mágneses-optikai Kerr effektus

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "mágneses-optikai Kerr effektus"

Átírás

1 Mágnesezettség optikai úton történő detektálása: mágneses-optikai Kerr effektus I. Mágneses-optikai effektusok 2 II. Kísérleti technika 3 III. Mérési feladatok 5 IV. Ajánlott irodalom BME Fizika tanszék

2 I. MÁGNESES-OPTIKAI EFFEKTUSOK Lineárisan poláris fény polarizációs állapota ferromágneses anyag felületéről visszaverődve vagy azon áthaladva megváltozik, általános estben elliptikussá válik, melynek szemléltetését az 1. ábrán láthatjuk. (A következőkben az elektromágneses tér elektromos komponensét fogjuk vizsgálni.) A jelenségkör lényege, hogy a ferromágnesek időtükrözés-invarianciát sértenek, ezért a törésmutatójuk különbözik a balra, illetve jobbra cirkulárisan poláris fotonokra, amelyek az elektromágneses tér sajátállapotai és egymás időtükrözött párjai. A lineárisan polarizált fény a két cirkuláris komponens összegeként áll elő, melyek ekvivalenciája megszűnik mágneses anyagon történő szóródás során, azaz reflexiójuk különbözővé válik. A fény polarizációs állapotában ennek hatására bekövetkező változás általában igen csekély. A mágneses anyag felületéről történő fényvisszaverődés során mágneses-optikai Kerr effetusról beszélünk. Ekkor a polarizáció síkjának elfordulása EZET 3. MÁGNESES-OPTIKAI jellemzően a θ Kerr = KERR-EFFEKTUS 1 o tartományba esik. (MOKE) Másrészt optikailag átlátszó anyagon történő áthaladás 14 során (Faraday effektus) a jelenség integrális természetű, a polarizáció megváltozása a mágneses anyag vastagságával arányosan tetszőlegesen növelhető. bra. Az ábra1. a ábra. mágneses-optikai Mágneses-optikai Kerr-eektust effektusok szemlélteti. szemléltetése. A ferromágneses Bal oldali ábra: A lineárisan poláris fény mágneses felületére bees felületről lineárisan való visszaverődés poláros fény során polarizációja elliptikussá visszaver dést válik. Az ellipszis követ en nagytengelyének a beeső fény polarizációs síkjával bezárt szöge a Kerr elfordulás, a kis- és nagytengely aránya az ún. Kerr ellipticitás. E két mennyiség ul. jellemzi a polarizáció megváltozását. Jobb oldali ábra: Faraday effektus, azaz polarizáció elfordulás optikailag átlátszó mágneses anyagban. ott térer sség-komponens Ha egy anyag spontán nagyságát, mágnesezettséget a komplexmutat koordináták vagy külső arkuszainak mágneses térbe helyezzük, akkor az időtükrözésinvariancia sérül. Ebben az esetben egy eredetileg izotróp vagy köbös szimmetriával bíró rendszer esetén bsége pedig két állapot közötti fáziskülönbséget adja: a dielektromos tenzor a következő alakú lesz, ha a mágnesezettség irányát a z tengellyel párhuzamosnak választjuk: (3.1) ǫ = ǫ xx ǫ xy 0 ǫ xy ǫ xx 0., a két mer leges bázisvektor. Ha a polarizációs állapot 0 0változását ǫ zz a sség irányába mutató komplex egységvektorok segítségével követjük, akkor A mágnesezettséggel párhuzamosan haladó fényre a fenti mátrixot diagonalizálva két különböző dielektromos -formalizmusról állandót beszélünk. kapunk (ǫ Lineáris ± = ǫ xx polarizáció ± ǫ xy ), amely esetén a kétminden cirkulárisan komponens poláris (s = x ± iy) állapothoz tartozik. A a térer sségvisszavert a minden fény amplitúdó- pontján egyetlen és fázisváltozását iránybanegy oszcillál. komplexazt mennyiséggel, az álot, amikor a két komponens azonos nagyságú és a fázisuk, cirkulárisan a reflexiós együtthatóval írjuk le, amely a visszaverő felületre normális irányból érkező fény esetén a Fresnel formula segítségével kifejezhető: osnak hívjuk, mivel a terjedési irányból nézve azr vektor egy körön mozog. ± e iθ± = 1 n ± = 1 ǫ± 1 + n ános esetben elliptikusan poláros fényr l beszélünk. Ilyenkor ± 1 +. ǫ az vektor ± egy ellipszisen Könnyen fut végig, látható, amit hogy polarizációs a ellipszisnek megváltozásának nevezünk. leírására az előzőekben bevezetett Kerr elfordulás és Kerr ellipticitás és a komplex reflexiós együttható közötti kapcsolat a következő: mágneses-optikai Kerr-eektus során a beérkez lineárisan poláros fény pociója a visszaver dést követ en, elfordul, általános esetben elliptikusan poá válik. Ezt a változást két paraméterrel tudjuk 2 leírni: a beérkez fény po- 2(r+ 2 + r2 ) θ Kerr = θ θ + és η Kerr = r2 + r 2. ciója és a visszavert Láthatóan fény theta polarizációs Kerr a két cirkuláris ellipszisének komponens nagytengelye visszaverődése által bezárt során fellépő fáziskülönbség, míg η Kerr a két Kerr-elfordulás komponensre ( ), a visszavert kis- és nagytengely intenzitásokarányának közti különbséget arkusz tangense írja le. Aamágneses anyagok többségénél a Kerr ellipticitás ( ). izsgáljuk meg, hogyan változik a fény polarizációja ferromágneses anyag-

