A Középbirodalom korának aritmetikája Egyiptomban.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A Középbirodalom korának aritmetikája Egyiptomban."

Átírás

1 Történeti bevezetés Néhány történelmi mérföldkő. A Középbirodalom korának aritmetikája Egyiptomban. Klukovits Lajos TTIK Bolyai Intézet 206. február. A két birodalom. Kapcsolat Mezopotámiával a 4. évezred vége felé: az első írás, a hieroglifikus, kialakulása. Az első egyesítés I.e. 300 körül, Narmer (Menész) fáraó, a vezető szerep Felső-Egyiptomé. A Narmer-kőtábla (jellegzetes ábrázolás). Óbirodalom kora: piramisépítések, és más építészeti, szobrászati emlékek (Abu Simbel, írnok), irodalmi alkotások (Imhotep intelmei) I.e tól az első átmeneti kor: a birodalom kettéválik. kb. I.e ben II. Mentuhotep ismét egyesíti a két királyságot. a Középbirodalom kora. Fajjumi víztározó, Szinuhe története, matematikai papirusztekercsek (Rhind, Golenisev, stb.). Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. / Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 2 / Történeti bevezetés Néhány történelmi mérföldkő. A két birodalom. I.e. 750 körül, külső (hikszosz) támadás, megbukik az egységes birodalom a második átmeneti kor. 600-tól ismét egységes birodalom: az Újbirodalom. I.e. 280: Manetho listája a 3 dinasztiáról. Az egyiptomi írások. A hieroglifikus írás képírás, hasonló a másutt, pl. Mezopotámiában használthoz, eredete nem világos, első változata vélhetően még az Óbirodalom előtti időből származik körül egyszerűsödött, kurzívabbá vált Ez a hieratikus írás vált általánosan használttá. Az Újbirodalom vége felé, kb. a I.e. VII. században további egyszerűsítés, kurziválás: a démotikus írás. Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 3 / Történeti bevezetés Néhány történelmi mérföldkő. Az egyiptomi írások megfejtése. 799, a Rozetta kő megtalálása. A I.e. II. század elejéről származik, egyiptomi (hieroglifikus és démotikus) írással, valamint görög nyelven szerepel ugyanaz a szöveg: Memphis főpapja istenként, istenek fiaként köszönti V. Ptolemaioszt. 820-tól Champolion és T. Young előbb a görög ismeretében megfejtette a két egyiptomi írást, majd interpolációval megkapták a hieratikus írás megfejtését is. Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 4 /

2 Történeti bevezetés Rosetta kő. Hieroglifikus számok Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 5 / Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 6 / Hieratikus és démotikus számok Számírásuk. 0-es alapú és nem helyiértékes, a 0 hatványainak különböző jele volt. Törteket is használtak, DE... : összeadás. Additív jellegű, ebben a rendszerben egyszerű összeadni. Kezdetben minden műveletet a kettőzésre és az összeadásra vezettek vissza, később tízszereztek és feleztek is. Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 7 / Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 8 /

3 Szorzás kettőzésekkel (hieroglifikusan): 2 2. Szorzás kettőzésekkel (mai jelölésekkel). Ismételt összeadásként végezték: kettőzések után. A 2 3 kiszámítása (mai számírással): Az első oszlopban a -mal jelzett sorokban = 2 áll, így a második oszlop alapján 2 3 = = 56. Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 9 / Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 0 / Szorzás tízszerezéssel és felezéssel (hieroglifikusan): 6 6. Szorzás tízszerezéssel és felezéssel (mai jelölésekkel) A 7 3 kiszámítása tízszerezéssel és felezésel: a számolás alapján a 7 3 szorzat, lévén 7 = , nem más, mint , azaz 22. Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. / Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 2 /

4 Szorzás mindkét úton (hieroglifikusan): 5 0 Osztás. Az előbbi szorzás alapján az osztás is elvégezhető akkor, ha a hányados egész, mivel additív aritmetikájukban az a : b ugyanis azt jelentette, hogy számolj b-vel addig, amíg a-t kapsz. Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 3 / Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 4 / Törtek Osztás. Bonyolultabb azonban a helyzet akkor, ha a hányados nem egész. Meg kell vizsgálni: hogyan számoltak törtekkel, egyáltalán milyen törtekkel tudtak számolni. Törtek. A korabeli egyiptomiak számára általában nem léteztek az m n csak az n alakúak. Törtek: jelölések. alakú törtek, Saját jele csak az n alakú törteknek, valamint a 2 3-nak volt. Ezeket n és 3 fogja jelölni. Törtek Számolás törtekkel. Három formula a Londoni bőrtekercsből = = = 3 Számolás törtekkel. Ezekből könnyen kaphatók a Rhind-papiruszon gyakran alkalmazott = = 3 = Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 5 / Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 6 /

5 Törtek Törtek Számolás törtekkel. egyenlőségek = = + 6 Az elemi törtek kéteszerezése. Az egészek kétszerezése (tízszerezése, felezése) egyszerű, de a törteké? Világos, hogy a többszöri kétszerezés igen hosszú számalakokhoz vezet. Fontos fölfedezésük: az n kétszerezése ugyanazon számhoz vezet, mintha a 2-t n-felé osztanánk. A 2: n számolások eredményét az 5 n 0 értékekre tartalmazza a Rhind papirusz elején található összeálĺıtás. Természetesen csak a páros n-ekre. Ezen összeálĺıtásra -ként is hivatkoznak olykor. Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 7 / Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 8 / 2 : 5 = : 53 = : 7 = : 55 = : = : 59 = : 3 = : 6 = : 7 = : 65 = : 9 = : 67 = : 23 = : 7 = : 25 = : 73 = : 29 = : 77 = : 3 = : 79 = : 35 = : 83 = : 37 = : 85 = : 4 = : 89 = : 43 = : 92 = : 47 = : 95 = : 49 = : 97 = : 5 = : 0 = Hogyan számolhatták ki a szereplő hányadosokat? Nem egységes elveket alkalmaztak, de minden esetben úgy jártak el, hogy a 2-t előálĺıtották, egy egynél nagyobb szám és egy, kettő vagy három (elemi) tört összegeként. Az első tag mai terminológiával olyan tört volt, amelynek számlálója az aktuális n osztó. Az első tag megtalálásában nem voltak következetesek. Például, ha n = 3k, akkor mindig a 2 = fölbontást használták, ami megfelelne a 2 3k = 2k + 6k azonosság alkalmazásának, DE ez XX. századi és nem korabeli gondolat! Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 9 / Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 20 /

