Geometriai érdekességek M. C. Escher rajzaiban

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Geometriai érdekességek M. C. Escher rajzaiban"

Átírás

1 Geometriai érdekességek M. C. Escher rajzaiban Gábor Ferenc Pályázat Matematika Készítette: Meszéna Dóra 11.F osztályos tanuló

2 A matematika bizonyos tekintetben mindig is az összekötő kapocs szerepét játszotta a különböző tudományok, valamint a tudomány és a művészet között. Meggyőződésem, hogy e tekintetben a matematikára a jövőben még fokozottabb szerep hárul. /Rényi Alfréd/ Bevezetés: Még tizedikes koromban figyeltem fel M. C. Escher rajzaira, mikor Ritter Betty tanárnő az egyik matematika óránk alkalmával behozott egy Escher-ről szóló könyvet, és mutatta az általa készült sajátos stílusú képeket, műveket. Az én érdeklődésem már régóta a matematika és a rajz irányába fordult, talán emiatt tűnt annyira közelinek és számomra igen érdekesnek a téma. Már akkor eldöntöttem, hogy kicsit többet fogok ezzel a témával foglalkozni, mint hogy megnézem a képeket a könyvben. Bár Escher grafikus művésznek vallotta magát, aki főként fametszeteket és litográfiákat készített, a képeit tanulmányozó néző óhatatlanul észre veszi, hogy nem egyszerű grafikákat csodál. Művészet és tudomány karöltve figyelhető meg ezekben az alkotásokban. Dolgozatomban elsősorban nem Escher életét és személyiségét szeretném bemutatni, habár valamennyit érdemes róla tudni. De ennek a munkámnak a témája inkább azoknak a matematika alakzatoknak a vizsgálata, amelyeket ő is alkalmazott rajzaiban, műveiben. 2

3 Maurits Cornelis Escher ( ) élete: június 17-én a Hollandia északi részén elterülő Friesland tartomány székhelyén Leeuwardenben született. Két bátyjával és szüleivel George Arnold Escher, Sarah Gleichman Escher azonban csakhamar Arnhembe költözött maga mögött hagyva a ma múzeumként működő családi házat. Az arnhemi középiskolában tanára, F. W. van der Haagen felfigyelt az ifjú Escher rajztehetségére. Irányítása alatt Escher megtanulta a linómetszés technikáját, ami nagymértékben hozzájárult grafikai készségének kialakításához. Középiskola után apja tanácsára építészetet kezdett tanulni a haarlemi Építészeti és Díszítő Művészeti Főiskolán, ahol megismerkedett Samuel Jessurun de Mesquita-val. A holland művész Escher tehetségét felismerve építészet helyett grafikai tanulmányokra buzdította újdonsült ismerősét. Az építészet iránt egyébként sem lelkesedő Escher boldogan folytatta immár grafikai tanulmányait 1919 és 1922 között Mesquita tanítványaként, akinek erős egyénisége döntően befolyásolta további pályafutását. Tőle tanulta a fametszet készítés technikáját, s azt hogy hogyan bánjon a fával, mint anyaggal. Tanulmányai befejeztével, 1922-ben Olaszországba utazott új inspirációk után kutatva, majd 1924-ben, Rómában telepedett le. Az elkövetkező években számos tanulmányutat tett, főként vidékre. Ellátogatott az Amalfi tengerpartra, Abruzzóba, Calabria eldugott városaiba, Szicíliába, az Etna környékére, Korzikára és Spanyolországba. Ebben az időszakban elsősorban tájak, épületek és természeti formák hatották rá. Környezetét természethű módon ábrázolta, minek során a különféle grafikai technikák elsajátítására fektette a hangsúlyt. Nem is annyira a tartalom, mintsem az ábrázolás mikéntje volt lényeges számára. Az ekkor készült fametszetek és litográfiák nagy részét Escher nem tartotta túl értékesnek, inkább mint ujjgyakorlatot tartotta számon őket ben maga mögött hagyva Olaszországot először Svájcban, Belgiumban majd Spanyolországban telepedett le. A tájak és épületek itt már kevésbé hatottak rá, egyre inkább elfordult a minket körülvevő világ, a látható valóság többé-kevésbé direkt módon való ábrázolásától. Grafikai munkái fokozatosan új irányt vettek ban Spanyolországba látogatott, ahol nagy alapossággal tanulmányozta az iszlám építőművészet díszítőelemeit és remekműveit. A granadai Alhambra században épült arab fejedelmi palota és a cordobai La Mezquita a nyugati arab világ egykori főmecsetje a falak és padlók díszítésére használt egybevágó színes majolikacsempéivel ragadta meg Eschert. Számos metszetében fedezhető fel a mór csempézés ihlette szabályos felületfelosztás. Az iszlám művészet vallási okokból részesítette az absztrakt mintákat előnyben. A II. világháború kitörését követően családjával hazaköltözött Hollandiába, Baarn városába. A német megszállás zaklatott időszakában Escher nem találta meg a kreatív gondolkodáshoz nélkülözhetetlen nyugalmat, így főként csak kézügyességet igénylő alkotásokat készített. A háború után a térbeli konstrukciók ábrázolása felé fordult. Elkészítette a lehetetlen tárgyak, épületek és a relativitások metszeteit. Bár Escher egyre több munkamegbízást kapott, s 1949-ben, Rotterdamban ismertetővel egybekötött kiállítást is rendeztek képeiből, a világ csak később ismerte meg a nevét. Az 50-es évek eleje hozta meg számára az áttörést, amikor az amerikai sajtó felfigyelt rá, s munkásságáról cikkek jelentek meg a Time és Life magazinokban. Az Európában és Amerikában tartott előadásai iránt a társadalom egyre szélesebb rétege, beleértve a tudományos világot is, fokozódó érdeklődést tanúsított. Az 50-es évek végén mindinkább elmélyedt a végtelen megközelítésének és a sík parkettázásának témájában. Egészsége lassú romlásával aktivitása fokozatosan csökkent, és már nem készített új terveket, 73 évesen bekövetkezett haláláig (1972. március 27. Baarn), azért folyamatosan dolgozott, nyomatokat készítve korábbi metszeteiről. 3