3 paraméterek jó közelítéssel arányosak a mágnesezettséggel. Ezért ezen mennyiségek mérése jó eszközt jelent a felületi mágnesezettség optikai úton történő detektálására. Ha a Kerr paramétereket a foton energia függvényében széles energia tartományban megmérjük, azaz mágneses-optikai spektroszkópiát végzünk, akkor a mágnesezettség nagy érzékenységű mérésén túl a módszer alkalmas alapvető fizikai paraméterek az anyag sávszerkezete, kristálytérfelhasadások, mágneses kicserélődések, spin-pálya kölcsönhatás erőssége meghatározására is. Napjainkban az alapkutatásokon túl az optikai adatátvitel és adattárolás területén elterjedten használják a nagy mágneses-optikai aktivitást mutató anyagkat (pl.: optikai izolátorok, mágnesesoptikai hullámvezetők, mágneses-optikai lemez,...). A mérési gyakorlaton két új, összetett szerkezetű ferrimágneses anyagot, a CoCr 2 O 4 -ot és a CuCr 2 Se 4 -et fogjuk vizsgálni, melyek óriási mágneses-optikai Kerr effektust mutatnak. II. KÍSÉRLETI TECHNIKA A mágneses-optikai méréseknél olyan érzékeny méréstechnikára van szükségünk, amely alkalmas a polarizáció kis változásának detektálására. A mágneses-optikai Kerr forgatás elvileg megfigyelhető, ha a vizsgált kristályt keresztezett polarizátorok közé helyezzük (a fény az anyag mágnesezettségével párhuzamos irányban terjed és közelítőleg merőleges beeséssel érkezik a minta felületére). Ekkor ugyanis a második polarizátoron (analizátor) áthaladó fény intenzitása arányos lesz a mágneses-optikai effektus erősségével, azaz Kerr elfordulás hiányában nem jut át fény az elrendezésen. Ha a mintát felmágnesezve az analizátor síkját addig forgatjuk, míg az átmenő fényintenzitás ismét minimális (ideális esetben zérus) lesz, akkor meghatároztuk a kristály M mágnesezettséghez tartozó Kerr forgatását, θ Kerr (M)-t. Mivel a polarizátor és az analizátor közé gyakran más optikai elemeket is teszünk, melyek (lineáris kettőstörésük révén) maguk is megváltoztatják a fény polarizációját, az elforgatást meg kell határoznunk ellentétes felmegnesezés esetén is és [θ Kerr (M) θ Kerr ( M)]/2 felel meg a Kerr elfordulásnak. Mivel az analizátor szögét o hibával tudjuk csak leolvasni, ez az egyszerű módszer általában nem elég érzékeny. Egy jobb alternatívát jelent, ha a keresztezett polarizátorok közé a mintán kívül egy Faraday rotátort (1. ábra jobb panel) is helyezünk. Ekkor a rotátort körülvevő szolenoid áramának változtatásával a polarizáció elfordulásának mértékét (a tekercs mágneses terével arányosan) változtathatjuk és kompenzálhatjuk vele a minta forgatását. A módszer ekvivalens az analizátor kézzel történő forgatásával, de nagyobb pontosság érhető el általa. Ehhez kövessük nyomon, hogyan változik a fény elektromos komonensének polarizációja a 2. ábrán látható elrendezésben. 2. ábra. Mágneses-optikai effektus mérésére alkalmas fényút: λ = 635nm hullámhosszú 5mW teljesítményű LASER dióda függőleges polarizátor Faraday rotátor minta vízszintes analizátor Si dióda fotodetektor. A elektromos térerősség polarizációját a fényhez rögzített rendszerben írjuk fel. A polarizációs vektor elemeinek komplex volta a komponensek közti időbeli fáziskülönbség következménye. Az ideális Faraday rotátor csak elforgatja a polarizáció síkját, a térerősség nagyságát nem változtatja, amit derékszögű ill. cirkuláris bázisban a következő mátrixok írnak le: ( ) ( ) cosφf sinφ F = F e iφ F 0 sinφ F cosφ F 0 e iφf

4 A minta mágneses kettőstörését leíró reflexiós mátrix a cirkuláris fotonállapotok bázisában: ( ) r+ e S = iθ+ 0 0 r e iθ Mindezeket felhasználva az elektromos térerősség az analizátort követően: ( ) ( ) ( ) ( ) ( ) ( ) r+ e E = 2 iθ i cosφf sinφ F 1 E 0 1 i i 0 r e iθ 2 1 i sinφ F cosφ 0 F 0 Detektorunk azonban a fény intenzitását érzékeli, ami a térerősség abszolút négyzetének időátlaga: I = E2 0 4π E E = E2 0 16π [r2 + + r2 2r +r cos( θ 2φ F )], (1) ahol θ = θ + θ 2θ Kerr. Láthatóan a Faraday rotátor φ F forgatásának változtatásával a minta forgatása csak akkor kompenzálható vagyis a detektorra érkező intenzitás akkor tehető zérussá, ha r + = r, azaz a minta Kerr ellipticitása zérus és csak rotációja van. Ellenkező esetben a Faraday rotátorral (vagy a korábbi módszerben az analizátor forgatásával) csak minimalizálni tudjuk a detektorra eső fényintenzitást. Az érzékenység tovább fokozható nagy frekvenciás lock-in technika alkalmazásával, amely lehetővé teszi a környezeti fényhatások (nem az általunk használt forrásból származó vagy nem az optikai elrendezésünkön keresztül haladó fény) és más elektronikus zajok kiszűrését. Ezt úgy tudjuk megvalósítani, hogy a Faraday rotátor szolenoid tekercsén harmonikus időfüggésű áramot hajtunk keresztül, így φ F (t) = φ F sin(2πft). Felhasználva, hogy az 1. egyenletnél a cosinus függvény argumentumában megjelenő harmonikus időfüggés a J i Bessel függvények szerint Fourier sorba fejthető, azaz sin[φ F sin(2πft)] = 2J 1 (φ F )sin(2πft) +... cos[φ F sin(2πft)] = J 0 (φ F ) + 2J 2 (φ F )sin(4πft) +... illetve r + r és θ Kerr 1, az intenzitás f frekvenciájú és időben állandó komponensére a sorfejtés első rendjében a következőt kapjuk: I f = I 0 [4r + r sin(2θ Kerr )J 1 (φ F )] 4I 0 J 1 (φ F )θ Kerr (2) I dc = I 0 [r r2 2r +r J 0 (φ F )] 0, (3) ahol I 0 nem más, mint a polarizátorok párhuzamos állásánál mért teljes fényintenzitás. 1 Π 2 Π 3Π 2 2Π ábra. Bessel függvények: J 0 (x) kék folytonos, J 1 (x) piros szagatott, J 2 (x) barna pontozott vonal. A 3. összefüggésből láthatóan a Kerr elfordulás arányos az I f modulált intenzitással. Az elfordulás értékének szögben való megadásához 4I 0 J 1 (φ F ) tényezőt meg kell határoznunk. Ezt legegyszerűbben úgy tehetjük, ha kihasználjuk, hogy a minta θ Kerr = φ forgatása ekvivalens az analizátor φ szögű forgatásával. Másrészt, azt is láthatjuk, hogy minél nagyobb a Faraday rotátor φ F modulációjának amplitúdója annál jobb a mérés érzekenysége. A jó jel-zaj viszony eléréséhez tehát minél nagyobb amplitúdójú és frekvenciájú áramot kell a szolenoidon átküldenünk. A mérés elektronikus összeállítása a következő ábrán látható.