6 .példa: 2: 7 = A papiruszon ez olvasható (mai jelölésekkel): az 2 3 az 5 Vegyük észre: = 7 2. A számolás az 68..példa: 2: 7 = A maradék (a hiány) 3 + 4, hiszen ( 4 + ( 6) ) = 2, azaz ennyi kell még a 2-höz. Ezt még elő kell álĺıtani 7-edekben. Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 2 / Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 22 /.példa: 2: 7 = Ennek kiszámítása Megjegyzés. Vegyük észre, hogy közben fölhasználta az egyenlőséget = Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 23 / 2.példa: 2: 3 = A kezdő sor: az 20, 4 az, 24 5 az 55. A számolás az előbbihez hasonló A papiruszon az írnok az első sort is megjelölte, ami másolási hiba. A 2 fölbontása most ( 2 = 2 + ) Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 24 /

7 Elemzés Az előző két esetben a 2 fölbontása első tagja = = 3 20, azaz olyan tört, amelynek számlálója épp a kettőzendő tört nevezője. Utána előbb ezt kiegészítette 2-re, majd a kiegészítést előálĺıtotta megfelelő törtekként. Hogyan jött rá az írnok??? 3.példa: 2: 35 = A számolás eltér az eddigiektől. Az első sor A számolás + 6 az az Mi a vörös számok kisegítő számoknak fogjuk nevezni szerepe? A 7 és az 5 jelezheti az 6 -ban és ban a hatodok számát, amit a kezdő hatos is alátámaszt. A fölbontás: 2 = ( + 6) + ( ). Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 25 / Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 26 / A Rhind 23. feladata. Elemzés. Mi egészíti ki a öt -re? A feladat lényegéban egy Az eredmény. A megoldás. 0 összesen : a maradék 4. Számolj 5-tel, míg 4-et kapsz A jelzett sorok jobb oldalán 3 + = 4 található, így az, amit hozzá kell adni. Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 27 / kivonás. (3 + 5) 2 A vörös kisegítő számok mutatják, hogy 5-ökben kellszámolni: az 3 és 0 számlálói 5-ödökben. 3 Maga a szám 4 5, így még 5 hiányzik, ezt álĺıtja elő a számolása Egy nehezebb feladat. A Rhind 23. problémája: Egészítsük ki az számot 3-ra Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 28 /

8 A Rhind 23. problémája. A Rhind 23. problémája. Egészítsük ki 3-ra. A papirusz szövege. Az eredmény öt Tehát et kell hozzáadni, hogy 3-at kapjunk. Folytatás. Az összeg Elemzés. A további részletek hiányoznak a papiruszról, de megadható egy lehetséges rekonstrukció. Hangsúlyozzuk, hogy ez csak egy lehetséges eljárás, semmi biztosat nem tudunk az eredeti gondolatmenetről. Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 29 / Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 30 / A Rhind 23. problémája. Rekonstrukció. A vörös kisegítő számok alapján az írnok 45-ökben számolt, ez a közös nevező. 2 A vörösen szereplő számlálók összege negyvenötöd, ezt kell kiegészíteni 3-ra, azaz re. 3 A hiányzó mennyiség 6 8 negyvenötöd, azaz negyvenötöd. 4 Ezt kell meghatározni, Egy (rövidített) számolás A Rhind 33. feladata. Egy mennyiséghez hozzáadva kétharmadát, felét és hetedét 37-et kapunk. A számolás (2 7 = ) (3 = 2 + 6) A már nagyon közel van a 37-hez. Ami hiányzik, az kiegészítője -re. Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 3 / Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 32 /

9 A vörös számok eredete. A szöveg alapján: A számolás 2. A kiegészítés a vörös kisegítő számokon alapul. A közös nevező azonban nem 28, hanem 42. Miért? Láttuk: a számlálóknak nem kell egészeknek lenniük, DE összegük már mindig egész. Ez 28-cal még nem, de 42-vel már teljesül A folytatás: az összeg 40, a maradék 2. 40, a kisegítő számok összege, de az egység 42 kisegítő egységet tartalmaz, tehát 2 még hiányzik. E 2-t úgy kapjuk, hogy az osztót, et, kisegítő egységekben fejezzük ki. Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 33 / Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 34 / A számolás az összeg 97 Azaz az osztó 97 kisegítő egységet tartalmaz, 97-ed része egyenlő 42-del. Már csak egy kétszerezés kell, ami a papiruszon a következő: A végeredmény. 37: ( ) = A kétszerezés a Rhind bevezető táblázatából való. Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 35 / Klukovits Lajos (TTIK Bolyai Intézet) - Számelmélet 206. február. 36 /

A Középbirodalom korának aritmetikája Egyiptomban.

A Középbirodalom korának aritmetikája Egyiptomban. Történeti bevezetés Néhány történelmi mérföldkő. A Középbirodalom korának aritmetikája Egyiptomban. Klukovits Lajos TTIK Bolyai Intézet 204. február 8. A két birodalom. Kapcsolat Mezopotámiával a 4. évezred

Részletesebben

Természeti viszonyok. Az Egyiptomi Középbirodalom matematikája. Az egyiptomi civilizáció kezdete. Kedvező földrajzi és éghajlati viszonyok.

