Szegregáció nanoanyagokban - szegregáció stabilizált nanoszerkezetek. Beke Dezső Szilárdtest Fizika Tanszék, Debreceni Egyetem
|
|
- Barnabás Magyar
- 6 évvel ezelőtt
- Látták:
Átírás
1 Szegregáció nanoanyagokban - szegregáció stabilizált nanoszerkezetek Beke Dezső Szilárdtest Fizika Tanszék, Debreceni Egyetem
2 1) Mi is a szegregáció? Kétalkotós AB ötvözet: A felület (szabad felület vagy szemcsehatár) pl. A-ban n dúsabb. Miért? A felületi (határfelületi) energia kisebb Kémiailag is jobb (pl. fázis szeparációs tendencia már a térfogatban is) Rugalmas energia Milyen vastag a felületi réteg? (egy- vagy több-rétegű?)
3 Egyrétegű: Gibbs-féle szabadenergia/atom (f=u =u-ts) Ts): f(x,ξ,, C s,t), X átlag koncentráci ció, C s felületi leti koncentráci ció (ha egyréteg tegű), ξ=2/m a felületi leti hányadh (d ma=2a/ =2a/ξ) f(x,ξ,c,c s,t) minimum mumát keressük (feltételes teles szélsőérték) Többrétegű modell: f/ c i - µ Φ/ c i =0 (1) Φ= Σc i mx=0 feltétel (anyagmegmaradás:: X= X Σ n i /nm) mellett
4 Statisztikus leírás: m m atomi réteg, n atom egy rétegben c i =n A,i /n n i+1 i N=nm és s X=NX A /N z l A felületi leti hányad i-1 ξ=2/m Z=z l + 2z2 v z v V AA, V BB és V AB párkötési energiák (<0), és V= V AB -(V AA -V BB )/2, ideális szilárdoldatban V=0, Ha V>0 fázisszeparáció, ha V<0 rendeződés 0
5 Az eredmény (egyrétegű határesetben, azaz amikor X=2c s +(m-2)c b és ha m>>1, ξ=2/m <<1; nagyon vastag minta: ξ-függés elhanyagolható) C s (1-X)/X(1 X)/X(1-C s ) = K(T) F(T,X,C s ) Fowler-Guggenheim izoterma (C( s függése X-től) K(T) = exp [z v (V AA -V BB )/2kT], F(T,X,C s )=exp{(2v/kt)[z l (C s -X) z v (X-1/2)]}
6 Határesetek 1) Ha V=0, F=1 C s (1-X)/X(1 X)/X(1-C s ) = K(T); McLean izoterma K(T) = exp [z v (V (V AA -V BB BB )/2kT]=exp[E s /kt], K exponensben a szegregációs energia: E s = zv(v AA -V BB )/2 = -(σ A -σ B )/n o σ A = - z v V AA n o /2, n o a felületegységre jutó atomok száma (n o =n/s a/ω) Ha σ A < σ B akkor E s >0 és C s >X, szegregs egregáció van Atomi méret m hatása
7 1 Mc Lean és Henry izoterma Cs 0 Ha E s nagyobb pozitív, meredekebb X 1
8 NiCu rendszer T=1000 K
9 2) Ha még a térfogati oldat híg is (X<<1); C s /X=K(T) Henry-izoterma 3) Ha X<<1 de V 0, és X = [C s /(1-C s )] K(T) F(T,X,C s )-t osztjuk X(C s =0.5)-el, redukált Fowler-Guggenheim izoterma
10 Jól láthatók a kémia hatásai B A vonal mentén éles ugrás a fedettségben
11 Kísérleti görbék, V>0 hatása
12 Valójában soha nem egy-rétegű effektus van Gyengén szegregáló rendszer (A oldalon B, B oldalon A szegregál) X=0.001 X=0.999 V AA -V BB =0.09eV, E s >0, V=0.034eV
13 Erősen szegregáló rendszer X=0.001 X=0.999 V AA -V BB =0.46eV, E s >>0, V=0.034eV
14 Összefoglalás I. A felületi (határfelületi) energia kisebb E s >0, K>1 Kémiailag is jobb (pl. fázis szeparációs tendencia már a térfogatban is) a C s /X értéke akár is lehet. Rugalmas energia: nagyobb atom jobban elfér a felületen (pozitív tag E s -hez) Néhány réteg érintett
15 2) Nanoeffektusok 1) Perturbált tartományok átlapolása 1b) Fázisszeparálódó rendszer Fázis-szeparáció megszűnik, szilárdoldékonyság növekszik!
