Vizsgálati módszerek az anyagtudományban: Infravörös és Raman spektroszkópia

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Vizsgálati módszerek az anyagtudományban: Infravörös és Raman spektroszkópia"

Átírás

1 Vizsgálati módszerek az anyagtudományban: Infravörös és Raman spektroszkópia Kamarás Katalin MTA SzFKI IR-Raman Raman spektroszkópia 1

2 Tipikus infravörös és Raman-spektrum B. Schrader: Raman/Infrared Atlas of Organic Compounds. VCH Publishers, IR-Raman Raman spektroszkópia 2

3 Az elektromágneses spektrum Tartomány Frekvencia Hullámszám (cm -1 ) Energia Hullámhossz Rádióhullámok, mikrohullámok <10 12 Hz >0.3 mm Szubmilliméter Hz mev mm Távoli infravörös (FIR) THz mev m Infravörös (MIR) THz ev m Közeli infravörös (NIR) THz ev m Látható (VIS) ev nm Ultraibolya (UV) ev nm Röntgen 50 ev 120 kev nm -sugárzás 20 kev 12 MeV pm IR-Raman Raman spektroszkópia 3

4 Az elektromágneses spektrum - illusztráció IR-Raman Raman spektroszkópia 4

5 Energiajellegű mennyiségek átszámítása Ws ev cm -1 K Ry Ws ev cm K Ry IR-Raman Raman spektroszkópia 5

6 Feketetest-sugárzás sugárzás Planck-f. sugárzási törvény: I 3 2 h 2 c 1 k T e h B 1 Wien-f. eltolódási törvény: max 2.82 k B T h 4.00E K 1000 K 3.00E-016 I 2.00E E E Wavenumber (cm -1 ) IR-Raman Raman spektroszkópia 6

7 Optikai mérési elrendezések I0 RI0 (1 R) I 0 e d I A Minta Fotolumineszcencia (abszorpció + emisszió) I 0 Beeső fény Beeső fény Abszorpció Abszorpció Transzmisszió I T I R Reflexió Reflexiós spektroszkópia Transzmissziós (abszorpciós) spektroszkópia Szórás Szórás (abszorpció + emisszió) IR-Raman Raman spektroszkópia 7

8 Teljes optikai spektrum IR-Raman Raman spektroszkópia 8

9 Spektroszkópia: az anyag elektromágneses sugárzással való (frekvenciafüggő) kölcsönhatásának megfigyelése abszorpció h h emisszió h h szórás Rayleigh h 0 h 0 h h 0 Stokes h( 0 ) h 0 h anti-stokes h( 0 ) IR-Raman Raman spektroszkópia 9

10 Raman-szórás: történet Sir Chandrasekhara Venkata Raman Nobel-díj 1930 L. Mandelstam G. Landsberg kombinációs szórás IR-Raman Raman spektroszkópia 10

11 virt. gerj. áll. gerj. áll. alapállapot abszorpció emisszió szórás Rayleigh-szórás IR-Raman Raman spektroszkópia 11

12 virt. gerj. áll. gerj. áll. alapállapot abszorpció emisszió szórás Stokes IR-Raman Raman spektroszkópia 12

13 virt. gerj. áll. gerj. áll. alapállapot abszorpció emisszió szórás anti-stokes IR-Raman Raman spektroszkópia 13

14 Molekularezgések Mechanical model of a vibrating diatomic molecule IR-Raman Raman spektroszkópia 14

15 Infravörös abszorpció és Raman-szórás IR: 0 ( )cos 0t 0 r cos 0t r Deformálható eset: ~ r, vagy dipólmomentum változása rezgés során ind 1 0 ( )cos 0t][ E0 cos t] 0E0 cos t ( ) E0[cos( 0) t cos( ) t] 2 [ 0 Rayleigh anti-stokes Stokes polarizálhatóság változása rezgés során IR-Raman Raman spektroszkópia 15

16 A Raman-effektus klasszikus kép D. A. Long: Raman spectroscopy McGraw-Hill, 1977 Rayleigh Stokes anti-stokes IR-Raman Raman spektroszkópia 16

17 Kísérleti elrendezés Mink János: Az infravörös és Raman spektroszkópia alapjai. Veszprémi Egyetem Analitikai Kémiai Tanszék Gerjesztés: látható, monokromatikus fény (lézer) Frekvenciakülönbség: infravörös tartomány IR-Raman Raman spektroszkópia 17

18 A Raman-effektus kvantumos kép Álmosdi Péter, BME 2008 Forrás: Wikipedia IR-Raman Raman spektroszkópia 18

19 Veres Miklós, MTA SZFKI Raman-spektroszkópia Fényszórás monokromatikus fénnyel Szórt fény spektruma a gerjesztő fény hullámhosszához képest A rugalmatlan szórás csak akkor megfigyelhető, ha a szórási folyamat során megváltozik a közeg polarizálhatósága. Az eltolódás mértéke nem függ a gerjesztő fény hullámhosszától. A rugalmatlan szórás valószínűsége kicsi, minden 10 8 fotonból egy szenved rugalmatlan szórást Raman shift (cm -1 ) Rugalmatlan szórás Rugalmas szórás Rugalmatlan szórás Az eltolódás mértéke függ a közeg tulajdonságaitól. A rugalmatlan szórás a közeg elemi gerjesztésein (általában fononokon) történik. IR-Raman Raman spektroszkópia 19