Természeti viszonyok. Az Egyiptomi Középbirodalom matematikája. Az egyiptomi civilizáció kezdete. Kedvező földrajzi és éghajlati viszonyok. Természeti viszonyok. Az Egyiptomi Középbirodalom matematikája. Klukovits Lajos TTIK Bolyai Intézet 2017. február 16. Kedvező földrajzi és éghajlati viszonyok. Szinte minden oldalról természetes, nehezen

Részletesebben

Természeti viszonyok. Az Egyiptomi Középbirodalom matematikája. Az egyiptomi civilizáció kezdete. Kedvező földrajzi és éghajlati viszonyok.

Természeti viszonyok. Az Egyiptomi Középbirodalom matematikája. Az egyiptomi civilizáció kezdete. Kedvező földrajzi és éghajlati viszonyok. Természeti viszonyok. Az Egyiptomi Középbirodalom matematikája. Klukovits Lajos TTIK Bolyai Intézet 2015. szeptember 8. Kedvező földrajzi és éghajlati viszonyok. Szinte minden oldalról természetes, nehezen

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Hatványozás. A hatványozás azonosságai

Hatványozás. A hatványozás azonosságai Hatványozás Definíció: a 0 = 1, ahol a R, azaz bármely szám nulladik hatványa mindig 1. a 1 = a, ahol a R, azaz bármely szám első hatványa önmaga a n = a a a, ahol a R, n N + n darab 3 4 = 3 3 3 3 = 84

Részletesebben

Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;...

Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;... Egész számok természetes számok ( ) pozitív egész számok: 1; 2; 3; 4;... 0 negatív egész számok: 1; 2; 3; 4;... egész számok ( ) 1. Írd a következõ számokat a halmazábra megfelelõ helyére! 3; 7; +6 ; (

Részletesebben

;3 ; 0; 1 7; ;7 5; 3. pozitív: ; pozitív is, negatív is: ;

;3 ; 0; 1 7; ;7 5; 3. pozitív: ; pozitív is, negatív is: ; . A racion lis sz mok A tanult sz mok halmaza A) Ábrázold számegyenesen az alábbi számokat! 8 + + 0 + 7 0 7 7 0 0. 0 Válogasd szét a számokat aszerint, hogy pozitív: pozitív is, negatív is: negatív: sem

Részletesebben

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA tankönyv ötödikeseknek címû tankönyvéhez A heti 3 óra, évi 111 óra B heti 4 óra, évi 148 óra Javaslat témazáró dolgozatra: Dr. Korányi Erzsébet: Matematika

Részletesebben

Törtek. Rendelhetőek nagyon jó szemléltethető eszközök könyvesboltokban és internetek is, pl:

Törtek. Rendelhetőek nagyon jó szemléltethető eszközök könyvesboltokban és internetek is, pl: Törtek A törteknek kétféle értelmezése van: - Egy egészet valamennyi részre (nevező) osztunk, és abból kiválasztunk valahány darabot (számláló) - Valamennyi egészet (számláló), valahány részre osztunk

Részletesebben

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk. Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :

Részletesebben

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? 7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika

Részletesebben

A SZÁMFOGALOM KIALAKÍTÁSA

A SZÁMFOGALOM KIALAKÍTÁSA A SZÁMFOGALOM KIALAKÍTÁSA TERMÉSZETES SZÁMOK ÉRTELMEZÉSE 1-5. OSZTÁLY Számok értelmezése 0-tól 10-ig: Véges halmazok számosságaként Mérőszámként Sorszámként Jelzőszámként A számok fogalmának kiterjesztése

Részletesebben

Az ember tere - építészeti alapismeretek

Az ember tere - építészeti alapismeretek Az ember tere - építészeti alapismeretek 01 Egyiptom: a kezdetektől a Két Ország egyesítéséig Egyiptom mai kiterjedése, az ország az egyesítés korában 02 03 Korai dinasztiák időszaka, 1-2. din. (Archaikus

Részletesebben

Amit a törtekről tudni kell Minimum követelményszint

Amit a törtekről tudni kell Minimum követelményszint Amit a törtekről tudni kell Minimum követelményszint Fontos megjegyzés: A szabályoknak nem a pontos matematikai meghatározását adtuk. Helyettük a gyakorlatban használható, egyszerű megfogalmazásokat írtunk.

Részletesebben

1 Már a I.e. VIII. évezred elején is lakott volt a kellemetlen ökológiai. 3 Az első városok (falvak) kultikus helyeken 7000-től:

1 Már a I.e. VIII. évezred elején is lakott volt a kellemetlen ökológiai. 3 Az első városok (falvak) kultikus helyeken 7000-től: Mezopotámia a II. évezred előtt. Az Óbabyloni Birodalom aritmetikája és számelmélete. Klukovits Lajos TTIK Bolyai Intézet 204. február 25. Már a I.e. VIII. évezred elején is lakott volt a kellemetlen ökológiai

Részletesebben

Diophantosz, I.sz. 250 körül. Az alexandriai Diophantosz Aritmetikája. Legismertebb műve

Diophantosz, I.sz. 250 körül. Az alexandriai Diophantosz Aritmetikája. Legismertebb műve Diophantosz, I.sz. 250 körül Az alexandriai Diophantosz Aritmetikája Klukovits Lajos TTIK Bolyai Intézet 2014. március 11. Életéről egy rejtvény(sír)vers Vén Diophantoszt rejti e kő. Bár ő maga szunnyad,

Részletesebben

Középkori matematika

Középkori matematika Fizikatörténet Középkori matematika Horváth András SZE, Fizika és Kémia Tsz. v 1.0 Bevezetés Láttuk korábban: A természettudomány forradalmát a középkor társadalmi, technikai és tudományos eredményei készítik

Részletesebben

2005_01/1 Leírtunk egymás mellé hét racionális számot úgy, hogy a két szélső kivételével mindegyik eggyel nagyobb a két szomszédja szorzatánál.

