kv2n1p18 Kvantumkémia

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "kv2n1p18 Kvantumkémia"

Átírás

1 Kiegészítő fejezetek a fizikai kémiához kv2n1p18 Kvantumkémia Szalay Péter Kémiai Intézet Eötvös Loránd Tudományegyetem szalay@chem.elte.hu

2 Ajánlott irodalom Fizikai Kémia (4): Elméleti Kémia (emelt szint) ElmKem teljes 2014.pdf TheoreticalChemistry FSA version.pdf P. W. Atkins: Fizikai Kémia II. Szerkezet, Nemzeti Tankönyvkiadó, 2002 Kapuy Ede és Török Ferenc: Atomok és Molekulák Kvantumelmélete (Akadémiai Kiadó) P.W. Atkins and R.S. Friedman: Molecular Quantum Mechanics (Oxford University Press) Eötvös Loránd Tudományegyetem, Kémiai Intézet 1

3 Bevezető A blokk célja: Áttekinteni az atomok, molekulák elektronszerkezetével kapcsolatos tudnivalókat Gyorstalpaló kvantumkémiai módszerek használatához Eötvös Loránd Tudományegyetem, Kémiai Intézet 2

4 A kémia kötés kvantummechanikája A kvantummechanika szerint: ĤΨ = EΨ ahol: Ĥ a Hamilton-operátor, a molekulában lévő kölcsönhatásokat írja le Ψ a hullámfüggvény, négyzete az elektron(ok) tartózkodási valószínűségét adja meg E az energia, magtávolság-függő E(R) Dirac szerint ez az egyenlet a teljes kémiát megadja! Eötvös Loránd Tudományegyetem, Kémiai Intézet 3

5 A kémia kötés kvantummechanikája P. A. M. Dirac, Quantum Mechanics of Many-Electron Systems, Proceedings of the Royal Society of London, Series A, Vol. CXXIII (123), April 1929, pp 714.: The general theory of quantum mechanics is now almost complete... The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these equations leads to equations much too complicated to be soluble. It therefore becomes desireable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation. Eötvös Loránd Tudományegyetem, Kémiai Intézet 4

6 A kémia kötés kvantummechanikája P. A. M. Dirac, Quantum Mechanics of Many-Electron Systems, Proceedings of the Royal Society of London, Series A, Vol. CXXIII (123), April 1929, pp 714.: The general theory of quantum mechanics is now almost complete... The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these equations leads to equations much too complicated to be soluble. It therefore becomes desireable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation. Saját fordításom : a molekulák leírásához kvantummechanika kell Eötvös Loránd Tudományegyetem, Kémiai Intézet 5

7 A kémia kötés kvantummechanikája P. A. M. Dirac, Quantum Mechanics of Many-Electron Systems, Proceedings of the Royal Society of London, Series A, Vol. CXXIII (123), April 1929, pp 714.: The general theory of quantum mechanics is now almost complete... The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these equations leads to equations much too complicated to be soluble. It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation. Saját fordításom : olyan módszereket kell kifejleszeteni, melyek egyre pontosabban képesek megadni a Schrödinger-egyenelet megoldását Eötvös Loránd Tudományegyetem, Kémiai Intézet 5

8 A kémia kötés kvantummechanikája P. A. M. Dirac, Quantum Mechanics of Many-Electron Systems, Proceedings of the Royal Society of London, Series A, Vol. CXXIII (123), April 1929, pp 714.: The general theory of quantum mechanics is now almost complete... The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these equations leads to equations much too complicated to be soluble. It therefore becomes desireable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation. Saját fordításom : egyszerűsített modellekre is szükségünk van, melyek a kémia történéseit drága számítások nélkül is képesek leírni. Eötvös Loránd Tudományegyetem, Kémiai Intézet 5

9 A kémia kötés kvantummechanikája ĤΨ = EΨ Mit nyújt tehát a kvantummechanika a kémia számára? kötés, sűrűség, töltések, potenciálfelület, reak- értelmezés, modellek: ciótípusok stb. numerikus eredmények: képződéshő, kötéshossz, reakcióhő, spektrum, stb. Eötvös Loránd Tudományegyetem, Kémiai Intézet 6

10 A kvantummechanika alapjai A klasszikus elmélet (Newton, Maxwell) nem tudott minden megfigyelést megmagyarázni. Új elmélet: F. de Broglie képlete (1924) 1 : λ = h p megadja a részecske impulzusa (p) és a hullámhossz (λ) közötti összefüggést: részecske-hullám dualizmus, anyag kettős természete Heisenberg (1925): Mátrixmechanika Schrödinger (1926): Hullámmechanika 1 A képletben szerepel a Planck-állandó: h = Js Eötvös Loránd Tudományegyetem, Kémiai Intézet 7

11 Posztulátumok (Posztulátumok vagy axiómák: alapfeltevések, melyek megfigyelésekből származtatott összefüggések, ezekkel az elmélet felépíthető, a többi jelenség megmagyarázható.) I. posztulátum Minden fizikai mennyiséghez önadjungált operátort rendelünk. Fenn kell állnia, hogy [ˆx, ˆp x ] = i h A többi fizikai mennyiséghez tartozó operátort úgy kapjuk, hogy előbb feĺırjuk a fizikai mennyiség klasszikus mechanikai definicióját x és p x -szel kifejezve, majd operátorokra térünk át (korrespondencia-elv, kvantálás). II. posztulátum Egy fizikai mennyiség mérésének eredménye csakis a megfelelő operátor valamelyik sajátértéke (illetve folytonos spektrumpontja) lehet. A rendszer a mérés után a sajátértékhez tartozó állapotba kerül. Eötvös Loránd Tudományegyetem, Kémiai Intézet 8

12 Posztulátumok III. posztulátum A rendszer állapotát a hullámfüggvény (állapotfüggvény, állapotvektor) jellemzi. Ennek ismeretében egy tetszőleges mérés várható eredménye megjósolható. A hullámfüggvény (Ψ) folytonos, egyértékű és négyzetesen integrálható kell legyen. IV. posztulátum Egy  operátor mérésének várható értéke (középértéke) a Ψ állapotban: Ā = Ψ Â Ψ Eötvös Loránd Tudományegyetem, Kémiai Intézet 9

13 Posztulátumok V. posztulátum Az állapotfüggvény időfüggését az i h t Ψ = ĤΨ ún. Schrödinger-egyenelet adja meg. Az egyenletben az idő. Ĥ a rendszer Hamilton-operátora, t V+1 posztulátum Az adott energiához tartozó Ψ-k a rendszert jellemző pontcsoport irreducibilis reprezentációjának képzik bázisát. V+2 posztulátum Az elektronok hullámfüggvénye antiszimmetrikus a részecskék felcserélésére. (Általánosságban: fermionokra antiszimmetrikus, bozonokra szimmetrikus.) Eötvös Loránd Tudományegyetem, Kémiai Intézet 10

14 Megjegyzések a posztulátumokhoz ad. I. Egy lehetséges választás: ˆx az x-szel való szorzás (ˆxf(x) = xf(x)) Ekkor: ˆp x = i h x Kinetikus energia: T = p2 x 2m ˆT = h2 2m ( Három dimenzióban: ˆT = h 2 2m Potenciális energia: ˆV = V (x, y, z) Hamilton-operátor: Ĥ = ˆT + ˆV x 2 + d 2 dx 2 ) y 2 + z 2 = h2 2m = h2 2m 2. Impulzusmomentum z komponense: ˆl z = i h φ (φ a z-tengellyel bezárt szög). Eötvös Loránd Tudományegyetem, Kémiai Intézet 11

15 Megjegyzések a posztulátumokhoz ad. II. ˆx és ˆp x nem kvantált ˆlz sajátfüggvényei 1 1π e imφ, sajátértékei hm, ahol m = 0, ±1, ±2,... Mérés: nem kívülálló szemlélődés, beavatkozás rendszerbe. Eötvös Loránd Tudományegyetem, Kémiai Intézet 12

16 Megjegyzések a posztulátumokhoz ad. III. Egy-elektron hullámfüggvény pálya!!! A hullámfüggvény absztrakció, valószínűségi értelmezése adható a következő alaknak: Ψ (x 0, y 0, z 0 )Ψ(x 0, y 0, z 0 )dx dy dz annak a valószínüsége, hogy a részecske az (x 0, y 0, z 0 ) pont infinitezimális környezetében található. Rövidebb jelölés: Ψ Ψdv vagy Ψ 2 dv Normált függvény kell, hiszen így a teljes térben biztosan megtaláljuk a részecskét: Ψ Ψdx dy dz = 1 Eötvös Loránd Tudományegyetem, Kémiai Intézet 13

17 Megjegyzések a posztulátumokhoz ad. IV. Várható érték: több mérés eredményének átlaga, ezt a II. posztulátum értelmében több egyforma rendszeren végezhetjük csak el. Legyen Âφ i = a i φ. Ekkor a hullámfüggvény sorbafejthető: Ψ = i c iφ i. Annak a valószínűsége, hogy a i sajátértéket kapjuk: p i = c i 2. Ha Ψ = φ i, akkor Ā = a i, azaz a mérés eredménye biztos, nem szór. Két fizikai mennyiség akkor meghatározott egyidejűleg, ha operátoraik kommutálnak. Ha két operátorra [Â, ˆB] = iĉ, akkor a szórásokra fennáll, hogy A B 1 2 C. Speciálisan: x p x 1 2 h (Heisenberg-féle bizonytalansági reláció). Eötvös Loránd Tudományegyetem, Kémiai Intézet 14

18 Megjegyzések a posztulátumokhoz ad. V. Stacionáris állapot: ha egy időtől független operátor várható értéke időben állandó. Ha Ĥ időfüggetlen, akkor az időfüggetlen Schrödinger-egyenletet kapjuk: ĤΨ(r) = RΨ(r) ad. V+1. A degeneráció oka a szimmetria. ad. V+2. Ezért használunk Slater-determinánst legegyszerűbb hullámfüggvényként. Eötvös Loránd Tudományegyetem, Kémiai Intézet 15

19 A potenciáldoboz kvantummechanikai leírása V (x) = 0, 0 < x < L V (x) =, máshol Tehát a dobozon belül: Ĥ = ˆT +V (x) }{{} 0 Peremfeltétel: Ψ(0) = Ψ(L) = 0 Megoldandó tehát: ˆT Ψ(x) = EΨ(x) = h2 2m d 2 dx 2, m a részecske tömege Eötvös Loránd Tudományegyetem, Kémiai Intézet 16

20 A potenciáldoboz kvantummechanikai leírása Rövid (de tanulságos) számolás után kapjuk a következő megoldást: E = n 2 h 2 8mL2; n = 1, 2,... 2 ( Ψ(x) = L sin n π ) L x Fontos fogalmak: kvantáltság zéruspont energia (ZPE) hullámfüggvény, csomópont sűrűség, megtalálási valószínűség Eötvös Loránd Tudományegyetem, Kémiai Intézet 17

21 Megjegyzések: A potenciáldoboz kvantummechanikai leírása Az energia kvantált, n-nel négyzetesen nő (azaz a szintek n növelésével egyre távolabb kerülnek egymástól), L 2 -tel fordítottan arányos. Ha tehát L, E 2 E L 2 L = esetben megszűnik. 0. Azaz az energia kvantáltsága Ugyanez van m esetén is!! Eötvös Loránd Tudományegyetem, Kémiai Intézet 18

22 A potenciáldoboz kvantummechanikai leírása Megjegyzések: Van ún. zéruspont energia (ZPE)!! Az energia nem 0 a legalacsonyabb energiájú állapotban (alapállapot). Ha azonban L, E 0 0. Miért van ZPE? A bizonytalansági elv miatt: x p 1 2 h. Mivel itt ˆV = 0, E p 2. Tegyük fel, hogy E = 0, ekkor p = 0, ezért x =, ami ellentmondás, hiszen x L. Másként: ha L 0 = x 0 = p = E. Annál nagyobb KELL legyen bármely állapot energiája, minél kisebb L. Az energia sosem lehet 0, mert akkor p is 0 lenne, azaz nem lenne határozatlansága. Eötvös Loránd Tudományegyetem, Kémiai Intézet 19

23 A potenciáldoboz kvantummechanikai leírása Megjegyzések: Rajzoljuk fel a sajátfüggvényeket és megtalálási valószínűséget (Ψ Ψ) is! Minél nagyobb n, annál több a csomósík! Eötvös Loránd Tudományegyetem, Kémiai Intézet 20

24 A hidrogén atom kvantummechanikai leírása A Hamilton-operátor atomi egységben: Ĥ = ˆT + ˆV = r A Hamilton-operátora gömbi polárkoordinátákban: Ĥ = 1 2 [ 2 r r r + 1 r 2 ( ˆl 2 )] 1 r Kihasználjuk, hogy [Ĥ, ˆlz ] = 0 és [Ĥ, ˆl2 ] = 0 Mivel ˆl z és ˆl 2 csak ϕ-től és ϑ-tól függ, a hullámfüggvény alakja: Ψ (r, ϑ, ϕ) = R nl (r) Y m l (ϑ, ϕ) Eötvös Loránd Tudományegyetem, Kémiai Intézet 21