16 1) Pertubált tartományok átlapolása 1b) Rendeződő rendszer A rend-paraméter lecsökken! Következmény: nanoszemcsés rendezett fázis részben szilárdoldattá válhat
17 Mérethatás egyensúlyban Még egyrétegű határesetben is f(x,ξ,c,c s,t) Ha most C s -t a T függvényében ábrázoljuk X=0.05-nél Ha ξ nagy: nincs elég A atom, hogy befedje a felületet, S-alakból Mc Lean izoterma
18 Szegregáció stabilizált nanoszerkezetek f(x,ξ,c,c s,t)-t t a ξ vagy d(~1/ ~1/ξ) ) függvf ggvényében ábrázolva (fix T, X mellett): lehet minimum Weismüller 1993; (ha C s 1) Két hatás harca : 1) a felület önmagában pozitív járulékot ad (d csökkenésével nö G) 2) Növekvő felületi hányad a szegregációnak kedvező
19 Ugyanaz a szemcseméret két c s, T értékpárnál lehet stabil (X=const const.=0.05) ) d 2a/ 2a/ξ Kis ξ-kre (nagy( d-kre) csak kis c s - nél lehet minimum C. C. Cserháti ti,, I. A. Szabó,, and D. L. Beke, JAP 83,, 3021 (1998)
20 Bi(Cu) rendszer: Ference TG, Baluffi RW. Scripta Metall. 1988;22:192
21 Menyhard M, Blum B. McMahon CJ. Acta Metall ; 37:549
22 Pontosabb analizis Létezhet összfüggés az egyensúlyi szemcseméret (d 2a/ 2a/ξ) és a T hőmérséklet között. Kirchheim R. Acta mater 2002;50:413 Mc Lean közelítésk özelítés, X<<1, c s =1, V=0 {σ B -E s }/kt = ln(x-ξ o ) Beke, Cserháti ti,, Szabó, JAP, 95, 4996 (2004) (C s 1) T ln [(X-ξ o )/(1-ξ o )] = =[σ B -E s -8V(1-X) 2 ]/k 8V(1-X) 2 ξ o /k
23 Ni(P) T*ln[(X-ξ o )/(1-ξ o )]/(1-X) V 0 2.3at% P 2.8at% P 3.6at% P 5.8at% P 4.5at% P ξ ο K. Boyland, et. al: Scripta Metal Mater 25, 2711 (1991) Y. Z. Zhang, Y. Y. Wu, and M. J. Yao, J. Mater Sci. Lett. 17, 37 (1998) B. Färber, PhD Thesis, Universität Göttingen; 2000
24 -Szegregáció indukált keveredés határfelületekben (mutirétegekben minden második határfelület elmosódottabb ) Si/Si(Ge) rendszer T. Walter et al. DDF, , 1135 (1997) Ni/Au rendszer S. Labat et al. Appl. Phys. Letters, 75, 914 (1999) 1 3 nm (A kémiai élesség javításának lehetősége: Z. Erdelyi et al. Science, 306, 1913 (2004) Segregációs kinetika + nanodiffúzió!)
25
26 Rendezett+rendezetlen fázisegyensúly d csökkenésével J. Weismuller and H. Erhardt, PRL, 81, 1114 (1998) Nanokristályos Pd 3 Zr golyós malomban (10 nm szemcseméret), lépcső hőkezelés (100 C o -onként, 24 óra) 500 and 900 C o között Pd(22%Zr) szilárdoldat (kb % hányadban)vált ki, majd magasabb hőmérsékleteken eltünt és makro-kristályos Pd 3 Zr maradt vissza. Magyarázatuk: Zr szegregált a határokon: a rendezett és a szilárdoldat fázis energiája másként függ d-től, lehet közös érintőjük kis d-kre.
27 Másik kézenfekvő magyarázat A rendezett fázisból azokban a szemcsékben, amelyek kisebbek, mint a kritikus érték amely alatt szilárdoldat jön létre, a hőkezelés során kialakuló szegregációs egyensúlyban szilárdoldat keletkezik, a nagyobb szemcsék maradnak rendezettek. A két model között a különbség: a) az egyensúlyban lévő fázisok azonos szemcseméretüek b) a szilárdoldat szemcsmérete kisebb
28 Mi: J. of Mat. Science, 39, 5185 (2004)): Röntgen diffrakciós spektrum, planetary malom, Ar-ban 10 h. As milled: Pd 3 Zr d=6nm szemcseméret Sziládoldat 1000 C körül (200 csúcs 46 o -nál) kb. 18%Zral és p max 30%. térfogathányaddal A szemcseméretek: 1000C: Pd 3 Zr d=14 nm Pd(18%Zr) d=8.2nm 1300C: csak Pd 3 Zr, d=15 nm Counts P6-Ar-10h o C, 24 h o C, 24 h o C, 24 h o C, 24 h θ 1300 o C, 24 h 700 o C, 24 h o C, 24 h as-milled
29 Összefoglalás II. 1) Perturbált tartományok átlapolása V>0: Fázis-szeparáció megszűnik, szilárdoldékonyság növekszik V<0, szilárdoldat keletkezhet ha d<d c 2) f-nek minimuma lehet adott d-re (akár 2 is) 3) Egyszerű formula d o (ξ o ) T függésére 4) Szegergáció indukált határfelület elmosódás 5) Rendezett+rendezetlen fázisegyensúly d csökkenésével (de különböző d-kkel)