2005_01/1 Leírtunk egymás mellé hét racionális számot úgy, hogy a két szélső kivételével mindegyik eggyel nagyobb a két szomszédja szorzatánál. Számolásos feladatok, műveletek 2004_1/1 Töltsd ki az alábbi bűvös négyzet hiányzó mezőit úgy, hogy a négyzetben szereplő minden szám különböző legyen, és minden sorban, oszlopban és a két átlóban is ugyanannyi

Részletesebben

A folyammenti kultúrák. (a, b, c) N 3 Pithagoraszi számhármas, ha. Pithagoraszi számhármasok, a Fermat problémakör. a 2 + b 2 = c 2.

A folyammenti kultúrák. (a, b, c) N 3 Pithagoraszi számhármas, ha. Pithagoraszi számhármasok, a Fermat problémakör. a 2 + b 2 = c 2. Pithagoraszi számhármasok, Klukovits Lajos TTIK Bolyai Intézet 016. április 7. Definíciók. (a, b, c) N 3 Pithagoraszi számhármas, ha a + b = c. Az x + y = z egyenletet szokás Pithagoraszi egyenletnek nevezni.

Részletesebben

1. fogalom. Add meg az összeadásban szereplő számok elnevezéseit! Milyen tulajdonságai vannak az összeadásnak? Hogyan ellenőrizzük az összeadást?

1. fogalom. Add meg az összeadásban szereplő számok elnevezéseit! Milyen tulajdonságai vannak az összeadásnak? Hogyan ellenőrizzük az összeadást? 1. fogalom Add meg az összeadásban szereplő számok 73 + 19 = 92 összeadandók (tagok) összeg Összeadandók (tagok): amiket összeadunk. Összeg: az összeadás eredménye. Milyen tulajdonságai vannak az összeadásnak?

Részletesebben

Az ember tere - építészeti alapismeretek

Az ember tere - építészeti alapismeretek Az ember tere - építészeti alapismeretek 01 Egyiptom: a kezdetektől a Két Ország egyesítéséig BME GTK 2016. szeptember 13. 4/1 - Vasáros Zsolt DLA egyetemi docens www.ipar.bme.hu Egyiptom mai kiterjedése,

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 016. ősz 1. Diszkrét matematika 1. középszint 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

A folyammenti kultúrák. (a, b, c) N 3 Pithagoraszi számhármas, ha. Pithagoraszi számhármasok, a Fermat problémakör. a 2 + b 2 = c 2.

A folyammenti kultúrák. (a, b, c) N 3 Pithagoraszi számhármas, ha. Pithagoraszi számhármasok, a Fermat problémakör. a 2 + b 2 = c 2. Pithagoraszi számhármasok, Klukovits Lajos TTIK Bolyai Intézet 014. április 1. Definíciók. (a, b, c) N 3 Pithagoraszi számhármas, ha a + b = c. Az x + y = z egyenletet szokás Pithagoraszi egyenletnek nevezni.

Részletesebben

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) 1. Számítsd ki a következő kifejezések pontos értékét!

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) 1. Számítsd ki a következő kifejezések pontos értékét! Megoldások. Számítsd ki a következő kifejezések pontos értékét! 8 8 ( ) ( ) ( ) Használjuk a gyökvonás azonosságait. 0 8 8 8 8 8 8 ( ) ( ) ( ) 0 8 . Határozd meg a következő kifejezések értelmezési tartományát!

Részletesebben

Amit a törtekről tudni kell 5. osztály végéig Minimum követelményszint

Amit a törtekről tudni kell 5. osztály végéig Minimum követelményszint Amit a törtekről tudni kell. osztály végéig Minimum követelményszint Fontos megjegyzés: A szabályoknak nem a pontos matematikai meghatározását adtuk. Helyettük a gyakorlatban használható, egyszerű megfogalmazásokat

Részletesebben

Ókori Egyiptom. Oktatási segédanyag 9. osztályos diákoknak

Ókori Egyiptom. Oktatási segédanyag 9. osztályos diákoknak Ókori Egyiptom Oktatási segédanyag 9. osztályos diákoknak Témakörök 1. Földrajzi viszonyok 2. Gazdaság 3. Társadalom Súgó 3.1. Fáraó 3.2. Katonai és Hivatalnoki réteg 3.3. Közrendű szabadok és Rabszolgák

Részletesebben

Műveletek egész számokkal

Műveletek egész számokkal Mit tudunk az egész számokról? 1. Döntsd el, hogy igazak-e a következő állítások az A halmaz elemeire! a) Az A halmaz elemei között 3 pozitív szám van. b) A legkisebb szám abszolút értéke a legnagyobb.

Részletesebben

Számokkal kapcsolatos feladatok.

Számokkal kapcsolatos feladatok. Számokkal kapcsolatos feladatok. 1. Egy tört számlálója -tel kisebb, mint a nevezője. Ha a tört számlálójához 17-et, a nevezőjéhez -t adunk, akkor a tört reciprokát kapjuk. Melyik ez a tört? A szám: 17

Részletesebben

Számológép nélkül! százasokra:,,zsinór ; ezresekre:,,lótuszvirág ; tízezresekre:,,ujj ; százezresekre:

Számológép nélkül! százasokra:,,zsinór ; ezresekre:,,lótuszvirág ; tízezresekre:,,ujj ; százezresekre: Számológép nélkül! Manapság az iskolában a matematika órán szinte mindenhez megengedett a számológép használata. Persze mindezen a mai világban már meg se lepődünk, hiszen a mindennapi tevékenységeink

Részletesebben

Racionális számok: Azok a számok, amelyek felírhatók két egész szám hányadosaként ( p q