20 Kísérleti elrendezés Álmosdi Péter, BME 2008 Forrás: Wikipedia Mink János: Az infravörös és Raman spektroszkópia alapjai. Veszprémi Egyetem Analitikai Kémiai Tanszék Gerjesztés: látható, monokromatikus fény (lézer) ~ 10 4 cm -1 Frekvenciakülönbség: infravörös tartomány, felbontás: ~ 1 cm -1 Monokromátor felbontása kritikus! IR-Raman Raman spektroszkópia 20

21 Kísérleti elrendezések Mink János: Az infravörös és Raman spektroszkópia alapjai. Veszprémi Egyetem Analitikai Kémiai Tanszék IR-Raman Raman spektroszkópia 21

22 Raman-mikroszkóp IR-Raman Raman spektroszkópia 22

23 CCl 4 Raman-spektruma Mink János: Az infravörös és Raman spektroszkópia alapjai. Veszprémi Egyetem Analitikai Kémiai Tanszék IR-Raman Raman spektroszkópia 23

24 Veres Miklós, MTA SZFKI Rezonáns Raman-szórás Ha a gerjesztő lézer energiája megközelíti a közeg egy valós átmenetének energiáját, a Raman szórás intenzitása néhány nagyságrenddel megnő. Ez a rezonáns Raman szórás. A rezonáns Raman szórás állapotsűrűség maximumok közelében a legerősebb. IR-Raman Raman spektroszkópia 24

25 Veres Miklós, MTA SZFKI Rezonáns Raman gerjesztési profil Gerjesztő energia Raman shift (cm -1 ) Raman shift (cm -1 ) Raman shift (cm -1 ) Raman shift (cm -1 ) Raman shift (cm -1 ) Intenzitás (tetsz. egys.) Gerjesztés energiája (ev) IR-Raman Raman spektroszkópia 25

26 Lézerválasztás fluoreszcencia kiszűrésére Ha a gerjesztett állapot fluoreszcenciát mutat, az elnyomhatja a Ramanvonalakat. Ilyenkor meg kell találni az ideális lézert. IR-Raman Raman spektroszkópia 26

27 Fourier-transzformációs infravörös (FTIR) spektroszkópia * * I ( ) I( x)cos(2 x) dx M * * i ( ) x I( m x)cos(2 m x) M IR-Raman Raman spektroszkópia 27

28 Miért kell FTIR? 4.00E E K 1000 K magas hőmérséklet: nagyfrekvenciás (rövid hullámhosszú) intenzitás is nő környezet hőmérsékleti sugárzása nem szűrhető ki FTIR: csak az interferométerbe kerülő fényt moduláljuk I 2.00E E E Wavenumber (cm -1 ) IR-Raman Raman spektroszkópia 28

29 FTIR előnyök Dispersive IR spectrometer Jacquinot-előny: fényerő nem kell keskeny rés, mint a monokromátorokban fényfolt alakja nem kritikus (detektor: nagy dinamikus tartomány!) Fellgett (multiplex) előny: több frekvencia egy felvétellel (diszperziós rendszerben a legkisebb fényerejű tartomány limitálja az időt) jel-zaj viszony javul több felvétellel időfelbontás lehetséges néhány mp-es skálán FT-IR spectrometer IR-Raman Raman spektroszkópia 29

30 Intensity Intensity Monokromatikus forrás interferogramja Interferogram Útkülönbség Spektrum Frekvencia IR-Raman Raman spektroszkópia 30

31 Intensity Intensity Intensity Többvonalas forrás interferogramja Kilenc hullámhossz : Útkükönbség Útkülönbség 9 frekvenciából álló spektrum Frekvencia IR-Raman Raman spektroszkópia 31

32 Intensity Intensity Folytonos forrás interferogramja IR-forrás: Interferogram Útkülönbség Frekvencia IR-Raman Raman spektroszkópia 32

33 Intensity Intensity Folytonos forrás interferogramja IR-source Resulting detector signal Optical retardation Frequency IR-Raman Raman spektroszkópia 33

34 FTIR spektrométer IR-Raman Raman spektroszkópia 34

35 FTIR mérés interferogram. Michelson-interferométer mozgó tükör forrás Intenzitás útkülönbség Fourier-transzform transzformáció fényosztó (nyalábosztó, sugárosztó) egysugaras spektrum minta Intenzitás detektor hullámszám (cm -1 ) IR-Raman Raman spektroszkópia 35

36 Interferogram-spektrum konverzió P.R. Griffiths: Chemical Infrared Fourier Transform Spectroscopy. Wiley, 1975 IR-Raman Raman spektroszkópia 36

37 P.R. Griffiths: Chemical Infrared Fourier Transform Spectroscopy. Wiley, 1975 Felbontás 10 9 * 2 min * x 2 * * * * * 1cm cm 1 x 1cm x 1m P.R. Griffiths: Chemical Infrared Fourier Transform Spectroscopy. Wiley, 1975 IR-Raman Raman spektroszkópia 37

38 Frekvenciatartomány Nyquist-tétel: frekvenciát a felharmonikusoktól meg kell különböztetni megfelelő mintavételi gyakorisággal Példa: cos x cos 3x * max 1 2 x cm x 5 m max IR-Raman Raman spektroszkópia 38