25 A hidrogén atom kvantummechanikai leírása A H-atom Schrödinger-egyenletének megoldásai Sajátfüggvények: Ψ (r, ϑ, ϕ) = R nl (r) Y m l (ϑ, ϕ) A sajátértékek: A kvantumszámok: E n = 1 2n 2 (E h) n = 1, 2, 3,... l = 0, 1, 2,..., n 1 m = l, l + 1,..., 0, l 1, l Eötvös Loránd Tudományegyetem, Kémiai Intézet 22

26 A hidrogén atom kvantummechanikai leírása A megoldás diszkussziója: energia E n = 1 2n 2 (E h) n = 1, 2,... l = 0, 1,...n 1 m = l,...0,...l az energiaszintek n növelésével egyre sűrűsödnek; az energia csak n-től függ nagyfokú degenáráció (l. lentebb); a formula megegyezik a Bohr-féle képlettel, így a Balmer(n = 2,VIS) és Lyman(n = 1,UV)-sorozatot is leírja. Emlékeztetőül a Balmer-képlet: 1 λ = R H ( 1 n n 2 2 ) Eötvös Loránd Tudományegyetem, Kémiai Intézet 23

27 A hidrogén atom kvantummechanikai leírása A megoldás diszkussziója: degeneráció E n = 1 2n 2 (E h) n = 1, 2,... l = 0, 1,...n 1 m = l,...0,...l Az energia n 2 -szeresen degenerált l és m szerint: n 1 l=0 Mi a degeneráció oka? n deg db s 2 4 1db s, 3 db p 3 9 1db s, 3 db p, 5 db d (2l + 1) = n2 m szerint: a rendszer gömbi szimmetriája megmarad többelektronos atomoknál is; 1 l szerint: r miatt (a Coulumb-tér szimmetriája) el fog tűnni a többelektronos atomoknál Eötvös Loránd Tudományegyetem, Kémiai Intézet 24

28 A hidrogén atom kvantummechanikai leírása A megoldás diszkussziója: sajátfüggvény Ψ (r, ϑ, ϕ) = N R (r) Y m l (ϑ, ϕ) = N r l L nl (r) e r np m l (cos ϑ) e imϕ n = 1, 2,... l = 0, 1,...n 1 m = l,...0,...l Mit mondhatunk a radiális részről? e n r a magasabb kvantumszámú pályák lassabban csengenek le L nl (r) ez egy polinom, ami n l 1 db. csomópontot okoz r l l 0 esetben az elektronsűrűség a mag helyén 0. A szögfüggő rész: a térbeli irányítottságért felelős; a gömbszimmetria következménye. Eötvös Loránd Tudományegyetem, Kémiai Intézet 25

29 A hidrogén atom kvantummechanikai leírása A H-atom sajátfüggvényei (Ψ nlm ): 1s Ψ 100 = 1 π e r 2s Ψ 200 = 1 4 (2 r)e r/2 2π 2p 0 Ψ 210 = 1 4 2π re r/2 cos(ϑ) 2p ±1 Ψ 21±1 = 1 8 π re r/2 sin(ϑ)e ±iϕ 3s Ψ 300 = π (27 18r + 2r2 )e r/3 3p 0 Ψ 310 = 2 81 π r(6 r)e r/3 cos(ϑ) 3p ±1 Ψ 31±1 = 1 81 π r(6 r)e r/3 sin(ϑ)e ±iϕ 3d 0 Ψ 320 = π r2 e r/3 (3 cos 2 (ϑ) 1) 3d ±1 Ψ 32±1 = 1 81 π r2 e r/3 sin(ϑ) cos(ϑ)e ±iϕ 3d ±2 Ψ 32±2 = π r2 e r/3 sin 2 (ϑ)e ±2iϕ Eötvös Loránd Tudományegyetem, Kémiai Intézet 26

30 A hidrogén atom kvantummechanikai leírása A pályák ábrázolása: Radiális rész Eötvös Loránd Tudományegyetem, Kémiai Intézet 27

31 A hidrogén atom kvantummechanikai leírása A pályák ábrázolása: szögföggő rész (iránydiagram) Eötvös Loránd Tudományegyetem, Kémiai Intézet 28

32 Radiális sűrűségfüggvény A különböző ϑ és ϕ szögekhez tartozó térrészekre össze kell adni a valószínűséget, azaz a két szög szerint integrálunk: ϑ ϕ Ψ(r, ϑ, ϕ) Ψ(r, ϑ, ϕ)r 2 sin(ϑ)dr dϑ dϕ 1s függvény esetén Ψ csak r-től függ: Ψ(r, ϑ, ϕ) Ψ(r, ϑ, ϕ)r 2 dr sin(ϑ)dϑ dϕ = ϑ ϕ π 2π sin(ϑ)dϑ dϕ Ψ(r) Ψ(r)r 2 dr = 4πr 2 Ψ(r) Ψ(r)dr ϑ=0 } ϕ=0 {{ } 4π ezt a mennyiséget radiális sűrűségfüggvénynek nevezzük. Eötvös Loránd Tudományegyetem, Kémiai Intézet 29

33 Radiális sűrűségfüggvény Eötvös Loránd Tudományegyetem, Kémiai Intézet 30

34 Radiális sűrűségfüggvény Eötvös Loránd Tudományegyetem, Kémiai Intézet 31

35 Atomsugár kérdése Hol van a (radiális) elektronsűrűség maximuma? r (4πr2 Ψ Ψ) = 0 1s állapot esetén 1 bohr. Mekkor az átlagos távolság? r = Ψ ˆr Ψ 1s állapot esetén 1.5 bohr. Mi a valószínűsége, hogy az elektron egy r 0 távolságon belül van? r0 π 2π r=0 ϑ=0 ϕ=0 Ψ Ψr 2 sin(ϑ)dr dϑdϕ Eötvös Loránd Tudományegyetem, Kémiai Intézet 32

36 Az atomsugár kérdése: Mekkora távolságon belül található 90% valószínűséggel? További távolságokra: r(bohr) % Eötvös Loránd Tudományegyetem, Kémiai Intézet 33

37 Atomsugár fogalma a Bohr-féle atommodellben illetve a kvantummechanikában Alapállapot, azaz 1s pálya esetén: Bohr modell Kvantummechanika Legvalószínűbb távolság 1 bohr 1 bohr (radiális) elektronsűrűség maximuma Átlagos távolság 1 bohr 1.5 bohr r = Ψ ˆr Ψ Tartózkodási valószínűség 1 bohron belül 100% 32.8% 1 π 2π r=0 ϑ=0 ϕ=0 Ψ Ψr 2 sin(ϑ)dr dϑdϕ Eötvös Loránd Tudományegyetem, Kémiai Intézet 34

38 Impulzusmomentum-operátorok A klasszikus impulzusmomentum (perdület): l = r p l x = yp z zp y l y = zp x xp z l z = xp y yp x. Eötvös Loránd Tudományegyetem, Kémiai Intézet 35

39 Impulzusmomentum-operátorok A klasszikus impulzusmomentum: l = r p l x = yp z zp y l y = zp x xp z l z = xp y yp x. Így ˆx, ˆp definíciójának segítségével feĺırhatjuk a megfelelő operátorokat: ( ˆlx = ŷˆp z ẑ ˆp y = i h y z z ) y ˆly =... ˆlz = i h ( x y y ) x ˆl2 = ˆl 2 x + ˆl 2 y + ˆl 2 z Eötvös Loránd Tudományegyetem, Kémiai Intézet 36

40 Impulzusmomentum-operátorok Az impulzusmomentum z komponensének sajértéke és sajátfüggvénye: ˆlz Φ (ϕ) = l z Φ (ϕ) l z = m h, m = 0, ±1, ±2,... Φ (ϕ) = 1 2π e imϕ, m = 0, ±1,... Az ˆl 2 sajátérték-problémájából kapott eredmények: ˆl2 Y m l (ϑ, ϕ) = λy m l (ϑ, ϕ) Y m l (ϑ, ϕ) = l = 0, 1, 2,... λ = l (l + 1) h 2 l m 2l + 1 4π m = l,..., 0,...l l m! l + m! P m l (cos ϑ) e imϕ Eötvös Loránd Tudományegyetem, Kémiai Intézet 37

41 Impulzusmomentum A H-atom pályáihoz tartozó impulzusmomentumok: pálya l m λ = l(l + 1)[ h 2 ] l z = m[ h] 1s s p p p s p p p d d d d d Eötvös Loránd Tudományegyetem, Kémiai Intézet 38

42 Az elektron spin Zeeman effektus: H-atom energiája a mágneses térben felhasad: pozitív m kvantumszám esetén nő, negatív esetén csökken, nulla esetén nem változik. Más szóval, a 2l + 1 degenerált szint 2l + 1 különböző szintre hasad fel. Stern-Gerlach kísérlet: A nyaláb nem 1, 3, 5, 7, stb., hanem 2 nyalábra bomlott!! Eötvös Loránd Tudományegyetem, Kémiai Intézet 39

43 Az elektron spin Goudsmit és Uhlenbeck, valamint Pauli javaslatára bevezetjük a spint, ami egy impulzusmomentum típusú operátor: ŝ = (ŝ x, ŝ y, ŝ z ) ŝ 2 sajátértékei : s(s + 1) [ h 2 ] ŝ z sajátértékei : m s = s, s + 1,..., s [ h] Mekkorák lehetnek a kvantumszámok? A kísérlet alapján határozzuk meg: a Stern-Gerlach kísérletben két vonalat figyeltünk meg, azaz a m s két értéke lehetséges: s = 1 2 m s = ± 1 2 Az elektron töltése 1, a spinje 1 2!!!! Eötvös Loránd Tudományegyetem, Kémiai Intézet 40

44 Az elektron spin: mire hat? s z nek két sajátértéke van (m s = ± 1 2 ) két sajátfüggvénye van: ŝ z α(σ) = 1 2 α(σ) ŝ z β(σ) = 1 2 β(σ) ahol σ a spinváltozó! Eötvös Loránd Tudományegyetem, Kémiai Intézet 41

45 Az elektron spin Az elektron teljes hullámfüggvénye tehát kiegészítendő a spinnel: Ψ(x, y, z, σ) = u(x, y, z) α(σ) vagy = u(x, y, z) β(σ) Megjegyzés: csak spin-sajátállapotokkal foglalkozunk; a szokásos Hamilton-operátor nem függ a spintől, a fenti szorzat alak nem közeĺıtés (de: l. spin-pálya). Eötvös Loránd Tudományegyetem, Kémiai Intézet 42

46 Atomok elektronszerkezete Eötvös Loránd Tudományegyetem, Kémiai Intézet 43

47 Atomok elektronszerkezete A Hamilton-operator: Ĥ = ˆT el (r) + ˆV el nucl (r) + ˆV el el (r) ahol ˆT el (r): elektronok kinetikus energiája; V el nucl (r): elektron-atommag vonzás; ˆV el el (r): elektron-elektron taszítás. Alapelv (közeĺıtés): a megoldást a Független Elektron Modell (FEM) keretében keressük. A FEM keretében megoldjuk az egyes elektronokra vonatkotó egyenleteket és megkapjuk: φ i pályákat ε i pályaenergiákat Eötvös Loránd Tudományegyetem, Kémiai Intézet 44

48 Atomok elektronszerkezete A FEM egyenletek alakja: ĥ(i)φ i = ɛ i φ i ĥ(i) = 1 2 i 1 r + V ahol V az elektron-elektron taszítási potenciál. Mivel ĥ hasonĺıt a H-atom Hamilton-operátorára, hasonló megoldást: φ i (r, ϑ, ϕ) = R(r)Y (ϑ, ϕ) Szögfüggő rész: a szimmetria miatt u.a. mint H-atom, azaz Y (ϑ, ϕ). Tehát a pályákat szintén megadhatjuk, mint 1s, 2s, 2p 0, 2p 1, 2p 1, stb. Eötvös Loránd Tudományegyetem, Kémiai Intézet 45

49 Atomok elektronszerkezete A FEM egyenletek alakja: ĥ(i)φ i = ɛ i φ i ĥ(i) = 1 2 i 1 r + V ahol V az elektron-elektron taszítási potenciál. Mivel ĥ hasonĺıt a H-atom Hamilton-operátorára, hasonló megoldást: φ i (r, ϑ, ϕ) = R(r)Y (ϑ, ϕ) Radiális rész: R(r) más lesz, mint H-atom esetén, hiszen a potenciál más. Mivel nem Coulomb-potenciál, az l szerinti degeneráció megszűnik, azaz pályaenergia függ az n és az l kvantumszámoktól is (ε = ε nl ). Eötvös Loránd Tudományegyetem, Kémiai Intézet 45