Racionális számok: Azok a számok, amelyek felírhatók két egész szám hányadosaként ( p q Szóbeli tételek matematikából 1. tétel 1/a Számhalmazok definíciója, jele (természetes számok, egész számok, racionális számok, valós számok) Természetes számok: A pozitív egész számok és a 0. Jele: N

Részletesebben

Elemi matematika szakkör

Elemi matematika szakkör Elemi matematika szakkör Kolozsvár, 2015. október 5. 1.1. Feladat. Egy pozitív egész számot K tulajdonságúnak nevezünk, ha számjegyei nullától különböznek és nincs két azonos számjegye. Határozd meg az

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Előadó: Horváth Judit

Előadó: Horváth Judit Előadó: Horváth Judit Az új NAT fejlesztésterületeihez kapcsolódó eredménycélok Alapműveletek - Helyesen értelmezi a 10 000-es számkörben az összeadást, a kivonást, a szorzást, a bennfoglaló és az egyenlő

Részletesebben

Oszthatósági problémák

Oszthatósági problémák Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

1. előadás: Halmazelmélet, számfogalom, teljes

1. előadás: Halmazelmélet, számfogalom, teljes 1. előadás: Halmazelmélet, számfogalom, teljes indukció Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető,

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Egyenletek, egyenlőtlenségek X.

Egyenletek, egyenlőtlenségek X. Egyenletek, egyenlőtlenségek X. DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, 1 - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak

Részletesebben

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. MODUL SZÁMELMÉLET Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. Számelmélet Közös osztók, közös többszörösök Tanári útmutató MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály

Részletesebben

Előadó: Horváth Judit

Előadó: Horváth Judit Előadó: Horváth Judit Előkészítés Tapasztalatszerzés: tevékenység eszközhasználat játék Az összeadás, kivonás típusai Változtatás Hasonlítás Egyesítés A típusok variánsai Fordított, indirekt szövegű feladatok

Részletesebben

Matematika, 1 2. évfolyam

Matematika, 1 2. évfolyam Matematika, 1 2. évfolyam Készítette: Fülöp Mária Budapest, 2014. április 29. 1. évfolyam Az előkészítő időszakot megnyújtottuk (4-6 hét). A feladatok a tanulók tevékenységére épülnek. Az összeadás és

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.

Részletesebben

MATEMATIKA a 8. évfolyamosok számára. Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA a 8. évfolyamosok számára. Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ 8. évfolyam Mat1 Javítási-értékelési útmutató MATEMATIKA a 8. évfolyamosok számára Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok

Részletesebben

Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1

Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1 Halmazelmélet 1. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Halmazelmélet p. 1/1 A halmaz fogalma, jelölések A halmaz fogalmát a matematikában nem definiáljuk, tulajdonságaival

Részletesebben

1. Írd fel hatványalakban a következõ szorzatokat!

1. Írd fel hatványalakban a következõ szorzatokat! Számok és mûveletek Hatváyozás aaaa a a darab téyezõ a a 0 0 a,ha a 0. Írd fel hatváyalakba a következõ szorzatokat! a) b),,,, c) (0,6) (0,6) d) () () () e) f) g) b b b b b b b b h) (y) (y) (y) (y) (y)

Részletesebben

Klasszikus algebra előadás. Waldhauser Tamás április 28.

Klasszikus algebra előadás. Waldhauser Tamás április 28. Klasszikus algebra előadás Waldhauser Tamás 2014. április 28. 5. Számelmélet integritástartományokban Oszthatóság Mostantól R mindig tetszőleges integritástartományt jelöl. 5.1. Definíció. Azt mondjuk,

Részletesebben

Intenzív matek 2. Feladatok a 100-as számkörben

Intenzív matek 2. Feladatok a 100-as számkörben x x Intenzív matek. Feladatok a 00-as számkörben Útmutató a füzethez Ez a füzet nagyon sokféle feladatot tartalmaz, amelyek segítségével a tanulók a 00-as számkörön belül gyakorolhatják és fejleszthetik

Részletesebben

Matematika. 1. évfolyam. I. félév

Matematika. 1. évfolyam. I. félév Matematika 1. évfolyam - Biztos számfogalom a 10-es számkörben - Egyjegyű szám fogalmának ismerete - Páros, páratlan fogalma - Sorszám helyes használata szóban - Növekvő, csökkenő számsorozatok felismerése

Részletesebben

3. Az országos mérés-értékelés eredményei, évenként feltüntetve

3. Az országos mérés-értékelés eredményei, évenként feltüntetve 3. Az országos mérés-értékelés eredményei, évenként feltüntetve 4. évfolyam-okév 2005/2006. tanév: Ebben a tanévben első alkalommal mértek a 4. évfolyamon különböző készségeket és ezek gyakorlottságát.

Részletesebben

b) Melyikben szerepel az ezres helyiértéken a 6-os alaki értékű szám? c) Melyik helyiértéken áll az egyes számokban a 6-os alaki értékű szám?

b) Melyikben szerepel az ezres helyiértéken a 6-os alaki értékű szám? c) Melyik helyiértéken áll az egyes számokban a 6-os alaki értékű szám? A term szetes sz mok 1. Helyi rt kes r s, sz mk rb v t s 1 Monddkihangosanakövetkezőszámokat! a = 1 426 517; b = 142 617; c = 1 426 715; d = 1 042 657; e = 1 402 657; f = 241 617. a) Állítsd a számokat

Részletesebben

3. Egyenletek, egyenletrendszerek, egyenlőtlenségek

3. Egyenletek, egyenletrendszerek, egyenlőtlenségek . Egyenletek, egyenletrendszerek, egyenlőtlenségek I. Nulladik ZH-ban láttuk: 1. Mennyi a 2x 2 8x 5 = 0 egyenlet gyökeinek a szorzata? (A) 10 (B) 2 (C) 2,5 (D) 4 (E) ezek egyike sem Megoldás I.: BME 2011.