39 Mintavétel szabályozása: He-Ne lézer IR-Raman Raman spektroszkópia 39

40 Jellemző paraméterek Tükörsebesség: mm/sec He-Ne lézer hullámhossza: nm, hullámszáma cm -1 nullapontok legkisebb távolsága: nm maz =15800 cm nm max = 7900 cm -1 detektorra jutó jel frekvenciája: f=2v f=1.58 mm/sec esetén 400 cm -1 f=126 Hz 4000 cm -1 f=1260 Hz IR-Raman Raman spektroszkópia 40

41 Jelfeldolgozás Interferogram felvétele Fourier-transzformáció: Apodizáció Fáziskorrekció Zerofilling IR-Raman Raman spektroszkópia 41

42 Apodizáció sin(2 M x) Instrumentális jelalak: I( ) 2M x 2M xsinc(2 M x) 2 M x Apodizáció (franciául láblevágás : konvolúció más függvényekkel Figure 2: Fourier transform of the boxcar cutoff, known as the sinc function. Largest side lobe is 22 % of the main lobe amplitude. L = Optical Pathlength Difference. Figure 3: Several apodization functions (left) and the 'Instrumental Lineshape' produced by them (right). The cases A - D are commonly used in FT-IR. IR-Raman Raman spektroszkópia 42

43 Fáziskorrekció Sinusos tagok az interferogramban Komplex Fourier transzformáció Fázis meghatározása néhány pontból (valódi felbontás lecsökken) IR-Raman Raman spektroszkópia 43

44 Zerofilling Single channel Single channel Zero-filling factor 2 1,808 1,806 Zero-filling factor 8 1,804 1,802 Wavenumber, cm-1 1,800 1,798 1,796 Interferogram végét nullákkal növeljük Spektrumszerű interpoláció Felbontást nem helyettesíti! 1,808 1,806 1,804 1,802 Wavenumber, cm-1 1,800 1,798 1,796 IR-Raman Raman spektroszkópia 44

45 Referenciaspektrum Single-channel intensity Intentzitás útkülönbség Fourier-tran transzformáció 4,000 3,500 3,000 2,500 2,000 1,500 1, IR-Raman Raman spektroszkópia 45 Wavenumber, cm -1

46 Mintaspektrum Fourier-trans transzformáció útkülönbség Intenziás Intenzitás 4,000 3,500 3,000 2,500 2,000 1,500 1, Hullámszám, cm -1 IR-Raman Raman spektroszkópia 46

47 Transzmissziós spektrum Intennzitás 4,000 3,500 3,000 2,500 2,000 1,500 Hulámszám, cm -1 1, Transmsszió [%] Osztás 20 4,000 3,500 3,000 2,500 2,000 1,500 Huilámszám, cm -1 1, IR-Raman Raman spektroszkópia 47

48 Abszorpciós spektroszkópia ha R<<1, T I I T 0 e d 1 ] cm [ ] 1/ cm / konc. [ A logt d cd Lambert-Beer törvény log, ln? fajlagos (moláris) abszorpciós együttható Koncentráció számolható: ismert együttható kalibráció A ln T IR-Raman Raman spektroszkópia 48

49 Kvalitatív analízis 20 Transzmisszió [%] ,000 3,500 3,000 2,500 2,000 1,500 Hullámszámr / cm -1 1, IR-Raman Raman spektroszkópia 49

50 Csoportfrekvenciák IR-Raman Raman spektroszkópia 50

51 Rezgési szabadsági fokok N atomos molekulára: 3N 6 (3N- 3 transzláció 3 rotáció) lineáris molekulára: 3N 5 (tengely körüli forgás nem okoz atomi elmozdulást) Kiválasztási szabályok: IR 0 Raman 0 Q Q Q normálkoordináta, bonyolultabb rezgésekre is Példa: CS 2 normálrezgések szimmetrikus nyújtás aszimmetrikus nyújtás hajlítás IR-Raman Raman spektroszkópia 51

52 A vízmolekula normálrezgései IR-Raman Raman spektroszkópia 52

53 IR 0 Q Rezgések számának becslése Raman 0 Q 3N 6 szabadsági fok degeneráció Kölcsönös kizárás elve: ha a molekulában inverziós centrum van, az IR-aktív módusok nem Raman-aktívak és fordítva i: (u) IR (g) kiválasztási szabályok Raman csendes páros és páratlan normálkoordináták ortogonálisak A szimmetria-analízis a spektrumvonalak maximális számát adja meg (véletlen degeneráció, küszöb alatti intenzitás még csökkentheti) IR-Raman Raman spektroszkópia 53

54 Felületi rezgési spektroszkópia Rezgési módusok SZILÁRDTESTBEN és FELÜLETEN SZILÁRDTEST -Kiterjedt IR könyvtárak -Standardok FELÜLET -Frekvencia eltolódások -Nincs standard Yves J. Chabal: Studies of Semiconductor Surfaces: Vibrational Spectroscopy of Adsorbates Internal Reflection Spectroscopy, ed. Francis M. Mirabella, Jr. (1993, Marcel Dekker, INC.) - Polarizált mérések orientált felületeken - Pontos elméleti számolások Szekrényes Zsolt, SZFKI IR-Raman Raman spektroszkópia 54