50 Atomok elektronszerkezete: állapotok jelölése A Hamilton-operátor felcserélhető az ˆL2, ˆLz, Ŝ 2 és az Ŝ z operátorokkal olyan sajátfüggvényeket választhatunk, amelyek ezeknek is sajátfüggvényei, azaz az állapotokat osztályozhatjuk a megfelelő kvantumszámok szerint: Az utóbbi jelölés az elterjedtebb! Ψ L,ML,S,M s = L, M L, S, M s A H-atomhoz analóg módon az állapotokat osztályozzuk a kvantumszámok szerint: L= jelölés: S P D F G H degeneráltság S= multiplicitás (2S+1): elnevezés: szinglett dublett triplett kvartett Eötvös Loránd Tudományegyetem, Kémiai Intézet 46

51 Atomok elektronszerkezete: állapotok jelölése Teljes jelölésben csak az L és S kvantumszámok szerepelnek, mert az energia csak ezektől függ: leírjuk az L-nek megfelelő jelet; a multiplicitást pedig első/felső indexben tesszük. Példák: L = 0, S = 0 1 S kiolvasva: szinglett S L = 2, S = 1 3 D kiolvasva: triplett D Teljes degeneráció: (2L+1)(2S+1)-szeres!! Eötvös Loránd Tudományegyetem, Kémiai Intézet 47

52 Atomok elektronszerkezete: állapotok meghatározása Mivel a pályáknál nagyfokú a degeneráció, legtöbbször nyílt héjú rendszerrel van dolgunk. Ekkor a konfiguráció nem egyenlő az állapottal, egy konfigurációhoz több állapot is tartozhat. Példa: C atom 1s 2 2s 2 2p 2 2p nyílt héj, hiszen hat lehetséges elektronból csak kettő van: Hogyan helyezhetem el a két elektront a pályákra? Térbeli: 2p 0, 2p 1, 2p 1 Spin: α, β Összesen hat különböző spinpálya van, amelyből ( 6 2 ) = 15 determináns készíthető, azaz 15 különböző állapot lesz. Eötvös Loránd Tudományegyetem, Kémiai Intézet 48

53 Atomok elektronszerkezete: állapotok meghatározása A lehetséges állapotok a következők 2 : 1 S 3 P 1 D Tehát: a C atom 2p 2 konfigurációjában három energiszint van. Mi az energiasorrend? Hund szabály (tapasztalati 3 ): maximális multiplicitású a legalacsonyabb energiájú (ellentétes spin esetén nincs kicserélődés); azonos multiplicitás esetén a nagyobb L értékhez tartozó állapot lesz a jobb! E 3P < E 1D < E 1S 2 Vegyük észre, hogy ez pontosan 15 állapotot jelent! 3 Nun, einfach durch Anstieren der Spektren Eötvös Loránd Tudományegyetem, Kémiai Intézet 49

54 Atomok elektronszerkezete: mágneses tér A teljes impulzusmomentumhoz tartozó mágneses momentumot figyelembevéve: E (1) = M j µ B B z M J = J, J + 1,..., J Azaz a szintek 2J + 1 szintre hasadnak!!! Eötvös Loránd Tudományegyetem, Kémiai Intézet 50

55 Atomok elektronszerkezete: összefoglalás C atom 2p 2 konfiguráció: Eötvös Loránd Tudományegyetem, Kémiai Intézet 51

56 Atomok elektronszerkezete: összefoglalás További konfigurációk: p 1 illetve p 5 2 P p 2 illetve p 4 3 P, 1 D, 1 S p 6 p 3 (zárt héj) 4 S, 2 D, 2 P 1 S Eötvös Loránd Tudományegyetem, Kémiai Intézet 52

57 Molekulák elektronszerkezete Eötvös Loránd Tudományegyetem, Kémiai Intézet 53

58 Molekulák Hamilton-operátora Ĥ = ˆT el (r) + ˆV el nucl (r, R) + ˆV el el (r) + ˆV nucl nucl (R) }{{} Ĥe(r,R) + ˆT nucl (R) }{{} ˆTn(R) Ĥ(r, R) = Ĥe(r, R) + ˆT n (R) hol r elektronok koordinátái; R magok koordinátái; ˆT nucl az atommag kinetikus energiája; l. korábbi jelölést is. Eötvös Loránd Tudományegyetem, Kémiai Intézet 54

59 Molekulák hullámfüggvénye Ψ = Ψ(r, R) Függ az elektronok és magok koordinátájától, de a Hamilton-operátorban lévő csatolás miatt ezek nem szeparálhatók: Pedig jó lenne... Ψ(r, R) Φ(r)χ(R) Schrödinger-egyenlet Ĥ(r, R)Ψ(r, R) = E T OT Ψ(r, R) Az egyenlet mind az elektronok, mind pedig a magok koordinátáit tartalmazza, teljesen csatolt! Eötvös Loránd Tudományegyetem, Kémiai Intézet 55

60 A Born-Oppenheimer-közeĺıtés az elektronok sokkal könnyebbek, mint a magok ( M m el 1836) ekvipartíció az elektronok sokkal gyorsabbak az elektronok azonnal követik a magokat (adiabatikus közeĺıtés) az elektronok szempontjából a magok mozdulatlanok Elektronprobléma egyenlete: Ĥ e (r; R)Φ(r; R) = E(R)Φ(r; R) Magokra: ( ˆT n (R) + E(R)) χ(r) = E T OT χ(r) Eötvös Loránd Tudományegyetem, Kémiai Intézet 56

61 A Born-Oppenheimer-közeĺıtés Megjegyzések: a Born-Oppenheimer (BO)-közeĺıtésben a magokra és az elektronokra vonatkozó egyenletek szeparálódnak; a magok nem mozdulatlanok; a magokra ható potenciál E(R), amely az elektronok Schrödingeregyenletének különböző magtávolságoknál vett sajátértéke; E(R) potenciálfelület tehát a Born-Oppenheimer-közeĺıtés következménye, enélkül a potenciál (potenciálgörbe, potenciálfelület, PES) nem értelmezhető; általában nagyon jó közeĺıtés, de összeomlik, ha a különböző elektronállapotok energiája közel esik (pl. fotokémia). Eötvös Loránd Tudományegyetem, Kémiai Intézet 57

62 A H + 2 molekulaion BO-t használva egyelektron-probléma: A Hamilton-operátor: Ĥ = r 1A 1 r 1B + 1 R ahol r 1A és r 1B az elektron az egyik, illetve a másik magtól való távolság, R a két mag távolsága. A Schrödinger-egyenlet: ĤΦ i (1; R) = E i (R)Φ i (1; R) Analitikus megoldás lehetséges eliptikus koordinátákban. Eötvös Loránd Tudományegyetem, Kémiai Intézet 58

63 A H + 2 molekulaion: megoldások (pályák) Φ 1 szimmetria: Σ + g Φ 2 szimmetria: Σ + u Eötvös Loránd Tudományegyetem, Kémiai Intézet 59

64 A H + 2 molekulaion: megoldások Eötvös Loránd Tudományegyetem, Kémiai Intézet 60

65 A H + 2 molekulaion: Mi a kémia kötés energiacsökkenés atomok közeledésekor; elektronsűrűség növekedés az atomok között. Eötvös Loránd Tudományegyetem, Kémiai Intézet 61

66 A H + 2 molekulaion: minimális bázis Bázis: χ 1 = 1s A χ 2 = 1s B Bázisfüggvények átfedése: S 11 = S 22 = 1 S 21 = χ 1 χ 2 S Ĥ mátrixelemei: H 11 = χ 1 Ĥ χ 1 = 1s A Ĥ 1s A α H 22 = χ 2 Ĥ χ 2 = 1s B Ĥ 1s B α H 12 = χ 1 Ĥ χ 2 = 1s A Ĥ 1s B β H mátrix és az S mátrix: H = S = ( α β β α ( 1 S S 1 ) ) Eötvös Loránd Tudományegyetem, Kémiai Intézet 62

67 A H + 2 molekulaion: minimális bázis A Hc = ESc sajátértékegyenlet: ( ) ( ) α β C1 = E β α C 2 ( 1 S S 1 ) ( C1 C 2 ) A szekuláris determináns: α E β ES β ES α E E 1 = α + β 1 + S E 2 = α β 1 S = 0 C 1 = C 2 = C 1 = C 2 = 1 2(1 + S) 1 2(1 S) Eötvös Loránd Tudományegyetem, Kémiai Intézet 63

68 A H + 2 molekulaion: minimális bázis Pályadiagramm ábra: Eötvös Loránd Tudományegyetem, Kémiai Intézet 64

69 Kétatomos molekulák elektronszerkezete Eötvös Loránd Tudományegyetem, Kémiai Intézet 65

70 H 2 molekula Konfiguráció: 1σ 2 g Állapot szimmetriája: Σ + g Σ + g = Σ + g Állapot jele: 1 Σ + g (olvasd: szinglett szigma g plusz) Kötésrend: 1, mert egy kötő pálya van betöltve két elektronnal. Eötvös Loránd Tudományegyetem, Kémiai Intézet 66

71 He 2 molekula Konfiguráció: 1σ 2 g1σ 2 u Állapot szimmetriája: Σ + g Σ + g Σ + u Σ + u = Σ + g Állapot jele: 1 Σ + g Kötésrend: 0, mert egy kötő és egy lazító pálya van betöltve két-két elektronnal. Eötvös Loránd Tudományegyetem, Kémiai Intézet 67

72 Kétatomos molekulák: molekulapályák 1σ g 1σ u 2σ g 2σ u Eötvös Loránd Tudományegyetem, Kémiai Intézet 68

73 Kétatomos molekulák: molekulapályák A következő pályák előálĺıtásához az atom 2p pályáit használhatjuk. Szimmetriát figyelmbe véve (z a molekula tengelye): Eötvös Loránd Tudományegyetem, Kémiai Intézet 69

74 Kétatomos molekulák: molekulapályák 1π u 3σ g 1π g 3σ u Eötvös Loránd Tudományegyetem, Kémiai Intézet 70

75 Li 2 molekula Konfiguráció: 1σ 2 g1σ 2 u2σ 2 g Állapot szimmetriája: Σ + g Állapot jele: 1 Σ + g Kötésrend: 1, mert két kötő pálya és egy lazító pálya van betöltve két-két elektronnal. Eötvös Loránd Tudományegyetem, Kémiai Intézet 71

76 O 2 molekula Konfiguráció: 1σ 1 g 1σ2 u 2σ2 g 2σ2 u 1π4 u 3σ2 g 1π2 g, azaz nyílt héj. Állapot lehetséges szimmetriái: Π g Π g = Σ + g Σ g g Lehetséges állapotok, Pauli-elvet is figyelembe véve: 3 Σ g 1 Σ + g 1 g Energiasorrend: E 3Σ g < E 1 g < E 1 Σ + g Eötvös Loránd Tudományegyetem, Kémiai Intézet 72

77 O 2 molekula Konfiguráció: 1σ 1 g 1σ2 u 2σ2 g 2σ2 u 1π4 u 3σ2 g 1π2 g, azaz nyílt héj. Kötésrend: 2, mert három kötő pálya van betöltve (3σ g, 1π u összesen hat elektronnal, míg a lazító 1π g pályán két elektron van.) Az oxigén paramágneses, triplett az alapállapota!!!! Eötvös Loránd Tudományegyetem, Kémiai Intézet 72

78 Az AB típusú kétatomos molekulák Példa: CO molekula: Eötvös Loránd Tudományegyetem, Kémiai Intézet 73

79 Víz molekula elektronszerkezete Eötvös Loránd Tudományegyetem, Kémiai Intézet 74

80 A víz molekulapályái Pályákat közvetlenül a FEM-ből vesszük, pályaenergiák alapján töltjük be. Megvalósítás: FEM, LCAO-MO-val 4 : φ i = a C ai χ a ahol χ a a bázisfüggvény. Konkrétan: ún. minimális bázist használunk, tehát az atom betöltött alhéjaihoz tartozó egy-egy függvényt választunk: H: 1s A, 1s B O: 1s, 2s, 2p x, 2p y, 2p z 4 Konkréten, alább Hartree-Fock számítások eredményét láthatjuk Eötvös Loránd Tudományegyetem, Kémiai Intézet 75

81 A víz molekula kötő pályái 1a 1 : 1s 2a 1 : 2s( 2p z )+1s A +1s B 1b 1 : 2p y +1s A 1s B 3a 1 : 2p z (+2s) 1b 2 : 2p x Konfiguráció: (1a 1 ) 2 (2a 1 ) 2 (1b 1 ) 2 (3a 1 ) 2 (1b 2 ) 2 Állatpot: 1 A 1 (pályák betöltöttek teljesen szimmetrikus szinglett) Eötvös Loránd Tudományegyetem, Kémiai Intézet 76