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:

Részletesebben

1 pont Bármely formában elfogadható pl.:, avagy. 24 4

1 pont Bármely formában elfogadható pl.:, avagy. 24 4 2012. február 2. 8. évfolyam TMat2 feladatlap Javítókulcs / 1 Javítókulcs MATEMATIKA FELADATOK 8. évfolyamosok számára, tehetséggondozó változat TMat2 A javítókulcsban feltüntetett válaszokra a megadott

Részletesebben

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes.

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes. Heti 4 óra esetén, 37 tanítási hétre összesen 148 óra áll rendelkezésre. A tanmenet 132 óra beosztását tartalmazza. Heti 5 óra esetén összesen 37-tel több órában dolgozhatunk. Ez összesen 185 óra. Itt

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2016/2017-es tanév első (iskolai) forduló Haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2016/2017-es tanév első (iskolai) forduló Haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 016/017-es tanév első iskolai) forduló Haladók II. kategória Megoldások és javítási útmutató 1. A k valós paraméter értékétől függően

Részletesebben

Kongruenciák. Waldhauser Tamás

Kongruenciák. Waldhauser Tamás Algebra és számelmélet 3 előadás Kongruenciák Waldhauser Tamás 2014 őszi félév Tartalom 1. Diofantoszi egyenletek 2. Kongruenciareláció, maradékosztályok 3. Lineáris kongruenciák és multiplikatív inverzek

Részletesebben

6. OSZTÁLY. Az évi munka szervezése, az érdeklõdés felkeltése Feladatok a 6. osztály anyagából. Halmazok Ismétlés (halmaz megadása, részhalmaz)

6. OSZTÁLY. Az évi munka szervezése, az érdeklõdés felkeltése Feladatok a 6. osztály anyagából. Halmazok Ismétlés (halmaz megadása, részhalmaz) 6. OSZTÁLY Óraszám 1. 1. Az évi munka szervezése, az érdeklõdés felkeltése a 6. osztály anyagából Tk. 13/elsõ mintapélda 42/69 70. 96/elsõ mintapélda 202/16. 218/69. 2 3. 2 3. Halmazok Ismétlés (halmaz

Részletesebben

Bingó Számok, számhalmazok, műveletek 4. feladatcsomag

Bingó Számok, számhalmazok, műveletek 4. feladatcsomag Számok, számhalmazok, műveletek 1.4 ingó Számok, számhalmazok, műveletek 4. feladatcsomag Életkor: Fogalmak, eljárások: 10 év fejszámolás alapműveletek törtrész számítása százalékszámítás szám ellentettje

Részletesebben

Szöveges feladatok a mátrixaritmetika alkalmazására

Szöveges feladatok a mátrixaritmetika alkalmazására Szöveges feladatok a mátrixaritmetika alkalmazására Bevezetés: Tekintsük az alábbi -es mátrixot: A. Szorozzuk meg ezt jobbról egy alkalmas méretű (azaz -es) oszlopvektorral, amely az R tér kanonikus bázisának

Részletesebben

1. A polinom fogalma. Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1. = x egyenletet.

1. A polinom fogalma. Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1. = x egyenletet. 1. A polinom fogalma Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1 = x egyenletet. Megoldás x + 1-gyel átszorozva x 2 + x + 1 = x 2 + x. Innen 1 = 0. Ez ellentmondás, így az

Részletesebben

Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0

Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0 Irodalom ezek egyrészt el- A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: hangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László: Bevezetés a lineáris algebrába, Polygon

Részletesebben

2. Fejezet : Számrendszerek

2. Fejezet : Számrendszerek 2. Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College

Részletesebben

Minden egész szám osztója önmagának, azaz a a minden egész a-ra.

Minden egész szám osztója önmagának, azaz a a minden egész a-ra. 1. Számelmélet Definíció: Az a egész szám osztója a egész számnak, ha létezik olyan c egész szám, melyre = ac. Ezt a következőképpen jelöljük: a Tulajdonságok: Minden egész szám osztója önmagának, azaz

Részletesebben

Szorzás, osztás 1000-ig. A műveletek tulajdonságai 1. Hány pötty van Erika rajzán? Írj róla összeadást és szorzást is!

Szorzás, osztás 1000-ig. A műveletek tulajdonságai 1. Hány pötty van Erika rajzán? Írj róla összeadást és szorzást is! Szorzás, osztás 1000-ig. A műveletek tulajdonságai 1. Hány pötty van Erika rajzán? Írj róla összeadást és szorzást is! Ha a zöld vonalak mentén lévő pöttyöket adod össze, akkor 5+5+5=, vagy 3 =. Ha a piros

Részletesebben

Számelméleti alapfogalmak

Számelméleti alapfogalmak 1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =

Részletesebben

1. Halmazok, számhalmazok, alapműveletek

1. Halmazok, számhalmazok, alapműveletek 1. Halmazok, számhalmazok, alapműveletek I. Nulladik ZH-ban láttuk: 1. Határozza meg az (A B)\C halmaz elemszámát, ha A tartalmazza az összes 19-nél kisebb természetes számot, továbbá B a prímszámok halmaza

Részletesebben

Az ember tere - építészeti alapismeretek

Az ember tere - építészeti alapismeretek Az ember tere - építészeti alapismeretek 01 Egyiptom: a kezdetektől a Két Ország egyesítéséig BME GTK 2013.szeptember 17. 4/1 - Vasáros Zsolt DLA egyetemi docens www.ipar.bme.hu Egyiptom mai kiterjedése,

Részletesebben

Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez

Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Sándor Tamás, sandor.tamas@kvk.bmf.hu Takács Gergely, takacs.gergo@kvk.bmf.hu Lektorálta: dr. Schuster György PhD, hal@k2.jozsef.kando.hu