4 Síkkitöltések-végtelen mozaikok A kezdet talán a mór díszítőművészet tanulmányozása lehetett, amelynek geometrikus motívumai, absztrakt alakzatai, szimmetriái igen érdekesek Escher Spanyolországban az Alhambra a cordobai mecset fal- és padlómintáiról sok vázlatot készített, majd "tovább játszott" a témával. Ismétlődő motívumnak már nem absztrakt alakzatokat, hanem hol Pegazusokat (a görög mitológiában a múzsák szárnyas lovai), hol lovasokat vagy bogarakat, máskor gyíkokat stb. választott. Ezek Eschernél hézagmentesen és egyrétűen illeszkednek, és így mozaikot alkotnak. Rengeteg mozaikszerű képe van. Ezek lényegében ugyanúgy, ismétlődnek, ugyanolyan rendszer szerint illeszkednek egymáshoz, mint bizonyos kristályok (persze itt egy térbeli problémakör síkbeli analógiájáról van szó). Ez az, ami miatt több matematikus, krisztallográfus (kristálytannal foglalkozó), fizikus, kémikus, geológus is felfigyelt a művészre. Escher sokat foglalkozott az ilyen "periodikus" rajzok módszeres kiszínezésével: az egybevágó figurákat meghatározott rend szerint, különböző színűre festette. Különösen sok "fekete-fehér" rajzot készített, de többszínűeket is. Ez a színezés a kristálytanban annak felelhet meg, hogy a formailag egybevágó kristály-poliédereknek eltérő fizikai tulajdonságai vannak. Különösen fontosak a fekete-fehér (kétszínű) rajzok. Eschert nem a természettudományos szempontok vezették, hanem a művészi elképzelései, "játék" a formákkal és a színekkel. Így teremtette meg az ún. színes szimmetriák elméletének alapjait. Escher később egyre jobban vonzódott a matematikai és természettudományos témákhoz. Biztos szerepe volt ebben annak is, hogy több tudós (köztük, pl. Coxeter) keresett vele kapcsolatot, matematikai és kristálytani kongresszusokra hívták meg kiállítani. Rajzain gömbök, spirálok, Möbius-szalagok tűnnek fel, máskor különös térszemlélete kelt meghökkenést. Így érthető, hogy több tudományos munkában is találkozhatunk Escher rajzaival. A kétdimenziós kristálytan elmélete a sorminták természetesen adódó kiterjesztése a síkra, a szokásos tapéták, és parketták ismétlődő mintáinak szimmetria csoportja. A végtelen kétdimenziós csoportokat az különbözteti meg a végtelen egydimenziós csoportoktól, hogy független eltolásokat tartalmaznak. Fjodorov, a neves krisztallográfus bebizonyította, hogy összesen 17 különböző kétdimenziós mozgáscsoport létezik. 4

5 Sorminták előállításánál olyan mozgásokat alkalmazunk egymás után, melyek egy rögzített egyenest mindig változatlanul hagynak. Mozaiknak nevezzük a síkot hézagok és átfedések nélkül beborító sokszög-elrendezést. Egy mozaikot akkor mondunk szabályosnak, ha minden lapja és minden csúcsalakzata szabályos sokszög. A parkettázás: a terület lefedése a parkettakészlet elemeinek megengedett elmozgatásaival úgy, hogy a parketták belsejei diszjunktak legyenek. Vannak olyan parkettakészletek, amelyekkel a sík kiparkettázható, de csak nem teljesen periodikus módon. Sőt mi több a parkettázás lehetősége a parkettakészlet ismeretében nem eldönthető. A definíció szabadsági foka miatt persze a szokásos kérdések mellett nem standard problémák is felvethetők (például a parkettázandó objektum lehet egy végesen generált csoport, a parketták a csoport bizonyos véges részhalmazai). 5

6 A síknak olyan egyszerű alakzatokkal történő kitöltése, mint a négyzet, téglalap, paralelogramma, tetszőleges háromszög (amiből egy oldalfelező pontra történő tükrözéssel paralelogrammát kaphatunk ezt a szimmetriát Escher is gyakran alkalmazta) egészen nyilvánvaló. Könnyen felismerhetjük, hogy a síkot kitöltő alakzat bonyolultsága tetszőlegesen fokozható, és ezt használta ki Escher a műveiben: Möbius szalag és a Klein-kancsó A matematikust elsősorban a csomók topologikus tulajdonságai érdeklik-azok a sajátosságok, amelyek folytonos deformációk hatására nem változnak meg. Ezek közül a legalapvetőbb a csomózottság. A csomók a térgörbék legközvetlenebb topologikus sajátosságai. A görbék után a felületek következnek, a felületek után, pedig ezek többdimenziós általánosításai. A 6

7 topológia a folytonosság fogalmának mélyebb hatásait tanulmányozza, és folytonossági meggondolások szinte mindenütt előfordulhatnak. Ezért vált a topológia a matematika fontos részévé. A topológia előtörténetében volt fontos személy Gauss is, aki többször is hangsúlyozta mennyire fontos az alakzatok geometriai alaptulajdonságainak a vizsgálata, de ehhez néhány csomókról és láncokról szóló megjegyzésen kívül semmi többel nem járult hozzá. Gauss egy tanítványa, August Ferdinánd Möbius volt az első, aki a topologikus transzformációt definiálta, ahol az egyik alakzat közeli pontjainak a másik alakzatban is közeli pontok felelnek meg. Möbius a felületek és ezeknek a poliéderekhez való viszonyát vizsgálta, ami később a tárgy egyik központi témájává vált ban ő és Johann Listing felfedezték, hogy léteznek egyoldalú felületek, amelyek közül a Möbius-szalag lett a leghíresebb. A Möbius-szalagnak sok érdekes tulajdonsága van. A legfontosabb talán, hogy egy ún. egyoldalú, másképpen szólva nem irányítható felület, melynek egyetlen határvonala van. A Möbius-szalag határvonala topológiai szempontból egy körvonal. Ha két Möbiusszalagot a határvonala mentén összeragasztjuk, akkor épp egy Klein-kancsót kapunk. A Klein-kancsó Felix Christian Klein-ről kapta a nevét. A Klein-kancsó egy egyoldalú zárt felület. És amiért ezt megemlítettem: Escher műveiben gyakran ráismerhetünk a Möbiuszszalagra vagy akár a Klein-kancsóra is. 7

8 Fraktálok: 1975-ben Beniot Mandelbrot az egyes természeti formákban fellelt matematikai objektumok megnevezésére a latin fractus (jelentése: szabálytalan, tört) szóból megalkotta a fraktál szót, így adott önálló létet ezeknek az alakzatoknak. Az elnevezés az alakzatok törtszámú dimenziójára utal. Definíció szerint a fraktálok önhasonló, végtelenül komplex matematikai alakzatok, melyek változatos formáiban legalább egy felismerhető (tehát matematikai eszközökkel leírható) ismétlődés tapasztalható. Az önhasonlóság azt jelenti, hogy egy kisebb rész felnagyítva ugyanolyan struktúrát mutat, mint egy nagyobb rész. Ilyen például a természetben a villám mintázata, a levél erezete, a felhők formája, a hópelyhek alakja, a hegyek csipkézete, a fa ágai, a hullámok fodrozódása és még sok más. A fraktál szóval rendszerint az önhasonló alakzatok közül azokra utalnak, amelyeket egy matematikai formulával le lehet írni, vagy meg lehet alkotni. Ismertebb fraktálok és fraktálcsaládok: Mandelbrot-halmaz, Julia-halmaz, Kochgörbe, Cantor-szőnyeg. 8

