mágneses-optikai Kerr effektus

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "mágneses-optikai Kerr effektus"

Átírás

1 Mágnesezettség optikai úton történő detektálása: mágneses-optikai Kerr effektus I. Mágneses-optikai effektusok 2 II. Kísérleti technika 3 III. Mérési feladatok 5 IV. Ajánlott irodalom BME Fizika tanszék

2 I. MÁGNESES-OPTIKAI EFFEKTUSOK Lineárisan poláris fény polarizációs állapota ferromágneses anyag felületéről visszaverődve vagy azon áthaladva megváltozik, általános estben elliptikussá válik, melynek szemléltetését az 1. ábrán láthatjuk. (A következőkben az elektromágneses tér elektromos komponensét fogjuk vizsgálni.) A jelenségkör lényege, hogy a ferromágnesek időtükrözés-invarianciát sértenek, ezért a törésmutatójuk különbözik a balra, illetve jobbra cirkulárisan poláris fotonokra, amelyek az elektromágneses tér sajátállapotai és egymás időtükrözött párjai. A lineárisan polarizált fény a két cirkuláris komponens összegeként áll elő, melyek ekvivalenciája megszűnik mágneses anyagon történő szóródás során, azaz reflexiójuk különbözővé válik. A fény polarizációs állapotában ennek hatására bekövetkező változás általában igen csekély. A mágneses anyag felületéről történő fényvisszaverődés során mágneses-optikai Kerr effetusról beszélünk. Ekkor a polarizáció síkjának elfordulása EZET 3. MÁGNESES-OPTIKAI jellemzően a θ Kerr = KERR-EFFEKTUS 1 o tartományba esik. (MOKE) Másrészt optikailag átlátszó anyagon történő áthaladás 14 során (Faraday effektus) a jelenség integrális természetű, a polarizáció megváltozása a mágneses anyag vastagságával arányosan tetszőlegesen növelhető. bra. Az ábra1. a ábra. mágneses-optikai Mágneses-optikai Kerr-eektust effektusok szemlélteti. szemléltetése. A ferromágneses Bal oldali ábra: A lineárisan poláris fény mágneses felületére bees felületről lineárisan való visszaverődés poláros fény során polarizációja elliptikussá visszaver dést válik. Az ellipszis követ en nagytengelyének a beeső fény polarizációs síkjával bezárt szöge a Kerr elfordulás, a kis- és nagytengely aránya az ún. Kerr ellipticitás. E két mennyiség ul. jellemzi a polarizáció megváltozását. Jobb oldali ábra: Faraday effektus, azaz polarizáció elfordulás optikailag átlátszó mágneses anyagban. ott térer sség-komponens Ha egy anyag spontán nagyságát, mágnesezettséget a komplexmutat koordináták vagy külső arkuszainak mágneses térbe helyezzük, akkor az időtükrözésinvariancia sérül. Ebben az esetben egy eredetileg izotróp vagy köbös szimmetriával bíró rendszer esetén bsége pedig két állapot közötti fáziskülönbséget adja: a dielektromos tenzor a következő alakú lesz, ha a mágnesezettség irányát a z tengellyel párhuzamosnak választjuk: (3.1) ǫ = ǫ xx ǫ xy 0 ǫ xy ǫ xx 0., a két mer leges bázisvektor. Ha a polarizációs állapot 0 0változását ǫ zz a sség irányába mutató komplex egységvektorok segítségével követjük, akkor A mágnesezettséggel párhuzamosan haladó fényre a fenti mátrixot diagonalizálva két különböző dielektromos -formalizmusról állandót beszélünk. kapunk (ǫ Lineáris ± = ǫ xx polarizáció ± ǫ xy ), amely esetén a kétminden cirkulárisan komponens poláris (s = x ± iy) állapothoz tartozik. A a térer sségvisszavert a minden fény amplitúdó- pontján egyetlen és fázisváltozását iránybanegy oszcillál. komplexazt mennyiséggel, az álot, amikor a két komponens azonos nagyságú és a fázisuk, cirkulárisan a reflexiós együtthatóval írjuk le, amely a visszaverő felületre normális irányból érkező fény esetén a Fresnel formula segítségével kifejezhető: osnak hívjuk, mivel a terjedési irányból nézve azr vektor egy körön mozog. ± e iθ± = 1 n ± = 1 ǫ± 1 + n ános esetben elliptikusan poláros fényr l beszélünk. Ilyenkor ± 1 +. ǫ az vektor ± egy ellipszisen Könnyen fut végig, látható, amit hogy polarizációs a ellipszisnek megváltozásának nevezünk. leírására az előzőekben bevezetett Kerr elfordulás és Kerr ellipticitás és a komplex reflexiós együttható közötti kapcsolat a következő: mágneses-optikai Kerr-eektus során a beérkez lineárisan poláros fény pociója a visszaver dést követ en, elfordul, általános esetben elliptikusan poá válik. Ezt a változást két paraméterrel tudjuk 2 leírni: a beérkez fény po- 2(r+ 2 + r2 ) θ Kerr = θ θ + és η Kerr = r2 + r 2. ciója és a visszavert Láthatóan fény theta polarizációs Kerr a két cirkuláris ellipszisének komponens nagytengelye visszaverődése által bezárt során fellépő fáziskülönbség, míg η Kerr a két Kerr-elfordulás komponensre ( ), a visszavert kis- és nagytengely intenzitásokarányának közti különbséget arkusz tangense írja le. Aamágneses anyagok többségénél a Kerr ellipticitás ( ). izsgáljuk meg, hogyan változik a fény polarizációja ferromágneses anyag-