5 4. ábra. A mérés elektromos kapcsolásának vázlata III. MÉRÉSI FELADATOK Ferrimágneses ún. spinel szerkezetű kristályok mágnesezettségét vizsgáljuk mágneses-optikai Kerr effektus mérésével. Az egyik anyag a CuCr 2 Se 4, amely már szobahőmérsékleten ferromágneses, a másik anyag a CoCr 2 O 4, csak alacsony hőmérsékleten válik mágnesessé. Alakítsuk ki az optikai fényutat mintaként a CuCr 2 Se 4 kristályt használva és állítsuk össze az elektromos kapcsolást! Az analizátor szögének változtatásával kalibráljuk a polarizáció forgatást (4I 0 J 1 (φ F ) paraméter meghatározása)! Mérjük meg CuCr 2 Se 4 minta Kerr forgatását a mágneses tér függvényében a rendelkezésre álló permanens mágnes segítségével! Határozzuk meg a mágneses hiszterézis szélességét! Az alacsony hömérsékletű optikai mintatartóba helyezett CoCr 2 O 4 kristályt helyezzük a fényútba, majd a mintatartót folyékony N 2 -nel hűtsük le T = 77K-re! A mintatartóra szerelt szolenoid tekercs áramának változtatásával mérjük meg a Kerr forgatás térfüggését ezen a hőmérsékleten! Határozzuk meg a mágneses hiszterézis szélességét! Ismételjük meg a mérést T = 77K fölötti hőmérsékleteken is! Határozzuk meg a ferromágneses átalakulás hőmérsékletét! Pozitív majd negatív irányú felmágnesezés mellet (kis mágneses térben) mérjük meg θ Kerr értékének hőmérséklet függését a mintatartó lassú melegítése közben! Figyelmeztetés! A mérés során ügyeljünk a következőkre! A LASER dióda nagy teljesítményű, fókuszált nyalábja a szemet károsíthatja. A teljesítmény erősítő kimenetére először csatlakoztassuk a szolenoid tekercset, illetve a referencia ellenállásra (R ref = 0.1Ω) az oszcilloszkópot. Ezt követően kapcsoljuk be az erősítő tápfeszültségét. Az oszcilloszkóp jelének folyamatos ellenőrzése mellett növeljük az erősítő bemeneti feszültségét, míg a tekercsen átfolyó áram eléri a ±5A t. Vigyázzunk a folyékony nitrogén töltésénél! Óvatosan kezeljük a permanens mágnest (B 0.6T), ne közelítsük felmágnesezhető eszközökhöz!

6 IV. AJÁNLOTT IRODALOM - Bevezetés a modern szilárdtestfizikába, Sólyom Jenő (Springer, 2005) - Electronic States and Optical Transitions in Solids, Bassani and Pastori Parravicini (Pergamon, 1975) - Solid State Spectroscopy H. Kuzmany (Springer, 1998) - Magneto-optics, S. Sugano and N. Kojima (Springer, 1999)

Mérés spektroszkópiai ellipszométerrel

Mérés spektroszkópiai ellipszométerrel Mérés spektroszkópiai ellipszométerrel Bevezetés Az ellipszometria egy igen sokoldalú, nagypontosságú optikai módszer vékonyrétegek dielektromos tulajdonságainak meghatározására. Mivel optikai módszer,

Részletesebben

N I. 02 B. Mágneses anyagvizsgálat G ép. 118 2011.11.30. A mérés dátuma: A mérés eszközei: A mérés menetének leírása:

N I. 02 B. Mágneses anyagvizsgálat G ép. 118 2011.11.30. A mérés dátuma: A mérés eszközei: A mérés menetének leírása: N I. 02 B A mérés eszközei: Számítógép Gerjesztésszabályzó toroid transzformátor Minták Mágneses anyagvizsgálat G ép. 118 A mérés menetének leírása: Beindítottuk a számtógépet, Behelyeztük a mintát a ferrotestbe.

Részletesebben

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése Kutatási beszámoló 2015. február Gyüre Balázs BME Fizika tanszék Dr. Simon Ferenc csoportja Tangens delta mérésére alkalmas mérési összeállítás elkészítése A TKI-Ferrit Fejlsztő és Gyártó Kft.-nek munkája

Részletesebben

Hullámtan. A hullám fogalma. A hullámok osztályozása.

Hullámtan. A hullám fogalma. A hullámok osztályozása. Hullátan A hullá fogala. A hulláok osztályozása. Kísérletek Kis súlyokkal összekötött ingasor elején keltett rezgés átterjed a többi ingára is [0:6] Kifeszített guikötélen keltett zavar végig fut a kötélen

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

TARTALOMJEGYZÉK EL SZÓ... 13

TARTALOMJEGYZÉK EL SZÓ... 13 TARTALOMJEGYZÉK EL SZÓ... 13 1. A TÖLTÉS ÉS ELEKTROMOS TERE... 15 1.1. Az elektromos töltés... 15 1.2. Az elektromos térer sség... 16 1.3. A feszültség... 18 1.4. A potenciál és a potenciálfüggvény...

