezgést tud végezni és egy mikrohűtővel T m hőmérsékleten tartható. A kvantumos leírást az elektromágneses és a mechanikai átlagos rezgéshez képesti ingadozásokra alkalmazzák. A körfolyamat megvalósításának megértéséhez vizsgálni kell előbb a csatolt oszcillátorrezonátor rendszer kvantumos ingadozásait leíró Hamilton operátor sajátértékeit. A sugárzási tér kvantumainak számát az a, a keltő és eltüntető operátor pár változtatja, a mechanikai oszcillátorét a b, b pár. Ezekkel a Hamilton-operátor a következő alakú: H = r a a + ω m b b + G(b + b)(a + a). (14) A r csatolás arányos a pumpáló és a rezonancia frekvencia különbségével, azaz a rezonátor elhangoltságával. Az elhangoltság csökkentése a rezonátor gerjesztettségének (foton populációjának) a növekedését eredményezi. A kísérleti vizsgálatok szerint negatív elhangoltság esetén stabil a csatolt rendszer működése. A szabad mechanikai rezgést jellemző ω m frekvencia nem függ a rezonátor tulajdonságaitól. Az utolsó tag írja le a két változó csatoltságát. Tanulságos H sajátértékeinek tanulmányozása az elhangoltságot jellemző r függvényében. Miután a kétfajta kvantum közötti csatolás négyzetesen tartalmazza a-t és b-t, ezért ez a Hamilton-operátor is egzaktul diagonalizálható: H = ω A A A + ω B B B. (15) Az 5. ábrán a két sajátérték függését mutatjuk be r /ω m -től. Nagy negatív értékeire ω A lineárisan függ ettől a változótól, míg ω B függetlennek mutatkozik attól. Csatolás hiányában a két mennyiség r /ω m = 1.0-nél metszené egymást, de a csatolás miatt ott a két sajátérték elkerüli a szintek metszését, köztük G nagyságú rés nyílik. A r /ω m > 1.0 tartományban az ω B sajátérték függ lineárisan r /ω m -től. Úgy is jellemezhető a változás, hogy a r /ω m > 1.0 tartományban a B -gerjesztés fotonszerű, míg a -1-7
8 Fig. 5. Csatolt mechanikai és elektromágneses oszcillátor rendszerben fellépő szintkereszteződés nél kisebb értékekre mechanikai jellegű fonon. Ez a váltás komplementer ω A jellegének változásaival. A két sajátállapotot polaritonnak nevezték el. Az Otto-ciklust kizárólag a B-polariton jelenlétét feltételezve írjuk le, elhanyagolva az A- polariton esetleges gerjesztését. A kezdőállapotban a rezonátor B-terét a B B várható érték nem nulla értéke jellemzi az átlagtér fölött. r értéke legyen λ 0 és az elhangoltságot jellemő λ 0 /ω m >> 1 hányados mélyen a fonon-tartományban tartja a fluktuációkat. A körfolyamat 1. lépésében τ 1 idő alatt az elhangolást átviszik a λ 1 /ω m << 1 tartományba, aminek hatására a rezonátor módus gerjesztődik, megnő az átlagos fénynyomás, amelynek következtében megnő a rezonátor térfogata. Az áthangolást úgy kell elvégezni, hogy adiabatikus (izentropikus) legyen a tágulás, ami azt a követelményt jelenti, hogy B B értéke ne változzon. Azonban a lépést követően fonon-szerű gerjesztések helyett fotonszerű viselkedést mutatnak a B-kvantumok. Az izentropikus tágulás során a rendszer munkát végez, amint az a 6. ábra bal oldalán az 1)-gyel jelölt szakaszon látható. A jobb oldali ábrán képszerűen látszik, hogy a kezdő állapottól az első lépésben létrejövő állapot három vonatkozásban tér el: megnőtt a térfogata, megnőtt a rezonátor módus amplitudója (megnőtt a fotonszám), lecsökkent a rugalmas lap rezgési amplitudója (csökkent a fononszám). Ahhoz, hogy a folyamat termodinamikailag adiabatikus legyen, a τ 1 időnek jóval rövidebbnek kell lennie a foton és a mechanikai rezgési fonon kvantumok természetes csillapodását jellemző karakterisztikus időskáláknál: τ 1 << 1/κ, 1/γ. Ugyanakkor elég hosszúnak kell lennie ahhoz, hogy a fluktuációs kvantumoknak fononszerű kezdő jellege átalakulhasson fotonszerűbe: τ 1 >> 1/(G). A. lépésben a fotonszerűvé vált polariton elveszíti a fononok magasabb átlaghőmérsékletéhez tartozó energiáját, azaz termalizálódik. Ennek feltétele, hogy τ >> 1/κ. A relaxáció disszipációval megy végbe, azaz a rendszer hőt bocsát ki, ahogy az a 6. ábra bal oldali rajzán a ) jelű szakaszon meg is van jelölve. Ez a B-kvantumok számának csökkenésével jár, amit a ) folyamatból kialakuló hullámállapot kisebb amplitudója jelez 8