82 A víz molekula lazító pályái 4a 1 : 2s + 2p z 1s A 1s B 1b 2 : 2p x Eötvös Loránd Tudományegyetem, Kémiai Intézet 77

83 A víz molekula lokalizált pályái 2a 1 1b 1 MOLDEN MOLDEN MOLDEN defaults used MOLDEN MOLDEN MOLDEN defaults used Edge = 4.35 Space = Psi = 1 Edge = 4.35 Space = Psi = 2 MOLDEN MOLDEN MOLDEN defaults used MOLDEN MOLDEN MOLDEN defaults used Edge = 4.35 Space = Psi = 3 Edge = 4.35 Space = Psi = 4 2a 1 1b 1 2a 1 +1b 1 A kémiai szemléletnek megfelelő két kötőpályát kaptunk!! Eötvös Loránd Tudományegyetem, Kémiai Intézet 78

84 A víz molekula lokalizált pályái 3a 1 1b 2 MOLDEN MOLDEN MOLDEN defaults used MOLDEN MOLDEN MOLDEN defaults used Edge = 4.35 Space = Psi = 1 Edge = 4.35 Space = Psi = 2 MOLDEN MOLDEN MOLDEN defaults used MOLDEN MOLDEN MOLDEN defaults used Edge = 4.35 Space = Psi = 3 Edge = 4.35 Space = Psi = 4 3a 1 + 1b 2 3a 1 1b 2 A kémiai szemléletnek megfelelő két nemkötő párt kaptunk Eötvös Loránd Tudományegyetem, Kémiai Intézet 79

85 Módszerek Eötvös Loránd Tudományegyetem, Kémiai Intézet 80

86 A Független Elekron Modell (FEM) Ebben az esetben választhatom a hullámfüggvényt szorzat alakban: Ψ(1, 2,..., n) }{{} hullámfuggvény = ϕ 1 (1) ϕ 2 (2)... ϕ n (n) }{{} spinpályák szorzata Spinpálya: ϕ i (i) = ϕ i (x i, y i, z i, σ i ) = u(x i, y i, z i )α(σ i ) vagy = u(x i, y i, z i ) β(σ }{{} i ) térbeli pálya Eötvös Loránd Tudományegyetem, Kémiai Intézet 81

87 A Független Elekron Modell (FEM) Ebben az esetben választhatom a hullámfüggvényt szorzat alakban: Ψ(1, 2,..., n) }{{} hullámfuggvény = ϕ 1 (1) ϕ 2 (2)... ϕ n (n) }{{} spinpályák szorzata A sok-elektronos Schrödinger-egyenlet szétesik egyelektron-egyenletekre: ĤΨ = EΨ ĥ1(1)ϕ 1 (1) = ε 1 ϕ 1 (1) ĥ 2 (2)ϕ 2 (2) = ε 2 ϕ 2 (2)... ĥ n (n)ϕ n (n) = ε n ϕ n (n) Egy darab n-elektronos egyenlet n db egyelektronos egyenlet Megjelenik: pálya, pályaenergia Eötvös Loránd Tudományegyetem, Kémiai Intézet 81

88 Slater-determináns V+2-es posztulátum (Pauli-elv) szerint az elektronok hullámfüggvénye antiszimmetrikus a részecskék felcserélésére: ˆP 12 Ψ(1, 2,..., n) = Ψ(1, 2,..., n) A szorzat hullámfüggvény nem teljesíti az antiszimmetria kritériumát. Ezért a szorzat helyett determináns hullámfüggvényt kell használnunk: Ψ(1, 2,..., n) = 1 ϕ 1 (1) ϕ 2 (1) ϕ n (1) ϕ 1 (2) ϕ 2 (2) ϕ n (2) n.... ϕ 1 (n) ϕ 2 (n) ϕ n (n) = 1 n! (ϕ 1 (1) ϕ 2 (2)... ϕ n (n) ϕ 1 (2) ϕ 2 (1)... ϕ n (n) +...) Eötvös Loránd Tudományegyetem, Kémiai Intézet 82

89 Slater-determináns V+2-es posztulátum (Pauli-elv) szerint az elektronok hullámfüggvénye antiszimmetrikus a részecskék felcserélésére: ˆP 12 Ψ(1, 2,..., n) = Ψ(1, 2,..., n) A szorzat hullámfüggvény nem teljesíti az antiszimmetria kritériumát. Ezért a szorzat helyett determináns hullámfüggvényt kell használnunk: Ψ(1, 2,..., n) = 1 n ϕ 1 (1) ϕ 2 (1) ϕ n (1) ϕ 1 (2). ϕ 2 (2).. ϕ n (2). ϕ 1 (n) ϕ 2 (n) ϕ n (n) Az ilyen típusú hullámfüggvényt Slater-determinánsnak nevezzük. Eötvös Loránd Tudományegyetem, Kémiai Intézet 82

90 Ψ(1, 2,..., n) = Slater-determináns 1 n ϕ 1 (1) ϕ 2 (1) ϕ n (1) ϕ 1 (2). ϕ 2 (2).. ϕ n (2). ϕ 1 (n) ϕ 2 (n) ϕ n (n) A determináns tulajdonságaiból: a) A detemináns két sorát felcserélve a determináns előjelet vált két elektront felcserélve a hullámfüggvény előjelet vált. b) Ha a determináns két oszlopa egyenlő, a determináns értéke 0 ha két elektron van ugyanazon a pályán, a hullámfüggvény eltűnik c) Ha a determináns egy sorához (oszlopához) hozzáadjuk egy másik konstansszorosát, a determináns értéke nem változik a pályák bármely lineárkombinációját használhatjuk, a hullámfüggvény nem változik. Következtetések: a) és b) Pauli-elv automatikusan teljesül c) pályáknak nincs fizikai jelentése, csak a térnek, amelyet kifeszítenek! Eötvös Loránd Tudományegyetem, Kémiai Intézet 83

91 Az energia várható értéke determináns hullámfüggvénnyel A Hamilton-operátort bontsuk nulla-, egy- és kételektron tagokra: Ĥ = 1 2 i Z A Z A Z B r i i ia r A i>j ij r AB A<B }{{}}{{}}{{} Ĥ 1 =: i ĥ(i) Ĥ 2 Ĥ 0 Az energia kifejezése (Ψ determináns): E = Ψ Ĥ Ψ = Ψ ĥ i Ψ i + Ψ i>j 1 r ij Ψ + H 0 Eötvös Loránd Tudományegyetem, Kémiai Intézet 84

92 E = Az energia várható értéke determináns hullámfüggvénnyel Ψ Ĥ Ψ = Ψ ĥ i Ψ + Ψ i i<j 1 r ij Ψ + H 0 Belátható, hogy E = i H ii + i>j (J ij K ij ) + H 0 H ii = φ i ĥ φ i dv 1 az ún. egyelektron tag, elektron kinetikus energiája és a magokkal való kölcsönhatása; J ij = φ i (1)φ j (2) 1 r 12 φ i (1)φ j (2) dv 1 dv 2 ún. Coulomb integrál, elektron-elektron kölcsönhatás; K ij = φ i (1)φ j (2) 1 r 12 φ j (1)φ i (2) dv 1 dv 2 ún. kicserélődési integrál. Eötvös Loránd Tudományegyetem, Kémiai Intézet 85

93 A Hartree-Fock módszer Hullámfüggvény: determináns: Ψ(1, 2,..., n) = 1 n! ϕ 1 (1) ϕ 2 (1) ϕ n (1) ϕ 1 (2). ϕ 2 (2).. ϕ n (2). ϕ 1 (n) ϕ 2 (n) ϕ n (n) Keressük a legjobb determinánst! Mivel a determináns pályákból épül fel, azokat a pályákat kell meghatározni, melyekkel a determináns a legjobb. Mi a legjobb?? A variációs elv értelmében az a legjobb determináns, amivel az energia minimális. Eötvös Loránd Tudományegyetem, Kémiai Intézet 86

94 A Hartree-Fock módszer Az energia kifejezése: E = Ψ Ĥ Ψ = H ii + 1 (J ij K ij ), 2 i i>j mely a pályák ({φ i, i = 1,..., n}) funkcionálja. Ennek a funkcionálnak keressük a szélsőértékét. Mellékfeltétel: a pályák ortonormáltak: φi φj = Sij = δ ij i, j Ψ Ψ = 1 Így a variálandó funkcionál (ε a Lagrange-multiplikátor): G = E ε ij (S ij δ ij ) i j δg = δh ii + 1 (δj ij δk ij ) ε ij δs ij = 0 2 i ij ij Eötvös Loránd Tudományegyetem, Kémiai Intézet 87

95 A Hartree-Fock módszer G funkcionálnak azokra a pályákra van a szélsőértéke, amelyekre: ĥ + (Ĵj ˆK ) j φ i = ε ij φ j i = 1,..., n j j Ha definiáljuk a következő operátort: ˆf := ĥ + j (Ĵj ˆK j ) = ĥ + Û HF a következő egyenletet kapjuk: ˆfφ i = ε i φ i i = 1,..., n Ez az ún. Hartree-Fock egyenlet. A Hartree-Fock-egyenlet-et kielégítő pályákat kanonikus pályák-nak hívjuk. Eötvös Loránd Tudományegyetem, Kémiai Intézet 88

96 A Hartree-Fock-Roothaan módszer Az előzőekben sikerült levezetni a HF módszer egyelektron-függvényei (pályák) származtatására alkalmas egyenleteket: ˆfφ i = ε i φ i i = 1,..., n Újabb közeĺıtés: keressük a pályákat bázisfüggvények lineáris kombinációjaként (LCAO-MO közeĺıtés): φ i = a C ai χ a ahol χ a jelöli az atompályákat. Ha ezt beírjuk a kanonikus HF egyenletekbe: ˆf a C ai χ a = ε i C ai χ a a Eötvös Loránd Tudományegyetem, Kémiai Intézet 89

97 A Hartree-Fock-Roothaan módszer ˆf C ai χ a = ε i C ai χ a / χ b a a C ai χ b ˆf χ a = ε i C ai χ b χ a a }{{} a }{{} F ba S ba F C i = ε i S C i vagy az összes C i vektort mátrixba gyűjtve: F C = ε S C Mátrix-sajátértékegyenleteket kaptunk (Hartree-Fock-Roothaan egyenlet). Eötvös Loránd Tudományegyetem, Kémiai Intézet 90

98 A Hartree-Fock eredmények értelmezése A pályákat (φ i ) a Hartree-Fock egyenletekből kapjuk: ˆfφ i = ε i φ i A pályák gyakorlatban általában atompályák lineárkombinációi: φ i = a C ai χ a A pályákból felépíthető a rendszer hullámfüggvénye: Ψ = 1 n! det(φ 1,, φ n ) Eötvös Loránd Tudományegyetem, Kémiai Intézet 91

99 A Hartree-Fock eredmények értelmezése A sűrűségmátrix A posztulátumok alapján fizikai jelentése a hullámfüggvény helyett a valószínűségi sűrűségfüggvénynek van: Ψ (r 1, r 2,, r n )Ψ(r 1, r 2,, r n )dv 1 dv 2 dv n Jobb kérdés: mi a valószínűsége, hogy elektront találunk a r-pontban (ún. elektronsűrűség): ρ(r) = n Ψ (r 1, r 2,, r n )Ψ(r 1, r 2,, r n )dv 2 dv 3 dv n Az integrál előtt az elektronok száma n áll, így adjuk össze a különböző elektronokra kapott, a megkülönböztethetetlenség miatt azonos eredményt. Eötvös Loránd Tudományegyetem, Kémiai Intézet 92

100 A Hartree-Fock eredmények értelmezése Determináns hullámfüggvény esetén az elektronűsűség megadható, mint az egyes pályákhoz tartozó sűrűségek összege (Független Elektron Modell!): ρ(r) = n φ i (r)φ i (r) i n = C ai χ a (r) C bi χ b (r) i a b = n C ai C bi χ a (r)χ b (r) a b i }{{} P ab A második sorban a pályákat sorbafejtettük, az utolsóban pedig bevezettük a P sűrűségmátrixot. Eötvös Loránd Tudományegyetem, Kémiai Intézet 93

101 A Hartree-Fock eredmények értelmezése Populációs anaĺızis (Mulliken-féle) A fenti képletekből világos, hogy az elektronsűrűséget az egész térre integrálva az elektronok számát kapjuk: n = ρ(r)dv = a = a P ab b P ab S ab b χ a (r)χ b (r)dv Az utolsó egyenlet szerint a teljes elektronsűrűség felosztható a bázisfüggvények között: P aa S aa = P aa megadja a χ a bázisfüggvényre jutó töltést P ab S ab megadja a χ a χ b átfedésre jutó töltést Eötvös Loránd Tudományegyetem, Kémiai Intézet 94