Részletesebben

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai fizikából. I. kategória

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai fizikából. I. kategória Oktatási Hivatal A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható. Megoldandó

Részletesebben

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7)

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7) Jegyzőkönyv a mágneses szuszceptibilitás méréséről (7) Készítette: Tüzes Dániel Mérés ideje: 8-1-1, szerda 14-18 óra Jegyzőkönyv elkészülte: 8-1-8 A mérés célja A feladat egy mágneses térerősségmérő eszköz

Részletesebben

11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz

11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merőleges a hullámterjedés irányára. b) Csak a transzverzális hullám

Részletesebben

Szupravezető alapjelenségek

Szupravezető alapjelenségek Szupravezető alapjelenségek A méréseket összeállította és az útmutatót írta: Balázs Zoltán 1. Meissner effektus bemutatása: Mérési összeállítás: 1. A csipesszel helyezze a polisztirol hab csészébe a szupravezető

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 7. óra Mingesz Róbert Szegedi Tudományegyetem 2013. április 11. MA - 7. óra Verzió: 2.2 Utolsó frissítés: 2013. április 10. 1/37 Tartalom I 1 Szenzorok 2 Hőmérséklet mérése 3 Fény

Részletesebben

EGYENÁRAMÚ TÁPEGYSÉGEK

EGYENÁRAMÚ TÁPEGYSÉGEK dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan

Részletesebben

Elektrotechnika. Ballagi Áron

Elektrotechnika. Ballagi Áron Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:

Részletesebben

2. Elméleti összefoglaló

2. Elméleti összefoglaló 2. Elméleti összefoglaló 2.1 A D/A konverterek [1] A D/A konverter feladata, hogy a bemenetére érkező egész számmal arányos analóg feszültséget vagy áramot állítson elő a kimenetén. A működéséhez szükséges

Részletesebben

Ellenállásmérés Ohm törvénye alapján

Ellenállásmérés Ohm törvénye alapján Ellenállásmérés Ohm törvénye alapján A mérés elmélete Egy fémes vezetőn átfolyó áram I erőssége egyenesen arányos a vezető végpontjai közt mérhető U feszültséggel: ahol a G arányossági tényező az elektromos

Részletesebben

Síkban polarizált hullámok síkban polarizált lineárisan polarizált Síkban polarizált hullámok szuperpozíciója cirkulárisan polarizált

Síkban polarizált hullámok síkban polarizált lineárisan polarizált Síkban polarizált hullámok szuperpozíciója cirkulárisan polarizált Síkban polarizált hullámok Tekintsünk egy z-tengely irányában haladó fénysugarat. Ha a tér egy adott pontjában az idő függvényeként figyeljük az elektromos (ill. mágneses) térerősség vektorokat, akkor

Részletesebben

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 1. A gyakorlat célja Kis elmozulások (.1mm 1cm) mérésének bemutatása egyszerű felépítésű érzékkőkkel. Kapacitív és inuktív

Részletesebben

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető . Laboratóriumi gyakorlat A EMISZO. A gyakorlat célja A termisztorok működésének bemutatása, valamint főbb paramétereik meghatározása. Az ellenállás-hőmérséklet = f és feszültség-áram U = f ( I ) jelleggörbék

Részletesebben

Harmonikus rezgések összetevése és felbontása

Harmonikus rezgések összetevése és felbontása TÓTH.: Rezgésösszetevés (kibővített óravázlat) 30 005.06.09. Harmonikus rezgések összetevése és felbontása Gyakran előfordul hogy egy rezgésre képes rendszerben több közelítőleg harmonikus rezgés egyszerre

Részletesebben

Elektrooptikai jelenség az, ha egy anyagra elektromos térerősséget kapcsolva megváltozik a törésmutatója.

Elektrooptikai jelenség az, ha egy anyagra elektromos térerősséget kapcsolva megváltozik a törésmutatója. 14. Modula torok 1. Mi az elektro-optikai jelenség, és milyen típusait ismeri? Elektrooptikai jelenség az, ha egy anyagra elektromos térerősséget kapcsolva megváltozik a törésmutatója. n(e)=n 0 +a 1 E+a

Részletesebben

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS OPTIKA Geometriai optika Snellius Descartes-törvény A fényhullám a geometriai optika szempontjából párhuzamos fénysugarakból áll. A vákuumban haladó fénysugár a geometriai egyenes fizikai megfelelője.

Részletesebben

Optika fejezet felosztása

Optika fejezet felosztása Optika Optika fejezet felosztása Optika Geometriai optika vagy sugároptika Fizikai optika vagy hullámoptika Geometriai optika A közeg abszolút törésmutatója: c: a fény terjedési sebessége vákuumban, v:

Részletesebben

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben

Részletesebben

Logaritmikus erősítő tanulmányozása

Logaritmikus erősítő tanulmányozása 13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti

Részletesebben

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z

Részletesebben

Akusztikai tervezés a geometriai akusztika módszereivel

Akusztikai tervezés a geometriai akusztika módszereivel Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika

Részletesebben

A fény visszaverődése

A fény visszaverődése I. Bevezető - A fény tulajdonságai kölcsönhatásokra képes egyenes vonalban terjed terjedési sebessége függ a közeg anyagától (vákuumban 300.000 km/s; gyémántban 150.000 km/s) hullám tulajdonságai vannak

Részletesebben

5. Laboratóriumi gyakorlat. A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE

5. Laboratóriumi gyakorlat. A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE 5. Laboratóriumi gyakorlat A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE 1. A gyakorlat célja: A p-n átmenet hőmérsékletfüggésének tanulmányozása egy nyitóirányban polarizált dióda esetében. A hőmérsékletváltozási

Részletesebben

M ű veleti erő sítő k I.