3 paraméterek jó közelítéssel arányosak a mágnesezettséggel. Ezért ezen mennyiségek mérése jó eszközt jelent a felületi mágnesezettség optikai úton történő detektálására. Ha a Kerr paramétereket a foton energia függvényében széles energia tartományban megmérjük, azaz mágneses-optikai spektroszkópiát végzünk, akkor a mágnesezettség nagy érzékenységű mérésén túl a módszer alkalmas alapvető fizikai paraméterek az anyag sávszerkezete, kristálytérfelhasadások, mágneses kicserélődések, spin-pálya kölcsönhatás erőssége meghatározására is. Napjainkban az alapkutatásokon túl az optikai adatátvitel és adattárolás területén elterjedten használják a nagy mágneses-optikai aktivitást mutató anyagkat (pl.: optikai izolátorok, mágnesesoptikai hullámvezetők, mágneses-optikai lemez,...). A mérési gyakorlaton két új, összetett szerkezetű ferrimágneses anyagot, a CoCr 2 O 4 -ot és a CuCr 2 Se 4 -et fogjuk vizsgálni, melyek óriási mágneses-optikai Kerr effektust mutatnak. II. KÍSÉRLETI TECHNIKA A mágneses-optikai méréseknél olyan érzékeny méréstechnikára van szükségünk, amely alkalmas a polarizáció kis változásának detektálására. A mágneses-optikai Kerr forgatás elvileg megfigyelhető, ha a vizsgált kristályt keresztezett polarizátorok közé helyezzük (a fény az anyag mágnesezettségével párhuzamos irányban terjed és közelítőleg merőleges beeséssel érkezik a minta felületére). Ekkor ugyanis a második polarizátoron (analizátor) áthaladó fény intenzitása arányos lesz a mágneses-optikai effektus erősségével, azaz Kerr elfordulás hiányában nem jut át fény az elrendezésen. Ha a mintát felmágnesezve az analizátor síkját addig forgatjuk, míg az átmenő fényintenzitás ismét minimális (ideális esetben zérus) lesz, akkor meghatároztuk a kristály M mágnesezettséghez tartozó Kerr forgatását, θ Kerr (M)-t. Mivel a polarizátor és az analizátor közé gyakran más optikai elemeket is teszünk, melyek (lineáris kettőstörésük révén) maguk is megváltoztatják a fény polarizációját, az elforgatást meg kell határoznunk ellentétes felmegnesezés esetén is és [θ Kerr (M) θ Kerr ( M)]/2 felel meg a Kerr elfordulásnak. Mivel az analizátor szögét o hibával tudjuk csak leolvasni, ez az egyszerű módszer általában nem elég érzékeny. Egy jobb alternatívát jelent, ha a keresztezett polarizátorok közé a mintán kívül egy Faraday rotátort (1. ábra jobb panel) is helyezünk. Ekkor a rotátort körülvevő szolenoid áramának változtatásával a polarizáció elfordulásának mértékét (a tekercs mágneses terével arányosan) változtathatjuk és kompenzálhatjuk vele a minta forgatását. A módszer ekvivalens az analizátor kézzel történő forgatásával, de nagyobb pontosság érhető el általa. Ehhez kövessük nyomon, hogyan változik a fény elektromos komonensének polarizációja a 2. ábrán látható elrendezésben. 2. ábra. Mágneses-optikai effektus mérésére alkalmas fényút: λ = 635nm hullámhosszú 5mW teljesítményű LASER dióda függőleges polarizátor Faraday rotátor minta vízszintes analizátor Si dióda fotodetektor. A elektromos térerősség polarizációját a fényhez rögzített rendszerben írjuk fel. A polarizációs vektor elemeinek komplex volta a komponensek közti időbeli fáziskülönbség következménye. Az ideális Faraday rotátor csak elforgatja a polarizáció síkját, a térerősség nagyságát nem változtatja, amit derékszögű ill. cirkuláris bázisban a következő mátrixok írnak le: ( ) ( ) cosφf sinφ F = F e iφ F 0 sinφ F cosφ F 0 e iφf