55 Felületi IR spektroszkópia 1. Gyengített totálreflexiós (ATR) spektroszkópia - Evaneszcens tér keletkezése Exponenciálisan lecsengő tér Latin eredet: evanescere - eltűnik Francis M. Mirabella, Jr. (Ed.)-Internal reflection spectroscopy, IR-Raman Raman spektroszkópia Marcel Dekker, Inc. (1993) 55

56 Elméleti alapok Nemzéró térerősség a kisebb törésmutatójú közegben Evaneszcens tér nem transzverzális hullám (vektor komponensek minden irányban) Az evaneszcens tér a kis törésmutatójú közeg felületéhez közeli rétegekben hat és a térerősség gyorsan csökken Nemzéró energia áramlás párhuzamosan a felülettel (Goos- Hanchen eltolás) IR-Raman Raman spektroszkópia 56

57 ATR mérési módszerek IR-Raman Raman spektroszkópia 57

58 Egy és többreflexiós ATR feltét: IR-Raman Raman spektroszkópia 58

59 Mérés előtt: ATR kristály és minta törésmutatója IR sugárzás beesési szöge Kritikus szög Behatolási mélység IR tartomány Visszaverődések száma Minta ATR kristály kontaktus minőség ATR kristály jellemzői IR-Raman Raman spektroszkópia 59

60 Kristály-minta kontaktus szerepe Tarczay György Rezgési spektroszkópia, ELTE IR-Raman Raman spektroszkópia 60

61 ATR kristály tulajdonságok Meghatározott mérési tartomány: az ATR kristályok multi-fonon módusai bizonyos tartományokban teljesen elnyelik az IR sugárzást IR-Raman Raman spektroszkópia 61

62 Vékonyrétegek (atomi monorétegek) θ 12 =sin -1 n 21 θ 13 =sin -1 n 31 Internal reflection spectra can be obtained on thin films, provided θ exceeds θ 13 Francis M. Mirabella, Jr. (Ed.)-Internal reflection spectroscopy, Marcel Dekker, Inc. (1993) IR-Raman Raman spektroszkópia 62

63 Több reflexiós ATR kristály adszorbeált hidrogén monorétegek tanulmányozására Zs. Szekrényes, K. Kamarás MTA SZFKI A.E. Pap, G. Battistig MTA MFA IR-Raman Raman spektroszkópia 63

64 RAIRS, IRRAS Reflexiós abszorpciós IR spektroszkópia IR-Raman Raman spektroszkópia 64

65 Reflexiós-abszorpciós (RAS, IRRAS,RAIRS) IR sugárzást visszaverő hordozó Dipól szórás fémes felületen IR-Raman Raman spektroszkópia 65

66 IR-Raman Raman spektroszkópia 66

67 IR-Raman Raman spektroszkópia 67

68 Felületerősített Raman-spektroszkópia (SERS) Tarczay György Rezgési spektroszkópia, ELTE Fleischman és Van Duyne 1970-es évek: Ag-elektródok felületének vizsgálata ELEKTROMÁGNESES ERŐSÍTÉS KÉMIAI ERŐSÍTÉS Töltésátviteli komplexek Az intenzítás mellett a frekvencia is változik! IR-Raman Raman spektroszkópia 68

69 IR-Raman Raman spektroszkópia 69

70 Tűerősített Raman-spektroszkópia (TERS( TERS) Botka Bea, Walther-Meissner Intézet, Garching IR-Raman Raman spektroszkópia 70

71 Erősítési mechanizmus λ light >>d particle felületi leti plazmon: kollektív v elektrongerjesztés electrosztatikus villámhárító-effektus IR-Raman Raman spektroszkópia 71

72 Erősítés és kontraszt kontraszt: : I közeli tér / I távoli tér erősítés: kontraszt súlyozva a megvilágított területtel a fókusz mérete meghatározza a kontrasztot Példa: szén nanocsövek IR-Raman Raman spektroszkópia 72

73 Confocality of the Raman Microprobe - Principle Confocal pinhole Raman signal emitted from out of focus regions Echantillon multicouche The confocal pinhole acts as an adjustable spatial filter allowing a precise selection of the analysed volume Horiba Jobyn-Yvon IR-Raman Raman spektroszkópia 73

74 Advantages of confocal Raman Tremendous improvement of the axial resolution (~2( µm) Better lateral resolution (<1µm) Efficient reduction of fluorescence interference Expanding Raman Applications Minute samples quantities micron and sub-micron particles Thin films and multilayer samples Inclusions in matrices IMAGING : phases and components distribution (copolymers, composite materials etc IR-Raman Raman spektroszkópia 74

Optikai spektroszkópia az anyagtudományban 7. Infravörös spektroszkópia

Optikai spektroszkópia az anyagtudományban 7. Infravörös spektroszkópia Optikai spektroszkópia az anyagtudományban 7. Infravörös spektroszkópia Kamarás Katalin MTA Wigner FK kamaras.katalin@wigner.mta.hu Optikai spektroszkópia az anyagtudományban 7. 1 Molekularezgések Optikai

Részletesebben

Optikai spektroszkópia az anyagtudományban 8. Raman spektroszkópia Anizotrópia IR és Raman spektrumokban