102 A Hartree-Fock eredmények értelmezése Ezekből az atomi járulékok rakhatók össze: a A P aas aa = a A P aa megadja az A atomon lévő töltést a A b B P abs ab megadja az A és B atomok közötti kötésre jutó elektronok számát (NEM kötésrend!!) Végül az A atomre jutó összes (Mulliken) töltést megkapjuk, ha az összes járulékot összeadjuk, amelyben az A atom részt vesz: a A P ab S ab = a A(P S) aa b Eötvös Loránd Tudományegyetem, Kémiai Intézet 95

103 A Hartree-Fock eredmények értelmezése Pályaenergia, teljes energia A Hartree-Fock egyenletben szereplő ε i mennyiség a pályaenergia. Ez másként a Fock-operátor φ i pályához tartozó várhatóértéke: ε i = φ i ˆf φ i = φ i ĥ + j (Ĵj ˆK j ) φ i = H ii + j (J ij K ij ) A betöltött pályák energiáit összeadva nem a rendszer teljes energiáját kapjuk: E ε i = H ii + (J ij K ij ) i i i j E = H ii + 1 (J ij K ij ) = ε i 1 (J ij K ij ) 2 2 i i j i i j Az elektron-elektron kölcsönhatást tehát le kell vonni, hiszen a pályaenergiák összegében kétszer szerepel! Eötvös Loránd Tudományegyetem, Kémiai Intézet 96

104 A Hartree-Fock eredmények értelmezése Ionizásciós energia számítása, Koopmans-tétel Tekintsünk egy zárthéjú rendszert (M), majd ebből távoĺıtsunk el egy elektront (M + ). Az utóbbi rendszer esetében feltételezzük, hogy a pályák változatlanok: E M = 2H H J 12 2K 12 + J 11 + J 22 E M + = 2H 11 + H J 12 K 12 + J 11 E = E M + E M = H 22 2J 12 + K 12 J 22 = ε 2 Eötvös Loránd Tudományegyetem, Kémiai Intézet 97

105 A Hartree-Fock eredmények értelmezése Az ionizációs energia tehát azon pálya energiájának ellentettje, amelyről az elektront eltávoĺıtjuk (ún. Koopmans-elv): IP = ε i A közeĺıtés azért működik, mert két közeĺıtés hibája kioltja egymást: determináns hullámfüggvényt használunk (nincs figyelembe véve az ún. elektronkorreláció); nem optimáljuk a pályákat az ionokra (nincs ún. pályarelaxáció). Eötvös Loránd Tudományegyetem, Kémiai Intézet 98

106 A Hartree-Fock eredmények értelmezése Az ionizációs energia tehát azon pálya energiájának ellentettje, amelyről az elektront eltávoĺıtjuk (ún. Koopmans-elv): IP = ε i A közeĺıtés azért működik, mert két közeĺıtés hibája kioltja egymást: determináns hullámfüggvényt használunk (nincs figyelembe véve az ún. elektronkorreláció); nem optimáljuk a pályákat az ionokra (nincs ún. pályarelaxáció). A fentiekhez hasonlóan lehetne elektronaffinitást számolni: EA = E M E M = ε a azonban ez már lényegesen rosszabb közeĺıtés. Eötvös Loránd Tudományegyetem, Kémiai Intézet 98

107 Density Functional Theory (DFT) Eötvös Loránd Tudományegyetem, Kémiai Intézet 99

108 Hullámfüggvény vs. sűrűség A hullámfüggvény 4N változós függvény, melynek ismeretében (l. posztulátumok) a rendszer minden tulajdonsága kiszámítható: Ψ = Ψ (τ 1, τ 2,..., τ N ) τ i = (r i, σ i ) E = Ψ Ĥ Ψ azaz E = E[Ψ] A sűrűség ezzel szemben egy háromdimenziós függvény: ρ(r 1 ) = N... Ψ (τ 1, τ 2,..., τ N ) Ψ (τ 1, τ 2,..., τ N ) dσ 1 dτ 2 dτ N, amely megadja annak valószínűségét, hogy egy adott pontban (infinitezimális környezetében) találunk egy elektront. A sűrűség tehát számítható a hullámfüggvényből: Ψ ρ(r) és az intuició szintén azt mondja, hogy leírja a rendszert, megadja annak tulajdonságait: ρ? E azaz E? = E[ρ] Eötvös Loránd Tudományegyetem, Kémiai Intézet 100

109 Eötvös Loránd Tudományegyetem, Kémiai Intézet 101

110 A Hamilton-operátor felbontása Ĥ = 1 2 i 1 + r i i<j ij i }{{}}{{} ˆT V ee A Z A r ia } {{ } V (r) ˆT a kinetikus energia, rendszerfüggetlen; V ee elektron-elektron taszítás, N definiálja, rendszerfüggetlen. V (r) csak a magoktól függ, ú.n. külső potenciál. Az első két tag tehát minden rendszer esetén egyforma, míg a külső potenciál adja meg, hogy melyik molekuláról van szó (hol vannak a magok, és mekkora a töltésük). Eötvös Loránd Tudományegyetem, Kémiai Intézet 102

111 Hohenberg-Kohn (HK) első törvénye V (r), N Ĥ Schrodinger egyenlet ρ(r) E, Ψ A rendszer energiáját, hullámfüggvényét és így a sűrűséget is a külső potenciál, tehát a molekula határozza meg. HK1: A V (r) külső potenciál -t (triviális additív tagtól eltekintve) az elektronsűrűség teljesen meghatározza. Így, figyelembe véve a fenti ábra összefüggését is: V (r) ρ(r) Eötvös Loránd Tudományegyetem, Kémiai Intézet 103

112 Energia mint a sűrűség funkcionálja Molekula magok helye V (r) ρ(r) energia Tehát az energia a sűrűség funkcionálja: E[ρ] = T [ρ] + E ee [ρ] + E ne [ρ] T [ρ] a kinetikus energia, alakja nem ismert E ee [ρ] = J[ρ] + E x [ρ]: az elektron-elektron kölcsönhatás a Coulomb (J) és kicserélődési (E x ) járulékok összege, az előbbi funkcionálja ismert, az utóbbié nem. E ne [ρ] a mag-elektron kölcsönhatás funkcionálja, ismert, V -ből számítható ( ρ V dr) T [ρ] és E ee [ρ] univerzális, E ne [ρ] rendszerfüggő. Eötvös Loránd Tudományegyetem, Kémiai Intézet 104

113 Hohenberg-Kohn (HK) első törvénye HK2: Az energia funkcionáljára érvényes a variációs elv, azaz az egzakt sűrűséggel az energia minimális. Ez azt jelenti, minimalizálással tudnám keresni a legjobb sűrűséget, ha ismerném a funkcionál alakját. Azonban a funkcionál alakja nem ismert! Amit tudunk, hogy a Schrödinger egyenleten keresztül érvényes a reláció, de hogy van-e analitikus alak, nem tudjuk. (Valószínűleg nincs!) V (r), N Ĥ Schrodinger egyenlet ρ(r) E, Ψ Eötvös Loránd Tudományegyetem, Kémiai Intézet 105

114 Kohn-Sham (KS) DFT Közeĺıtsük a kinetikus energia funkcionálját egy olyan nem kölcsönható rendszer kinetikus energiájával, melynek sűrűsége megegyezik a vizsgált rendszer sűrűségével: T S = occ i ϕ i 1 2 ϕ i és ρ(r) = occ i ϕ i (r)ϕ i(r) Figyelem! Pályákat vezettünk be, tehát mostantól nem csupán a sűrűséggel foglalkozunk. T S nem egyezik meg T [ρ]-val, annak csak közeĺıtése: T [ρ] = T S [ρ] + E c [ρ] ahol E c -t a korrelációs járulék -nak hívjuk és nem ismerjük!! E xc [ρ] = T [ρ] T S [ρ] + E x [ρ] az ún. kicserélődési-korrelációs funkcionál, amely minden ismeretlen tagot magában hordoz. Fogalmunk sincs róla!!! Eötvös Loránd Tudományegyetem, Kémiai Intézet 106

115 Kohn-Sham (KS) DFT Így az ún. Kohn-Sham energia funkcionál a következő alakot ölti: E KS [ρ] = T S [ρ] + J[ρ] + E ne [ρ] + E xc [ρ] Erre alkalmazva a variációs elvet (keressük a legjobb sűrűséget, amellyel az energia a legkisebb), a Hartree-Fock módszerhez hasonlóan egyelektron-egyenletekre jutunk (ún. Kohn-Sham egyenlet): ĥ KS ϕ i = ε i ϕ i ĥ KS = ˆV ne + Ĵ + ˆV xc Összevetve a Fock-operátorral (l. Hartree-Fock módszer): ˆf = ˆV ne + Ĵ ˆK ami abban különbözik csak, potenciálra (V xc ) cseréltük. hogy a kicserélődést ( ˆK) a kicserélődési-korrelációs Eötvös Loránd Tudományegyetem, Kémiai Intézet 107

116 Kohn-Sham (KS) DFT ĥ KS ϕ i = ε i ϕ i ĥ KS = ˆV ne + Ĵ + ˆV xc A Kohn-Sham egyenletből megkapjuk a pályákat és pályaenergiákat, és meghatározhatjuk a sűrűséget. Az utóbbiból a tulajdonságok már elvben számíthatók. Gond: Ha E xc -t nem ismerjük, V xc -t sem ismerjük!!!! A különböző DFT módszerek abban különböznek, hogyan közeĺıtjük V xc -t. Eötvös Loránd Tudományegyetem, Kémiai Intézet 108

117 DFT funkcionálok Több szintű közeĺıtés: 1. Homogén elektrongázt feltételezve V xc a sűrűségből számítható 2. Gradiens-korrigált (GGA - General Gradient Approximation) funkcionálok: V xc funkcionál nem csak a sűrűségtől, de annak gradiensétől is függ ez utóbbi változóban sorfejtés empírikus paraméterek illesztés kémiai tulajdonságokra 3. Hibrid módszerek kicserélődés részben a Hartree-Fock-ból újabb paraméterek illesztés kémiai tulajdonságokra 4. Korrekció távoli kölcsönhatásokra empírikus hullámfüggvény módszerekből Eötvös Loránd Tudományegyetem, Kémiai Intézet 109

118 DFT funkcionálok Közeĺıtés kicserélődés korreláció 1) homogén elektrongáz LDA VWN 2) Gradiens-korrigált (GGA) PW86 LYP B88 PW91 PBE PBE 3) Hibrid módszerek B3 B3 PBE0 4) Korrekció távoli kölcsönhatásokra DFT-D Double-hybrid DFT M06 M06-2X M06-L M06-HF A funkcionál neve a kicserélődés és a korreláció nevének kombinációja (pl. B3-LYP). Rövidítések a következő oldalon V x V c Eötvös Loránd Tudományegyetem, Kémiai Intézet 110

119 DFT funkcionálok Rövidítések: LDA Local Density Approximation (főleg szilárdtest-fizikában elterjedt) VWN Vosko, Wilk, Nusair korrelációs funkcionál PW86 Perdew és Wang 1986-os funkcionálja LYP Lee, Young és Parr korrelációs funkcionálja B88 Becke 1988-as kicserélődési funkcionálja PW90 Perdew és Wang 1991-es korrelációs funkcionálja PBE Perdew, Burke és Erzenhof funkcionálja B3 - Becke hibrid funkcionálja PBE Perdew, Burke és Erzenhof hibrid kicserélődési funkcionálja DFT-D diszperzió-korrigált funkcionál (Grimme) M06-yy Truhlar-féle (Minnesota) funkcionál-sorozat Eötvös Loránd Tudományegyetem, Kémiai Intézet 111

120 DFT módszerek teljesítőképessége (kcal/mol) Módszer Közepes absz. eltérés Maximum hiba G SVWN (LDA-VWN) BLYP BPW B3LYP B3PW molekula atomizációs és ionizációs energiájából, elektron- és protonaffinitásából. drága). hullámfüggvény módszerek kombinációja (legjobb, amit számolni tudunk, de Eötvös Loránd Tudományegyetem, Kémiai Intézet 112

121 Kvantumkémiában használt bázisok Eötvös Loránd Tudományegyetem, Kémiai Intézet 113

122 Az LCAO-MO módszer A fentiekben mindig alkalmazott harmadik közeĺıtés: a molekulapályákat sorbafejtjük az atompályák bázisán: ϕ i = a c ai χ a Ez az ún. LCAO-MO (Linear Combination of Atomic Orbitals for Molecular Orbitals) közeĺıtés, melyet kvantumkémiában alapvetően használunk, így Hartree-Fock és DFT számításoknál is. E közeĺıtés minősége nagy mértékben meghatározza az eredmény pontosságát. Eötvös Loránd Tudományegyetem, Kémiai Intézet 114

123 A bázisfüggvények alakja Láttuk, hogy a kémiai szemlélet szerint a molekulapályák atomi függvényekből kaphatók. A legjobb választás tehát, ha az atomokra FEM keretében kapott függvényeket (atompálya) alkalmazzuk bázisnak: STO: Slater-type orbitals χ n,l,m (r, θ, ϕ) r n 1 e ζr Y m l (θ, ϕ) ζ a bázis paramétere. kvalitatív leírást biztosít. Viszonylag kevés Slater-függvény is rendkívül jó Probléma: az elektron-elektron kölcsönhatás számítása bonyolult ezekkel a függvényekkel! Eötvös Loránd Tudományegyetem, Kémiai Intézet 115