M ű veleti erő sítő k I. dátum:... a mérést végezte:... M ű veleti erő sítő k I. mérési jegyző könyv 1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erősítő invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt

Részletesebben

Számítási feladatok a 6. fejezethez

Számítási feladatok a 6. fejezethez Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz

Részletesebben

Akuszto-optikai fénydiffrakció

Akuszto-optikai fénydiffrakció Bevezetés Akuszto-optikai fénydiffrakció A Brillouin által megjósolt akuszto-optikai kölcsönhatást 1932-ben mutatta ki Debye és Sears. Az effektus felhasználását, vagyis akuszto-optikai elven működő eszközök

Részletesebben

Félvezetk vizsgálata

Félvezetk vizsgálata Félvezetk vizsgálata jegyzkönyv Zsigmond Anna Fizika BSc III. Mérés vezetje: Böhönyei András Mérés dátuma: 010. március 4. Leadás dátuma: 010. március 17. Mérés célja A mérés célja a szilícium tulajdonságainak

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18. Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:

Részletesebben

Feszültségérzékelők a méréstechnikában

Feszültségérzékelők a méréstechnikában 5. Laboratóriumi gyakorlat Feszültségérzékelők a méréstechnikában 1. A gyakorlat célja Az elektronikus mérőműszerekben használatos különböző feszültségdetektoroknak tanulmányozása, átviteli karakterisztika

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

Jegyzőkönyv. hangfrekvenciás mechanikai rezgések vizsgálatáról (3)

Jegyzőkönyv. hangfrekvenciás mechanikai rezgések vizsgálatáról (3) Jegyzőkönyv a hangfrekvenciás mechanikai rezgések vizsgálatáról () Készítette: Tüzes Dániel Mérés ideje: 2008-11-19, szerda 14-18 óra Jegyzőkönyv elkészülte: 2008-11-26 A mérés célja A feladat két anyag

Részletesebben

Minden mérésre vonatkozó minimumkérdések

Minden mérésre vonatkozó minimumkérdések Minden mérésre vonatkozó minimumkérdések 1) Definiálja a rendszeres hibát 2) Definiálja a véletlen hibát 3) Definiálja az abszolút hibát 4) Definiálja a relatív hibát 5) Hogyan lehet az abszolút-, és a

Részletesebben

8. Laboratóriumi gyakorlat INKREMENTÁLIS ADÓ

8. Laboratóriumi gyakorlat INKREMENTÁLIS ADÓ 8. Laboratóriumi gyakorlat INKREMENTÁLIS ADÓ 1. A gyakorlat célja: Az inkrementális adók működésének megismerése. Számítások és szoftverfejlesztés az inkrementális adók katalógusadatainak feldolgozására

Részletesebben

A 34. Nemzetközi Fizikai Diákolimpia mérési feladata 1 : Lézerdióda és nematikus folyadékkristály optikai tulajdonságai 2

A 34. Nemzetközi Fizikai Diákolimpia mérési feladata 1 : Lézerdióda és nematikus folyadékkristály optikai tulajdonságai 2 A 34. Nemzetközi Fizikai Diákolimpia mérési feladata 1 : Lézerdióda és nematikus folyadékkristály optikai tulajdonságai 2 A mérés során a fényképen látható eszközök és anyagok álltak a versenyzők rendelkezésére:

Részletesebben

2.3 Mérési hibaforrások

2.3 Mérési hibaforrások A fólia reflexiós tényezője magas és az összegyűrt struktúrája miatt a sugárzás majdnem ideálisan diffúz módon verődik vissza (ld. 2.3. ábra, az alumínium fólia jobb oldala, 32. oldal). A reflektált hőmérséklet

Részletesebben

Mágneses mező jellemzése

Mágneses mező jellemzése pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező kölcsönhatás A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonalak vonzó és taszító erő pólusok dipólus mező pólusok északi

Részletesebben

Számítási feladatok a Számítógépi geometria órához

Számítási feladatok a Számítógépi geometria órához Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát

Részletesebben

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni? 1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen

Részletesebben

E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic

E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic Abszorpciós spektroszkópia Abszorpciós spektrofotometria 29.2.2. Az abszorpciós spektroszkópia a fényabszorpció jelenségét használja fel híg oldatok minőségi és mennyiségi vizsgálatára. Abszorpció Az elektromágneses

Részletesebben

24. Fénytörés. Alapfeladatok

24. Fénytörés. Alapfeladatok 24. Fénytörés Snellius - Descartes-törvény 1. Alapfeladatok Üvegbe érkezo 760 nm hullámhosszú fénysugár beesési szöge 60 o, törési szöge 30 o. Mekkora a hullámhossza az üvegben? 2. Valamely fény hullámhossza

Részletesebben

KISFESZÜLTSÉGŰ KÁBELEK

KISFESZÜLTSÉGŰ KÁBELEK BME Villamos Energetika Tanszék Nagyfeszültségű Technika és Berendezések Csoport Budapesti Műszaki és Gazdaságtudományi Egyetem KISFESZÜLTSÉGŰ KÁBELEK DIAGNOSZTIKÁJA TELJES FESZÜLTSÉGVÁLASZ MÓDSZERREL

Részletesebben

Fizika II. tantárgy 4. előadásának vázlata MÁGNESES INDUKCIÓ, VÁLTÓÁRAM, VÁLTÓÁRAMÚ HÁLÓZATOK 1. Mágneses indukció: Mozgási indukció

Fizika II. tantárgy 4. előadásának vázlata MÁGNESES INDUKCIÓ, VÁLTÓÁRAM, VÁLTÓÁRAMÚ HÁLÓZATOK 1. Mágneses indukció: Mozgási indukció Fizika. tatárgy 4. előadásáak vázlata MÁGNESES NDKÓ, VÁLÓÁAM, VÁLÓÁAMÚ HÁLÓAOK. Mágeses idukció: Mozgási idukció B v - Vezetőt elmozdítuk mágeses térbe B-re merőlegese, akkor a vezetőbe áram keletkezik,

Részletesebben

GEOMETRIAI OPTIKA I.