Optikai spektroszkópia az anyagtudományban 8. Raman spektroszkópia Anizotrópia IR és Raman spektrumokban Optikai spektroszkópia az anyagtudományban 8. Raman spektroszkópia Anizotrópia IR és Raman spektrumokban Kamarás Katalin MTA Wigner FK kamaras.katalin@wigner.mta.hu Optkai spektroszkópia az anyagtudományban

Részletesebben

Optikai spektroszkópia az anyagtudományban 10. Közelitér módszerek

Optikai spektroszkópia az anyagtudományban 10. Közelitér módszerek Optikai spektroszkópia az anyagtudományban 10. Közelitér módszerek Kamarás Katalin MTA Wigner FK kamaras.katalin@wigner.mta.hu 1 Teljes visszaverődés (totálreflexió) Teljes visszaverődés kritikus szöge

Részletesebben

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció

Részletesebben

Kamarás Katalin. Minden optikai spektroszkópiai mérés lényege fényintenzitás meghatározása a frekvencia

Kamarás Katalin. Minden optikai spektroszkópiai mérés lényege fényintenzitás meghatározása a frekvencia Bevezetés Fourier-transzformációs infravörös spektroszkópia Kamarás Katalin MTA Szilárdtestfizikai Kutató Intézet Minden optikai spektroszkópiai mérés lényege fényintenzitás meghatározása a frekvencia

Részletesebben

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása Abrankó László Műszeres analitika Molekulaspektroszkópia Minőségi elemzés Kvalitatív Cél: Meghatározni, hogy egy adott mintában jelen vannak-e bizonyos ismert komponensek. Vagy ismeretlen komponensek azonosítása

Részletesebben

Műszeres analitika II. (TKBE0532)

Műszeres analitika II. (TKBE0532) Műszeres analitika II. (TKBE0532) 4. előadás Spektroszkópia alapjai Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék A fény elektromágneses

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai ntézet 2011. szeptember 15. E B x x Transzverzális hullám A fény elektromos térerősségvektor hullámhossz Az elektromos a mágneses térerősség

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény;  Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény;   Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;

Részletesebben

Abszorpciós spektroszkópia

Abszorpciós spektroszkópia Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses

Részletesebben

Optikai spektroszkópiai módszerek

Optikai spektroszkópiai módszerek Mi történhet, ha egy mintát fénnyel világítunk meg? Optikai spektroszkópiai módszerek megvilágító fény (elnyelt fény) minta átjutott fény Abszorpció UV-VIS, IR Smeller László kibocsátott fény Lumineszcencia

Részletesebben

A fény tulajdonságai

A fény tulajdonságai Spektrofotometria A fény tulajdonságai A fény, mint hullámjelenség (lambda) (nm) hullámhossz (nű) (f) (Hz, 1/s) frekvencia, = c/ c (m/s) fénysebesség (2,998 10 8 m/s) (σ) (cm -1 ) hullámszám, = 1/ A amplitúdó

Részletesebben

Raman spektroszkópia. Történet Két leirás: Eldines, kvantumos Kiválasztási szabályok Szimmetriák Raman Intenzitás Rezonáns Raman

Raman spektroszkópia. Történet Két leirás: Eldines, kvantumos Kiválasztási szabályok Szimmetriák Raman Intenzitás Rezonáns Raman Raman spektroszkópia Történet Két leirás: Eldines, kvantumos Kiválasztási szabályok Szimmetriák Raman Intenzitás Rezonáns Raman Speciális Raman esetek elektronikus SERS, tip enh. ROA near-field Kisérleti

Részletesebben

Rezgési spektroszkópiák Infravörös (IR) és Raman spektroszkópia

Rezgési spektroszkópiák Infravörös (IR) és Raman spektroszkópia Vizsgálati módszerek az anyagtudományban Rezgési spektroszkópiák Infravörös (IR) és Raman spektroszkópia Vizsgálati módszerek az anyagtudományban IR spektroszkópia szeptember 24: előadás szeptember 27:

Részletesebben

Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez

Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási

Részletesebben

Az infravörös (IR) sugárzás. (Wikipédia)

Az infravörös (IR) sugárzás. (Wikipédia) FT-IR spektroszkópia Az infravörös (IR) sugárzás (Wikipédia) Termografikus kamera (Wikipédia) Termografikus fényképek (Wikipédia) Termografikus fényképek (Wikipédia) IR spektroszkópia Tartomány: 10-12800

Részletesebben

Raman spektroszkópia. Spektroszkópiai módszerek

Raman spektroszkópia. Spektroszkópiai módszerek Raman spektroszkópia Dégi Júlia MTA SZFKI julia.degi@gmail.com Spektroszkópiai módszerek összefoglalása A Raman effektus Raman spektrumok értelmezése A Raman mikroszkóp felépítése Geológiai alkalmazások

Részletesebben

Abszorpció, emlékeztetõ

Abszorpció, emlékeztetõ Hogyan készültek ezek a képek? PÉCI TUDMÁNYEGYETEM ÁLTALÁN RVTUDMÁNYI KAR Fluoreszcencia spektroszkópia (Nyitrai Miklós; február.) Lumineszcencia - elemi lépések Abszorpció, emlékeztetõ Energia elnyelése

Részletesebben

2. ZH IV I.

2. ZH IV I. Fizikai kémia 2. ZH IV. kérdések 2018-19. I. félévtől Szükséges adatok és állandók: k=1,38066 10-23 JK; c= 2,99792458 10 8 m/s; e= 1,602177 10-19 C; h=6,62608 10-34 Js; N A= 6,02214 10 23 mol -1 ; me=