9 Befejezés: A nagy gondolkodókat mindig a gondolkodás élvezete sarkallta. Krisztus előtt a hatodik században Püthagorasz és tanítványai már nekiláttak annak, hogy olyan közös számtani törvényeket találjanak, melyek összekötik a geometriát, a művészeteket, a csillagászatot. A civilizációk fokozatosan egyre összetettebb szabályokat fejlesztettek ki az ismeretek kombinálására. Például mértani ábrákat. Az elvont tudásanyag és mindaz, amit kísérleti 9

10 tudományként ismerünk, ezekből a szabályokból nőtt ki. A tudomány azért keletkezett és azért indult virágzásnak, mert gondolkodni jó. Az új felfedezések mindig azokat az embereket kedvelik, akik annyira szeretnek játszani, hogy az ismert dolgok határain túlra kóborolva addig ismeretlen területeket kezdenek felfedezni. Ha a gondolkodók nem élvezték volna a rendnek, a tudat rendszerezésének az érzését, akkor nem lennének matematikai és fizikai alapelvek. Kant állítólag az óráját tette be egy edénybe főni, és a tojást fogta a kezében, hogy mérje az időt. Ekkor valószínűleg minden pszichikai energiáját abba fektette, hogy elvont gondolataival foglalkozzon és nem maradt ideje a való világ esetleges problémáira. A gondolatokkal, szabályokkal való játék egész különleges örömet nyújt. Az új ötletek felbukkanását is az az öröm táplálja, amely a valóság megközelítésének, leírásának új módját kíséri. A mindennapi éltünkben is hasznos, ha vannak olyan szabálykészleteink, melyeken elménk dolgozhat. Akinek nincs ilyen belső szimbólumrendszere, azt könnyen manipulálhatják, a média foglyává válhat. Ha függőségbe kerülünk, az azért van, mert kevés olyan belső szabály van a birtokunkban, ami visszatartaná elménket attól, hogy átvegyék felette a hatalmat. 10

11 Irodalomjegyzék: M.C.Escher: Grafikák és Rajzok (Taschen1989/Vince Kiadó1992) Ian Stewart: A Matematika Problémái (Oxford University Press1987/Akadémiai Kiadó1991) Fokasz Nikosz: Káosz és Fraktálok (1999/Új Mandátum Könyvkiadó2000) Csíkszentmihályi Mihály: Flow- Az áramlat (Akadémiai Kiadó1991) 11

Rend, rendezetlenség, szimmetriák (rövidített változat)

Rend, rendezetlenség, szimmetriák (rövidített változat) Rend, rendezetlenség, szimmetriák (rövidített változat) dr. Tasnádi Tamás 1 2018. február 16. 1 BME, Matematikai Intézet Tartalom Mi a rend? Érdekes grafikáktól a periodikus rácsokig Nem periodikus parkettázások

Részletesebben

Matematika az építészetben

Matematika az építészetben Matematika az építészetben Molnár-Sáska Katalin Főisk.docens YMÉK Bevezetés - Történeti áttekintés - A geometria helye a főiskolai képzésben - Újraindítás és körülményei Részletes tanmenet Megjegyzések:

Részletesebben

Tudomány és művészetek tehetséggondozó műhely záró foglalkozás és kiállítás

Tudomány és művészetek tehetséggondozó műhely záró foglalkozás és kiállítás NTP-KKI-B-15 A köznevelés és kulturális intézményekben működő tehetséggondozó programok támogatása Tudomány és művészetek tehetséggondozó műhely záró foglalkozás és kiállítás Tudomány és művészetek tehetséggondozó

Részletesebben

Tudomány és művészetek tehetséggondozó műhelye

Tudomány és művészetek tehetséggondozó műhelye Emberi Erőforrások Minisztériuma megbízásából az Emberi Erőforrás Támogatáskezelő nyílt pályázatot hirdetett a köznevelési és a kulturális intézményekben működő tehetséggondozó programok támogatására (NTP-KKI-B-

Részletesebben

8. modul: NÉGYSZÖGEK, SOKSZÖGEK

8. modul: NÉGYSZÖGEK, SOKSZÖGEK MATEMATIK A 9. évfolyam 8. modul: NÉGYSZÖGEK, SOKSZÖGEK KÉSZÍTETTE: VIDRA GÁBOR Matematika A 9. évfolyam. 8. modul: NÉGYSZÖGEK, SOKSZÖGEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

Önhasonló (fraktál-szerű) részletek a borostyán (Hedera helix) levélerezetében. A brokkoli is fraktál mintákat mutat

Önhasonló (fraktál-szerű) részletek a borostyán (Hedera helix) levélerezetében. A brokkoli is fraktál mintákat mutat A fraktál metafora A fraktálok önhasonló, végtelenül komplex matematikai alakzatok, melyek változatos formáiban legalább egy felismerhető (tehát matematikai eszközökkel leírható) ismétlődés tapasztalható.

Részletesebben

VI.9. KÖRÖK. A feladatsor jellemzői

VI.9. KÖRÖK. A feladatsor jellemzői VI.9. KÖRÖK Tárgy, téma A feladatsor jellemzői A kör területe, arányok változatlansága sokszorozás esetén. Előzmények Cél A kör részeinek területe egyszerű esetben, szimmetriák, a négyzet és átlójának

Részletesebben

A pentominók matematikája Síkbeli és térbeli alakzatok 4. feladatcsomag

A pentominók matematikája Síkbeli és térbeli alakzatok 4. feladatcsomag A pentominók matematikája Síkbeli és térbeli alakzatok 4. feladatcsomag Életkor: Fogalmak, eljárások: 10 18 év pentominók adott tulajdonságú alakzatok építése szimmetrikus alakzatok egybevágó alakzatok

Részletesebben

Fraktálok. Löwy Dániel Hints Miklós

Fraktálok. Löwy Dániel Hints Miklós alkalmazott erjedéses folyamat sajátságait. Továbbá nemcsak az alkoholnak az emberi szervezetre gyakorolt hatását tudjuk megfigyelni (például a szomszéd dülöngélését és kurjongatását), hanem az alkoholnak

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III. Geometria III. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított szakaszoknak a halmazát vektornak nevezzük. Jele: v. DEFINÍCIÓ: (Geometriai transzformáció) Geometriai transzformációnak

Részletesebben

16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek

16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek 16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK Geometriai transzformáció Def:Olyan speciális függvény, melynek értelmezési

Részletesebben

2. ELŐADÁS. Transzformációk Egyszerű alakzatok

2. ELŐADÁS. Transzformációk Egyszerű alakzatok 2. ELŐADÁS Transzformációk Egyszerű alakzatok Eltolás A tér bármely P és P pontpárjához pontosan egy olyan eltolás létezik, amely P-t P -be viszi. Bármely eltolás tetszőleges egyenest vele párhuzamos egyenesbe