124 A bázisfüggvények alakja GTO: Gauss-type orbitals g b = χ ijk = x i y j z k e ζr2 Ez tulajdonképpen egy Descartes-koordinátás megadás, így az l kvantumszám helyett az x, y, z koordináták kitevőit választjuk meg megfelelően: s pálya esetén i = j = k = 0; p pályára pl. i = 1, j = k = 0; d pályára pl. i = 1, j = 1, k = 0. Itt is ζ az egyetlen paraméter. Előnye: két, térben máshol elhelyezett Gauss-függvény szorzata is Gauss-függvény, ezért az elektron-elektron kölcsönhatás analitikusan számítható! Hátránya: túl gyorsan cseng le, nincs cusp azonos minőségű leíráshoz több GTO lineáris kombinációja szükséges. Eötvös Loránd Tudományegyetem, Kémiai Intézet 116

125 A bázisfüggvények alakja CGTO: Contracted Gauss-type orbitals χ a = b d ab g b azaz a bázisfüggvények elemi (ún. primitív) Gauss-függvények (l. előző oldal) fix lineáris kombinációi. A d ab koefficiensek további paraméterei a bázisnak, ált. valamilyen megelőző számításból származnak. Egy lehetséges származtatás: a Slater-függvény sorbafejtése n db Gauss-függvényen (ST O ng). Eötvös Loránd Tudományegyetem, Kémiai Intézet 117

126 Gyakorlatban használt Gauss-bázisok - Minimális bázis: egy db függvény minden betöltött héjra. Pl.: H 1 db s-típusú fv. C 2 db s, 1 db p szet (összesen 5 db fv.) - Double zeta (DZ) bázis: két db függvény minden betöltött héjra. Pl.: H 2 db s C 4 db s, 2 db p szet (összesen 10 db fv.) O 4 db s, 2 db p szet (összesen 10 db fv.) - Triple zeta (TZ) bázis: három db függvény minden betöltött héjra - Polarizációs függvények: eggyel nagyobb l-hez tartozó függvényeket is beleveszünk, pl. DZP esetén: H 2 db s, 1 db p szet C 4 db s, 2 db p szet, 1db d szet O 4 db s, 2 db p szet, 1db d szet Az elektronkorreláció korrekt leírásához elengedhetetlen a polarizációs függvények alkalmazása! Eötvös Loránd Tudományegyetem, Kémiai Intézet 118

127 Gyakorlatban használt Gauss-bázisok - Split-valence bázisok A kémia leginkább a vegyértékhéjakon történik - felesleges sok bázisfüggvényt használni a belső héjakra. Hagyjuk ki a belső héjaknak megfelelő függvényeket az MO-k optimálásából, és vegyük eleve fix koefficiensekkel őket! Ilyen kontrakció: }{{} 4 }{{} 2 1 }{{} G belső héj vegy.héj Gauss-fv. 4 G. 2+1 G. 1 db χ a 2 db χ a Pl. a 3-21G bázis: Pálya GTO CGTO H 1 s 3 Gauss 1 db fv 1 s 3 Gauss 1 db fv C 2 s 3 Gauss 2 db fv 2 p 3x3 Gauss 2x3 db fv Eötvös Loránd Tudományegyetem, Kémiai Intézet 119

128 Gyakorlatban használt Gauss-bázisok - Split-valence bázisok (folyt.) Polarizációs függvényekkel: 6 31G 2. sorbeli atomokon polarizációs függvény 6 31G H atomon is polarizációs függvény Diffúz (kis exponensű, lassan lecsengő) függvények: 6 31G+ 2. sorbeli atomokon diffúz függvény 6 31G++ H atomon is diffúz függvény Hosszútávú kölcsönhatások, diffúz elektroneloszlás (pl. anionok) leírásakor fontosak. Eötvös Loránd Tudományegyetem, Kémiai Intézet 120

129 Gyakorlatban használt Gauss-bázisok - Correlation Consistent bázisok: cc-pvxz cc: correlation consistent magasabb szintű (korrelációs) számításokhoz p: polarized van polarizációs függvény V: valence azaz ez is split valence típusú XZ: pl. DZ (double zeta), TZ (triple zeta), QZ, quadruple zeta, stb. Pl. cc-pvtz, azaz triple zeta, (polarizációs fv. piros): H 3 db s, 2 db p szet, 1 db d szet C 1+3 db s, 3 db p szet, 2db d szet, 1 db f szet O 1+3 db s, 3 db p szet, 2db d szet, 1 db f szet További változatok: aug-cc-pvxz: diffúz függvény is cc-pcvxz: core (törzs) függvények is Eötvös Loránd Tudományegyetem, Kémiai Intézet 121

kv2n1p18 Kvantumkémia

kv2n1p18 Kvantumkémia Kiegészítő fejezetek a fizikai kémiához kv2n1p18 Kvantumkémia Szalay Péter Kémiai Intézet Eötvös Loránd Tudományegyetem szalay@chem.elte.hu Ajánlott irodalom Fizikai Kémia (4): Elméleti Kémia (emelt szint)

Részletesebben

Fizikai kémia (4): Elméleti kémia (emelt szint) kv1c1lm1e/1 vázlat

Fizikai kémia (4): Elméleti kémia (emelt szint) kv1c1lm1e/1 vázlat Fizikai kémia (4): Elméleti kémia (emelt szint) kv1c1lm1e/1 vázlat Szalay Péter Eötvös Loránd Tudományegyetem, Kémiai Intézet 2012. május 21. 1 Elméleti Kémia (kv1c1lm1e/1) Ajánlott irodalom 1. Az előadás

Részletesebben

Fizikai kémia (4): Elméleti kémia (emelt szint) kv1c1lm1e/1 vázlat

Fizikai kémia (4): Elméleti kémia (emelt szint) kv1c1lm1e/1 vázlat Fizikai kémia (4): Elméleti kémia (emelt szint) kv1c1lm1e/1 vázlat Szalay Péter Eötvös Loránd Tudományegyetem, Kémiai Intézet 2014. május 19. 1 Elméleti Kémia (kv1c1lm1e/1) Ajánlott irodalom 1. Az előadás

Részletesebben

Fizikai kémia (4): Elméleti kémia (kv1c1lm1/1) Elméleti Kémia I. (kv1c1lm1/1, kv31n1lm1/1) Vázlat

Fizikai kémia (4): Elméleti kémia (kv1c1lm1/1) Elméleti Kémia I. (kv1c1lm1/1, kv31n1lm1/1) Vázlat Fizikai kémia (4): Elméleti kémia (kv1c1lm1/1) Elméleti Kémia I. (kv1c1lm1/1, kv31n1lm1/1) Vázlat Szalay Péter Eötvös Loránd Tudományegyetem, Kémiai Intézet 2013. május 17. 1 Elméleti Kémia (kv1c1lm1/1)

Részletesebben

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat.

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. AZ ELEKTRON MÁGNESES MOMENTUMA Mágneses dipólmomentum: m H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. M = m H sinϕ (Elektromos töltés, q: monopólus

Részletesebben

Fizikai kémia (4): Elméleti kémia (kv1c1lm1/1) Elméleti Kémia I. (kv1c1lm1/1, kv31n1lm1/1) Vázlat

Fizikai kémia (4): Elméleti kémia (kv1c1lm1/1) Elméleti Kémia I. (kv1c1lm1/1, kv31n1lm1/1) Vázlat Fizikai kémia (4): Elméleti kémia (kv1c1lm1/1) Elméleti Kémia I. (kv1c1lm1/1, kv31n1lm1/1) Vázlat Szalay Péter Eötvös Loránd Tudományegyetem, Kémiai Intézet 2018. május 22. 1 Elméleti Kémia (kv1c1lm1/1)

Részletesebben

Atomok és molekulák elektronszerkezete

Atomok és molekulák elektronszerkezete Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre

Részletesebben

January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r,

January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r, Közelítő módszerek January 16, 27 1 A variációs módszer A variációs módszer szintén egy analitikus közelítő módszer. Olyan esetekben alkalmazzuk mikor ismert az analitikus alak amelyben keressük a sajátfüggvényt,

Részletesebben

A kémiai kötés magasabb szinten

A kémiai kötés magasabb szinten A kémiai kötés magasabb szinten 11-1 Mit kell tudnia a kötéselméletnek? 11- Vegyérték kötés elmélet 11-3 Atompályák hibridizációja 11-4 Többszörös kovalens kötések 11-5 Molekulapálya elmélet 11-6 Delokalizált

Részletesebben

A kémiai kötés magasabb szinten

A kémiai kötés magasabb szinten A kémiai kötés magasabb szinten 13-1 Mit kell tudnia a kötéselméletnek? 13- Vegyérték kötés elmélet 13-3 Atompályák hibridizációja 13-4 Többszörös kovalens kötések 13-5 Molekulapálya elmélet 13-6 Delokalizált

Részletesebben

A spin. November 28, 2006

A spin. November 28, 2006 A spin November 28, 2006 1 A spin a kvantummechanikában Az elektronnak és sok más kvantummechanikai részecskének is van egy saját impulzusnyomatéka amely független a mozgásállapottól. (Úgy is mondhatjuk,

Részletesebben

Kémiai kötés. Általános Kémia, szerkezet Dia 1 /39

Kémiai kötés. Általános Kémia, szerkezet Dia 1 /39 Kémiai kötés 4-1 Lewis elmélet 4-2 Kovalens kötés: bevezetés 4-3 Poláros kovalens kötés 4-4 Lewis szerkezetek 4-5 A molekulák alakja 4-6 Kötésrend, kötéstávolság 4-7 Kötésenergiák Általános Kémia, szerkezet

Részletesebben

A H + 2. molekulaion1. molekulaion, ami két azonos atommagból (protonok) és egyetlen elektronból. A legegyszer bb molekula a H + 2 áll.

A H + 2. molekulaion1. molekulaion, ami két azonos atommagból (protonok) és egyetlen elektronból. A legegyszer bb molekula a H + 2 áll. W. Demtröder, Atoms Molecules and Photons és Cohen-Tannoudji C., Diu B., Laloe F. Quantum mechanics cím könyve alapján A H + molekulaion A legegyszer bb molekula a H + áll. molekulaion, ami két azonos

Részletesebben

Fizikai mennyiségek, állapotok

Fizikai mennyiségek, állapotok Fizikai mennyiségek, állapotok Atomok és molekulák zikai mennyiségeihez rendelt operátorok A kvantummechanika mint matematikai modell alapvet épít elemei a rendszer leírására szolgáló zikai mennyiségekhez

Részletesebben

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas

Részletesebben

Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje

Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje Kvantummechanika gyakorlat 015 1. Beadandó feladatsor Határid : 4. heti gyakorlatok eleje 1. Mutassuk meg, hogy A és B tetsz leges operátorokra igaz, hogy e B A e B = A + [B, A] + 1![ B, [B, A] ] +....

Részletesebben

Szilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t

Szilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t Szilárdtestek elektronszerkezete Kvantummechanikai leírás Ismétlés: Schrödinger egyenlet, hullámfüggvény, hidrogén-atom, spin, Pauli-elv, periódusos rendszer 2 Szilárdtestek egyelektron-modellje a magok

Részletesebben

Kémiai kötés. Általános Kémia, szerkezet Dia 1 /39

Kémiai kötés. Általános Kémia, szerkezet Dia 1 /39 Kémiai kötés 4-1 Lewis-elmélet 4-2 Kovalens kötés: bevezetés 4-3 Poláros kovalens kötés 4-4 Lewis szerkezetek 4-5 A molekulák alakja 4-6 Kötésrend, kötéstávolság 4-7 Kötésenergiák Általános Kémia, szerkezet

Részletesebben

Két 1/2-es spinből álló rendszer teljes spinje (spinek összeadása)

Két 1/2-es spinből álló rendszer teljes spinje (spinek összeadása) Két /-es spinből álló rendszer teljes spinje spinek összeadása Két darab / spinű részecskéből álló rendszert írunk le. Ezek lehetnek elektronok, vagy protonok, vagy akármilyen elemi vagy nem elemi részecskék.

Részletesebben

13. Molekulamodellezés

13. Molekulamodellezés 13. Molekulamodellezés Koltai János és Zólyomi Viktor 2013. április Tartalomjegyzék 1. Bevezetés 2 2. Sokelektronos rendszerek leírása 2 2.1. A Schrödinger-egyenlet sokelektronos rendszerekre.............