Részletesebben

4. évfolyam OKÉV mérés A felmérés során vizsgált készségek, képességek

4. évfolyam OKÉV mérés A felmérés során vizsgált készségek, képességek 4. évfolyam OKÉV mérés 2011. A felmérés során vizsgált készségek, képességek A felmérés az anyanyelvi, a matematikai és a gondolkodási kulcskompetencia alapkomponensei közül az alábbiakra terjedt ki: olvasáskészség,

Részletesebben

The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003

The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 . Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach. kiadás, Irv Englander John Wiley and Sons Wilson Wong, Bentley College Linda Senne,

Részletesebben

1 Már a I.e.. VIII. évezred elején is lakott volt a kellemetlen ökológiai. 3 Az első városok (falvak) kultikus helyeken 7000-től:

1 Már a I.e.. VIII. évezred elején is lakott volt a kellemetlen ökológiai. 3 Az első városok (falvak) kultikus helyeken 7000-től: Néhány történelmi mérföldkő Mezopotámia a II. évezred előtt. Hammurapi korának algebrája. Klukovits Lajos SZTE TTIK Bolyai Intézet 013. február 13. 1 Már a I.e.. VIII. évezred elején is lakott volt a kellemetlen

Részletesebben

Gyors fejszámolási tippek, trükkök és ötletek (II. rész)

Gyors fejszámolási tippek, trükkök és ötletek (II. rész) Gyors fejszámolási tippek, trükkök és ötletek (II. rész) Tuzson Zoltán, Székelyudvarhely Az előző részben bemutatott trükkök után, most következzenek sajátos alakú kétjegyű számok szorzása, és hatványozása:

Részletesebben

Diszkrét matematika 1.

Diszkrét matematika 1. Diszkrét matematika 1. Nagy Gábor nagy@compalg.inf.elte.hu nagygabr@gmail.com ELTE IK Komputeralgebra Tanszék 014. ősz 014-15 őszi félév Gyakorlat: 1. ZH tervezett időpontja: október 1.,. ZH tervezett

Részletesebben

1 NEM, mert az csupa elavult, ma már egyszerűen mosolyra fakasztó. 2 Talán IGEN, bár az csak színes, érdekes epizódokat, történeteket

1 NEM, mert az csupa elavult, ma már egyszerűen mosolyra fakasztó. 2 Talán IGEN, bár az csak színes, érdekes epizódokat, történeteket Bevezetés. Érdemes-e tudománytörténettel foglalkozni? Fejezetek a matematika kultúrtörténetéből. Bevezető Gondolatok. Klukovits Lajos TTIK Bolyai Intézet 2015. szeptember 2. Négy lehetséges válasz. 1 NEM,

Részletesebben

Negatív alapú számrendszerek

Negatív alapú számrendszerek 2015. március 4. Negatív számok Legyen b > 1 egy adott egész szám. Ekkor bármely N 0 egész szám egyértelműen felírható N = m a k b k k=1 alakban, ahol 0 a k < b egész szám. Negatív számok Legyen b > 1

Részletesebben

50. modul 1. melléklet 2. évfolyam tanítói fólia

50. modul 1. melléklet 2. évfolyam tanítói fólia 50. modul 1. melléklet 2. évfolyam tanítói fólia 50. modul 2. melléklet 2. évfolyam tanítói fólia 50. modul 3. melléklet 2. évfolyam tanítói fólia 50. modul 4. melléklet 2. évfolyam tanítói fólia és csoport

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

Matematikai kompetencia fejlesztése. Összeállította: Székelyhidiné Ecsedi Ibolya

Matematikai kompetencia fejlesztése. Összeállította: Székelyhidiné Ecsedi Ibolya Matematikai kompetencia fejlesztése Összeállította: Székelyhidiné Ecsedi Ibolya Matematikai kompetencia Készségek Gondolkodási képességek Kommunikációs képességek Tudásszerző képességek Tanulási képességek

Részletesebben

Mechatronika Modul 1: Alapismeretek

Mechatronika Modul 1: Alapismeretek Mechatronika Modul : Alapismeretek Oktatói segédlet (Elképzelés) Készítették: Matthias Römer Chemnitz-i Műszaki Egyetem, Szerszámgépek és Gyártási Folyamatok Intézete, Németország Cser Adrienn Corvinus

Részletesebben

SZKB_105_09. Most már megy?

SZKB_105_09. Most már megy? SZKB_105_09 Most már megy? SZOCKOMP_B_105_diak_book.indb 85 2007. 07. 24. 16:23:22 SZOCKOMP_B_105_diak_book.indb 86 2007. 07. 24. 16:23:22 tanulói Most már megy? 5. évfolyam 87 D1 Összekevert mondatok

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok

Részletesebben

3. OSZTÁLY A TANANYAG ELRENDEZÉSE

3. OSZTÁLY A TANANYAG ELRENDEZÉSE Jelölések: 3. OSZTÁLY A TANANYAG ELRENDEZÉSE Piros főtéma Citromsárga segítő, eszköz Narancssárga előkészítő Kék önálló melléktéma Hét Gondolkodási és megismerési módszerek Problémamegoldások, modellek

Részletesebben

SZÁMÍTÁSOK A TÁBLÁZATBAN

SZÁMÍTÁSOK A TÁBLÁZATBAN SZÁMÍTÁSOK A TÁBLÁZATBAN Az Excelben az egyszerű adatok bevitelén kívül számításokat is végezhetünk. Ezeket a cellákba beírt képletek segítségével oldjuk meg. A képlet: olyan egyenlet, amely a munkalapon

Részletesebben

TANMENET. Matematika

TANMENET. Matematika Bethlen Gábor Református Gimnázium és Szathmáry Kollégium 6800 Hódmezővásárhely, Szőnyi utca 2. Telefon: +36-62-241-703 www.bgrg.hu OM: 029736 TANMENET Matematika 2016/2017 5.A természettudományos képzés