Részletesebben

Erdősné Németh Ágnes. Batthyány Lajos Gimnázium Nagykanizsa. agi@microprof.hu. INFO SAVARIA 2010. április 23. Erdősné Németh Ágnes, Nagykanizsa 1

Erdősné Németh Ágnes. Batthyány Lajos Gimnázium Nagykanizsa. agi@microprof.hu. INFO SAVARIA 2010. április 23. Erdősné Németh Ágnes, Nagykanizsa 1 Parkettázás s szabályos sokszögekkel Erdősné Németh Ágnes Batthyány Lajos Gimnázium Nagykanizsa agi@microprof.hu INFO SAVARIA 2010. április 23. Erdősné Németh Ágnes, Nagykanizsa 1 LOGO versenyfeladatok

Részletesebben

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 7 KRISTÁLYTAN VII. A KRIsTÁLYOK szimmetriája 1. BEVEZETÉs Az elemi cella és ebből eredően a térrácsnak a szimmetriáját a kristályok esetében az atomok, ionok

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

Követelmény a 7. évfolyamon félévkor matematikából

Követelmény a 7. évfolyamon félévkor matematikából Követelmény a 7. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Elemek halmazba rendezése több szempont alapján. Halmazok ábrázolása. A nyelv logikai elemeinek helyes használata.

Részletesebben

Matematika A 9. szakiskolai évfolyam. 16. modul EGYBEVÁGÓSÁGOK. Készítette: Vidra Gábor

Matematika A 9. szakiskolai évfolyam. 16. modul EGYBEVÁGÓSÁGOK. Készítette: Vidra Gábor Matematika A 9. szakiskolai évfolyam 16. modul EGYBEVÁGÓSÁGOK Készítette: Vidra Gábor MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 16. modul: EGYBEVÁGÓSÁGOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály

Részletesebben

Egyenes mert nincs se kezdő se végpontja

Egyenes mert nincs se kezdő se végpontja Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

Egybevágósági transzformációk. A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá.

Egybevágósági transzformációk. A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá. Egybevágósági transzformációk A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá. Egybevágósági transzformációk azok a geometriai transzformációk, amelyeknél bármely

Részletesebben

Vári Péter-Rábainé Szabó Annamária-Szepesi Ildikó-Szabó Vilmos-Takács Szabolcs KOMPETENCIAMÉRÉS 2004

Vári Péter-Rábainé Szabó Annamária-Szepesi Ildikó-Szabó Vilmos-Takács Szabolcs KOMPETENCIAMÉRÉS 2004 Vári Péter-Rábainé Szabó Annamária-Szepesi Ildikó-Szabó Vilmos-Takács Szabolcs KOMPETENCIAMÉRÉS 2004 2005 Budapest Értékelési Központ SuliNova Kht. 2 Országos Kompetenciamérés 2004 Tartalom 1. Bevezetés...4

Részletesebben

Fraktálok. Klasszikus fraktálpéldák I. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék

Fraktálok. Klasszikus fraktálpéldák I. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék Fraktálok Klasszikus fraktálpéldák I Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 86 Bevezetés. 2 of 86 TARTALOMJEGYZÉK Bevezetés. Az önhasonlóságról intuitív módon Klasszikus

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. október 12. 1. Diszkrét matematika 2. 5. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. október 12. Diszkrét matematika

Részletesebben

szép, harmónikus, kellemes, monumentális, érzelmekre ható

szép, harmónikus, kellemes, monumentális, érzelmekre ható Mi jut eszedbe a művészetről? szép, harmónikus, kellemes, monumentális, érzelmekre ható Mit jelent a művészet szó? mű (nem valódi) ember által csinált készített dolog teljesítmény, munka (kunst-német)

Részletesebben

Fejlesztı neve: VINCZÉNÉ CSETE GABRIELLA. Tanóra / modul címe: ALKALMAZZUK A SZIMMETRIÁT! SÍK- ÉS TÉRBELI TENGELYESEN TÜKRÖS ALAKZATOK ELİÁLLÍTÁSA

Fejlesztı neve: VINCZÉNÉ CSETE GABRIELLA. Tanóra / modul címe: ALKALMAZZUK A SZIMMETRIÁT! SÍK- ÉS TÉRBELI TENGELYESEN TÜKRÖS ALAKZATOK ELİÁLLÍTÁSA Fejlesztı neve: VINCZÉNÉ CSETE GABRIELLA Tanóra / modul címe: ALKALMAZZUK A SZIMMETRIÁT! SÍK- ÉS TÉRBELI TENGELYESEN TÜKRÖS ALAKZATOK ELİÁLLÍTÁSA 1. Az óra tartalma A tanulási téma bemutatása; A téma és

Részletesebben

ÍRÁSBELI BELSŐ VIZSGA MATEMATIKA 8. évfolyam reál tagozat Az írásbeli vizsga gyakorlati és elméleti feladatai a következő témakörökből származnak.

ÍRÁSBELI BELSŐ VIZSGA MATEMATIKA 8. évfolyam reál tagozat Az írásbeli vizsga gyakorlati és elméleti feladatai a következő témakörökből származnak. ÍRÁSBELI BELSŐ VIZSGA MATEMATIKA 8. évfolyam reál tagozat Az írásbeli vizsga gyakorlati és elméleti feladatai a következő témakörökből származnak. Időtartam: 60 perc 1. Halmazműveletek konkrét halmazokkal.

Részletesebben

Varga Tamás szellemébenkonkrét tapasztalatok, gondolkodásra és önállóságra nevelés

Varga Tamás szellemébenkonkrét tapasztalatok, gondolkodásra és önállóságra nevelés Varga Tamás szellemébenkonkrét tapasztalatok, gondolkodásra és önállóságra nevelés Előadásom részei Múlt hét: 30 órás továbbképzés. Fókuszban: Varga Tamás matematikája, eszközhasználat és játék, tudatos

Részletesebben

2015. november 16. Művészet, Matematika, Játék és Innováció: ÉlményMűhely a Debreceni Ady Endre Gimnáziumban

2015. november 16. Művészet, Matematika, Játék és Innováció: ÉlményMűhely a Debreceni Ady Endre Gimnáziumban 2015. november 16. Művészet, Matematika, Játék és Innováció: ÉlményMűhely a Debreceni Ady Endre Gimnáziumban 4024 Debrecen, Liszt Ferenc u. 1. PROGRAM ÓRIÁSFRAKTÁL ÉS FULLERÉN MOLEKULA ÉPÍTÉS 4DFRAME KÉSZLETTEL

Részletesebben

15. modul: EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK

15. modul: EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK MATEMATIK A 9. évfolyam 15. modul: EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK KÉSZÍTETTE: BIRLONI SZILVIA Matematika A 9. évfolyam. 15. modul: VEKTOROK, EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK Tanári útmutató 2 A modul célja

Részletesebben

Programozási nyelvek 2. előadás

Programozási nyelvek 2. előadás Programozási nyelvek 2. előadás Logo forgatás tétel Forgatás tétel Ha az ismétlendő rész T fok fordulatot végez és a kezdőhelyére visszatér, akkor az ismétlések által rajzolt ábrák egymás T fokkal elforgatottjai

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 7 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Geometria 1 összefoglalás o konvex szögek

Geometria 1 összefoglalás o konvex szögek Geometria 1 összefoglalás Alapfogalmak: a pont, az egyenes és a sík Axiómák: 1. Bármely 2 pontra illeszkedik egy és csak egy egyenes. 2. Három nem egy egyenesre eső pontra illeszkedik egy és csak egy sík.