4 A minta mágneses kettőstörését leíró reflexiós mátrix a cirkuláris fotonállapotok bázisában: ( ) r+ e S = iθ+ 0 0 r e iθ Mindezeket felhasználva az elektromos térerősség az analizátort követően: ( ) ( ) ( ) ( ) ( ) ( ) r+ e E = 2 iθ i cosφf sinφ F 1 E 0 1 i i 0 r e iθ 2 1 i sinφ F cosφ 0 F 0 Detektorunk azonban a fény intenzitását érzékeli, ami a térerősség abszolút négyzetének időátlaga: I = E2 0 4π E E = E2 0 16π [r2 + + r2 2r +r cos( θ 2φ F )], (1) ahol θ = θ + θ 2θ Kerr. Láthatóan a Faraday rotátor φ F forgatásának változtatásával a minta forgatása csak akkor kompenzálható vagyis a detektorra érkező intenzitás akkor tehető zérussá, ha r + = r, azaz a minta Kerr ellipticitása zérus és csak rotációja van. Ellenkező esetben a Faraday rotátorral (vagy a korábbi módszerben az analizátor forgatásával) csak minimalizálni tudjuk a detektorra eső fényintenzitást. Az érzékenység tovább fokozható nagy frekvenciás lock-in technika alkalmazásával, amely lehetővé teszi a környezeti fényhatások (nem az általunk használt forrásból származó vagy nem az optikai elrendezésünkön keresztül haladó fény) és más elektronikus zajok kiszűrését. Ezt úgy tudjuk megvalósítani, hogy a Faraday rotátor szolenoid tekercsén harmonikus időfüggésű áramot hajtunk keresztül, így φ F (t) = φ F sin(2πft). Felhasználva, hogy az 1. egyenletnél a cosinus függvény argumentumában megjelenő harmonikus időfüggés a J i Bessel függvények szerint Fourier sorba fejthető, azaz sin[φ F sin(2πft)] = 2J 1 (φ F )sin(2πft) +... cos[φ F sin(2πft)] = J 0 (φ F ) + 2J 2 (φ F )sin(4πft) +... illetve r + r és θ Kerr 1, az intenzitás f frekvenciájú és időben állandó komponensére a sorfejtés első rendjében a következőt kapjuk: I f = I 0 [4r + r sin(2θ Kerr )J 1 (φ F )] 4I 0 J 1 (φ F )θ Kerr (2) I dc = I 0 [r r2 2r +r J 0 (φ F )] 0, (3) ahol I 0 nem más, mint a polarizátorok párhuzamos állásánál mért teljes fényintenzitás. 1 Π 2 Π 3Π 2 2Π ábra. Bessel függvények: J 0 (x) kék folytonos, J 1 (x) piros szagatott, J 2 (x) barna pontozott vonal. A 3. összefüggésből láthatóan a Kerr elfordulás arányos az I f modulált intenzitással. Az elfordulás értékének szögben való megadásához 4I 0 J 1 (φ F ) tényezőt meg kell határoznunk. Ezt legegyszerűbben úgy tehetjük, ha kihasználjuk, hogy a minta θ Kerr = φ forgatása ekvivalens az analizátor φ szögű forgatásával. Másrészt, azt is láthatjuk, hogy minél nagyobb a Faraday rotátor φ F modulációjának amplitúdója annál jobb a mérés érzekenysége. A jó jel-zaj viszony eléréséhez tehát minél nagyobb amplitúdójú és frekvenciájú áramot kell a szolenoidon átküldenünk. A mérés elektronikus összeállítása a következő ábrán látható.

5 4. ábra. A mérés elektromos kapcsolásának vázlata III. MÉRÉSI FELADATOK Ferrimágneses ún. spinel szerkezetű kristályok mágnesezettségét vizsgáljuk mágneses-optikai Kerr effektus mérésével. Az egyik anyag a CuCr 2 Se 4, amely már szobahőmérsékleten ferromágneses, a másik anyag a CoCr 2 O 4, csak alacsony hőmérsékleten válik mágnesessé. Alakítsuk ki az optikai fényutat mintaként a CuCr 2 Se 4 kristályt használva és állítsuk össze az elektromos kapcsolást! Az analizátor szögének változtatásával kalibráljuk a polarizáció forgatást (4I 0 J 1 (φ F ) paraméter meghatározása)! Mérjük meg CuCr 2 Se 4 minta Kerr forgatását a mágneses tér függvényében a rendelkezésre álló permanens mágnes segítségével! Határozzuk meg a mágneses hiszterézis szélességét! Az alacsony hömérsékletű optikai mintatartóba helyezett CoCr 2 O 4 kristályt helyezzük a fényútba, majd a mintatartót folyékony N 2 -nel hűtsük le T = 77K-re! A mintatartóra szerelt szolenoid tekercs áramának változtatásával mérjük meg a Kerr forgatás térfüggését ezen a hőmérsékleten! Határozzuk meg a mágneses hiszterézis szélességét! Ismételjük meg a mérést T = 77K fölötti hőmérsékleteken is! Határozzuk meg a ferromágneses átalakulás hőmérsékletét! Pozitív majd negatív irányú felmágnesezés mellet (kis mágneses térben) mérjük meg θ Kerr értékének hőmérséklet függését a mintatartó lassú melegítése közben! Figyelmeztetés! A mérés során ügyeljünk a következőkre! A LASER dióda nagy teljesítményű, fókuszált nyalábja a szemet károsíthatja. A teljesítmény erősítő kimenetére először csatlakoztassuk a szolenoid tekercset, illetve a referencia ellenállásra (R ref = 0.1Ω) az oszcilloszkópot. Ezt követően kapcsoljuk be az erősítő tápfeszültségét. Az oszcilloszkóp jelének folyamatos ellenőrzése mellett növeljük az erősítő bemeneti feszültségét, míg a tekercsen átfolyó áram eléri a ±5A t. Vigyázzunk a folyékony nitrogén töltésénél! Óvatosan kezeljük a permanens mágnest (B 0.6T), ne közelítsük felmágnesezhető eszközökhöz!

6 IV. AJÁNLOTT IRODALOM - Bevezetés a modern szilárdtestfizikába, Sólyom Jenő (Springer, 2005) - Electronic States and Optical Transitions in Solids, Bassani and Pastori Parravicini (Pergamon, 1975) - Solid State Spectroscopy H. Kuzmany (Springer, 1998) - Magneto-optics, S. Sugano and N. Kojima (Springer, 1999)

Elektrooptikai effektus

Elektrooptikai effektus Elektrooptikai effektus Alapelv: A Pockels effektus az a jelenség, amikor egy eredendően kettőstörő anyag kettőstörő tulajdonsága megváltozik az alkalmazott elektromos tér hatására, és a változás lineáris

Részletesebben

Mérés spektroszkópiai ellipszométerrel

Mérés spektroszkópiai ellipszométerrel Mérés spektroszkópiai ellipszométerrel Bevezetés Az ellipszometria egy igen sokoldalú, nagypontosságú optikai módszer vékonyrétegek dielektromos tulajdonságainak meghatározására. Mivel optikai módszer,

Részletesebben

N I. 02 B. Mágneses anyagvizsgálat G ép. 118 2011.11.30. A mérés dátuma: A mérés eszközei: A mérés menetének leírása:

N I. 02 B. Mágneses anyagvizsgálat G ép. 118 2011.11.30. A mérés dátuma: A mérés eszközei: A mérés menetének leírása: N I. 02 B A mérés eszközei: Számítógép Gerjesztésszabályzó toroid transzformátor Minták Mágneses anyagvizsgálat G ép. 118 A mérés menetének leírása: Beindítottuk a számtógépet, Behelyeztük a mintát a ferrotestbe.