9 Fig. 6. A kvantum Otto-ciklus ábrázolása a p-v síkon (bal oldalon) és grafikus szemléletességgel (jobb oldalon) az ábrán. Ha a foton-gerjesztések relaxációja jóval nagyobb ütemben zajlik, mint a mechanikai gerjesztés kialakulása (κ >> γ), akkor a fotonok energia disszipácíója során nem történik érdemi térfogatváltozás (izokór folyamat). A 3. lépésben az elhangolás mértékét visszaállítják kezdeti értékére: λ 1 λ 0. Ezzel a rendszer nyomása csökken, ami a térfogat lecsökkenéséhez vezet. A visszahangolás tehát a rendszeren történő munkavégzéssel jár (lásd 6. ábra 3) szakasza!). Ennek izentropikus jellegét τ 3 -ra ugyanazokkal a feltételekkel lehet biztosítani, mint az 1) lépésben. Ugyanakkor az újra fononszerűvé alakult gerjesztések végső száma ez után a szakasz után kisebb, mint a teljes folyamat kezdetén volt. A 4. lépéssel a rugalmas lapkát a meleg (T M =,7 K) hőtartállyal hozzák kapcsolatba, amely helyreállítja a kiinduló (nagyobb) fononszerű polaritonszámot. Ez a folyamat állandó térfogaton zajlik (bal oldali diagram 4) szakasza!) és eredményeképpen a rendszer visszatér kiinduló állapotába. Ehhez a τ 4 >> 1/γ feltételnek kell teljesülnie. A változtatási időhosszak és a karakterisztikus termalizációs idők bonyolult egyenlőtlenségrendszere sejteti, hogy a javasolt séma megvalósítása nem könnyű feladat. Ezzel most nem törődve, megvizsgáljuk a rendszer hasznos munkavégzési hatásfokát. A termodinamikai összefüggések érvényességét elfogadva, makroszkopikus hatásfokot az alábbiak szerint tudunk definiálni. A B-alrendszer belső energiájának megváltozása az első adiabatikus lépésben az általa végzett munka ellentettje: L 1 = N Bi (ω Bf ω Bi ). (16) A. lépésben leadott hő mennyisége: Q = ω Bf (N Bf N Bi ). (17) A 3. lépésben az első lépésre vonatkozó képlettel analógiában érvényes L = N Bf (ω Bi ω Bf ), (18) csakúgy mint a 4. lépésben, amikor a hőfelvétel a. lépéssel analóg módon értékelhető : Q 4 = ω Bi (N Bi N Bf ). (19) 9
10 A hatásfok a teljes munka (L 1 + L 3 ) aránya a felvett hő mennyiségéhez (Q 4 ): η = L 1 + L 3 Q 4 = 1 ω Bf ω Bi. (0) A hatásfoknak közvetlenül a kvantumdinamikára alapozott kiszámításával vagy majdani mérésekkel történő összehasonlítással lesz eldönthető, hogy a termodinamika érvényességi tartománya kiterjeszthető-e a mikroobjektumokkal véghezvitt körfolyamatokra. 3 Kvantum képalkotás Egy f(x, y) elektron-oszlopsűrűséggel jellemezhető lemezre érkező A amplitudójú síkhullám T (x, y)e iγ(x,y) A amplitúdóval halad tovább. Itt a 0 < T (x, y) < 1 valós együttható a nyaláb intenzitásának gyengülését írja le, aminek oka a lemezben elnyelődő vagy abból kiszóródó fotonveszteség. A kiszóródás valószínűségsűrűségét 1 T (x, y) adja meg a lemez (x, y) pontjában. A felfogó ernyőn kialakuló T (x, y)a intenzitáseloszlás akkor hívható képnek, ha T (x, y) f(x, y). Ez nemcsak fotonokkal valósítható meg, de így működik áteső sugárzás üzemmódban a 3.5 alfejezetben bemutatott pásztázó elektronmikroszkóp is. A kvantum képalkotást olyan nyalábbal valósítják meg, amelyik nem is szóródik a tárgylemezen. Erre a lehetőséget az azonos állapotú objektumok kvantummechanikai megkülönböztethetetlensége adja. A leképező elrendezést a Mach-Zehnder interferométer (lásd 1.1 alfejezet, 13.oldal!) megszokott elrendezésébe illesztették bele. A h ág, illetve a g ág végében elhelyezkedő detektorokban a c és e jelzetű pályaszakaszokra érkező amplitudók hozzák létre az interferenciát (sárga színezésű vonalak). A c szakaszra érkező foton-amplitudó megállapításához tekintsük a BS1 nyalábosztó utáni a szakaszon érkező A/ amplitudójú, λ a = 53nm hullámhosszú foton nyaláb fejlődését az NL1-D1-T útvonalon. Az NL1 nemlineáris kristály (lásd 6.1 alfejezet, oldal!) felhasítja a ráeső fotont λ c = 810nm és λ d = 1550nm hullámhosszú két fotonra. A kialakuló állapot amplitudóját A c A d -vel jelöljük. Ezen az ágon végül a jelzetlen tükörtől visszaverődéskor A c kap egy i fázist. Ahhoz, hogy a c ágon érkező foton amplitudóját pontosan megadjuk, végig kell követnünk a d karon induló amplitudót is (barnásvörös vonal). A D1 dikroikus tükör csak ezt a hullámhosszt tükrözi, tehát ott az A d amplitudó kap egy i fázisszorzót. Ezután szóródik a tárgyon, amelynek hatására a továbbhaladó amplitudó it e iγ A d / + 1 T A veszt alakú lesz. Végül két dikroikus tükrözés (D és D3) irányítja kilépését a berendezésből. Tehát a BS-vel történő detektálást megelőzően a c szakaszhoz rendelhető kétfotonos állapot A c = 1 [ it e iγ A d + 1 T A veszt ] iac, (1) 10
11 ahol egyetlen állapotba sűrítettük a kiszórási folyamatokkal elvesztett részét az amplitúdónak. Az e karon érkező foton-amplitudót a b karra leosztott ia/ amplitudó haladását követve adhatjuk meg (zöld színezésű vonal). Az újabb tükrözés okán az NL nemlineáris kristályra A/ amplitudó kerül, amelyből a felhasítást követően a A e A f / szorzat állapot jön létre. Mindezek alapján az A e = i A e A f () állapot jön létre. A két járulékból a szokásos fázisszorzókkal képezhető a h, illetve a g karra érkező kétfotonos állapot: A h = 1 [A e + ia c ], A g = 1 [ia e + A c ]. (3) Most vehető figyelembe, hogy az A c és A e amplitudók ugyanannak a fotonnak két lehetséges útját jelölik, amire a közös A jel jelölés vezethető be. Ezzel A h = i [ T e iγ A d A f + ] 1 T A veszt Ajel, A g = 1 [ T e iγ A d + A f + ] 1 T A veszt Ajel. (4) Ha az A d és az A f állapotú foton-amplitudók különbözők, akkor a kapcsolódó detektorokkal koincidenciában mérve A jel -et, megtudható melyik nemlineáris kristályból jött a jel, ezért nincs interferencia: a zárójelben szereplő állapotok együtthatói abszolút értéknégyzeteinek összege adja az egyes detektorok megszólalási valószínuűségeit. Ha a D dikroikus tükör segítségével az A d fotont tökéletesen párhuzamosítják a A f -fel, az NL hatására keletkező λ d hullámhosszú komponens megkülönböztethetlen lesz a d-ről érkezőtől, amplitudójukat közösen A elrejt -tel jelöljük: A h = i [ (T e iγ 1)A elrejt + ] 1 T A veszt Ajel, A g = 1 [ (T e iγ + 1)A elrejt + ] 1 T A veszt Ajel. (5) Miután a veszteségként, illetve a koherens A elrejt állapotban nem(!) detektált amplitudók nem interferálnak, a megszólalási valószínűségek a következők: P h = 1 4 P g = 1 4 ( (1 T cos γ) + T sin γ) ) (1 T ) = 1 (1 T cos γ), ( (1 + T cos γ) + T sin γ) ) (1 T ) = 1 (1 + T cos γ). (6) 11
12 Fig. 7. A szórt foton detektálása nélküli képalkotás elvi elrendezése Ha a nyaláb elég nagy felbontással tapogatja le a szóró tárgyat, akkor nem egyszerűen interferenciát, de a transzverzális síkbeli helyzettől függő modulációt is lehet segítségével észlelni, amiből mind a T (x, y) áteresztési tényező, mind a fázistolási információ rekonstruálható, azaz kép is alkotható. Ezt az ideális mérési elrendezést, amelyet 1991-ben Zou, Wang és Mandel javasoltak (Phys. Rev. Lett oldal), 014-ben G. Barreto Lamos és munkatársai megvalósították (Nature 51, 409. oldal). 1
Bevezetés a kvantumfizikába:
Bevezetés a kvantumfizikába: kiegészítő alfejezetek Patkós András a a Atomfizikai Tanszék, Eötvös Loránd Tudományegyetem, H-1117 Budapest 1 Atomi állapotok manipulálása üregrezonátorral 01-ben Serge Haroche
Bevezetés a kvantumfizikába:
Bevezetés a kvantumfizikába: kiegészítő alfejezetek Patkós András a a Atomfizikai Tanszék, Eötvös Loránd Tudományegyetem, H-1117 Budapest 1 Atomi állapotok manipulálása üregrezonátorral 01-ben Serge Haroche
Hőtan I. főtétele tesztek
Hőtan I. főtétele tesztek. álassza ki a hamis állítást! a) A termodinamika I. főtétele a belső energia változása, a hőmennyiség és a munka között állaít meg összefüggést. b) A termodinamika I. főtétele
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html
Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)
Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken
1. Feladatok a termodinamika tárgyköréből
. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással.. Feladat: (HN 9A-5) Egy épület téglafalának mérete: 4 m 0 m és, a fal 5 cm vastag. A hővezetési együtthatója λ = 0,8 W/m K. Mennyi
Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése
Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu
Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény
Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció
http://www.flickr.com Az atommag állapotait kvantummechanikai állapotfüggvénnyel írjuk le. A mag paritását ezen fv. paritása adja meg. Paritás: egy állapot tértükrözéssel szemben mutatott viselkedését
2, = 5221 K (7.2)
7. Gyakorlat 4A-7 Az emberi szem kb. 555 nm hullámhossznál a Iegnagyobb érzékenységű. Adjuk meg annak a fekete testnek a hőmérsékletét, amely sugárzásának a spektrális teljesitménye ezen a hullámhosszon
Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői
Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési
Hangfrekvenciás mechanikai rezgések vizsgálata
Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk
Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez
A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási
Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje
Kvantummechanika gyakorlat 015 1. Beadandó feladatsor Határid : 4. heti gyakorlatok eleje 1. Mutassuk meg, hogy A és B tetsz leges operátorokra igaz, hogy e B A e B = A + [B, A] + 1![ B, [B, A] ] +....
OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István
OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt
Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (a) Kvantummechanika Utolsó módosítás: 2015. november 15. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
1. ábra. 24B-19 feladat
. gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,
A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra
. Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától
Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)
Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok
Termodinamika (Hőtan)
Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi
Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele
Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:
Mechanika I-II. Példatár
Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását
Termodinamikai bevezető
Termodinamikai bevezető Alapfogalmak Termodinamikai rendszer: Az univerzumnak az a részhalmaza, amit egy termodinamikai vizsgálat során vizsgálunk. Termodinamikai környezet: Az univerzumnak a rendszeren
Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben
Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben Demeter Gábor MTA Wigner Fizikai Kutatóközpont, RMI Demeter Gábor (MTA Wigner RCP... / 4 Bevezetés / Motiváció
Kvantumos jelenségek lézertérben
Kvantumos jelenségek lézertérben Atomfizika Benedict Mihály SZTE Elméleti Fizikai Tanszék Az előadást támogatta a TÁMOP-4.2.1/B-09/1/KONV-2010-0005 sz. Kutatóegyetemi Kiválósági Központ létrehozása a Szegedi
Az Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
Abszorpció, emlékeztetõ
Hogyan készültek ezek a képek? PÉCI TUDMÁNYEGYETEM ÁLTALÁN RVTUDMÁNYI KAR Fluoreszcencia spektroszkópia (Nyitrai Miklós; február.) Lumineszcencia - elemi lépések Abszorpció, emlékeztetõ Energia elnyelése
Kvantumos információ megosztásának és feldolgozásának fizikai alapjai
Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kis Zsolt Kvantumoptikai és Kvantuminformatikai Osztály MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33
2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 24. Leadás dátuma: 2008. 10. 01. 1 1. Mérések ismertetése Az 1. ábrán látható összeállításban
A TERMODINAMIKA I. AXIÓMÁJA. Egyszerű rendszerek egyensúlya. Első észrevétel: egyszerű rendszerekről beszélünk.