Részletesebben

Georg Cantor (1883) vezette be Henry John Stephen Smith fedezte fel 1875-ben. van struktúrája elemi kis skálákon is önhasonló

Georg Cantor (1883) vezette be Henry John Stephen Smith fedezte fel 1875-ben. van struktúrája elemi kis skálákon is önhasonló láttuk, hogy a Lorenz egyenletek megoldásai egy nagyon bonyolult halmazt alkottak a fázistérben végtelenül komplex felület fraktál: komplex geometriai alakzatok, melyeknek elemi kis skálán is van finomszerkezete

Részletesebben

JOHANNES KEPLER (Weil der Stadt, december 27. Regensburg, Bajorország, november 15.)

JOHANNES KEPLER (Weil der Stadt, december 27. Regensburg, Bajorország, november 15.) SZABÁLYOS TESTEK JOHANNES KEPLER (Weil der Stadt, 1571. december 27. Regensburg, Bajorország, 1630. november 15.) Német matematikus és csillagász, aki felfedezte a bolygómozgás törvényeit, amiket róla

Részletesebben

Mozdony egy algebrista képerny jén

Mozdony egy algebrista képerny jén Mozdony egy algebrista képerny jén Czédli Gábor (Szeged, Egyetemi Tavasz, 2015.04.18.) 2015. április 18. Csoport (a SZIMMETRIA absztrakciójából) 0'/20 Deníció Évariste Galois (1811. okt. 11 1832. május

Részletesebben

Geometria 1 normál szint

Geometria 1 normál szint Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!

Részletesebben

Ramsey-féle problémák

Ramsey-féle problémák FEJEZET 8 Ramsey-féle problémák "Az intelligens eljárást az jellemzi, hogy még a látszólag megközelíthetetlen célhoz is utat nyit, megfelelő segédproblémát talál ki és először azt oldja meg." Pólya György:

Részletesebben

1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK

1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK MATEMATIKA TÉMAKÖRÖK 11. évfolyam 1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK 1.1. HALMAZOK 1.1.1. Halmazok megadásának módjai 1.1.2. Halmazok egyenlősége, részhalmaz, üres halmaz, véges,

Részletesebben

Matematika a középkorban ( )

Matematika a középkorban ( ) Matematika a középkorban (476-1492) 1) A középkori matematika fejlődésének területei a) Kína b) India c) Iszlám d) Európa e) Magyarország 2) A klasszikus indiai matematika a) Korát meghazudtoló eredményei

Részletesebben

Egybevágósági transzformációk

Egybevágósági transzformációk Egybevágósági transzformációk Párhuzamos eltolás Geometriai transzformációk Egybevágósági transzformációk (9. osztály) Helybenhagyás Tengelyes tükrözés Középpontos tükrözés Pont körüli forgatás Párhuzamos

Részletesebben

Matematika pótvizsga témakörök 9. V

Matematika pótvizsga témakörök 9. V Matematika pótvizsga témakörök 9. V 1. Halmazok, műveletek halmazokkal halmaz, halmaz eleme halmazok egyenlősége véges, végtelen halmaz halmazok jelölése, megadása természetes számok egész számok racionális

Részletesebben

11. előadás. Konvex poliéderek

11. előadás. Konvex poliéderek 11. előadás Konvex poliéderek Konvex poliéder 1. definíció: Konvex poliédernek nevezzük a térben véges sok, nem egysíkú pont konvex burkát. 2. definíció: Konvex poliédernek nevezzük azokat a térbeli korlátos

Részletesebben

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 6 KRISTÁLYTAN VI. A KRIsTÁLYOs ANYAG belső RENDEZETTsÉGE 1. A KRIsTÁLYOs ÁLLAPOT A szilárd ANYAG jellemzője Az ásványok néhány kivételtől eltekintve kristályos

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

SZERZŐ: Kiss Róbert. Oldal1

SZERZŐ: Kiss Róbert. Oldal1 A LEGO MindStorms NXT/EV3 robot grafikus képernyőjét és programozási eszközeit használva különböző dinamikus (időben változó) ábrákat tudunk rajzolni. A képek létrehozásához koordináta rendszerben adott

Részletesebben

FRAKTÁLGEOMETRIA. Példák fraktálokra I. Czirbusz Sándor február 1. Komputeralgebra Tanszék ELTE Informatika Kar

FRAKTÁLGEOMETRIA. Példák fraktálokra I. Czirbusz Sándor február 1. Komputeralgebra Tanszék ELTE Informatika Kar Példák fraktálokra I Czirbusz Sándor czirbusz@gmail.com Komputeralgebra Tanszék ELTE Informatika Kar 2010. február 1. Vázlat 1 Mi a fraktál? 2 A konstrukció Egyszerű tulajdonságok Triadikus ábrázolás Transzlációk

Részletesebben

A hiperbolikus síkgeometria Poincaré-féle körmodellje

A hiperbolikus síkgeometria Poincaré-féle körmodellje A hiperbolikus síkgeometria Poincaré-féle körmodellje Ha egy aiómarendszerre modellt adunk, az azt jelenti, hogy egy matematikai rendszerben interpretáljuk az aiómarendszer alapfogalmait és az aiómák a

Részletesebben

Hraskó András, Surányi László: spec.mat szakkör Tartotta: Hraskó András. 1. alkalom

Hraskó András, Surányi László: spec.mat szakkör Tartotta: Hraskó András. 1. alkalom 1. alkalom 1. Beszínezzük a koordináta-rendszer rácspontjait. Egyetlen szabályt kell betartanunk: az (a;b) pontnak ugyanolyan színűnek kell lennie, mint az (a-b;a) és az (a;b-a) pontnak (a és b egész számok).