Részletesebben

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése Kutatási beszámoló 2015. február Gyüre Balázs BME Fizika tanszék Dr. Simon Ferenc csoportja Tangens delta mérésére alkalmas mérési összeállítás elkészítése A TKI-Ferrit Fejlsztő és Gyártó Kft.-nek munkája

Részletesebben

Legyen a rések távolsága d, az üveglemez vastagsága w! Az üveglemez behelyezése

Legyen a rések távolsága d, az üveglemez vastagsága w! Az üveglemez behelyezése 6. Gyakorlat 38B-1 Kettős rést 600 nm hullámhosszúságú fénnyel világitunk meg és ezzel egy ernyőn interferenciát hozunk létre. Ezután igen vékony flintüvegből (n = 1,65) készült lemezt helyezünk csak az

Részletesebben

Hullámtan. A hullám fogalma. A hullámok osztályozása.

Hullámtan. A hullám fogalma. A hullámok osztályozása. Hullátan A hullá fogala. A hulláok osztályozása. Kísérletek Kis súlyokkal összekötött ingasor elején keltett rezgés átterjed a többi ingára is [0:6] Kifeszített guikötélen keltett zavar végig fut a kötélen

Részletesebben

TARTALOMJEGYZÉK EL SZÓ... 13

TARTALOMJEGYZÉK EL SZÓ... 13 TARTALOMJEGYZÉK EL SZÓ... 13 1. A TÖLTÉS ÉS ELEKTROMOS TERE... 15 1.1. Az elektromos töltés... 15 1.2. Az elektromos térer sség... 16 1.3. A feszültség... 18 1.4. A potenciál és a potenciálfüggvény...

Részletesebben

Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Folyadékkristályok vizsgálata.

Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Folyadékkristályok vizsgálata. Modern Fizika Labor A mérés dátuma: 2005.11.16. A mérés száma és címe: 17. Folyadékkristályok vizsgálata Értékelés: A beadás dátuma: 2005.11.30. A mérést végezte: Orosz Katalin Tóth Bence 1 A mérés során

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

Optika Gröller BMF Kandó MTI

Optika Gröller BMF Kandó MTI Optika Gröller BMF Kandó MTI Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Optika Gröller BMF Kandó MTI Az elektromágneses spektrum Az anyag és a fény kölcsönhatása

Részletesebben

Modern Fizika Labor. Értékelés: A mérés dátuma: A mérés száma és címe: Az optikai pumpálás. A beadás dátuma: A mérést végezte:

Modern Fizika Labor. Értékelés: A mérés dátuma: A mérés száma és címe: Az optikai pumpálás. A beadás dátuma: A mérést végezte: Modern Fizika Labor A mérés dátuma: 2005.10.19. A mérés száma és címe: 7. Az optikai pumpálás Értékelés: A beadás dátuma: 2005.10.28. A mérést végezte: Orosz Katalin Tóth Bence Optikai pumpálás segítségével

Részletesebben

Elektromágneses hullámok

Elektromágneses hullámok Bevezetés a modern fizika fejezeteibe 2. (a) Elektromágneses hullámok Utolsó módosítás: 2015. október 3. 1 A Maxwell-egyenletek (1) (2) (3) (4) E: elektromos térerősség D: elektromos eltolás H: mágneses

Részletesebben

Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete

Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete Hullámmozgás Mechanikai hullámok A hang és jellemzői A fény hullámtermészete A hullámmozgás fogalma A rezgési energia térbeli továbbterjedését hullámmozgásnak nevezzük. Hullámmozgáskor a közeg, vagy mező

Részletesebben

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7)

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7) Jegyzőkönyv a mágneses szuszceptibilitás méréséről (7) Készítette: Tüzes Dániel Mérés ideje: 8-1-1, szerda 14-18 óra Jegyzőkönyv elkészülte: 8-1-8 A mérés célja A feladat egy mágneses térerősségmérő eszköz

Részletesebben

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai fizikából. I. kategória

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai fizikából. I. kategória Oktatási Hivatal A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható. Megoldandó

Részletesebben

CÉLKOORDINÁTOROK alkalmazástechnikája CÉLKOORDINÁTOROK FELÉPÍTÉSI ELVE

CÉLKOORDINÁTOROK alkalmazástechnikája CÉLKOORDINÁTOROK FELÉPÍTÉSI ELVE Géczi József Dr. Szabó László CÉLKOORDINÁTOROK alkalmazástechnikája A rádiótechnikai célkoordinátorok (RCK) feladata azon szögkoordináták mérése, amelyek a távolságvektor koordinátor hossztengelyéhez viszonyított

Részletesebben

Abszorpciós spektroszkópia

Abszorpciós spektroszkópia Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 7. óra Mingesz Róbert Szegedi Tudományegyetem 2013. április 11. MA - 7. óra Verzió: 2.2 Utolsó frissítés: 2013. április 10. 1/37 Tartalom I 1 Szenzorok 2 Hőmérséklet mérése 3 Fény