GEOMETRIAI OPTIKA I. Elméleti háttér GEOMETRIAI OPTIKA I. Törésmutató meghatározása a törési törvény alapján Snellius-Descartes törvény Az új közeg határához érkező fény egy része behatol az új közegbe, és eközben általában

Részletesebben

Egzotikus elektromágneses jelenségek alacsony hőmérsékleten Mihály György BME Fizikai Intézet Hall effektus Edwin Hall és az összenyomhatatlan elektromosság Kvantum Hall effektus Mágneses áram anomális

Részletesebben

Fizika 1 Elektrodinamika belépő kérdések

Fizika 1 Elektrodinamika belépő kérdések Fizika 1 Elektrodinamika belépő kérdések 1) Maxwell-egyenletek lokális (differenciális) alakja rot H = j+ D rot = B div B=0 div D=ρ H D : mágneses térerősség : elektromos megosztás B : mágneses indukció

Részletesebben

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika 2. OPTIKA 2.1. Elmélet Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert fényt bocsátanak ki, vagy a rájuk eső fényt visszaverik, és ezt a fényt a szemünk érzékeli. A

Részletesebben

Beütésszám átlagmérő k

Beütésszám átlagmérő k Beütésszám átlagmérő k A beütésszám átlagmérők elsősorban a radioaktív sugárforrások intenzitásának ellenőrzésére és mérésére szolgálnak Természetesen használhatjuk más jeladók esetében is, amikor például

Részletesebben

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok Váltóáramú hálózatok, elektromágneses Váltóáramú hálózatok Maxwell egyenletek Elektromágneses Váltófeszültség (t) = B A w sinwt = sinwt maximális feszültség w= pf körfrekvencia 4 3 - - -3-4,5,,5,,5,3,35

Részletesebben

Optikai alapmérések. Mivel több mérésről van szó, egyesével írom le és értékelem ki őket. 1. Törésmutató meghatározása a törési törvény alapján

Optikai alapmérések. Mivel több mérésről van szó, egyesével írom le és értékelem ki őket. 1. Törésmutató meghatározása a törési törvény alapján Optikai alapmérések Mérést végezte: Enyingi Vera Atala Mérőtárs neve: Fábián Gábor (7. mérőpár) Mérés időpontja: 2010. október 15. (12:00-14:00) Jegyzőkönyv leadásának időpontja: 2010. október 22. A mérés

Részletesebben

A fény korpuszkuláris jellegét tükröző fizikai jelenségek

A fény korpuszkuláris jellegét tükröző fizikai jelenségek A fény korpuszkuláris jellegét tükröző fizikai jelenségek A fény elektromágneses sugárzás, amely hullámjelleggel és korpuszkuláris sajátosságokkal is rendelkezik. A fény hullámjellege elsősorban az olyan

Részletesebben

Kvantumos információ megosztásának és feldolgozásának fizikai alapjai

Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kis Zsolt Kvantumoptikai és Kvantuminformatikai Osztály MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33

Részletesebben

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1 Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása

Részletesebben

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük. Mágneses mező tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához

Részletesebben

Villamosságtan szigorlati tételek

Villamosságtan szigorlati tételek Villamosságtan szigorlati tételek 1.1. Egyenáramú hálózatok alaptörvényei 1.2. Lineáris egyenáramú hálózatok elemi számítása 1.3. Nemlineáris egyenáramú hálózatok elemi számítása 1.4. Egyenáramú hálózatok

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

Elektromágneses hullámok - Hullámoptika

Elektromágneses hullámok - Hullámoptika Bevezetés a modern fizika fejezeteibe 2. (c) Elektromágneses hullámok - Hullámoptika Utolsó módosítás: 2015. január 17. 1 Az elektromágneses hullámok visszaverődési és törési törvényei (1) Kérdés: Mi történik

Részletesebben

EHA kód:...2009-2010-1f. As,

EHA kód:...2009-2010-1f. As, MŰSZAKI FIZIKA I. RMINB135/22/v/4 1. ZH A csoport Név:... Mérnök Informatikus EHA kód:...29-21-1f ε 1 As = 9 4π 9 Vm µ = 4π1 7 Vs Am 1) Két ± Q = 3µC nagyságú töltés közti távolság d = 2 cm. Határozza

Részletesebben

ESR-spektrumok különbözı kísérleti körülmények között A számítógépes értékelés alapjai anizotróp kölcsönhatási tenzorok esetén

ESR-spektrumok különbözı kísérleti körülmények között A számítógépes értékelés alapjai anizotróp kölcsönhatási tenzorok esetén ESR-spektrumok különbözı kísérleti körülmények között A számítógépes értékelés alapjai anizotróp kölcsönhatási tenzorok esetén A paraméterek anizotrópiája egykristályok rögzített tengely körüli forgatásakor

Részletesebben

ELEKTROMÁGNESES REZGÉSEK. a 11. B-nek

ELEKTROMÁGNESES REZGÉSEK. a 11. B-nek ELEKTROMÁGNESES REZGÉSEK a 11. B-nek Elektromos Kondenzátor: töltés tárolására szolgáló eszköz (szó szerint összesűrít) Kapacitás (C): hány töltés fér el rajta 1 V-on A homogén elektromos mező energiát

Részletesebben

Ultrahangos anyagvizsgálati módszerek atomerőművekben

Ultrahangos anyagvizsgálati módszerek atomerőművekben Ultrahangos anyagvizsgálati módszerek atomerőművekben Hangfrekvencia 20 000 000 Hz 20 MHz 2 000 000 Hz 20 000 Hz 20 Hz anyagvizsgálatok esetén használt UH ultrahang hallható hang infrahang 2 MHz 20 khz

Részletesebben

Hiszterézis: Egy rendszer kimenete nem csak az aktuális állapottól függ, hanem az állapotváltozás aktuális irányától is.

Hiszterézis: Egy rendszer kimenete nem csak az aktuális állapottól függ, hanem az állapotváltozás aktuális irányától is. 1. Mi az érzékelő? Definiálja a típusait (belső/külső). Mit jelent a hiszterézis? Miért nem tudunk közvetlenül mérni, miért származtatunk? Hogyan kapcsolódik össze az érzékelés és a becslés a mérések során?