Részletesebben

Síkbarajzolható gráfok, duális gráf

Síkbarajzolható gráfok, duális gráf Síkbarajzolható gráfok, duális gráf Papp László BME November 8, 2018 Gráfok lerajzolása Definíció: Egy G gráf diagramján a gráf olyan lerajzolását értjük ahol a csúcsok különböző síkbeli pontok, illetve

Részletesebben

A húrnégyszögek meghódítása

A húrnégyszögek meghódítása A húrnégyszögek meghódítása A MINDENTUDÁS ISKOLÁJA Gerőcs lászló A HÚRNÉGYSZÖGEK MEGHÓDÍTÁSA Akadémiai Kiadó, Budapest ISBN 978 963 05 8969 7 Kiadja az Akadémiai Kiadó, az 1795-ben alapított Magyar Könyvkiadók

Részletesebben

Matematika A 9. szakiskolai évfolyam. 14. modul GEOMETRIAI ALAPFOGALMAK. Készítette: Vidra Gábor

Matematika A 9. szakiskolai évfolyam. 14. modul GEOMETRIAI ALAPFOGALMAK. Készítette: Vidra Gábor Matematika A 9. szakiskolai évfolyam 14. modul GEOMETRIAI ALAPFOGALMAK Készítette: Vidra Gábor MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 14. modul: GEOMETRIAI ALAPFOGALMAK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret

Részletesebben

Termék modell. Definíció:

Termék modell. Definíció: Definíció: Termék modell Összetett, többfunkciós, integrált modell (számítógépes reprezentáció) amely leír egy műszaki objektumot annak különböző életfázis szakaszaiban: tervezés, gyártás, szerelés, szervízelés,

Részletesebben

A dinamikus geometriai rendszerek használatának egy lehetséges területe

A dinamikus geometriai rendszerek használatának egy lehetséges területe Fejezetek a matematika tanításából A dinamikus geometriai rendszerek használatának egy lehetséges területe Készítette: Harsányi Sándor V. matematika-informatika szakos hallgató Porcsalma, 2004. december

Részletesebben

MATEMATIKA C 6. évfolyam 2. modul TANGRAMOK

MATEMATIKA C 6. évfolyam 2. modul TANGRAMOK MATEMATIKA C 6. évfolyam 2. modul TANGRAMOK Készítette: Köves Gabriella MATEMATIKA C 6. ÉVFOLYAM 2. MODUL: TANGRAMOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály A képességfejlesztés fókuszai

Részletesebben

Elliott hullám ELLIOTT HULLÁM KERESKEDÉSI KÉZIKÖNYV. Kereskedési kézikönyv ELLIOTT HULLÁM KERESKEDÉSI KÉZIKÖNYV I WWW.RANDOMCAPITAL.

Elliott hullám ELLIOTT HULLÁM KERESKEDÉSI KÉZIKÖNYV. Kereskedési kézikönyv ELLIOTT HULLÁM KERESKEDÉSI KÉZIKÖNYV I WWW.RANDOMCAPITAL. Elliott hullám Kereskedési kézikönyv ELLIOTT HULLÁM KERESKEDÉSI KÉZIKÖNYV ELLIOTT HULLÁM KERESKEDÉSI KÉZIKÖNYV I WWW.RANDOMCAPITAL.HU 1 Elliot Hullámok Az 1930-as években Ralph Nelson Elliott arra a felfedezésre

Részletesebben

MATEMATIKA C 9. évfolyam 8. modul SZIMMETRIKUS?

MATEMATIKA C 9. évfolyam 8. modul SZIMMETRIKUS? MATEMATIKA C 9. évfolyam 8. modul SZIMMETRIKUS? Készítette: Surányi Szabolcs MATEMATIKA C 9. ÉVFOLYAM 8. MODUL: SZIMMETRIKUS? TANÁRI ÚTMUTATÓ 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

Milyen a modern matematika?

Milyen a modern matematika? Milyen a modern matematika? Simonovits Miklós Milyen a modern matematika? p.1 Miért rossz ez a cím? Nem világos, mit értek modern alatt? A francia forradalom utánit? Általában olyat tanulunk, amit már

Részletesebben

(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja.

(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. Testmodellezés Testmodellezés (Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. A tervezés (modellezés) során megadjuk a objektum geometria

Részletesebben

Matematika osztályozó vizsga témakörei 9. évfolyam II. félév:

Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: 7. Függvények: - függvények fogalma, megadása, ábrázolás koordináta- rendszerben - az elsőfokú függvény, lineáris függvény - a másodfokú függvény

Részletesebben

V.9. NÉGYZET, VÁGOD? A feladatsor jellemzői

V.9. NÉGYZET, VÁGOD? A feladatsor jellemzői V.9. NÉGYZET, VÁGOD? Tárgy, téma A feladatsor jellemzői Geometriai megközelítésen keresztül a mértani sorozat tulajdonságaival, első n tagjának összegképletével való ismerkedés. Előzmények Téglalap területe,

Részletesebben

JOGSZABÁLY. LI. ÉVFOLYAM, 15. SZÁM Ára: 693 Ft 2007. JÚNIUS 5. TARTALOM. 1. (1) A rendelet hatálya fenntartótól függetlenül

JOGSZABÁLY. LI. ÉVFOLYAM, 15. SZÁM Ára: 693 Ft 2007. JÚNIUS 5. TARTALOM. 1. (1) A rendelet hatálya fenntartótól függetlenül LI. ÉVFOLYAM, 15. SZÁM Ára: 693 Ft 2007. JÚNIUS 5. oldal JOGSZABÁLY 24/2007. (IV. 2.) OKM rendelet a közoktatás minõségbiztosításáról és minõségfejlesztésérõl szóló 3/2002. (II. 15.) OM rendelet módosításáról...

Részletesebben

Matematika 6. osztály Osztályozó vizsga

Matematika 6. osztály Osztályozó vizsga Matematika 6. osztály Osztályozó vizsga 1. Számok és műveletek 1. A tízes számrendszer Számok írása, olvasása, ábrázolása Az egymilliónál nagyobb természetes számok írása, olvasása. Számok tizedestört

Részletesebben

5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS

5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS MATEMATIK A 9. évfolyam 5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS KÉSZÍTETTE: VIDRA GÁBOR Matematika A 9. évfolyam. 5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS Tanári útmutató 2 A modul célja Időkeret Ajánlott

Részletesebben

Latin négyzet és SUDOKU a tanítási órákon. készítette: Szekeres Ferenc

Latin négyzet és SUDOKU a tanítási órákon. készítette: Szekeres Ferenc Latin négyzet és SUDOKU a tanítási órákon készítette: Szekeres Ferenc a latin négyzet Leonhard Euler (1707 1783) svájci matematikustól származik eredetileg latin betűket használt szabályai: egy n x n es

Részletesebben

projektív geometria avagy

projektív geometria avagy A probléma eredete. Előzmények. Egy művészetből született tudomány, a projektív geometria avagy Hogyan lett a barackmagból atommag? Klukovits Lajos TTIK Bolyai Intézet 2015. november 17. A képzőművészeti

Részletesebben

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27. Matematika 11 Koordináta geometria Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A

Részletesebben

A GEOMETRIA TÉMAKÖR FELOSZTÁSA. Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria

A GEOMETRIA TÉMAKÖR FELOSZTÁSA. Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria GEOMETRIA A GEOMETRIA TÉMAKÖR FELOSZTÁSA Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria A SÍKGEOMETRIA TANÍTÁSA 5-10. OSZTÁLY Síkgeometriai fogalmak

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag

Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag Síkbeli és térbeli alakzatok 1.3 Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag Életkor: Fogalmak, eljárások: 10 12 év sokszög, szabályos sokszög egybevágó lap, él, csúcs párhuzamos,

Részletesebben

Számítógépes Grafika SZIE YMÉK

Számítógépes Grafika SZIE YMÉK Számítógépes Grafika SZIE YMÉK Analóg - digitális Analóg: a jel értelmezési tartománya (idő), és az értékkészletes is folytonos (pl. hang, fény) Diszkrét idejű: az értelmezési tartomány diszkrét (pl. a

Részletesebben

SZERZŐ: Kiss Róbert. Oldal1

SZERZŐ: Kiss Róbert. Oldal1 A LOGO MindStorms NXT/EV3 robot grafikus képernyőjét használva különböző ábrákat tudunk rajzolni. A képek létrehozásához koordináta rendszerben adott alakzatok (kör, téglalap, szakasz, pont) meghatározó

Részletesebben

Matematika. J a v í t ó k u l c s. 8. évfolyam. Oktatási Hivatal Közoktatási Mérési Értékelési Osztály 1054 Budapest, Báthory utca 10.

Matematika. J a v í t ó k u l c s. 8. évfolyam. Oktatási Hivatal Közoktatási Mérési Értékelési Osztály 1054 Budapest, Báthory utca 10. Matematika J a v í t ó k u l c s 8. évfolyam Oktatási Hivatal Közoktatási Mérési Értékelési Osztály 1054 Budapest, Báthory utca 10. IEA, 2011 1/1. feladat 1/2. feladat : B : B Item: M032757 Item: M032721

Részletesebben

Háromszögek, négyszögek, sokszögek 9. évfolyam

Háromszögek, négyszögek, sokszögek 9. évfolyam Háromszögek, négyszögek, sokszögek 9. évfolyam I. Pontok, egyenesek, síkok és ezek kölcsönös helyzetet 1) a pont, az egyenes, a sík és az illeszkedés alapfogalmak 2) két egyenes metsző, ha van közös pontjuk

Részletesebben

TANMENET. a matematika tantárgy tanításához a 12. E osztályok számára

TANMENET. a matematika tantárgy tanításához a 12. E osztályok számára Az iskola fejbélyegzője TANMENET a matematika tantárgy tanításához a 12. E osztályok számára Készítette: Természettudományi Munkaközösség matematikát tanító tanárai Készült: a gimnáziumi tanterv alapján

Részletesebben

ANYANYELVI NEVELÉS AZ ÓVODÁBAN, A MONTESSORI PEDAGÓGIA ESZKÖZRENDSZERÉVEL ZÁRÓDOLGOZAT

ANYANYELVI NEVELÉS AZ ÓVODÁBAN, A MONTESSORI PEDAGÓGIA ESZKÖZRENDSZERÉVEL ZÁRÓDOLGOZAT Kecskeméti Főiskola Tanítóképző Főiskolai Kar Továbbképzési és vizsgaközpont ANYANYELVI NEVELÉS AZ ÓVODÁBAN, A MONTESSORI PEDAGÓGIA ESZKÖZRENDSZERÉVEL ZÁRÓDOLGOZAT KONZULENS TANÁR: Dr. Szinger Veronika

Részletesebben

PROK ISTVÁN SZILÁGYI BRIGITTA ÁBRÁZOLÓ GEOMETRIA. Ábrázoló geometria példákon keresztül

PROK ISTVÁN SZILÁGYI BRIGITTA ÁBRÁZOLÓ GEOMETRIA. Ábrázoló geometria példákon keresztül PROK ISTVÁN SZILÁGYI BRIGITTA ÁBRÁZOLÓ GEOMETRIA Ábrázoló geometria példákon keresztül 2011 1 Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0028 számú, a Természettudományos (matematika és fizika) képzés a műszaki

Részletesebben

EGYEDI BURKOLÁSI MEGOLDÁSOK:

EGYEDI BURKOLÁSI MEGOLDÁSOK: EGYEDI BURKOLÁSI MEGOLDÁSOK: Kőintarzia, természetes kövek, vagy extra méretű greslapok, illesztési hézag (fuga) nélküli szabásával. AZ ELKÉPZELÉSTŐL - A MEGVALÓSÍTÁSIG: 1. A megrendelő által kiválasztott

Részletesebben

Matematika. 5. 8. évfolyam

Matematika. 5. 8. évfolyam Matematika 5. 8. évfolyam 5. 6. évfolyam Éves órakeret: 148 Heti óraszám: 4 Témakörök Óraszámok Gondolkodási és megismerési módszerek folyamatos Számtan, algebra 65 Összefüggések, függvények, sorozatok

Részletesebben

Hogyan óvjuk meg értékes festményeinket?

Hogyan óvjuk meg értékes festményeinket? Hogyan óvjuk meg értékes festményeinket? Hajnal Péter Bolyai Intézet, SZTE, Szeged 2013. április Bevezető példa I. Feladat Adott egy konvex nyolcszög. Bevezető példa I. Feladat Adott egy konvex nyolcszög.

Részletesebben

VI.3. TORPEDÓ. A feladatsor jellemzői

VI.3. TORPEDÓ. A feladatsor jellemzői VI.. TORPEDÓ Tárgy, téma A feladatsor jellemzői Tengelyes és középpontos tükrözés, forgatás, eltolás és szimmetriák. Előzmények A tanulók ismerik a tengelyes tükrözést, középpontos tükrözést, 0 -os pont

Részletesebben

MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam

MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam BEVEZETŐ Ez a helyi tanterv a kerettanterv Emelet matematika A változata alapján készült. Az emelt oktatás során olyan tanulóknak kívánunk magasabb szintű ismerteket nyújtani, akik matematikából átlag

Részletesebben

TANMENET 2015/16. Készítette: KOVÁCS ILONA, Felhasználja: Juhász Orsolya

TANMENET 2015/16. Készítette: KOVÁCS ILONA, Felhasználja: Juhász Orsolya Tantárgy: Matematika Osztály: 10. B Készítette: KOVÁCS ILONA, Felhasználja: Juhász Orsolya Vetési Albert Gimnázium, Veszprém Heti óraszám: 3 Éves óraszám: 108 Tankönyv: Hajdu Sándor Czeglédy István Hajdu

Részletesebben

Követelmény a 8. évfolyamon félévkor matematikából

Követelmény a 8. évfolyamon félévkor matematikából Követelmény a 8. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Halmazokkal kapcsolatos alapfogalmak ismerete, halmazok szemléltetése, halmazműveletek ismerete, eszköz jellegű

Részletesebben

ARANYMETSZÉS. - érettségi dolgozat védése analízis és algebrából - Készítette: Szénási Eszter Mentor: Dr. Péics Hajnalka június 11.