Részletesebben

1. Visszacsatolás nélküli kapcsolások

1. Visszacsatolás nélküli kapcsolások 1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erõsítõ invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt nevezzük földnek. A nem invertáló bemenetre kösse egy potenciométer középsõ

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése Mágneses szuszceptibilitás mérése (Mérési jegyzőkönyv) Hagymási Imre 2006. március 12. (hétfő délelőtti csoport) 1. A mérés elmélete Az anyagok külső mágneses tér hatására polarizálódnak. Általában az

Részletesebben

= Φ B(t = t) Φ B (t = 0) t

= Φ B(t = t) Φ B (t = 0) t 4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy

Részletesebben

11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz

11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merőleges a hullámterjedés irányára. b) Csak a transzverzális hullám

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése KLASSZIKUS FIZIKA LABORATÓRIUM 7. MÉRÉS Mágneses szuszceptibilitás mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 5. Szerda délelőtti csoport 1. A mérés célja Az

Részletesebben

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális

Részletesebben

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája. 11. Transzportfolyamatok termodinamikai vonatkozásai 1 Melyik állítás HMIS a felsoroltak közül? mechanikában minden súrlódásmentes folyamat irreverzibilis. disszipatív folyamatok irreverzibilisek. hőmennyiség

Részletesebben

Elektrotechnika. Ballagi Áron

Elektrotechnika. Ballagi Áron Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:

Részletesebben

Optika és Relativitáselmélet

Optika és Relativitáselmélet Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 5. Polarizáció és kristályoptika Cserti József, jegyzet, ELTE, 2007. A polarizáció és a kristályoptika úgy függ össze, hogy kristályokban a törésmutató

Részletesebben

Vezetők elektrosztatikus térben

Vezetők elektrosztatikus térben Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény;  Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;

Részletesebben

Ellenállásmérés Ohm törvénye alapján

Ellenállásmérés Ohm törvénye alapján Ellenállásmérés Ohm törvénye alapján A mérés elmélete Egy fémes vezetőn átfolyó áram I erőssége egyenesen arányos a vezető végpontjai közt mérhető U feszültséggel: ahol a G arányossági tényező az elektromos

Részletesebben

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 1. A gyakorlat célja Kis elmozulások (.1mm 1cm) mérésének bemutatása egyszerű felépítésű érzékkőkkel. Kapacitív és inuktív

Részletesebben

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető . Laboratóriumi gyakorlat A EMISZO. A gyakorlat célja A termisztorok működésének bemutatása, valamint főbb paramétereik meghatározása. Az ellenállás-hőmérséklet = f és feszültség-áram U = f ( I ) jelleggörbék

Részletesebben

Síkban polarizált hullámok síkban polarizált lineárisan polarizált Síkban polarizált hullámok szuperpozíciója cirkulárisan polarizált

Síkban polarizált hullámok síkban polarizált lineárisan polarizált Síkban polarizált hullámok szuperpozíciója cirkulárisan polarizált Síkban polarizált hullámok Tekintsünk egy z-tengely irányában haladó fénysugarat. Ha a tér egy adott pontjában az idő függvényeként figyeljük az elektromos (ill. mágneses) térerősség vektorokat, akkor

Részletesebben

A fény mint elektromágneses hullám és mint fényrészecske

A fény mint elektromágneses hullám és mint fényrészecske A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Szupravezető alapjelenségek

Szupravezető alapjelenségek Szupravezető alapjelenségek A méréseket összeállította és az útmutatót írta: Balázs Zoltán 1. Meissner effektus bemutatása: Mérési összeállítás: 1. A csipesszel helyezze a polisztirol hab csészébe a szupravezető

Részletesebben

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS OPTIKA Geometriai optika Snellius Descartes-törvény A fényhullám a geometriai optika szempontjából párhuzamos fénysugarakból áll. A vákuumban haladó fénysugár a geometriai egyenes fizikai megfelelője.

Részletesebben

Elektrooptikai jelenség az, ha egy anyagra elektromos térerősséget kapcsolva megváltozik a törésmutatója.

Elektrooptikai jelenség az, ha egy anyagra elektromos térerősséget kapcsolva megváltozik a törésmutatója. 14. Modula torok 1. Mi az elektro-optikai jelenség, és milyen típusait ismeri? Elektrooptikai jelenség az, ha egy anyagra elektromos térerősséget kapcsolva megváltozik a törésmutatója. n(e)=n 0 +a 1 E+a

Részletesebben

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben

Részletesebben

Akusztikai tervezés a geometriai akusztika módszereivel

Akusztikai tervezés a geometriai akusztika módszereivel Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika

Részletesebben

2. Elméleti összefoglaló

2. Elméleti összefoglaló 2. Elméleti összefoglaló 2.1 A D/A konverterek [1] A D/A konverter feladata, hogy a bemenetére érkező egész számmal arányos analóg feszültséget vagy áramot állítson elő a kimenetén. A működéséhez szükséges

Részletesebben

Optika fejezet felosztása

Optika fejezet felosztása Optika Optika fejezet felosztása Optika Geometriai optika vagy sugároptika Fizikai optika vagy hullámoptika Geometriai optika A közeg abszolút törésmutatója: c: a fény terjedési sebessége vákuumban, v:

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18. Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:

Részletesebben

5. Laboratóriumi gyakorlat. A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE

5. Laboratóriumi gyakorlat. A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE 5. Laboratóriumi gyakorlat A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE 1. A gyakorlat célja: A p-n átmenet hőmérsékletfüggésének tanulmányozása egy nyitóirányban polarizált dióda esetében. A hőmérsékletváltozási