Részletesebben

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat Fizika. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak Levelező tagozat 1. z ábra szerinti félgömb alakú, ideális vezetőnek tekinthető földelőbe = 10 k erősségű áram folyik be. föld fajlagos

Részletesebben

1. ERŐMÉRÉS NYÚLÁSMÉRŐ BÉLYEG ALKALMAZÁSÁVAL

1. ERŐMÉRÉS NYÚLÁSMÉRŐ BÉLYEG ALKALMAZÁSÁVAL 1. ERŐMÉRÉS NYÚLÁSMÉRŐ BÉLYEG LKLMZÁSÁVL nyúlásmérő bélyegek mechanikai deformációt alakítanak át ellenállás-változássá. lkalmazásukkal úgy készítenek erőmérő cellát, hogy egy rugalmas alakváltozást szenvedő

Részletesebben

A nanotechnológia mikroszkópja

A nanotechnológia mikroszkópja 1 Havancsák Károly, ELTE Fizikai Intézet A nanotechnológia mikroszkópja EGIS 2011. június 1. FEI Quanta 3D SEM/FIB 2 Havancsák Károly, ELTE Fizikai Intézet A nanotechnológia mikroszkópja EGIS 2011. június

Részletesebben

Képrekonstrukció 3. előadás

Képrekonstrukció 3. előadás Képrekonstrukció 3. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem Computed Tomography (CT) Elv: Röntgen-sugarak áthatolása 3D objektum 3D térfogati kép Mérések

Részletesebben

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás Elektrosztatika 1.1. Mekkora távolságra van egymástól az a két pontszerű test, amelynek töltése 2. 10-6 C és 3. 10-8 C, és 60 N nagyságú erővel taszítják egymást? 1.2. Mekkora két egyenlő nagyságú töltés

Részletesebben

Elektronika 2. TFBE1302

Elektronika 2. TFBE1302 Elektronika 2. TFBE1302 Mérőműszerek Analóg elektronika Feszültség és áram mérése Feszültségmérő: V U R 1 I 1 igen nagy belső ellenállású mérőműszer párhuzamosan kapcsolandó a mérendő alkatrésszel R 3

Részletesebben

TARTALOMJEGYZÉK. Előszó 9

TARTALOMJEGYZÉK. Előszó 9 TARTALOMJEGYZÉK 3 Előszó 9 1. Villamos alapfogalmak 11 1.1. A villamosság elő for d u lá s a é s je le n t ősége 12 1.1.1. Történeti áttekintés 12 1.1.2. A vil la mos ság tech ni kai, tár sa dal mi ha

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6. Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia Értékelés: A beadás dátuma: 28. május 13. A mérést végezte: 1/5 A mérés célja A mérés célja az

Részletesebben

FIGYELMEZTETÉS! : Az eszközben lévő optikai modul segítségével lehetőség van a sugarak +/- 90 vízszintes és a +/- 5 függőleges irányú állítására!

FIGYELMEZTETÉS! : Az eszközben lévő optikai modul segítségével lehetőség van a sugarak +/- 90 vízszintes és a +/- 5 függőleges irányú állítására! INFRASOROMPÓ NR40TX/NR80TX 1. A biztonságos telepítéshez Ez a telepítési útmutató információkkal ellátott és alapvető telepítési veszélyeket tartalmaz ennek az eszköznek a biztonsági módjában és a karbantartásakor

Részletesebben

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét ELEKTROTECHNIKA (VÁLASZTHATÓ) TANTÁRGY 11-12. évfolyam A tantárgy megnevezése: elektrotechnika Évi óraszám: 69 Tanítási hetek száma: 37 + 32 Tanítási órák száma: 1 óra/hét A képzés célja: Választható tantárgyként

Részletesebben

Villamos mérések. Analóg (mutatós) műszerek. Készítette: Füvesi Viktor doktorandusz

Villamos mérések. Analóg (mutatós) műszerek. Készítette: Füvesi Viktor doktorandusz Villamos mérések Analóg (mutatós) műszerek Készítette: Füvesi Viktor doktorandusz rodalom UrayVilmos Dr. Szabó Szilárd: Elektrotechnika o.61-79 1 Alapfogalmak Mutatós műszerek Legegyszerűbbek Közvetlenül

Részletesebben

Megoldás: feladat adataival végeredménynek 0,46 cm-t kapunk.

Megoldás: feladat adataival végeredménynek 0,46 cm-t kapunk. 37 B-5 Fénynyaláb sík üveglapra 40 -os szöget bezáró irányból érkezik. Az üveg 1,5 cm vastag és törésmutatója. Az üveglap másik oldalán megjelenő fénynyaláb párhuzamos a beeső fénynyalábbal, de oldalirányban

Részletesebben

A 31. Nemzetközi Fizikai Diákolimpia feladatai 1

A 31. Nemzetközi Fizikai Diákolimpia feladatai 1 A 31. Nemzetközi Fizikai Diákolimpia feladatai 1 Kísérleti forduló l. feladat. Mágneses korong. Ebben a mérési feladatban szükséges a mérési hiba feltüntetése minden mért adatnál eredménynél és a grafikonokon.

Részletesebben

Optikai alapfogalmak. Az elektromágneses spektrum. n = c vákuum /c közeg. Fény: transzverzális elektromágneses hullám. (n 1 n 2 ) 2 R= (n 1 + n 2 ) 2

Optikai alapfogalmak. Az elektromágneses spektrum. n = c vákuum /c közeg. Fény: transzverzális elektromágneses hullám. (n 1 n 2 ) 2 R= (n 1 + n 2 ) 2 Optikai alapfogalmak Az anyag és s a fény f kölcsk lcsönhatása Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Visszaverődés, reflexió Törés, kettőstörés, polarizáció Elnyelés, abszorpció,

Részletesebben

VÁLTAKOZÓ ÁRAMÚ KÖRÖK

VÁLTAKOZÓ ÁRAMÚ KÖRÖK Számítsuk ki a 80 mh induktivitású ideális tekercs reaktanciáját az 50 Hz, 80 Hz, 300 Hz, 800 Hz, 1200 Hz és 1,6 khz frekvenciájú feszültséggel táplált hálózatban! Sorosan kapcsolt C = 700 nf, L=600 mh,

Részletesebben

Fotó elmélet 2015. szeptember 28. 15:03 Fény tulajdonságai a látható fény. 3 fő tulajdonsága 3 fizikai mennyiség Intenzitás Frekvencia polarizáció A látható fények amiket mi is látunk Ibolya 380-425 Kék