ARANYMETSZÉS. - érettségi dolgozat védése analízis és algebrából - Készítette: Szénási Eszter Mentor: Dr. Péics Hajnalka június 11. ARANYMETSZÉS - érettségi dolgozat védése analízis és algebrából - Készítette: Szénási Eszter Mentor: Dr. Péics Hajnalka 2014. június 11. Zenta TARTALMI ÁTTEKINTÉS Az aranymetszés fogalma eredete és előfordulása

Részletesebben

Térbeli transzformációk, a tér leképezése síkra

Térbeli transzformációk, a tér leképezése síkra Térbeli transzformációk, a tér leképezése síkra Homogén koordináták bevezetése térben A tér minden P pontjához kölcsönösen egyértelműen egy valós (x, y, z) számhármast rendeltünk hozzá. (Descartes-féle

Részletesebben

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú

Részletesebben

Matematika 5. osztály Téma: Geometriai vizsgálatok, szerkesztések

Matematika 5. osztály Téma: Geometriai vizsgálatok, szerkesztések Matematika 5. osztály Téma: Geometriai vizsgálatok, szerkesztések Az óra címe: Testek ábrázolása Az órát tartja: Tóth Zsuzsanna Előzetes ismeretek: Ponthalmazok síkban és térben (pont, vonal, egyenes,

Részletesebben

11. modul: LINEÁRIS FÜGGVÉNYEK

11. modul: LINEÁRIS FÜGGVÉNYEK MATEMATIK A 9. évfolyam 11. modul: LINEÁRIS FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 11. modul: LINEÁRIS FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

Tartalomjegyzék 1. Az élet virága 2. Szakrális geometria 3. Az élet tojása

Tartalomjegyzék 1. Az élet virága 2. Szakrális geometria 3. Az élet tojása 5 Tartalomjegyzék 1. Az élet virága 7 A világon mindenütt 10 Az élet virágának titkai 13 Története 15 Thot 18 2. Szakrális geometria 23 A misztériumiskolák 24 Ehnaton 27 Szakrális geometria 30 Az ősok

Részletesebben

Bevezetés a síkgeometriába

Bevezetés a síkgeometriába a síkgeometriába 2016.01.29. a síkgeometriába 1 Fogalom, alapfogalom Álĺıtás,axióma Térelemek kölcsönös helyzete 2 A szögek A szögek mérése Szögfajták Szögpárok 3 4 a síkgeometriába Fogalom, alapfogalom

Részletesebben

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. Tankönyv nyolcadikosoknak. címû tankönyveihez

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. Tankönyv nyolcadikosoknak. címû tankönyveihez TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA Tankönyv nyolcadikosoknak címû tankönyveihez 8. OSZTÁLY Óraszám 1. 1 2. Halmazok ismétlés Tk. 6/1 5. Gyk. 3 6/1 10. 2. 3 4. A logikai szita Tk. 9 10/6 20.

Részletesebben

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,

Részletesebben

Matematika szóbeli érettségi témakörök 2017/2018-as tanév

Matematika szóbeli érettségi témakörök 2017/2018-as tanév Matematika szóbeli érettségi témakörök 2017/2018-as tanév 1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, LOGIKA, KOMBINATORIKA, GRÁFOK 1.1. HALMAZOK 1.1.1. Halmazok megadásának módjai 1.1.2. Halmazok egyenlősége,

Részletesebben

A gúla ~ projekthez 2. rész

A gúla ~ projekthez 2. rész 1 A gúla ~ projekthez 2. rész Dolgozatunk 1. részében egy speciális esetre a négyzet alapú egyenes gúla esetére írtuk fel és alkalmaztuk képleteinket. Most a tetszőleges oldalszámú szabályos sokszög alakú

Részletesebben

A Platán tanösvény. (beszámoló) Évmilliók nyomában - időutazás az Eötvösben"- természeti és kulturális tanösvény az Öreg-tó partján - NTP-KKI

A Platán tanösvény. (beszámoló) Évmilliók nyomában - időutazás az Eötvösben- természeti és kulturális tanösvény az Öreg-tó partján - NTP-KKI A Platán tanösvény (beszámoló) 1 Programunk 2016. szeptemberében a résztvevők kiválasztásával indult. A tehetségazonosítás fő célja az érdeklődő, tehetséges tanulók felfedezése volt. A tanulók jelentkezése

Részletesebben

Az alapvetı tudnivalók jegyzéke matematikából 9. évf. Halmazok. Algebra és számelmélet

Az alapvetı tudnivalók jegyzéke matematikából 9. évf. Halmazok. Algebra és számelmélet Az alapvetı tudnivalók jegyzéke matematikából 9. évf. Halmazok halmaz halmaz megadása, jelölésmód üres halmaz véges halmaz végtelen halmaz halmazok egyenlısége részhalmaz, valódi részhalmaz halmazok uniója

Részletesebben

Függvény fogalma, jelölések 15

Függvény fogalma, jelölések 15 DOLGO[Z]ZATOK 9.. 1. Függvény fogalma, jelölések 1 1. Az alábbi hozzárendelések közül melyek függvények? a) A magyarországi megyékhez hozzárendeljük a székhelyüket. b) Az egész számokhoz hozzárendeljük

Részletesebben

2. 5 perces akt krokik ecsettel, tussal. Kompozíció 3 15 perces vázlat alapján, lavírozott tussal egy lapra. Ülő akt, háromszög kompozíció.

2. 5 perces akt krokik ecsettel, tussal. Kompozíció 3 15 perces vázlat alapján, lavírozott tussal egy lapra. Ülő akt, háromszög kompozíció. TEMATIKA Tantárgy neve Alakrajz II. Tantárgy kódja KAB 1015 Meghirdetés féléve 4 Kreditpont 6 Félévi követelmény gyakorlati jegy Tematika 1. Figura, mozgásban. Akt krokik, 5 perces. 10 kroki egy beállításról,

Részletesebben

A kiadásért felel dr. Táncos László, a Semmelweis Kiadó igazgatója Nyomda alá rendezte Békésy János Borítóterv: Táncos László SKD: SKD043-e

A kiadásért felel dr. Táncos László, a Semmelweis Kiadó igazgatója Nyomda alá rendezte Békésy János Borítóterv: Táncos László SKD: SKD043-e Dr. Gergó Lajos elõadásjegyzetei alapján készítették: Dr. Gergó Lajos Dr. Meskó Attiláné Gillemotné Dr. Orbán Katalin Semmelweis Egyetem, Gyógyszerésztudományi Kar, Egyetemi Gyógyszertár, Gyógyszerügyi

Részletesebben