Részletesebben

Harmonikus rezgések összetevése és felbontása

Harmonikus rezgések összetevése és felbontása TÓTH.: Rezgésösszetevés (kibővített óravázlat) 30 005.06.09. Harmonikus rezgések összetevése és felbontása Gyakran előfordul hogy egy rezgésre képes rendszerben több közelítőleg harmonikus rezgés egyszerre

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 4. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 4. óra Verzió: 1.3 Utolsó frissítés: 2011. május 15. 1/51 Tartalom I 1 A/D konverterek alkalmazása

Részletesebben

A fény visszaverődése

A fény visszaverődése I. Bevezető - A fény tulajdonságai kölcsönhatásokra képes egyenes vonalban terjed terjedési sebessége függ a közeg anyagától (vákuumban 300.000 km/s; gyémántban 150.000 km/s) hullám tulajdonságai vannak

Részletesebben

Koincidencia áramkörök

Koincidencia áramkörök Koincidencia áramkörök BEVEZETÉS Sokszor előfordul, hogy a számítástechnika, az automatika, a tudományos kutatás és a technika sok más területe olyan áramkört igényel, amelynek kimenetén csak akkor van

Részletesebben

Akuszto-optikai fénydiffrakció

Akuszto-optikai fénydiffrakció Bevezetés Akuszto-optikai fénydiffrakció A Brillouin által megjósolt akuszto-optikai kölcsönhatást 1932-ben mutatta ki Debye és Sears. Az effektus felhasználását, vagyis akuszto-optikai elven működő eszközök

Részletesebben

EGYENÁRAMÚ TÁPEGYSÉGEK

EGYENÁRAMÚ TÁPEGYSÉGEK dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan

Részletesebben

Zárt mágneskörű induktív átalakítók

Zárt mágneskörű induktív átalakítók árt mágneskörű induktív átalakítók zárt mágneskörű átalakítók felépítésükből következően kis elmozdulások mérésére használhatók megfelelő érzékenységgel. zárt mágneskörű induktív átalakítók mágnesköre

Részletesebben

Műveleti erősítők. Előzetes kérdések: Milyen tápfeszültség szükséges a műveleti erősítő működtetéséhez?

Műveleti erősítők. Előzetes kérdések: Milyen tápfeszültség szükséges a műveleti erősítő működtetéséhez? Műveleti erősítők Előzetes kérdések: Milyen tápfeszültség szükséges a műveleti erősítő működtetéséhez? Milyen kimenő jel jelenik meg a műveleti erősítő bemeneteire adott jel hatására? Nem invertáló bemenetre

Részletesebben

Osztályozó vizsga anyagok. Fizika

Osztályozó vizsga anyagok. Fizika Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes

Részletesebben

Logaritmikus erősítő tanulmányozása

Logaritmikus erősítő tanulmányozása 13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti

Részletesebben

A 34. Nemzetközi Fizikai Diákolimpia mérési feladata 1 : Lézerdióda és nematikus folyadékkristály optikai tulajdonságai 2

A 34. Nemzetközi Fizikai Diákolimpia mérési feladata 1 : Lézerdióda és nematikus folyadékkristály optikai tulajdonságai 2 A 34. Nemzetközi Fizikai Diákolimpia mérési feladata 1 : Lézerdióda és nematikus folyadékkristály optikai tulajdonságai 2 A mérés során a fényképen látható eszközök és anyagok álltak a versenyzők rendelkezésére:

Részletesebben

Robotika. Kinematika. Magyar Attila

Robotika. Kinematika. Magyar Attila Robotika Kinematika Magyar Attila amagyar@almos.vein.hu Miről lesz szó? Bevezetés Merev test pozíciója és orientációja Rotáció Euler szögek Homogén transzformációk Direkt kinematika Nyílt kinematikai lánc

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b

Részletesebben

Mondatkiegészítések június 6.

Mondatkiegészítések június 6. Mondatkiegészítések 2016. június 6. Az alábbi típusú mondatkiegészítések jelentik az elméleti feladatok egy részét. A tapasztalat szerint ezek megoldásához a tárgyi tudás mellett szükség van egyfajta rutinra.

Részletesebben

M ű veleti erő sítő k I.

M ű veleti erő sítő k I. dátum:... a mérést végezte:... M ű veleti erő sítő k I. mérési jegyző könyv 1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erősítő invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt

Részletesebben

Számítási feladatok a 6. fejezethez

Számítási feladatok a 6. fejezethez Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz

Részletesebben

E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic

E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic Abszorpciós spektroszkópia Abszorpciós spektrofotometria 29.2.2. Az abszorpciós spektroszkópia a fényabszorpció jelenségét használja fel híg oldatok minőségi és mennyiségi vizsgálatára. Abszorpció Az elektromágneses

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

Optika Gröller BMF Kandó MTI

Optika Gröller BMF Kandó MTI Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Az elektromágneses spektrum Az anyag és a fény kölcsönhatása Visszaverődés, reflexió Törés, kettőstörés, polarizáció

Részletesebben

1. ábra Tükrös visszaverődés 2. ábra Szórt visszaverődés 3. ábra Gombostű kísérlet

1. ábra Tükrös visszaverődés 2. ábra Szórt visszaverődés 3. ábra Gombostű kísérlet A kísérlet célkitűzései: A fény visszaverődésének kísérleti vizsgálata, a fényvisszaverődés törvényének megismerése, síktükrök képalkotásának vizsgálata. Eszközszükséglet: szivacslap A/4 írólap vonalzó,