A TERMODINAMIKA I. AXIÓMÁJA Egyszerű rendszerek egyensúlya Első észrevétel: egyszerű rendszerekről beszélünk. Második észrevétel: egyensúlyban lévő egyszerű rendszerekről beszélünk. Mi is tehát az egyensúly?
Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.
Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak
Hangfrekvenciás mechanikai rezgések vizsgálata
KLASSZIKUS FIZIKA LABORATÓRIUM 3. MÉRÉS Hangfrekvenciás mechanikai rezgések vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 23. Szerda délelőtti csoport 1. A
Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19.
és lézerek Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Fény és anyag kölcsönhatása 2 / 19 Fény és anyag kölcsönhatása Fény és anyag kölcsönhatása E 2 (1) (2) (3) E 1 (1) gerjesztés (2) spontán
A hőmérsékleti sugárzás
A hőmérsékleti sugárzás Felhevített tárgyak több száz fokos hőmérsékletet elérve először vörösen majd még magasabb hőmérsékleten sárgán izzanak, tehát fényt (elektromágneses hullámokat a látható tartományban)
Modern fizika vegyes tesztek
Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak
Rezgések és hullámok
Rezgések és hullámok A rezgőmozgás és jellemzői Tapasztalatok: Felfüggesztett rugóra nehezéket akasztunk és kitérítjük egyensúlyi helyzetéből. Satuba fogott vaslemezt megpendítjük. Ingaóra ingáján lévő
Koherens fény (miért is különleges a lézernyaláb?)
Koherens fény (miért is különleges a lézernyaláb?) Inkoherens fény Atomok egymástól függetlenül sugároznak ki különböző hullámhosszon sugároznak ki elektromágneses hullámokat Pl: Termikus sugárzó Koherens
Kifejtendő kérdések június 13. Gyakorló feladatok
Kifejtendő kérdések 2016. június 13. Gyakorló feladatok 1. Adott egy egyenletes térfogati töltéssel rendelkező, R sugarú gömb, melynek felületén a potenciál U 0. Az elektromos potenciál definíciója (1p)
1. Az üregsugárzás törvényei
1. Az üregsugárzás törvényei 1.1. A Wien féle eltolódási törvény és a Stefan-Boltzmann törvény Egy zárt, belül üres fémdoboz kis nyílása az úgynevezett abszolút fekete test. A nyílás elektromágneses sugárzást
Koherens fény (miért is különleges a lézernyaláb?)
Koherens fény (miért is különleges a lézernyaláb?) Inkoherens fény Atomok egymástól függetlenül sugároznak ki különböző hullámhosszon, különböző fázissal fotonokat. Pl: Termikus sugárzó Koherens fény Atomok
Alkalmazás a makrókanónikus sokaságra: A fotongáz
Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,
Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 25. A mérés száma és címe: 5. ESR (Elektronspin rezonancia) Értékelés: A beadás dátuma: 2011. nov. 16. A mérést végezte: Szőke Kálmán Benjamin
Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete
Fizika feladatok 2014. november 28. 1. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással 1.1. Feladat: (HN 19A-23) Határozzuk meg egy 20 cm hosszú, 4 cm átmérőjű hengeres vörösréz
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen
Lézerek. Extreme Light Infrastructure. Készítette : Éles Bálint
Lézerek Extreme Light Infrastructure Készítette : Éles Bálint Elmélet A lézer olyan fényforrás, amely indukált emissziót használ egybefüggő fénysugár létrehozására Egybefüggőség definíciója: Koherens hullámok
Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.
Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg
KVANTUMMECHANIKA. a11.b-nek
KVANTUMMECHANIKA a11.b-nek HŐMÉRSÉKLETI SUGÁRZÁS 1 Hősugárzás: elektromágneses hullám A sugárzás által szállított energia: intenzitás I, T és λkapcsolata? Példa: Nap (6000 K): sárga (látható) Föld (300
A hőmérsékleti sugárzás
A hőmérsékleti sugárzás Alapfogalmak 1. A hőmérsékleti sugárzás Értelmezés (hőmérsékleti sugárzás): A testek hőmérsékletével kapcsolatos, a teljes elektromágneses spektrumra kiterjedő sugárzást hőmérsékleti
Atomok és molekulák elektronszerkezete
Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre
dinamikai tulajdonságai
Szilárdtest rácsok statikus és dinamikai tulajdonságai Szilárdtestek osztályozása kötéstípusok szerint Kötések eredete: elektronszerkezet k t ionok (atomtörzsek) tö Coulomb- elektronok kölcsönhatás lokalizáltak
A lézer alapjairól (az iskolában)
A lézer alapjairól (az iskolában) Dr. Sükösd Csaba c. egyetemi tanár Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalom Elektromágneses hullám (fény) kibocsátása Hogyan bocsát ki fényt egy atom? o
FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István
Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:
Belső energia, hőmennyiség, munka Hőtan főtételei
Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.
Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás
Csillapított rezgés Csillapított rezgés: A valóságban a rezgések lassan vagy gyorsan, de csillapodnak. A rugalmas erőn kívül, még egy sebességgel arányos fékező erőt figyelembe véve: a fékező erő miatt
A kémiai kötés eredete; viriál tétel 1
A kémiai kötés ereete; viriál tétel 1 Probléma felvetés Ha egy molekula atommagjai közötti távolság csökken, akkor a közöttük fellép elektrosztatikus taszításhoz tartozó energia n. Ugyanez igaz az elektronokra
Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVIII-a, Cluj-Napoca Proba teoretică, 1 iunie II. Feladat: Lézer (10 pont)
Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVIII-a, Cluj-Napoca Proba teoretică, 1 iunie 2015 II. Feladat: Lézer (10 pont) A lézer (LASER) mozaikszót Gordon Gould amerikai fizikus
Szilárd testek sugárzása
A fény keletkezése Szilárd testek sugárzása A szilárd test melegítés hatására fényt bocsát ki A sugárzás forrása a közelítőleg termikus egyensúlyban lévő kibocsátó test atomi részecskéinek véletlenszerű
A fény korpuszkuláris jellegét tükröző fizikai jelenségek
A fény korpuszkuláris jellegét tükröző fizikai jelenségek A fény elektromágneses sugárzás, amely hullámjelleggel és korpuszkuláris sajátosságokkal is rendelkezik. A fény hullámjellege elsősorban az olyan
Q 1 D Q 2 (D x) 2 (1.1)
. Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol
A spin. November 28, 2006
A spin November 28, 2006 1 A spin a kvantummechanikában Az elektronnak és sok más kvantummechanikai részecskének is van egy saját impulzusnyomatéka amely független a mozgásállapottól. (Úgy is mondhatjuk,
Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz
Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas
GROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15.