Nanoszegregáció. Beke Dezső, Cserháti Cs.. Szabó I., Erdélyi Z. Debreceni Egyetem. Szilárdtest Fizika Tanszék
Nanoszegregáció Beke Dezső, Cserháti Cs.. Szabó I., Erdélyi Z. Debreceni Egyetem. Szilárdtest Fizika Tanszék D.L. Beke, C. Cserháti, Z. Erdélyi, I.A. Szabó, Segregation in Nanostructures in Advances in
Anyagtudomány. Ötvözetek egyensúlyi diagramjai (állapotábrák)
Anyagtudomány Ötvözetek egyensúlyi diagramjai (állapotábrák) Kétkomponensű fémtani rendszerek fázisai és szövetelemei Folyékony, olvadék fázis Színfém (A, B) Szilárd oldat (α, β) (szubsztitúciós, interstíciós)
Nanoskálájú határfelületi elmozdulások és alakváltozások vizsgálata szinkrotron- és neutronsugárzással. Erdélyi Zoltán
Nanoskálájú határfelületi elmozdulások és alakváltozások vizsgálata szinkrotron- és neutronsugárzással Erdélyi Zoltán Debreceni Egyetem, Szilárdtest Fizika Tanszék Erdélyi Zoltán ESS minikonferencia 1
Szemcsehatárcsúszás és sebességérzékenységi tényező ultra-finomszemcsés Al-30Zn ötvözet plasztikus deformációjában. Visegrád 2011
Szemcsehatárcsúszás és sebességérzékenységi tényező ultra-finomszemcsés Al-30Zn ötvözet plasztikus deformációjában Visegrád 2011 Al-Zn rendszer Eutektikus Zn-5%Al Eutektoidos Zn-22%Al Al-Zn szilárdoldatok
A hőterjedés dinamikája vékony szilikon rétegekben. Gambár Katalin, Márkus Ferenc. Tudomány Napja 2012 Gábor Dénes Főiskola
A hőterjedés dinamikája vékony szilikon rétegekben Gambár Katalin, Márkus Ferenc Tudomány Napja 2012 Gábor Dénes Főiskola Miről szeretnék beszélni: A kutatás motivációi A fizikai egyenletek (elméleti modellek)
Mikropillárok plasztikus deformációja 3.
Mikropillárok plasztikus deformációja 3. TÁMOP-4.2.1/B-09/1/KMR-2010-0003 projekt Visegrád 2012 Mikropillárok plasztikus deformációja 3.: Ultra-finomszemcsés Al-30Zn ötvözet plasztikus deformációjának
Előzmények. a:sige:h vékonyréteg. 100 rétegből álló a:si/ge rétegrendszer (MultiLayer) H szerepe: dangling bond passzíválása
a:sige:h vékonyréteg Előzmények 100 rétegből álló a:si/ge rétegrendszer (MultiLayer) H szerepe: dangling bond passzíválása 5 nm vastag rétegekből álló Si/Ge multiréteg diffúziós keveredés során a határfelületek
Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza
Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza odor@mfa.kfki.hu 1. Bevezetõ, dinamikus skálázás, kritikus exponensek, térelmélet formalizmus, renormalizáció, topológius fázis diagrammok,
Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása
l--si háromalkotós egyensúlyi fázisdiagram közelítő számítása evezetés Farkas János 1, Dr. Roósz ndrás 1 doktorandusz, tanszékvezető egyetemi tanár Miskolci Egyetem nyag- és Kohómérnöki Kar Fémtani Tanszék
Diffúzió. Diffúzió sebessége: gáz > folyadék > szilárd (kötőerő)
Diffúzió Diffúzió - traszportfolyamat (fonon, elektron, atom, ion, hőmennyiség...) Elektromos vezetés (Ohm) töltés áram elektr. potenciál grad. Hővezetés (Fourier) energia áram hőmérséklet különbség Kémiai
Az alacsony rétegződési hibaenergia hatása az ultrafinom szemcseszerkezet kialakulására és stabilitására
Az alacsony rétegződési hibaenergia hatása az ultrafinom szemcseszerkezet kialakulására és stabilitására Z. Hegedűs, J. Gubicza, M. Kawasaki, N.Q. Chinh, Zs. Fogarassy and T.G. Langdon Eötvös Loránd Tudományegyetem
Hidrogénezett amorf Si és Ge rétegek hőkezelés okozta szerkezeti változásai
Hidrogénezett amorf Si és Ge rétegek hőkezelés okozta szerkezeti változásai Csík Attila MTA Atomki Debrecen Vizsgálataink célja Amorf Si és a-si alapú ötvözetek (pl. Si-X, X=Ge, B, Sb, Al) alkalmazása:!