Részletesebben

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z

Részletesebben

XX. A FÉNY POLARIZÁCIÓJA ÉS KETTŐS TÖRÉSE

XX. A FÉNY POLARIZÁCIÓJA ÉS KETTŐS TÖRÉSE Pálinkás József: Fizika. XX. A FÉNY POLARIZÁCIÓJA ÉS KETTŐS TÖRÉSE Bevezetés. Az elektromágneses hullámokról szóló fejezetben láttuk, hogy a Maxwell-egyenletekből levezethető, hogy az elektromágneses hullám

Részletesebben

Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk

Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés 2015.05.13. RC tag Bartha András, Dobránszky Márk 1. Tanulmányozza át az ELVIS rendszer rövid leírását! Áttanulmányoztuk. 2. Húzzon a tartóból két

Részletesebben

Elektromos áramerősség

Elektromos áramerősség Elektromos áramerősség Két különböző potenciálon lévő fémet vezetővel összekötve töltések áramlanak amíg a potenciál ki nem egyenlítődik. Az elektromos áram iránya a pozitív töltéshordozók áramlási iránya.

Részletesebben

Visszaverődés. Optikai alapfogalmak. Az elektromágneses spektrum. Az anyag és a fény kölcsönhatása. n = c vákuum /c közeg

Visszaverődés. Optikai alapfogalmak. Az elektromágneses spektrum. Az anyag és a fény kölcsönhatása. n = c vákuum /c közeg Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Az elektromágneses spektrum Az anyag és a fény kölcsönhatása Visszaverődés Visszaverődés, reflexió Törés, kettőstörés,

Részletesebben

19. A fényelektromos jelenségek vizsgálata

19. A fényelektromos jelenségek vizsgálata 19. A fényelektromos jelenségek vizsgálata PÁPICS PÉTER ISTVÁN csillagász, 3. évfolyam Mérőpár: Balázs Miklós 2006.04.19. Beadva: 2006.05.15. Értékelés: A MÉRÉS LEÍRÁSA Fontos megállapítás, hogy a fénysugárzásban

Részletesebben

Félvezetk vizsgálata

Félvezetk vizsgálata Félvezetk vizsgálata jegyzkönyv Zsigmond Anna Fizika BSc III. Mérés vezetje: Böhönyei András Mérés dátuma: 010. március 4. Leadás dátuma: 010. március 17. Mérés célja A mérés célja a szilícium tulajdonságainak

Részletesebben

Kromatikus diszperzió mérése

Kromatikus diszperzió mérése Kromatikus diszperzió mérése Összeállította: Mészáros István tanszéki mérnök 1 Diszperziós jelenségek Diszperzió fogalma alatt a jel szóródását értjük. A gyakorlatban ez azt jelenti, hogy a bemeneti keskeny

Részletesebben

Mágneses mező jellemzése

Mágneses mező jellemzése pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező kölcsönhatás A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonalak vonzó és taszító erő pólusok dipólus mező pólusok északi

Részletesebben

Egzotikus elektromágneses jelenségek alacsony hőmérsékleten Mihály György BME Fizikai Intézet Hall effektus Edwin Hall és az összenyomhatatlan elektromosság Kvantum Hall effektus Mágneses áram anomális

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

Optikai alapmérések. Mivel több mérésről van szó, egyesével írom le és értékelem ki őket. 1. Törésmutató meghatározása a törési törvény alapján

Optikai alapmérések. Mivel több mérésről van szó, egyesével írom le és értékelem ki őket. 1. Törésmutató meghatározása a törési törvény alapján Optikai alapmérések Mérést végezte: Enyingi Vera Atala Mérőtárs neve: Fábián Gábor (7. mérőpár) Mérés időpontja: 2010. október 15. (12:00-14:00) Jegyzőkönyv leadásának időpontja: 2010. október 22. A mérés

Részletesebben

Elektromos alapjelenségek

Elektromos alapjelenségek Elektrosztatika Elektromos alapjelenségek Dörzselektromos jelenség: egymással szorosan érintkező, vagy egymáshoz dörzsölt testek a szétválasztásuk után vonzó, vagy taszító kölcsönhatást mutatnak. Ilyenkor

Részletesebben

2. (d) Hővezetési problémák II. főtétel - termoelektromosság

2. (d) Hővezetési problémák II. főtétel - termoelektromosság 2. (d) Hővezetési problémák II. főtétel - termoelektromosság Utolsó módosítás: 2015. március 10. Kezdeti érték nélküli problémák (1) 1 A fél-végtelen közeg a Az x=0 pontban a tartományban helyezkedik el.

Részletesebben

Az elektromágneses indukció jelensége

Az elektromágneses indukció jelensége Az elektromágneses indukció jelensége Korábban láttuk, hogy az elektromos áram hatására mágneses tér keletkezik (Ampère-féle gerjesztési törvény) Kérdés, hogy vajon ez megfordítható-e, és a mágneses tér

Részletesebben

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA FELADATOK. Különösen viselkedő oszcillátor vizsgálata

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA FELADATOK. Különösen viselkedő oszcillátor vizsgálata Oktatási Hivatal A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA FELADATOK Különösen viselkedő oszcillátor vizsgálata Elméleti bevezető: A mérési feladat

Részletesebben

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika 2. OPTIKA 2.1. Elmélet Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert fényt bocsátanak ki, vagy a rájuk eső fényt visszaverik, és ezt a fényt a szemünk érzékeli. A

Részletesebben

Számítási feladatok a Számítógépi geometria órához

Számítási feladatok a Számítógépi geometria órához Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése Mágneses szuszceptibilitás mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 10/19/2011 Beadás ideje: 10/26/2011 1 1. A mérés rövid leírása