ELTE, MSc II. 2011.dec.15. Áttekintés Feladat Algoritmus Kvantum keresési algoritmus áttekintése Input: N = 2 n elemű tömb, Ψ 1 = 0 1 kezdőállapot, f x0 (x) orákulum függvény. Output: x 0 keresett elem
Fizika 2 - Gyakorló feladatok
2015. június 19. ε o =8.85 10-12 AsV -1 m -1 μ o =4π10-7 VsA -1 m -1 e=1,6 10-19 C m e =9,11 10-31 kg m p =1,67 10-27 kg h=6,63 10-34 Js 1. Egy R sugarú gömbben -ρ állandó töltéssűrűség van. a. Határozza
Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1
Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása
FIZIKA II. Dr. Rácz Ervin. egyetemi docens
FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés
Evans-Searles fluktuációs tétel Crooks fluktuációs tétel Jarzynski egyenlőség
Evans-Searles fluktuációs tétel Crooks fluktuációs tétel Jarzynski egyenlőség Osváth Szabolcs Evans-Searles fluktuációs tétel Denis J Evans, Ezechiel DG Cohen, Gary P Morriss (1993) Denis J Evans, Debra
Vezetők elektrosztatikus térben
Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)
Abszorpciós spektrumvonalak alakja. Vonalak eredete (ld. előző óra)
Abszorpciós spektrumvonalak alakja Vonalak eredete (ld. előző óra) Nagysága Kiszélesedése Elem mennyiségének becslése a vonalerősségből Elemi statfiz Boltzmann-faktor: Megadja egy állapot súlyát a sokaságban
Kémiai alapismeretek 2. hét
Kémiai alapismeretek 2. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2014. szeptember 9.-12. 1/13 2014/2015 I. félév, Horváth Attila c Hullámtermészet:
A kvantummechanika a kísérletezők kezében
A kvantummechanika a kísérletezők kezében a 2012. évi fizikai Nobel Díj http://titan.physx.u-szeged.hu/~benedict/nobel12web.pdf Benedict Mihály, SZTE Elméleti Fizikai Tanszék * LIMIT: Light-Matter Interaction
Termodinamika. Belső energia
Termodinamika Belső energia Egy rendszer belső energiáját az alkotó részecskék mozgási energiájának és a részecskék közötti kölcsönhatásból származó potenciális energiák teljes összegeként határozhatjuk
2015/16/1 Kvantummechanika B 2.ZH
2015/16/1 Kvantummechanika B 2.ZH 2015. december 10. Információk 0. A ZH ideje minimum 90 perc, maximum 180 perc. 1. Az összesen elérhet pontszám 270 pont. 2. A jeles érdemjegy eléréséhez nem szükséges
Koherens lézerspektroszkópia adalékolt optikai egykristályokban
Koherens lézerspektroszkópia adalékolt optikai egykristályokban Kis Zsolt MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33 2015. június 8. Hogyan nyerjünk információt egyes
FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István
Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:
Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.
SZABÓ JÁNOS: Fizika (Mechanika, hőtan) I. TARTALOMJEGYZÉK Előszó.. Bevezetés. 1. A fizikai megismerés alapjai... 2. Tér is idő. Hosszúság- és időmérés. MECHANIKA I. Az anyagi pont mechanikája 1. Az anyagi
Egy mozgástani feladat
1 Egy mozgástani feladat Előző dolgozatunk melynek jele és címe: ED ~ Ismét az ellipszis egyenleteiről folytatásának tekinthető ez az írás. Leválasztottuk róla, mert bár szorosan kapcsolódnak, más a céljuk.
Röntgensugárzás. Röntgensugárzás
Röntgensugárzás 2012.11.21. Röntgensugárzás Elektromágneses sugárzás (f=10 16 10 19 Hz, E=120eV 120keV (1.9*10-17 10-14 J), λ
Anyagi tulajdonságok meghatározása spektrálisan
Ágazati Á felkészítés a hazai EL projekttel összefüggő ő képzési é és K+F feladatokra" " 9. előadás Anyagi tulajdonságok meghatározása spektrálisan bontott interferometriával (SR) 1 Bevezetés A diszperzív
Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez
1 Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez Havancsák Károly Dankházi Zoltán Ratter Kitti Varga Gábor Visegrád 2012. január Elektron diffrakció 2 Diffrakció - kinematikus elmélet
Mechanikai hullámok. Hullámhegyek és hullámvölgyek alakulnak ki.
Mechanikai hullámok Mechanikai hullámnak nevezzük, ha egy anyagban az anyag részecskéinek rezgésállapota továbbterjed. A mechanikai hullám terjedéséhez tehát szükség van valamilyen anyagra (légüres térben
Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete
Hullámmozgás Mechanikai hullámok A hang és jellemzői A fény hullámtermészete A hullámmozgás fogalma A rezgési energia térbeli továbbterjedését hullámmozgásnak nevezzük. Hullámmozgáskor a közeg, vagy mező
Modern Fizika Labor. Értékelés: A mérés dátuma: A mérés száma és címe: Az optikai pumpálás. A beadás dátuma: A mérést végezte:
Modern Fizika Labor A mérés dátuma: 2005.10.19. A mérés száma és címe: 7. Az optikai pumpálás Értékelés: A beadás dátuma: 2005.10.28. A mérést végezte: Orosz Katalin Tóth Bence Optikai pumpálás segítségével
Nanoelektronikai eszközök III.