Fázisátalakulások, avagy az anyag ezer arca. Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium
Fázisátalakulások, avagy az anyag ezer arca Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium Atomoktól a csillagokig, Budapest, 2016. december 8. Fázisátalakulások Csak kondenzált anyag? A kondenzált
Diffúzió. Diffúzió. Diffúzió. Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd
Anyagszerkezettan és anyagvizsgálat 5/6 Diffúzió Dr. Szabó Péter János szpj@eik.bme.hu Diffúzió Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd
Hőmérsékleti sugárzás
Ideális fekete test sugárzása Hőmérsékleti sugárzás Elméleti háttér Egy ideális fekete test leírható egy egyenletes hőmérsékletű falú üreggel. A fala nemcsak kibocsát, hanem el is nyel energiát, és spektrális
Anyagos rész: Lásd: állapotábrás pdf. Ha többet akarsz tudni a metallográfiai vizsgálatok csodáiról, akkor: http://testorg.eu/editor_up/up/egyeb/2012_01/16/132671554730168934/metallografia.pdf
Anyagismeret 2016/17. Diffúzió. Dr. Mészáros István Diffúzió
Anyagismeret 6/7 Diffúzió Dr. Mészáros István meszaros@eik.bme.hu Diffúzió Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd Diffúzió Diffúzió -
Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban.
Kvantum statisztika A kvantummechanika előadások során már megtanultuk, hogy az anyagot felépítő részecskék nemklasszikus, hullámtulajdonságokkal is rendelkeznek aminek következtében viselkedésük sok szempontból
Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez
1 Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez Havancsák Károly Dankházi Zoltán Ratter Kitti Varga Gábor Visegrád 2012. január Elektron diffrakció 2 Diffrakció - kinematikus elmélet
Dankházi Z., Kalácska Sz., Baris A., Varga G., Ratter K., Radi Zs.*, Havancsák K.
Dankházi Z., Kalácska Sz., Baris A., Varga G., Ratter K., Radi Zs.*, Havancsák K. ELTE, TTK KKMC, 1117 Budapest, Pázmány Péter sétány 1/A. * Technoorg Linda Kft., 1044 Budapest, Ipari Park utca 10. Műszer:
Nagynyomású csavarással tömörített réz - szén nanocső kompozit mikroszerkezete és termikus stabilitása
Nagynyomású csavarással tömörített réz - szén nanocső kompozit mikroszerkezete és termikus stabilitása P. Jenei a, E.Y. Yoon b, J. Gubicza a, H.S. Kim b, J.L. Lábár a,c, T. Ungár a a Anyagfizikai Tanszék,
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 A derivált alkalmazásai H607, EIC 2019-04-03 Wettl
STACIONER PÁRADIFFÚZIÓ
STACIONER PÁRADIFFÚZIÓ MSC Várfalvi A DIFFÚZIÓ JELENSÉGE LEVEGŐBEN Csináljunk egy kísérletet P A =P AL +P ο ο= P BL +P ο ο=p B Levegő(P AL ) Levegő(P BL ) A B Fekete gáz Fehér gáz A DIFFÚZIÓ JELENSÉGE
Bevezetés a lézeres anyagmegmunkálásba
Bevezetés a lézeres anyagmegmunkálásba FBN332E-1 Dr. Geretovszky Zsolt 2010. október 6. Anyagcsaládok Fémek Kerámiák, üvegek Műanyagok Kompozitok A családok közti különbségek tárgyalhatóak: atomi szinten
Acélok nem egyensúlyi átalakulásai
Acélok nem egyensúlyi átalakulásai Acélok egyensúlyitól eltérő átalakulásai Az ausztenit átalakulásai lassú hűtés Perlit diffúziós átalakulás α+fe 3 C rétegek szilárdság közepes martensit bainit finom
Ón-ólom rendszer fázisdiagramjának megszerkesztése lehűlési görbék alapján
Ón-ólom rendszer fázisdiagramjának megszerkesztése lehűlési görbék alapján Készítette: Zsélyné Ujvári Mária, Szalma József; 2012 Előadó: Zsély István Gyula, Javított valtozat 2016 Laborelőkészítő előadás,
Mikrohullámú abszorbensek vizsgálata 4. félév
Óbudai Egyetem Anyagtudományok és Technológiák Doktori Iskola Mikrohullámú abszorbensek vizsgálata 4. félév Balla Andrea Témavezetők: Dr. Klébert Szilvia, Dr. Károly Zoltán MTA Természettudományi Kutatóközpont
f = n - F ELTE II. Fizikus 2005/2006 I. félév
ELTE II. Fizikus 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 2. (X. 25) Gibbs féle fázisszabály (0-dik fıtétel alkalmazása) Intenzív állapotothatározók száma közötti összefüggés: A szabad intenzív paraméterek
Dimenzióváltás becsapódásos fragmentációban
Dimenzióváltás becsapódásos fragmentációban Pál Gergő Témavezető: Dr. Kun Ferenc Debreceni Egyetem Döffi 2013, Balatonfenyves Heterogén anyagok fragmentációja Próbatest töredezési folyamata - nagy mennyiségű
Fázisátalakulás Fázisátalakulások diffúziós (egyedi atomi mozgás) martenzites (kollektív atomi mozgás, diffúzió nélkül)
ázisátalakulások, P, C változása új (egyensúlyi) állapot Új fázis(ok): stabil, metastabil ázisátalakulás: folyamat, amelynek során a régi fázis(ok)ból új, más szerkezetű (rács, szövet) vagy halmazállapotú