Részletesebben

ÉRZÉKELŐK 18. ELŐADÁS: FÉNYVEZETŐ SZÁLAS OPTIKAI ÉRZÉKELŐK TÖRTÉNETI ÁTTEKINTÉS BEVEZETŐ ÁTTEKINTÉS FÉLVEZETŐ LÉZERANYAGOK OPTIKAI HÁLÓZAT FELÉPÍTÉSE

ÉRZÉKELŐK 18. ELŐADÁS: FÉNYVEZETŐ SZÁLAS OPTIKAI ÉRZÉKELŐK TÖRTÉNETI ÁTTEKINTÉS BEVEZETŐ ÁTTEKINTÉS FÉLVEZETŐ LÉZERANYAGOK OPTIKAI HÁLÓZAT FELÉPÍTÉSE ÉRZÉKELŐK Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 18. ELŐADÁS: FÉNYVEZETŐ SZÁLAS ÉRZÉKELŐK I 18. ELŐADÁS: FÉNYVEZETŐ SZÁLAS OPTIKAI ÉRZÉKELŐK 1. Fotonika: fénytávközlés

Részletesebben

Kiegészítő tudnivalók a fizikai mérésekhez

Kiegészítő tudnivalók a fizikai mérésekhez Kiegészítő tudnivalók a fizikai mérésekhez A mérési gyakorlatokra való felkészüléshez a Fizika Gyakorlatok c. jegyzet használható (Nagy P. Fizika gyakorlatok az általános és gazdasági agrármérnök hallgatók

Részletesebben

Villamos gépek tantárgy tételei

Villamos gépek tantárgy tételei 10. tétel Milyen mérési feladatokat kell elvégeznie a kördiagram megszerkesztéséhez? Rajzolja meg a kördiagram felhasználásával a teljes nyomatéki függvényt! Az aszinkron gép egyszerűsített kördiagramja

Részletesebben

A lengőfűrészelésről

A lengőfűrészelésről A lengőfűrészelésről Az [ 1 ] tankönyvben ezt írják a lengőfűrészről, működéséről, használatáról: A lengőfűrész árkolásra, csaprések készítésére alkalmazott, 150 00 mm átmérőjű, 3 4 mm vastag, sűrű fogazású

Részletesebben

Hullámok tesztek. 3. Melyik állítás nem igaz a mechanikai hullámok körében?

Hullámok tesztek. 3. Melyik állítás nem igaz a mechanikai hullámok körében? Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merıleges a hullámterjedés irányára. b) Csak a transzverzális hullám

Részletesebben

A/D és D/A konverterek vezérlése számítógéppel

A/D és D/A konverterek vezérlése számítógéppel 11. Laboratóriumi gyakorlat A/D és D/A konverterek vezérlése számítógéppel 1. A gyakorlat célja: Az ADC0804 és a DAC08 konverterek ismertetése, bekötése, néhány felhasználási lehetőség tanulmányozása,

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2) 2. előadás Komplex számok (2) 1. A a + bi (a, b) kölcsönösen egyértelmű megfeleltetés lehetővé teszi, hogy a komplex számokat a sík pontjaival, illetve helyvektoraival ábrázoljuk. A derékszögű koordináta

Részletesebben

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben? . Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs

Részletesebben

MÁGNESES INDUKCIÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK

MÁGNESES INDUKCIÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK MÁGNESES NDUKCÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK Mágneses indukció Mozgási indukció v B Vezetőt elmozdítunk mágneses térben B-re merőlegesen, akkor a vezetőben áram keletkezik, melynek iránya az őt létrehozó

Részletesebben

3. Laboratóriumi gyakorlat A HŐELLENÁLLÁS

3. Laboratóriumi gyakorlat A HŐELLENÁLLÁS 3. Laboratóriumi gyakorlat A HŐELLENÁLLÁS 1. A gyakorlat célja A Platina100 hőellenállás tanulmányozása kiegyensúlyozott és kiegyensúlyozatlan Wheatstone híd segítségével. Az érzékelő ellenállásának mérése

Részletesebben

Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet

Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet 2. előadás A rugalmas lemezelmélet alapfeltevései A lemez anyaga homogén, izotróp, lineárisan rugalmas (Hooke törvény); A terheletlen állapotban

Részletesebben

KÖZEG. dv dt. q v. dm q m. = dt GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET:

KÖZEG. dv dt. q v. dm q m. = dt GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET: GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET: AZ IDŐEGYSÉG ALATT ÁTÁRAMLÓ MENNYISÉG TÉRFOGATÁT TÉRFOGATÁRAM MÉRÉS q v = dv dt ( m 3 / s) AZ IDŐEGYSÉG ALATT ÁTÁRAMLÓ MENNYISÉG TÖMEGÉT

Részletesebben

OMRON FOTOELEKTROMOS KAPCSOLÓK E3Z

OMRON FOTOELEKTROMOS KAPCSOLÓK E3Z OMRON FOTOELEKTROMOS KAPCSOLÓK E3Z E3Z Egyszerûen használható, költségkímélõ fotokapcsoló Lézeres kivitelek Jól látható állapotjelzõvel Víz- és rezgésálló kivitel Tápfeszültség: 12... 24 VDC 2 m-es beöntött

Részletesebben

A mintavételezéses mérések alapjai

A mintavételezéses mérések alapjai A mintavételezéses mérések alapjai Sok mérési feladat során egy fizikai mennyiség időbeli változását kell meghatároznunk. Ha a folyamat lassan változik, akkor adott időpillanatokban elvégzett méréssel

Részletesebben

9. Gyakorlat - Optoelektronikai áramköri elemek

9. Gyakorlat - Optoelektronikai áramköri elemek 9. Gyakorlat - Optoelektronikai áramköri elemek (Componente optoelectronice) (Optoelectronic devices) 1. Fénydiódák (LED-ek) Elnevezésük az angol Light Emitting Diode rövidítéséből származik. Áramköri

Részletesebben

(Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.)

(Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.) Egyenáramú gépek (Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.) 1. Párhuzamos gerjesztésű egyenáramú motor 500 V kapocsfeszültségű, párhuzamos gerjesztésű

Részletesebben