Részletesebben

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria abszorpció Abszorpciós fotometria Spektroszkópia - Színképvizsgálat Spektro-: görög; jelente kép/szín -szkópia: görög; néz/látás/vizsgálat Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2012. február Vizsgálatok

Részletesebben

Az elektromágneses hullámok

Az elektromágneses hullámok 203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert

Részletesebben

dinamikai tulajdonságai

dinamikai tulajdonságai Szilárdtest rácsok statikus és dinamikai tulajdonságai Szilárdtestek osztályozása kötéstípusok szerint Kötések eredete: elektronszerkezet k t ionok (atomtörzsek) tö Coulomb- elektronok kölcsönhatás lokalizáltak

Részletesebben

Infravörös, spektroszkópia

Infravörös, spektroszkópia Infravörös, Raman és CD spektroszkópia Spektroszkópia Az EM sugárzás abszorbcióján alapszik: látható (leggyakrabban kvantitatív) UV IR (inkább kvalitatív) RAMAN ESR (mikrohullám) NMR (rádióhullám) Fény

Részletesebben

JASCO FTIR KIEGÉSZÍTŐK - NE CSAK MÉRJ, LÁSS IS!

JASCO FTIR KIEGÉSZÍTŐK - NE CSAK MÉRJ, LÁSS IS! JASCO FTIR KIEGÉSZÍTŐK - NE CSAK MÉRJ, LÁSS IS! Szakács Tibor, Szepesi Ildikó ABL&E-JASCO Magyarország Kft. 1116 Budapest, Fehérvári út 132-144. ablehun@ablelab.com www.ablelab.com JASCO SPEKTROSZKÓPIA

Részletesebben

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés: Modern Fizika Labor Fizika BSc A mérés dátuma: 011. okt. 04. A mérés száma és címe: 1. Infravörös spektroszkópia Értékelés: A beadás dátuma: 011. dec. 1. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin

Részletesebben

Optikai kristályok spektroszkópiája

Optikai kristályok spektroszkópiája SOKSZÍNŰ OPTIKA: NYÁRI ISKOLA Szeged, 2011. augusztus 24-26 Kovács László Kristályfizikai Osztály Tartalom Optikai kristályok Spektroszkópia Optikai kristályok Széles tiltottsávú, szigetelő anyagok, oxidok

Részletesebben

Makromolekulák szerkezetvizsgálati módszerei: IR, CD

Makromolekulák szerkezetvizsgálati módszerei: IR, CD Makromolekulák szerkezetvizsgálati módszerei: IR, CD Mi történhet, ha egy mintát fénnyel világítunk meg? megvilágító fény (elnyelt fény) minta átjutott fény Abszorpció UV-VIS, IR, CD spektr. Smeller László

Részletesebben

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic

E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic Abszorpciós spektroszkópia Abszorpciós spektrofotometria 29.2.2. Az abszorpciós spektroszkópia a fényabszorpció jelenségét használja fel híg oldatok minőségi és mennyiségi vizsgálatára. Abszorpció Az elektromágneses

Részletesebben

Speciális fluoreszcencia spektroszkópiai módszerek

Speciális fluoreszcencia spektroszkópiai módszerek Speciális fluoreszcencia spektroszkópiai módszerek Fluoreszcencia kioltás Fluoreszcencia Rezonancia Energia Transzfer (FRET), Lumineszcencia A molekuláknak azt a fényemisszióját, melyet a valamilyen módon

Részletesebben

Lézerek. A lézerműködés feltételei. Lézerek osztályozása. Folytonos lézerek (He-Ne) Impulzus üzemű lézerek (Nd-YAG, Ti:Sa) Ultrarövid impulzusok

Lézerek. A lézerműködés feltételei. Lézerek osztályozása. Folytonos lézerek (He-Ne) Impulzus üzemű lézerek (Nd-YAG, Ti:Sa) Ultrarövid impulzusok Lézerek Lézerek A lézerműködés feltételei Lézerek osztályozása Folytonos lézerek (He-Ne) Impulzus üzemű lézerek (Nd-YAG, Ti:Sa) Ultrarövid impulzusok Extrém energiák Alkalmazások A lézerműködés feltételei

Részletesebben

Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére

Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére OAH-ABA-23/16-M Dr. Szalóki Imre, fizikus, egyetemi docens Radócz Gábor,

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria abszorpció A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2013. január Elektromágneses hullám Transzverzális hullám elektromos térerősségvektor hullámhossz E B x mágneses térerősségvektor

Részletesebben

Optikai spektroszkópiai módszerek

Optikai spektroszkópiai módszerek Mi történhet, ha egy mintát énnye viágítunk meg? Optikai spektroszkópiai módszerek megviágító ény (enyet ény) minta átjutott ény Abszorpció UV-VIS, IR Smeer Lászó kibocsátott ény Lumineszcencia (Fuoreszcencia

Részletesebben

Szervetlen komponensek analízise. A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb.