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével
5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével 5.1. Átismétlendő anyag 1. Adszorpció (előadás) 2. Langmuir-izoterma (előadás) 3. Spektrofotometria és Lambert Beer-törvény
Termodinamikai bevezető
Termodinamikai bevezető Alapfogalmak Termodinamikai rendszer: Az univerzumnak az a részhalmaza, amit egy termodinamikai vizsgálat során vizsgálunk. Termodinamikai környezet: Az univerzumnak a rendszeren
ů ą ľ ą ó ľ ľ ó ô ľ ó ź ô ę ú Ú ľ ô Ź ô ľ ô ą ó ó Ö ľ Đ ą ä ä Ú ä ę ä Ę Đ đ ř Ď ä Đ Đ ä Ý ż Ę ę Ý Ý ä ä ľ Đ ä Đ ľ ť Ä ô Ú Ś ď ś ó ó ľ ó ó ô ľ ô ô ľ ü ä ę ö ó ľ ś ď ę ď ľ ö ó ě ä ď ä Ś ľ ď ś ś ś đ ń śä
BKT fázisátalakulás és a funkcionális renormálási csoport módszer
BKT fázisátalakulás és a funkcionális renormálási csoport módszer Nándori István MTA-DE Részecskefizikai Kutatócsoport, Debreceni Egyetem MTA-Atomki, Debrecen Wigner FK zilárdtestfizikai és Optikai Intézet,
1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1
1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy
Femtoszekundumos felületi plazmonok által keltett elektronnyalábok vizsgálata
Femtoszekundumos felületi plazmonok által keltett elektronnyalábok vizsgálata Ph. D. házi védés Rácz Péter Témavezető: Dombi Péter Felületi plazmonok Propagáló felületi plazmon Lokalizált felületi plazmon
Matematika A1. 9. feladatsor. A derivált alkalmazásai. Függvény széls értékei
Matematika A1 9. feladatsor A derivált alkalmazásai Függvény széls értékei 1. Keressük meg a függvények abszolút maximumát és minimumát a megadott intervallumon. Ezután rajzoljuk fel a függvény grakonját.
HŐKEZELÉS FÉMTANI ALAPJAI
HŐKEZELÉS FÉMTANI ALAPJAI ANYAGMÉRNÖK MESTERKÉPZÉS HŐKEZELŐ SZAKIRÁNY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR FÉMTANI, KÉPLÉKENYALAKÍTÁSI ÉS NANOTECHNOLÓGIAI INTÉZET
Tiszta anyagok fázisátmenetei
Tiszta anyagok fázisátenetei Fizikai kéia előadások 4. Turányi Taás ELTE Kéiai Intézet Fázisok DEF egy rendszer hoogén, ha () nincsenek benne akroszkoikus határfelülettel elválasztott részek és () az intenzív
3. Az Sn-Pb ötvözetek termikus analízise, fázisdiagram megszerkesztése. Előkészítő előadás
3. Az Sn-Pb ötvözetek termikus analízise, fázisdiagram megszerkesztése. Előkészítő előadás 2018.02.05. A gyakorlat célja Ismerkedés a Fizikai Kémia II. laboratóriumi gyakorlatok légkörével A jegyzőkönyv
Spontaneitás, entrópia
Spontaneitás, entrópia 6-1 Spontán folyamat 6-2 Entrópia 6-3 Az entrópia kiszámítása 6-4 Spontán folyamat: a termodinamika második főtétele 6-5 Standard szabadentalpia változás, ΔG 6-6 Szabadentalpia változás
Folyadékszcintillációs spektroszkópia jegyz könyv
Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés
5. Állapotegyenletek : Az ideális gáz állapotegyenlet és a van der Waals állapotegyenlet
5. Állapotegyenletek : Az ideális gáz állapotegyenlet és a van der Waals állapotegyenlet Ideális gáz Az ideális gáz állapotegyenlete pv=nrt empírikus állapotegyenlet, a Boyle-Mariotte (pv=konstans) és
Multiréteg struktúrák mágneses tulajdonságai Szakmai beszámoló a T48965 számú kutatásokról
Multiréteg struktúrák mágneses tulajdonságai Szakmai beszámoló a T48965 számú kutatásokról Kutatásaink fő vonalakban a munkatervben felállított program alapján történtek. Mössbauer spektroszkópia és SQUID
[f(x) = x] (d) B f(x) = x 2 ; g(x) =?; g(f(x)) = x 1 + x 4 [
Bodó Beáta 1 FÜGGVÉNYEK 1. Határozza meg a következő összetett függvényeket! g f = g(f(x)); f g = f(g(x)) (a) B f(x) = cos x + x 2 ; g(x) = x; f(g(x)) =?; g(f(x)) =? f(g(x)) = cos( x) + ( x) 2 = cos( x)
Kinetika. Általános Kémia, kinetika Dia: 1 /53
Kinetika 15-1 A reakciók sebessége 15-2 Reakciósebesség mérése 15-3 A koncentráció hatása: a sebességtörvény 15-4 Nulladrendű reakció 15-5 Elsőrendű reakció 15-6 Másodrendű reakció 15-7 A reakció kinetika
Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53
Reakciókinetika 9-1 A reakciók sebessége 9-2 A reakciósebesség mérése 9-3 A koncentráció hatása: a sebességtörvény 9-4 Nulladrendű reakció 9-5 Elsőrendű reakció 9-6 Másodrendű reakció 9-7 A reakciókinetika
Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv
Fizikai kémia és radiokémia B.Sc. László Krisztina 18-93 klaszlo@mail.bme.hu F ép. I. lépcsőház 1. emelet 135 http://oktatas.ch.bme.hu/oktatas/konyvek/fizkem/kornymern Követelmények: 2+0+1 f - részvétel
Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.
Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak
1. Sorolja fel az újrakristályosító hőkezelés néhány ipari alkalmazását! Dróthúzás, süllyesztékes kovácsolás.
1. Sorolja fel az újrakristályosító hőkezelés néhány ipari alkalmazását! Dróthúzás, süllyesztékes kovácsolás. 2. Milyen hatással van az újrakristályosítás az alakított fémek mechanikai tulajdonságaira?
Az elállítási körülmények hatása nanoporokból szinterelt fémek mikroszerkezetére és mechanikai tulajdonságaira
Az elállítási körülmények hatása nanoporokból szinterelt fémek mikroszerkezetére és mechanikai tulajdonságaira Gubicza Jen 1, Guy Dirras 2, Salah Ramtani 2 1 Eötvös Loránd Tudományegyetem, Anyagfizikai
Kémiai reakciók mechanizmusa számítógépes szimulációval
Kémiai reakciók mechanizmusa számítógépes szimulációval Stirling András stirling@chemres.hu Elméleti Kémiai Osztály Budapest Stirling A. (MTA Kémiai Kutatóközpont) Reakciómechanizmus szimulációból 2007.
http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja
Szilárd testek sugárzása
A fény keletkezése Szilárd testek sugárzása A szilárd test melegítés hatására fényt bocsát ki A sugárzás forrása a közelítőleg termikus egyensúlyban lévő kibocsátó test atomi részecskéinek véletlenszerű
Hőhidak hatása a hőveszteségre. Elemen belüli és csatlakozási hőhidak
Kicsi, de fontos számítási példák hatása a hőveszteségre Elemen belüli és csatlakozási hőhidak Elemen belüli élek: oszlopok, pillérek, szarufák, szerelt burkolatot tartó bordák Elemen belüli pontszerű
Modern Fizika Labor. 11. Spektroszkópia. Fizika BSc. A mérés dátuma: dec. 16. A mérés száma és címe: Értékelés: A beadás dátuma: dec. 21.
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. dec. 16. A mérés száma és címe: 11. Spektroszkópia Értékelés: A beadás dátuma: 2011. dec. 21. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin
5 előadás. Anyagismeret
5 előadás Anyagismeret Ötvözet Legalább látszatra egynemű fémes anyag, amit két vagy több alkotó különböző módszerekkel való egyesítése után állítunk elő. Alapötvöző minden esetben fémes anyag. Ötvöző
Őrlés hatására porokban végbemenő kristályos-amorf szerkezetváltozás tanulmányozása
Őrlés hatására porokban végbemenő kristályos-amorf szerkezetváltozás tanulmányozása K. Tomolya*, D. Janovszky, A. Sycheva, A. Roósz 1,2,3,4 MTA-ME Anyagtudományi Kutatócsoport, Miskolc-Egyetemváros *femkinga@uni-miskolc.hu
A Termelésmenedzsment alapjai tárgy gyakorló feladatainak megoldása
azdaság- és Társadalomtudományi Kar Ipari Menedzsment és Vállakozásgazdaságtan Tanszék A Termelésmenedzsment alapjai tárgy gyakorló feladatainak megoldása Készítette: dr. Koltai Tamás egyetemi tanár Budapest,.