Részletesebben

3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F}

3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} 3. gyakorlat Számrendszerek: Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} Alaki érték: 0, 1, 2,..., 9,... Helyi

Részletesebben

Harmadik gyakorlat. Számrendszerek

Harmadik gyakorlat. Számrendszerek Harmadik gyakorlat Számrendszerek Ismétlés Tízes (decimális) számrendszer: 2 372 =3 2 +7 +2 alakiérték valódi érték = aé hé helyiérték helyiértékek a tízes szám hatványai, a számjegyek így,,2,,8,9 Kettes

Részletesebben

Függvény határérték összefoglalás

Függvény határérték összefoglalás Függvény határérték összefoglalás Függvény határértéke: Def: Függvény: egyértékű reláció. (Vagyis minden értelmezési tartománybeli elemhez, egyértelműen rendelünk hozzá egy elemet az értékkészletből. Vagyis

Részletesebben

ÁTVÁLTÁSOK SZÁMRENDSZEREK KÖZÖTT, SZÁMÁBRÁZOLÁS, BOOLE-ALGEBRA

ÁTVÁLTÁSOK SZÁMRENDSZEREK KÖZÖTT, SZÁMÁBRÁZOLÁS, BOOLE-ALGEBRA 1. Tízes (decimális) számrendszerből: a. Kettes (bináris) számrendszerbe: Vegyük a 2634 10 -es számot, és váltsuk át bináris (kettes) számrendszerbe! A legegyszerűbb módszer: írjuk fel a számot, és húzzunk

Részletesebben

TÖRTEK ÖSSZEHASONLÍTÁSA, EGYSZERŰSÍTÉSE, BŐVÍTÉSE

TÖRTEK ÖSSZEHASONLÍTÁSA, EGYSZERŰSÍTÉSE, BŐVÍTÉSE TÖRTEK ÖSSZEHASONLÍTÁSA, EGYSZERŰSÍTÉSE, BŐVÍTÉSE . Az alábbi ábrákon a beszínezett rész -et ér. Mennyit ér a rajz be nem színezett része? Mennyit ér a teljes rajz? a) b) c) d) e) f). Állítsd növekvő sorrendbe

Részletesebben

HHF0CX. k darab halmaz sorbarendezésének a lehetősége k! Így adódik az alábbi képlet:

HHF0CX. k darab halmaz sorbarendezésének a lehetősége k! Így adódik az alábbi képlet: Gábor Miklós HHF0CX 5.7-16. Vegyük úgy, hogy a feleségek akkor vannak a helyükön, ha a saját férjeikkel táncolnak. Ekkor már látszik, hogy azon esetek száma, amikor senki sem táncol a saját férjével, megegyezik

Részletesebben

Zárthelyi feladatok megoldásai tanulságokkal Csikvári Péter 1. a) Számítsuk ki a 2i + 3j + 6k kvaternió inverzét.

Zárthelyi feladatok megoldásai tanulságokkal Csikvári Péter 1. a) Számítsuk ki a 2i + 3j + 6k kvaternió inverzét. Zárthelyi feladatok megoldásai tanulságokkal Csikvári Péter 1. a Számítsuk ki a 2i + 3j + 6k kvaternió inverzét. b Köbgyöktelenítsük a nevezőt az alábbi törtben: 1 3 3. Megoldás: a Egy q = a + bi + cj

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

First Prev Next Last Go Back Full Screen Close Quit. Matematika I Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html

Részletesebben

Diszkrét matematika 1. estis képzés

Diszkrét matematika 1. estis képzés Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Szittyai István december 8. SZTE Bolyai Intézet. Szittyai István (NLG, Hmvh) Partíciók , Bolyai, Szeged 1 / 24

Szittyai István december 8. SZTE Bolyai Intézet. Szittyai István (NLG, Hmvh) Partíciók , Bolyai, Szeged 1 / 24 Hányféleképpen válthatom föl a pénzemet? Szittyai István Németh László Gimnázium, Hódmezővásárhely 2012. december 8. SZTE Bolyai Intézet Szittyai István (NLG, Hmvh) Partíciók 2012.12.08, Bolyai, Szeged

Részletesebben

Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged

Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Magas szintű matematikai tehetséggondozás Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Ahhoz, hogy egy diák kimagasló eredményeket érhessen el matematika versenyeken, elengedhetetlenül

Részletesebben

2, a) Három ketted b) Háromszázkettőezer nyolcszázhét c) Két egész tizenöt század d) Két egész öt tized e) Egymillió - hét.

2, a) Három ketted b) Háromszázkettőezer nyolcszázhét c) Két egész tizenöt század d) Két egész öt tized e) Egymillió - hét. X 000 X00 X0 X X / /0 /00 / 000 Tízezres Ezres Százas Tízes Egyes Tize. vessző Tized Század Ezred Tízezred,, 0 7 a) Három ketted b) Háromszázkettőezer nyolcszázhét c) Két egész tizenöt század d) Két egész

Részletesebben

2018, Diszkrét matematika

2018, Diszkrét matematika Diszkrét matematika 3. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számtartományok: természetes

Részletesebben

Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy

Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy 1. előadás: Halmazelmélet Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy hozzátartozik-e,

Részletesebben

Typotex Kiadó. Bevezetés

Typotex Kiadó. Bevezetés Bevezetés A bennünket körülvevő világ leírásához ősidők óta számokat is alkalmazunk. Tekintsük át a számfogalom kiépülésének logikai-történeti folyamatát, amely minden valószínűség szerint a legkorábban

Részletesebben

SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA

SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA BINÁRIS (kettes) ÉS HEXADECIMÁLIS (tizenhatos) SZÁMRENDSZEREK (HELYIÉRTÉK, ÁTVÁLTÁSOK, MŰVELETEK) A KETTES SZÁMRENDSZER A computerek világában a

Részletesebben