Szervetlen komponensek analízise. A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb. Szervetlen komponensek analízise A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb.) A fény λ i( k r ωt + φ0 ) Elektromágneses sugárzás E( r,

Részletesebben

Abszorpciós spektrometria összefoglaló

Abszorpciós spektrometria összefoglaló Abszorpciós spektrometria összefoglaló smétlés: fény (elektromágneses sugárzás) tulajdonságai, kettős természet fény anyag kölcsönhatás típusok (reflexió, transzmisszió, abszorpció, szórás) Abszorpció

Részletesebben

Röntgendiffrakció. Orbán József PTE, ÁOK, Biofizikai Intézet november

Röntgendiffrakció. Orbán József PTE, ÁOK, Biofizikai Intézet november Röntgendiffrakció Orbán József PTE, ÁOK, Biofizikai Intézet 2013. november Előadás vázlata Röntgen sugárzás Interferencia, diffrakció (elektromágneses hullámok) Kristályok szerkezete Röntgendiffrakció

Részletesebben

Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Modern Biofizikai Kutatási Módszerek

Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Modern Biofizikai Kutatási Módszerek Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Modern Biofizikai Kutatási Módszerek 2012. 11. 08. Fotonok és molekulák ütközése Fény (foton) ütközése a molekulákkal fényszóródás abszorpció E=hν

Részletesebben

Környezetvédelmi mérések fotoakusztikus FTIR műszerrel

Környezetvédelmi mérések fotoakusztikus FTIR műszerrel Környezetvédelmi mérések fotoakusztikus FTIR műszerrel A légszennyezés mérése nem könnyű méréstechnikai feladat. Az eszközök széles skáláját fejlesztették ki, hagyományosan az emissziómérésre, ezen belül

Részletesebben

Fény kölcsönhatása az anyaggal:

Fény kölcsönhatása az anyaggal: Fény kölcsönhatása az Fény kölcsönhatása az : szórás, abszorpció, emisszió Kellermayer Miklós Fényszórás A fényszórás mérése, orvosi alkalmazásai Lord Rayleigh (1842-1919) J 0 Light Fényforrás source Rayleigh

Részletesebben

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT) Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken

Részletesebben

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu

Részletesebben

Molekulaspektroszkópiai módszerek UV-VIS; IR

Molekulaspektroszkópiai módszerek UV-VIS; IR Molekulaspektroszkópiai módszerek UV-VIS; IR Fény és anyag kölcsönhatása! Optikai módszerek Fényelnyelés mérése (Abszorpción alapul) Fénykibocsátás mérése (Emisszión alapul) Atomspektroszkópiai módszerek

Részletesebben

Koherens lézerspektroszkópia adalékolt optikai egykristályokban

Koherens lézerspektroszkópia adalékolt optikai egykristályokban Koherens lézerspektroszkópia adalékolt optikai egykristályokban Kis Zsolt MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33 2015. június 8. Hogyan nyerjünk információt egyes

Részletesebben

Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET)

Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Biofizika szeminárium PTE ÁOK Biofizikai Intézet Huber Tamás 2014. 02. 11-13. A gerjesztett állapotú elektron lecsengési lehetőségei Gerjesztés Fluoreszcencia

Részletesebben

A sugárzás és az anyag kölcsönhatása. A béta-sugárzás és anyag kölcsönhatása

A sugárzás és az anyag kölcsönhatása. A béta-sugárzás és anyag kölcsönhatása A sugárzás és az anyag kölcsönhatása A béta-sugárzás és anyag kölcsönhatása Cserenkov-sugárzás v>c/n, n törésmutató cos c nv Cserenkov-sugárzás Pl. vízre (n=1,337): 0,26 MeV c 8 m / s 2. 2* 10 A sugárzás

Részletesebben

Kvantumos információ megosztásának és feldolgozásának fizikai alapjai

Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kis Zsolt Kvantumoptikai és Kvantuminformatikai Osztály MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33

Részletesebben

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Atom- és molekula-spektroszkópiás módszerek Módszer Elv Vizsgált anyag típusa Atom abszorpciós spektrofotometria (AAS) A szervetlen Lángfotometria

Részletesebben

Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia?

Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Prof. Túri László (ELTE, Kémiai Intézet) turi@chem.elte.hu 2012. november 19. Szent László Gimnázium Önképzőkör 1 Kapcsolódási pontok

Részletesebben

Spektrográf elvi felépítése. B: maszk. A: távcső. Ø maszk. Rés Itt lencse, de általában komplex tükörrendszer

Spektrográf elvi felépítése. B: maszk. A: távcső. Ø maszk. Rés Itt lencse, de általában komplex tükörrendszer Spektrográf elvi felépítése A: távcső Itt lencse, de általában komplex tükörrendszer Kis kromatikus aberráció fontos Leképezés a fókuszsíkban: sugarak itt metszik egymást B: maszk Fókuszsíkba kerül (kamera

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét

Részletesebben

OPTIKA. Vozáry Eszter November

OPTIKA. Vozáry Eszter November OPTIKA Vozáry Eszter 2015. November FÉNY Energia: elektromágneses hullám c = λf részecske foton ε = hf Szubjektív érzet látás fény és színérzékelés ELEKTROMÁGNESES SPEKTRUM c = λf ε = hf FÉNY TRANSZVERZÁLIS

Részletesebben

Infravörös és CD spektroszkópia a fehérjeszerkezet vizsgálatában

Infravörös és CD spektroszkópia a fehérjeszerkezet vizsgálatában Infravörös és CD spektroszkópia a fehérjeszerkezet vizsgálatában Mi történhet, ha egy mintát fénnyel világítunk meg? megvilágító fény (elnyelt fény) minta átjutott fény Abszorpció UV-VIS, IR, CD spektr.