Réz - szén nanocső kompozit mikroszerkezete és mechanikai viselkedése
Réz - szén nanocső kompozit mikroszerkezete és mechanikai viselkedése P. Jenei a, E.Y. Yoon b, J. Gubicza a, H.S. Kim b, J.L. Lábár a,c, T. Ungár a a Department of Materials Physics, Eötvös Loránd University,
Munkaközegek. 1. Előadás Fázisok, fázisátmenetek és állapotegyenletek
Munkaközegek 1. Előadás Fázisok, fázisátmenetek és állapotegyenletek Fázisok, fázisátmenetek, fázisegyensúlyok Halmazállapotok: folyadék, légnemű/gáz, szilárd, (plazma) Alap fázisok: folyadék, gáz/gőz,
Modern Fizika Labor. 2. Elemi töltés meghatározása
Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely
Szilárdságnövelés. Az előadás során megismerjük. Szilárdságnövelési eljárások
Anyagszerkezettan és anyagvizsgálat 2015/16 Szilárdságnövelés Dr. Szabó Péter János szpj@eik.bme.hu Az előadás során megismerjük A szilárságnövelő eljárásokat; Az eljárások anyagszerkezeti alapjait; Technológiai
1 modul 2. lecke: Nikkel alapú szuperötvözetek
1 modul 2. lecke: Nikkel alapú szuperötvözetek A lecke célja: a nikkel alapú szuperötvözetek példáján keresztül megismerjük általában a szuperötvözetek viselkedését és alkalmazásait. A kristályszerkezet
Függvények vizsgálata
Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =
Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)
Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken
Egyesített funkcionális renormálási csoport egyenlet
Egyesített funkcionális renormálási csoport egyenlet Nándori István MTA-DE Részecskefizikai Kutatócsoport, MTA-Atomki, Debrecen Magyar Fizikus Vándorgyűles, Debrecen, 2013 Kvantumtérelmélet Részecskefizika
Röntgen-gamma spektrometria
Röntgen-gamma spektrométer fejlesztése radioaktív anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű meghatározására Szalóki Imre, Gerényi Anita, Radócz Gábor Nukleáris Technikai Intézet
Spontaneitás, entrópia
Spontaneitás, entrópia 11-1 Spontán és nem spontán folyamat 11-2 Entrópia 11-3 Az entrópia kiszámítása 11-4 Spontán folyamat: a termodinamika második főtétele 11-5 Standard szabadentalpia változás, ΔG
Vázlatos tartalom. Szerkezet jellemzése és vizsgálata Szilárdtestek elektronszerkezete Rácsdinamika Transzportjelenségek Mágneses tulajdonságok
Szilárdtestfizika Kondenzált Anyagok Fizikája Vázlatos tartalom Szerkezet jellemzése és vizsgálata Szilárdtestek elektronszerkezete Rácsdinamika Transzportjelenségek Mágneses tulajdonságok 2 Szerkezet
SZTE Elméleti Fizikai Tanszék. Dr. Czirják Attila tud. munkatárs, c. egyetemi docens. egyetemi docens. Elméleti Fizika Szeminárium, december 17.
Időfüggő kvantumos szórási folyamatok Szabó Lóránt Zsolt SZTE Elméleti Fizikai Tanszék Témavezetők: Dr. Czirják Attila tud. munkatárs, c. egyetemi docens Dr. Földi Péter egyetemi docens Elméleti Fizika
Reális kristályok, rácshibák. Anyagtudomány gyakorlat 2006/2007 I.félév Gépész BSC
Reális kristályok, rácshibák Anyagtudomány gyakorlat 2006/2007 I.félév Gépész BSC Valódi, reális kristályok Reális rács rendezetlenségeket, rácshibákat tartalmaz Az anyagok tulajdonságainak bizonyos csoportja
2010. január 31-én zárult OTKA pályázat zárójelentése: K62441 Dr. Mihály György
Hidrosztatikus nyomással kiváltott elektronszerkezeti változások szilárd testekben A kutatás célkitűzései: A szilárd testek elektromos és mágneses tulajdonságait az alkotó atomok elektronhullámfüggvényeinek
Energiatételek - Példák
9. Előadás Húzott rúd potenciális energiája: Hooke-modell: σ = Eε Geom. hetséges Geometriai egyenlet: + geom. peremfeltételek: u εx = ε = x u(0) = 0 ul () = 0 du dx Energiatételek Példák = k l 0 pudx l
Szerkezetvizsgálat ANYAGMÉRNÖK ALAPKÉPZÉS (BSc)
Szerkezetvizsgálat ANYAGMÉRNÖK ALAPKÉPZÉS (BSc) TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR ANYAGTUDOMÁNYI INTÉZET Miskolc, 2008. 1. Tantárgyleírás Szerkezetvizsgálat kommunikációs
Least Squares becslés
Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás
ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával.
ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával www.chem.elte.hu/pr Kvíz az előző előadáshoz Programajánlatok november 11. 19:30 ELTE TTK Konferenciaterem Dr. Ahmed Hassan Zewail: Science
Fermi Dirac statisztika elemei
Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika
Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése
Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu
A Standard modellen túli Higgs-bozonok keresése
A Standard modellen túli Higgs-bozonok keresése Elméleti fizikai iskola, Gyöngyöstarján, 2007. okt. 29. Horváth Dezső MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és ATOMKI, Debrecen Horváth
Sugárzásos hőtranszport
Sugárzásos hőtranszport Minden test bocsát ki sugárzást. Ennek hullámhossz szerinti megoszlása a felület hőmérsékletétől függ (spektrum, spektrális eloszlás). Jelen esetben kérdés a Nap és a földi felszínek
Pelletek térfogatának meghatározása Bayes-i analízissel
Pelletek térfogatának meghatározása Bayes-i analízissel Szepesi Tamás KFKI-RMKI, Budapest, Hungary P. Cierpka, Kálvin S., Kocsis G., P.T. Lang, C. Wittmann 2007. február 27. Tartalom 1. Motiváció ELM-keltés
Nanoszemcsés anyagok mikroszerkezete és vizsgálata
Nanoszemcsés anyagok mikroszerkezete és vizsgálata Jenei Péter Eötvös Loránd Tudományegyetem Anyagfizikai Tanszék Budapest 2014 A felhasznált anyagok minősége és mennyisége meghatározza meg az adott kor
A SZILÁRDTEST FOGALMA. Szilárdtest: makroszkópikus, szilárd, rendezett anyagdarab. molekula klaszter szilárdtest > σ λ : rel.
A SZILÁRDTEST FOGALMA Szilárdtest: makroszkópikus, szilárd, rendezett anyagdarab. a) Méret: b) Szilárdság: molekula klaszter szilárdtest > ~ 100 Å ideálisan rugalmas test: λ = 1 E σ λ : rel. megnyúlás
Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
Diffúzió 2003 március 28
Diffúzió 3 március 8 Diffúzió: különféle anyagi részecskék (szilárd, folyékony, gáznemű) anyagon belüli helyváltozása. Szilárd anyagban való mozgás Öndiffúzió: a rácsot felépítő saját atomok energiaszint-különbség
Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont)
Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) 1. "Az olyan rendszereket, amelyek határfelülete a tömegáramokat megakadályozza,... rendszernek nevezzük" (1) 2. "Az olyan rendszereket,
3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék
3. (b) Kereszthatások Utolsó módosítás: 2013. április 1. Vezetési együtthatók fémekben (1) 1 Az elektrongáz hővezetési együtthatója A levezetésben alkalmazott feltételek: 1. Minden elektron ugyanazzal
MATEMATIKA 2. dolgozat megoldása (A csoport)
MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f
Modern fizika laboratórium
Modern fizika laboratórium 11. Az I 2 molekula disszociációs energiája Készítette: Hagymási Imre A mérés dátuma: 2007. október 3. A beadás dátuma: 2007. október xx. 1. Bevezetés Ebben a mérésben egy kétatomos
ANYAGSZERKEZETTAN II.
ANYAGSZERKEZETTAN II. ANYAGMÉRNÖK ALAPKÉPZÉS TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR ANYAGTUDOMÁNYI INTÉZET Miskolc, 2008. 1. TANTÁRGYLEÍRÁS Anyagszerkezettan II. kommunikációs
Modern Fizika Labor Fizika BSC
Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. május 4. A mérés száma és címe: 9. Röntgen-fluoreszencia analízis Értékelés: A beadás dátuma: 2009. május 13. A mérést végezte: Márton Krisztina Zsigmond
7.1. Al2O3 95%+MLG 5% ; 3h; 4000rpm; Etanol; ZrO2 G1 (1312 keverék)
7.1. Al2O3 95%+MLG 5% ; 3h; 4000rpm; Etanol; ZrO2 G1 (1312 keverék) 7.1.1. SPS: 1150 C; 5 (1312 K1) Mért sűrűség: 3,795 g/cm 3 3,62 0,14 GPa Három pontos törés teszt: 105 4,2 GPa Súrlódási együttható:
TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI IV.
TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI IV. TÖBBFÁZISÚ, TÖBBKOMPONENS RENDSZEREK Kétkomponens szilárd-folyadék egyensúlyok Néhány fogalom: - olvadék - ötvözetek - amorf anyagok Állapotok feltüntetése:
Molekuláris dinamika I. 10. előadás
Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,
Gazdasági matematika II. vizsgadolgozat megoldása, június 10
Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett
Többváltozós analízis gyakorlat, megoldások
Többváltozós analízis gakorlat, megoldások Általános iskolai matematikatanár szak 7/8. őszi félév. Differenciál- és integrálszámítás alkalmazásai. Határozzuk meg az alábbi differenciálegenletek összes,
Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ
Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.
I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i
I. feladatsor () Töltse ki az alábbi táblázatot: Komplex szám Valós rész Képzetes rész Konjugált Abszolútérték + i i 0 + i i 5 5i 5 5i 6 6i 0 6 6i 6 5i 5 + 5i + i i 7i 0 7 7i 7 () Adottak az alábbi komplex