Részletesebben

2015/16/1 Kvantummechanika B 2.ZH

2015/16/1 Kvantummechanika B 2.ZH 2015/16/1 Kvantummechanika B 2.ZH 2015. december 10. Információk 0. A ZH ideje minimum 90 perc, maximum 180 perc. 1. Az összesen elérhet pontszám 270 pont. 2. A jeles érdemjegy eléréséhez nem szükséges

Részletesebben

A s r ségfunkcionál elmélet (Density Functional Theory)

A s r ségfunkcionál elmélet (Density Functional Theory) A s r ségfunkcionál elmélet (Density Functional Theory) Tekintsünk egy szabad, N elektronos molekulát N m maggal. A Hamilton operátor rögzített magok esetében ^H = ^T + ^V + ^W ; ahol ^T a kinetikai energia,

Részletesebben

Molekulák világa 1. kémiai szeminárium

Molekulák világa 1. kémiai szeminárium GoBack Molekulák világa 1. kémiai szeminárium Szilágyi András 2008. október 6. Molekulák világa 1. kémiai szeminárium Molekuláris bionika szak I. év 1 Kvantummechanika Klasszikus fizika eszközei tömegpont

Részletesebben

Fizikai kémia 2. Előzmények. A Lewis-féle kötéselmélet A VB- és az MO-elmélet, a H 2+ molekulaion

Fizikai kémia 2. Előzmények. A Lewis-féle kötéselmélet A VB- és az MO-elmélet, a H 2+ molekulaion 06.07.5. Fizikai kémia. 4. A VB- és az -elmélet, a H + molekulaion Dr. Berkesi ttó ZTE Fizikai Kémiai és Anyagtudományi Tanszéke 05 Előzmények Az atomok szerkezetének kvantummehanikai leírása 90-30-as

Részletesebben

Fermi Dirac statisztika elemei

Fermi Dirac statisztika elemei Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika

Részletesebben

Molekulák világa 2. kémiai szeminárium. Szilágyi András

Molekulák világa 2. kémiai szeminárium. Szilágyi András Molekulák világa 2. kémiai szeminárium Szilágyi András Kvantummechanikai ismétlés Kvantummechanikai részecskéről csak valószínűségi állítást tehetünk A részecske leírója a hullámfüggvény, ez kódolja a

Részletesebben

A kémiai kötés eredete; viriál tétel 1

A kémiai kötés eredete; viriál tétel 1 A kémiai kötés ereete; viriál tétel 1 Probléma felvetés Ha egy molekula atommagjai közötti távolság csökken, akkor a közöttük fellép elektrosztatikus taszításhoz tartozó energia n. Ugyanez igaz az elektronokra

Részletesebben

8. Egyszerû tesztek sûrûség funkcionál módszerek minõsítésére

8. Egyszerû tesztek sûrûség funkcionál módszerek minõsítésére 8. Egyszerû tesztek sûrûség funkcionál módszerek minõsítésére XX. Csonka, G. I., Nguyen, N. A., Kolossváry, I., Simple tests for density functionals, J. Comput. Chem. 18 (1997) 1534. XXII. Csonka, G. I.,

Részletesebben

3. A kvantummechanikai szemlélet kialakulása

3. A kvantummechanikai szemlélet kialakulása 3. A kvantummechanikai szemlélet kialakulása A korábbi fejezetben tárgyalt atomelmélet megteremtette a modern kémiai alapjait, azonban rengeteg kérdés mégis megválaszolatlan maradt, különösen a miért nincs

Részletesebben

Stern Gerlach kísérlet. Készítette: Kiss Éva

Stern Gerlach kísérlet. Készítette: Kiss Éva Stern Gerlach kísérlet Készítette: Kiss Éva Történelmi áttekintés 1890. Thomson-féle atommodell ( mazsolás puding ) 1909-1911. Rutherford modell (bolygó hasonlat) Bohr-féle atommodell Frank-Hertz kísérlet

Részletesebben

1 A kvantummechanika posztulátumai

1 A kvantummechanika posztulátumai A kvantummechanika posztulátumai October 29, 2006 A kvantummechanika posztulátumai Célunk felépíteni a kvantummechanikát posztulátumok segítségével úgy ahogy az elemi hullámmechanika során eljártunk. Arra

Részletesebben

Az egydimenziós harmonikus oszcillátor

Az egydimenziós harmonikus oszcillátor Az egydimenziós harmonikus oszcillátor tárgyalása az általános formalizmus keretében November 7, 006 Példaképpen itt megmutatjuk, hogyan lehet a kvantumos egydimenziós harmonikus oszcillátort tárgyalni

Részletesebben

Kvantummechanikai alapok I.

Kvantummechanikai alapok I. Kvantummechanikai alapok I. Dr. Berta Miklós bertam@sze.hu 2017. szeptember 21. 1 / 41 Állapotfüggvény. Dinamikai egyenlet. Ψ(r, t) 2 / 41 Állapotfüggvény. Dinamikai egyenlet. Ψ(r, t) Ψ(r, t)-csak a hely

Részletesebben

Kvantummechanika. - dióhéjban - Kasza Gábor július 5. - Berze TÖK

Kvantummechanika. - dióhéjban - Kasza Gábor július 5. - Berze TÖK Kvantummechanika - dióhéjban - Kasza Gábor 2016. július 5. - Berze TÖK 1 / 27 Mire fogunk választ kapni az előadásból? Miért KVANTUMmechanika? Miért részecske? Miért hullám? Mit mond a Schrödinger-egyenlet?

Részletesebben

Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Slide 1 of 60

Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Slide 1 of 60 Elektronok, atomok -1 Elektromágneses sugárzás - Atomi Spektrum -3 Kvantumelmélet -4 A Bohr Atom -5 Az új Kvantummechanika -6 Hullámmechanika -7 A hidrogénatom hullámfüggvényei Slide 1 of 60 Tartalom -8

Részletesebben

Idegen atomok hatása a grafén vezet képességére

Idegen atomok hatása a grafén vezet képességére hatása a grafén vezet képességére Eötvös Loránd Tudományegyetem, Komplex Rendszerek Fizikája Tanszék Mahe Tisk'11 Vázlat 1 Kisérleti eredmények Kémiai szennyez k hatása a Fermi-energiára A vezet képesség

Részletesebben

1.1. Vektorok és operátorok mátrix formában

1.1. Vektorok és operátorok mátrix formában 1. Reprezentáció elmélet 1.1. Vektorok és operátorok mátrix formában A vektorok és az operátorok mátrixok formájában is felírhatók. A végtelen dimenziós ket vektoroknak végtelen sok sort tartalmazó oszlopmátrix

Részletesebben

a Bohr-féle atommodell (1913) Niels Hendrik David Bohr ( )

a Bohr-féle atommodell (1913) Niels Hendrik David Bohr ( ) a Bohr-féle atommodell (1913) Niels Hendrik David Bohr (1885-1962) atomok gerjesztése és ionizációja elektronnal való bombázással (1913-1914) James Franck (1882-1964) Gustav Ludwig Hertz (1887-1975) Nobel-díj

Részletesebben

Thomson-modell (puding-modell)

Thomson-modell (puding-modell) Atommodellek Thomson-modell (puding-modell) A XX. század elejére világossá vált, hogy az atomban található elektronok ugyanazok, mint a katódsugárzás részecskéi. Magyarázatra várt azonban, hogy mi tartja

Részletesebben

Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Slide 1 of 60

Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Slide 1 of 60 Elektronok, atomok 10-1 Elektromágneses sugárzás 10- Atomi Spektrum 10-3 Kvantumelmélet 10-4 A Bohr Atom 10-5 Az új Kvantummechanika 10-6 Hullámmechanika 10-7 Kvantumszámok Slide 1 of 60 Tartalom 10-8

Részletesebben

A kovalens kötés elmélete. Kovalens kötésű molekulák geometriája. Molekula geometria. Vegyértékelektronpár taszítási elmélet (VSEPR)

A kovalens kötés elmélete. Kovalens kötésű molekulák geometriája. Molekula geometria. Vegyértékelektronpár taszítási elmélet (VSEPR) 4. előadás A kovalens kötés elmélete Vegyértékelektronpár taszítási elmélet (VSEPR) az atomok kötő és nemkötő elektronpárjai úgy helyezkednek el a térben, hogy egymástól minél távolabb legyenek A központi

Részletesebben

FELADATMEGOLDÁS. Tesztfeladat: Válaszd ki a helyes megoldást!

FELADATMEGOLDÁS. Tesztfeladat: Válaszd ki a helyes megoldást! FELADATMEGOLDÁS Tesztfeladat: Válaszd ki a helyes megoldást! 1. Melyik sorozatban található jelölések fejeznek ki 4-4 g anyagot? a) 2 H 2 ; 0,25 C b) O; 4 H; 4 H 2 c) 0,25 O; 4 H; 2 H 2 ; 1/3 C d) 2 H;

Részletesebben

Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Dia 1/61

Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Dia 1/61 Elektronok, atomok 2-1 Elektromágneses sugárzás 2-2 Atomi Spektrum 2-3 Kvantumelmélet 2-4 A Bohr Atom 2-5 Az új Kvantummechanika 2-6 Hullámmechanika 2-7 Kvantumszámok Dia 1/61 Tartalom 2-8 Elektronsűrűség

Részletesebben

2, = 5221 K (7.2)

2, = 5221 K (7.2) 7. Gyakorlat 4A-7 Az emberi szem kb. 555 nm hullámhossznál a Iegnagyobb érzékenységű. Adjuk meg annak a fekete testnek a hőmérsékletét, amely sugárzásának a spektrális teljesitménye ezen a hullámhosszon

Részletesebben

1.1 Transzlációs szimmetriával bíró rendszerek Hamilton operatora. Egy egyszerű rács rácspontjaiban elhelyezkedő, Z rendszámú magok terében

1.1 Transzlációs szimmetriával bíró rendszerek Hamilton operatora. Egy egyszerű rács rácspontjaiban elhelyezkedő, Z rendszámú magok terében 1 Bevezetés 1.1 Transzlációs szimmetriával bíró rendszerek Hamilton operatora Egy egyszerű rács rácspontjaiban elhelyezkedő, Z rendszámú magok terében mozgó elektronok Hamilton operátora a Born-Openheimer

Részletesebben

Bevezet fejezetek a molekulák. elektronszerkezetének elméleti leírásába. Jegyzet. Bogár Ferenc

Bevezet fejezetek a molekulák. elektronszerkezetének elméleti leírásába. Jegyzet. Bogár Ferenc Bevezet fejezetek a molekulák elektronszerkezetének elméleti leírásába Jegyzet Bogár Ferenc E-mail: bogar@sol.cc.u-szeged.hu Honlap: http://ovrisc.mdche.szote.u-szeged.hu/~bogar Cím: MTA-SZTE Supramolekuláris

Részletesebben

Magszerkezet modellek. Folyadékcsepp modell

Magszerkezet modellek. Folyadékcsepp modell Magszerkezet modellek Folyadékcsepp modell Az atommag összetevői (emlékeztető) atommag Z proton + (A-Z) neutron (nukleonok) szorosan kötve Állapot leírása: kvantummechanika + kölcsönhatások Nem relativisztikus

Részletesebben

Közös minimum kérdések és Vizsgatételek a Fizika III tárgyhoz

Közös minimum kérdések és Vizsgatételek a Fizika III tárgyhoz Közös minimum kérdések és Vizsgatételek a Fizika III tárgyhoz 2005. Fizika C3 KÖZÖS MINIMUM KÉRDÉSEK Kvantummechanika 1. Rajzolja fel a fekete test sugárzását jellemző kísérleti görbéket T 1 < T 2 hőmérsékletek

Részletesebben

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,

Részletesebben

Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István

Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István Sajátértékek és sajátvektorok A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris transzformáció Vektorok lineáris transzformációja: általános esetben az x vektor iránya és nagysága

Részletesebben

A kovalens kötés polaritása

A kovalens kötés polaritása Általános és szervetlen kémia 4. hét Kovalens kötés A kovalens kötés kialakulásakor szabad atomokból molekulák jönnek létre. A molekulák létrejötte mindig energia csökkenéssel jár. A kovalens kötés polaritása

Részletesebben

Kémiai alapismeretek 2. hét

Kémiai alapismeretek 2. hét Kémiai alapismeretek 2. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2014. szeptember 9.-12. 1/13 2014/2015 I. félév, Horváth Attila c Hullámtermészet:

Részletesebben

http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja

Részletesebben

A kvantumszámok jelentése: A szokásos tárgyalás a pályák alakját vizsgálja, ld. majd azt is; de a lényeg: fizikai mennyiségeket határoznak meg.

A kvantumszámok jelentése: A szokásos tárgyalás a pályák alakját vizsgálja, ld. majd azt is; de a lényeg: fizikai mennyiségeket határoznak meg. I.6. A H-atom kvantummechanikai leírása I.6.1. Schrödinger-egyenlet, kvantumszámok Szimbolikusan tehát: Ĥψ i = E iψ i A Schrödinger-egyenletben a rendszert specifikálja: a V = e /r a potenciális energia

Részletesebben

Az impulzusnyomatékok általános elmélete

Az impulzusnyomatékok általános elmélete Az impulzusnyomatékok általános elmélete November 27, 2006 Az elemi kvantummechanika keretében tárgyaltuk már az impulzusnyomatékot. A továbbiakban általánosítjuk az impulzusnyomaték fogalmát a kvantummechanikában

Részletesebben

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban.