Részletesebben

A fény korpuszkuláris jellegét tükröző fizikai jelenségek

A fény korpuszkuláris jellegét tükröző fizikai jelenségek A fény korpuszkuláris jellegét tükröző fizikai jelenségek A fény elektromágneses sugárzás, amely hullámjelleggel és korpuszkuláris sajátosságokkal is rendelkezik. A fény hullámjellege elsősorban az olyan

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális

Részletesebben

Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013

Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013 Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013 2. Kísérleti feladat (10 pont) B rész. Rúdmágnes mozgásának vizsgálata fémcsőben (6 pont)

Részletesebben

Ferromágneses anyagok mikrohullámú tulajdonságainak vizsgálata

Ferromágneses anyagok mikrohullámú tulajdonságainak vizsgálata Ferromágneses anyagok mikrohullámú tulajdonságainak vizsgálata Lutz András Gábor Kutatási beszámoló 2015, Budapest Feladat A mikrohullámú non reciprok eszközök paramétereit döntően meghatározzák a bennük

Részletesebben

OPT TIKA. Hullámoptika. Dr. Seres István

OPT TIKA. Hullámoptika. Dr. Seres István OPT TIKA Dr. Seres István : A fény elektromágneses hullám r S S = r E r H Seres István 2 http://fft.szie.hu Elektromágneses spektrum c = λf Elnevezés Hullámhossz Frekvencia Váltóáram > 3000 km < 100 Hz

Részletesebben

FÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot?

FÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot? FÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot? 3. Mit nevezünk fényforrásnak? 4. Mi a legjelentősebb

Részletesebben

Kvantumos információ megosztásának és feldolgozásának fizikai alapjai

Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kis Zsolt Kvantumoptikai és Kvantuminformatikai Osztály MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

8. előadás. Kúpszeletek

8. előadás. Kúpszeletek 8. előadás Kúpszeletek Kör A k kört egyértelműen meghatározza C(a,b) középpontja és r sugara. A P pont pontosan akkor van k-n, ha CP=r. Vektoregyenlet: p-c = r. Koordinátás egyenlet: (X-a)2 + (Y-b)2 =

Részletesebben

Fizika 1 Elektrodinamika belépő kérdések

Fizika 1 Elektrodinamika belépő kérdések Fizika 1 Elektrodinamika belépő kérdések 1) Maxwell-egyenletek lokális (differenciális) alakja rot H = j+ D rot = B div B=0 div D=ρ H D : mágneses térerősség : elektromos megosztás B : mágneses indukció

Részletesebben

Szilárdtestek mágnessége. Mágnesesen rendezett szilárdtestek

Szilárdtestek mágnessége. Mágnesesen rendezett szilárdtestek Szilárdtestek mágnessége Mágnesesen rendezett szilárdtestek 2 Mágneses anyagok Permanens atomi mágneses momentumok: irány A kétféle spin-beállású elektronok betöltöttsége különbözik (spin-polarizáció)

Részletesebben

Jegyzőkönyv. hangfrekvenciás mechanikai rezgések vizsgálatáról (3)

Jegyzőkönyv. hangfrekvenciás mechanikai rezgések vizsgálatáról (3) Jegyzőkönyv a hangfrekvenciás mechanikai rezgések vizsgálatáról () Készítette: Tüzes Dániel Mérés ideje: 2008-11-19, szerda 14-18 óra Jegyzőkönyv elkészülte: 2008-11-26 A mérés célja A feladat két anyag

Részletesebben

12/5/2012. Biomolekuláris szerkezet. Diffrakció, röntgenkrisztallográfia, fény- és elektronmikroszkópia. Tömegspektrometria, CD.

12/5/2012. Biomolekuláris szerkezet. Diffrakció, röntgenkrisztallográfia, fény- és elektronmikroszkópia. Tömegspektrometria, CD. fáziskülönbség egy adott távolság után konstruktív/destruktív interferencia Biomolekuláris szerkezet. Diffrakció, röntgenkrisztallográfia, fény- és elektronmikroszkópia. Tömegspektrometria, CD. c 2 > c

Részletesebben

8. Laboratóriumi gyakorlat INKREMENTÁLIS ADÓ

8. Laboratóriumi gyakorlat INKREMENTÁLIS ADÓ 8. Laboratóriumi gyakorlat INKREMENTÁLIS ADÓ 1. A gyakorlat célja: Az inkrementális adók működésének megismerése. Számítások és szoftverfejlesztés az inkrementális adók katalógusadatainak feldolgozására

Részletesebben

Elektromágneses hullámok - Hullámoptika

Elektromágneses hullámok - Hullámoptika Bevezetés a modern fizika fejezeteibe 2. (c) Elektromágneses hullámok - Hullámoptika Utolsó módosítás: 2015. január 17. 1 Az elektromágneses hullámok visszaverődési és törési törvényei (1) Kérdés: Mi történik

Részletesebben

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok Váltóáramú hálózatok, elektromágneses Váltóáramú hálózatok Maxwell egyenletek Elektromágneses Váltófeszültség (t) = B A w sinwt = sinwt maximális feszültség w= pf körfrekvencia 4 3 - - -3-4,5,,5,,5,3,35

Részletesebben

Anyagvizsgálati módszerek

Anyagvizsgálati módszerek Anyagvizsgáló és Állapotellenőrző Laboratórium Atomerőművi anyagvizsgálatok Az akusztikus emisszió vizsgálata a műszaki diagnosztikában Anyagvizsgálati módszerek Roncsolásos metallográfia, kémia, szakító,

Részletesebben