Nanoelektronikai eszközök III. Dr. Berta Miklós bertam@sze.hu 2017. november 23. 1 / 10 Kvantumkaszkád lézer Tekintsünk egy olyan, sok vékony rétegbõl kialakított rendszert, amelyre ha külsõ feszültséget
AZ ELEKTROMÁGNESES SUGÁRZÁS KETTŐS TERMÉSZETE
AZ ELEKTROMÁGNESES SUGÁRZÁS KETTŐS TERMÉSZETE A Planck-féle sugárzási törvény Hipotézis 1.: A hősugárzást (elektromágneses hullámokat) kis, apró rezgő oszcillátorok hozzák létre. Egy ilyen oszcillátor
2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések
. REZGÉSEK.1. Harmonikus rezgések: Harmonikus erő: F = D x D m ẍ= D x (ezt a mechanikai rendszert lineáris harmonikus oszcillátornak nevezik) (Oszcillátor körfrekvenciája) ẍ x= Másodrendű konstansegyütthatós
ω mennyiségek nem túl gyorsan változnak
Licenszvizsga példakérdések Fizika szak KVANTUMMECHANIKA Egy részecskére felírt Schrödinger egyenlet szétválasztható a három koordinátatengely irányában levő egydimenziós egyenletre ha a potenciális energiára
Evans-Searles fluktuációs tétel
Az idő folyásának iránya Evans-Searles fluktuációs tétel Osváth Szabolcs Semmelweis Egyetem a folyamatok iránya a termodinamikai második főtétele alapján Nincs olyan folyamat, amelynek egyetlen eredménye,
Gáztörvények tesztek
Gáztörvények tesztek. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik gázmennyiség jellemzői,,, a másiké,,. A két tartályt összenyitjuk. Melyik állítás igaz?
Gáztörvények tesztek. 2. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik
Gáztörvények tesztek. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik gázmennyiség jellemzői,,, a másiké,,. A két tartályt összenyitjuk. Melyik állítás igaz?
1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:
Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál
összetevője változatlan marad, a falra merőleges összetevő iránya ellenkezőjére változik, miközben nagysága ugyanakkora marad.
A termodinamika 2. főtétele kis rendszerekben Osváth Szabolcs Semmelweis Egyetem Statisztikus sokaságok Nyomás Nyomás: a tartály falával ütköző molekulák, a falra erőt fejtenek ki Az ütközésben a részecske
3. POLIMEREK DINAMIKUS MECHANIKAI VIZSGÁLATA (DMA )
3. POLIMEREK DINAMIKUS MECHANIKAI VIZSGÁLATA (DMA ) 3.1. A GYAKORLAT CÉLJA A gyakorlat célja a dinamikus mechanikai mérések gyakorlati megismerése polimerek hajlító viselkedésének vizsgálata során. 3..
Biofizika. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? A biológiában és orvostudományban alkalmazott fizikai módszerek tárgyalása
Biofizika Csik Gabriella Eötvös Loránd kora diákjait tréfásan jellemzi : határozott céllal jön az egyetemre, ügyvéd, politikus vagy orvos akar lenni. Amint az egyetembe lép, kritizálja tanárait, s az egész
A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a
a Matematika mérnököknek I. című tárgyhoz Függvények. Függvények A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a szabadon eső test sebessége az idő függvénye. Konstans hőmérsékleten
ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő
ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK Kalocsai Angéla, Kozma Enikő RUTHERFORD-FÉLE ATOMMODELL HIBÁI Elektromágneses sugárzáselmélettel ellentmondásban van Mivel: a keringő elektronok gyorsulnak Energiamegmaradás
Akusztikai tervezés a geometriai akusztika módszereivel
Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika
Osztályozó vizsga anyagok. Fizika
Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes
Pásztázó elektronmikroszkóp. Alapelv. Szinkron pásztázás
Pásztázó elektronmikroszkóp Scanning Electron Microscope (SEM) Rasterelektronenmikroskope (REM) Alapelv Egy elektronágyúval vékony elektronnyalábot állítunk elő. Ezzel pásztázzuk (eltérítő tekercsek segítségével)
Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13.
Fizika Nyitray Gergely (PhD) PTE PMMIK 017. február 13. A lejtő mint kényszer A lejtő egy ún. egyszerű gép. A következő problémában először a lejtőt rögzítjük, és egy m tömegű test súrlódás nélkül lecsúszik
Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;