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban. Kvantum statisztika A kvantummechanika előadások során már megtanultuk, hogy az anyagot felépítő részecskék nemklasszikus, hullámtulajdonságokkal is rendelkeznek aminek következtében viselkedésük sok szempontból

Részletesebben

Atomok, elektronok. Általános Kémia - Elektronok, Atomok. Dia 1/61

Atomok, elektronok. Általános Kémia - Elektronok, Atomok. Dia 1/61 , elektronok 2-1 Elektromágneses sugárzás 2-2 Atomi spektrum 2-3 Kvantumelmélet 2-4 Bohr-atom 2-5 Az új kvantummechanika 2-6 Hullámmechanika 2-7 A hidrogénatom hullámfüggvényei Dia 1/61 , elektronok 2-8

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (b) Kvantummechanika. Utolsó módosítás: 2013. november 9. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (b) Kvantummechanika. Utolsó módosítás: 2013. november 9. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (b) Kvantummechanika Utolsó módosítás: 2013. november 9. 1 A legkisebb hatás elve (1) A legkisebb hatás elve (Hamilton-elv): S: a hatás L: Lagrange-függvény 2 A

Részletesebben

3. A kémiai kötés. Kémiai kölcsönhatás

3. A kémiai kötés. Kémiai kölcsönhatás 3. A kémiai kötés Kémiai kölcsönhatás ELSŐDLEGES MÁSODLAGOS OVALENS IONOS FÉMES HIDROGÉN- KÖTÉS DIPÓL- DIPÓL, ION- DIPÓL, VAN DER WAALS v. DISZPERZIÓS Kémiai kötések Na Ionos kötés Kovalens kötés Fémes

Részletesebben

Néhány mozgás kvantummechanikai tárgyalása

Néhány mozgás kvantummechanikai tárgyalása Néhány ozgás kvantuechanikai tárgyalása Mozzanatok: A Schrödinger-egyenlet felírása ĤΨ EΨ Hailton-operátor egállapítása a kinetikus energiaoperátor felírása, vagy 3 dienziós ozgásra, Descartes-féle koordinátarendszerben

Részletesebben

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

3. A kvantummechanikai szemlélet kialakulása

3. A kvantummechanikai szemlélet kialakulása 3. A kvantummechanikai szemlélet kialakulása A korábbi fejezetben tárgyalt atomelmélet megteremtette a modern kémiai alapjait, azonban rengeteg kérdés mégis megválaszolatlan maradt, különösen a miért nincs

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

Elektronegativitás. Elektronegativitás

Elektronegativitás. Elektronegativitás Általános és szervetlen kémia 3. hét Elektronaffinitás Az az energiaváltozás, ami akkor következik be, ha 1 mól gáz halmazállapotú atomból 1 mól egyszeresen negatív töltésű anion keletkezik. Mértékegysége:

Részletesebben

Klasszikus és kvantum fizika

Klasszikus és kvantum fizika Klasszikus és kvantum fizika valamint a Wigner függvény T.S. Biró MTA Fizikai Kutatóközpont, Budapest 2017. november 13. T.S.Biró Wigner 115, Budapest, 2017. Nov. 15. Biró Klassz kvantum 1 / 22 Abstract

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

Kifejtendő kérdések június 13. Gyakorló feladatok

Kifejtendő kérdések június 13. Gyakorló feladatok Kifejtendő kérdések 2016. június 13. Gyakorló feladatok 1. Adott egy egyenletes térfogati töltéssel rendelkező, R sugarú gömb, melynek felületén a potenciál U 0. Az elektromos potenciál definíciója (1p)

Részletesebben

Saj at ert ek-probl em ak febru ar 26.

Saj at ert ek-probl em ak febru ar 26. Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre

Részletesebben

Szilárdtestek sávelmélete. Sávelmélet a szabadelektron-modell alapján

Szilárdtestek sávelmélete. Sávelmélet a szabadelektron-modell alapján Szilárdtestek sávelmélete Sávelmélet a szabadelektron-modell alapján A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra

Részletesebben

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő

Részletesebben

Az anyagok kettős (részecske és hullám) természete

Az anyagok kettős (részecske és hullám) természete Az anyagok kettős (részecske és hullám) természete de Broglie hipotézise (1924-25): Bármilyen fénysebességgel mozgó részecskére: mc = p E = mc 2 = hn p = hn/c = h/ = h/p - de Broglie-féle hullámhossz Nem

Részletesebben

Pere Balázs október 20.

Pere Balázs október 20. Végeselem anaĺızis 1. előadás Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2014. október 20. Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)?

Részletesebben

A hidrogénmolekula. Energia

A hidrogénmolekula. Energia A hidrogénmolekula Emlékeztető: az atompályák hullámok (hullámfüggvények!) A hullámokra érvényes a szuperpozíció (erősítés és kioltás) elve! Ezt két H-atomra alkalmazva: Erősítő átfedés csomósík Energia

Részletesebben

Vektorok, mátrixok, lineáris egyenletrendszerek

Vektorok, mátrixok, lineáris egyenletrendszerek a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.

Részletesebben

Atommodellek. Az atom szerkezete. Atommodellek. Atommodellek. Atommodellek, A Rutherford-kísérlet. Atommodellek

Atommodellek. Az atom szerkezete. Atommodellek. Atommodellek. Atommodellek, A Rutherford-kísérlet. Atommodellek Démokritosz: a világot homogén szubsztanciájú oszthatatlan részecskék, atomok és a közöttük lévı őr alkotja. Az atom szerkezete Egy atommodellt akkor fogadunk el érvényesnek, ha megmagyarázza a tapasztalati

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét

Részletesebben

az Aharonov-Bohm effektus a vektorpotenciál problémája E = - 1/c A/ t - φ és B = x A csak egy mértéktranszformáció erejéig meghatározott nincs fizikai

az Aharonov-Bohm effektus a vektorpotenciál problémája E = - 1/c A/ t - φ és B = x A csak egy mértéktranszformáció erejéig meghatározott nincs fizikai az Aharonov-Bohm effektus a vektorpotenciál problémája E = - 1/c A/ t - φ és B = x A csak egy mértéktranszformáció erejéig meghatározott nincs fizikai jelentése? a kvantummechanikában ih m» a hullámfüggvény

Részletesebben

Bevezet fejezetek a molekulák. elektronszerkezetének elméleti leírásába. Jegyzet. Bogár Ferenc

Bevezet fejezetek a molekulák. elektronszerkezetének elméleti leírásába. Jegyzet. Bogár Ferenc Bevezet fejezetek a molekulák elektronszerkezetének elméleti leírásába Jegyzet Bogár Ferenc -mail: bogar@sol.cc.u-szeged.hu Honlap: http://ovrisc.mdche.szote.u-szeged.hu/~bogar Cím: MTA-SZT Supramolekuláris

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Kémiai kötés. Általános Kémia, szerkezet Slide 1 /39

Kémiai kötés. Általános Kémia, szerkezet Slide 1 /39 Kémiai kötés 4-1 Lewis elmélet 4-2 Kovalens kötés: bevezetés 4-3 Poláros kovalens kötés 4-4 Lewis szerkezetek 4-5 A molekulák alakja 4-6 Kötésrend, kötéstávolság 4-7 Kötésenergiák Általános Kémia, szerkezet

Részletesebben

A kémiai kötés magasabb szinten

A kémiai kötés magasabb szinten A kémiai köté magaabb zinten 5-1 Mit kell tudnia a kötéelméletnek? 5- Vegyérték köté elmélet 5-3 Atompályák hibridizációja 5-4 Többzörö kovalen kötéek 5-5 Molekulapálya elmélet 5-6 Delokalizált elektronok:

Részletesebben

A Relativisztikus kvantummechanika alapjai

A Relativisztikus kvantummechanika alapjai A Relativisztikus kvantummechanika alapjai January 25, 2005 A kvantummechanika Schrödinger egyenletének a felírása után azonnal kiderül, hogy ez az egyenlet nem relativisztikusan kovariáns. (Aránylag könnyen

Részletesebben

T obbv altoz os f uggv enyek integr alja. 3. r esz aprilis 19.

T obbv altoz os f uggv enyek integr alja. 3. r esz aprilis 19. Többváltozós függvények integrálja. 3. rész. 2018. április 19. Kettős integrál Kettős integrál téglalap alakú tartományon. Ismétlés Ha = [a, b] [c, d] téglalap-tartomány, f : I integrálható függvény, akkor

Részletesebben

SCHRÖDINGER-EGYENLET SCHRÖDINGER-EGYENLET

SCHRÖDINGER-EGYENLET SCHRÖDINGER-EGYENLET SCHRÖDINGER-EGYENLET A Scrödinger-egyenlet a kvantummecanika mozgásegyenlet, Newton II. törvényével analóg. Nem vezetető le korábbi elvekből, de intuitívan bevezetető. Egy atározott energiával és impulzussal

Részletesebben

I. Az atomok stacionárius állapotainak leírása A hélium gerjesztett állapotai 45

I. Az atomok stacionárius állapotainak leírása A hélium gerjesztett állapotai 45 TARTALOMJEGYZÉK Előszó 9 I. Az atomok stacionárius állapotainak leírása 11 1. A variációs módszer 13 1.1. Bevezető a variációs módszerhez 13 1.. A Rayleigh Ritz variációs módszer alkalmazása a héliumatom

Részletesebben

1. ábra. 24B-19 feladat

1. ábra. 24B-19 feladat . gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,

Részletesebben

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Lineáris leképezések (előadásvázlat, 2012. szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: homogén lineáris egyenletrendszer és

Részletesebben

Q 1 D Q 2 (D x) 2 (1.1)

Q 1 D Q 2 (D x) 2 (1.1) . Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol

Részletesebben

Bell-kísérlet. Máté Mihály, Fizikus MSc I. ELTE. Eötvös Loránd Tudományegyetem. Modern zikai kísérletek szemináriuma, 2016.

Bell-kísérlet. Máté Mihály, Fizikus MSc I. ELTE. Eötvös Loránd Tudományegyetem. Modern zikai kísérletek szemináriuma, 2016. Bell-kísérlet Máté Mihály, Fizikus MSc I. ELTE Eötvös Loránd Tudományegyetem Modern zikai kísérletek szemináriuma, 2016. Máté Mihály (ELTE) Bell-kísérlet 1 / 15 Tartalom 1 Elmélet Összefonódás EPR Bell

Részletesebben

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra . Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától

Részletesebben

Bevezetés az algebrába 2

Bevezetés az algebrába 2 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Mátrixfüggvények H607 2018-05-02 Wettl Ferenc

Részletesebben

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31 Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós

Részletesebben

Atom- és molekulafizika jegyzet vázlat:

Atom- és molekulafizika jegyzet vázlat: Atom- és molekulafizika jegyzet vázlat:01401141911000 Eredeti szerző: Szabó Áron (010) Átdolgozott kiadás: Bertalan Dávid (013) A tartalomért felelősséget nem vállalunk. Ha hibát találsz, javítsd ki és

Részletesebben

Modern fizika laboratórium

Modern fizika laboratórium Modern fizika laboratórium 11. Az I 2 molekula disszociációs energiája Készítette: Hagymási Imre A mérés dátuma: 2007. október 3. A beadás dátuma: 2007. október xx. 1. Bevezetés Ebben a mérésben egy kétatomos

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben Atomfizika ψ ψ ψ ψ ψ E z y x U z y x m = + + + ),, ( h ) ( ) ( ) ( ) ( r r r r ψ ψ ψ E U m = + Δ h z y x + + = Δ ),, ( ) ( z y x ψ =ψ r Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet),

Részletesebben

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását Lagrange egyenletek Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását megnehezíti a δr i virtuális elmozdulások egymástól való függősége. (F i ṗ i )δx i = 0, i = 1, 3N. (1) i 3N infinitezimális

Részletesebben

Lineáris algebra numerikus módszerei

Lineáris algebra numerikus módszerei Hermite interpoláció Tegyük fel, hogy az x 0, x 1,..., x k [a, b] különböző alappontok (k n), továbbá m 0, m 1,..., m k N multiplicitások úgy, hogy Legyenek adottak k m i = n + 1. i=0 f (j) (x i ) = y

Részletesebben

Keresztmetszet másodrendű nyomatékainak meghatározása

Keresztmetszet másodrendű nyomatékainak meghatározása BUDAPEST MŰSZAK ÉS GAZDASÁGTUDOMÁNY EGYETEM Keresztmetszet másodrendű nyomatékainak meghatározása Segédlet a Szilárdságtan c tárgy házi feladatához Készítette: Lehotzky Dávid Budapest, 205 február 28 ábra

Részletesebben