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria 2013 január Abszorpciós fotometria Elektron-spektroszkópia alapjai Biofizika. szemeszter Orbán József PTE ÁOK Biofizikai ntézet Definíciók, törvények FÉNYTAN ALAPOK SMÉTLÉS - Elektromágneses sugárzás,

Részletesebben

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ) Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok

Részletesebben

Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19.

Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. és lézerek Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Fény és anyag kölcsönhatása 2 / 19 Fény és anyag kölcsönhatása Fény és anyag kölcsönhatása E 2 (1) (2) (3) E 1 (1) gerjesztés (2) spontán

Részletesebben

Optika gyakorlat 7. Fresnel együtthatók, Interferencia: vékonyréteg, Fabry-Perot rezonátor

Optika gyakorlat 7. Fresnel együtthatók, Interferencia: vékonyréteg, Fabry-Perot rezonátor Optika gyakorlat 7. Fresnel együtthatók, Interferencia: vékonyréteg, Fabry-Perot rezonátor Fresnel együtthatók A síkhullámfüggvény komplex alakja: ahol a komplex amplitudó: E E 0 exp i(ωt k r+φ) E 0 exp

Részletesebben

9. Fotoelektron-spektroszkópia

9. Fotoelektron-spektroszkópia 9/1 9. Fotoelektron-spektroszkópia 9.1. ábra. Fotoelektron-spektroszkópiai módszerek 9.2. ábra. UP-spektrométer vázlata 9/2 9.3. ábra. N 2 -fotoelektron-spektrum 9.4. ábra. 2:1 mólarányú CO-CO 2 gázelegy

Részletesebben

Talián Csaba Gábor Biofizikai Intézet 2012. április 17.

Talián Csaba Gábor Biofizikai Intézet 2012. április 17. SUGÁRZÁSOK. ELEKTROMÁGNESES HULLÁMOK. Talián Csaba Gábor Biofizikai Intézet 2012. április 17. MI A SUGÁRZÁS? ENERGIA TERJEDÉSE A TÉRBEN RÉSZECSKÉK VAGY HULLÁMOK HALADÓ MOZGÁSA RÉVÉN Részecske: α-, β-sugárzás

Részletesebben

Koherens fény (miért is különleges a lézernyaláb?)

Koherens fény (miért is különleges a lézernyaláb?) Koherens fény (miért is különleges a lézernyaláb?) Inkoherens fény Atomok egymástól függetlenül sugároznak ki különböző hullámhosszon, különböző fázissal fotonokat. Pl: Termikus sugárzó Koherens fény Atomok

Részletesebben

A Raman spektroszkópia alkalmazása fémipari kutatásokban Raman spectroscopy in metallurgical research Dénes Éva, Koós Gáborné, Kőszegi Szilvia

A Raman spektroszkópia alkalmazása fémipari kutatásokban Raman spectroscopy in metallurgical research Dénes Éva, Koós Gáborné, Kőszegi Szilvia MŰSZERES ANALITIKA ANALYSIS WITH INSTRUMENT A Raman spektroszkópia alkalmazása fémipari kutatásokban Raman spectroscopy in metallurgical research Dénes Éva, Koós Gáborné, Kőszegi Szilvia Kulcsszavak: Raman

Részletesebben

Hidrogénezett amorf Si és Ge rétegek hőkezelés okozta szerkezeti változásai

Hidrogénezett amorf Si és Ge rétegek hőkezelés okozta szerkezeti változásai Hidrogénezett amorf Si és Ge rétegek hőkezelés okozta szerkezeti változásai Csík Attila MTA Atomki Debrecen Vizsgálataink célja Amorf Si és a-si alapú ötvözetek (pl. Si-X, X=Ge, B, Sb, Al) alkalmazása:!

Részletesebben

Optika Gröller BMF Kandó MTI

Optika Gröller BMF Kandó MTI Optika Gröller BMF Kandó MTI Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Optika Gröller BMF Kandó MTI Az elektromágneses spektrum Az anyag és a fény kölcsönhatása

Részletesebben

Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez

Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez 1 Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez Havancsák Károly Dankházi Zoltán Ratter Kitti Varga Gábor Visegrád 2012. január Elektron diffrakció 2 Diffrakció - kinematikus elmélet

Részletesebben

2.2.24. ABSZORPCIÓS SPEKTROFOTOMETRIA AZ INFRAVÖRÖS SZÍNKÉPTARTOMÁNYBAN

2.2.24. ABSZORPCIÓS SPEKTROFOTOMETRIA AZ INFRAVÖRÖS SZÍNKÉPTARTOMÁNYBAN 1 2.2.24. ABSZORPCIÓS SPEKTROFOTOMETRIA AZ INFRAVÖRÖS SZÍNKÉPTARTOMÁNYBAN 01/2005:20224 Az infravörös spektrofotométereket a 4000 650 cm -1 (2,5 15,4 µm) közti, illetve néhány esetben egészen a 200 cm

Részletesebben

A Raman spektroszkópia új alkalmazásai

A Raman spektroszkópia új alkalmazásai A Raman spektroszkópia új alkalmazásai Veres Miklós MTA Wigner Fizikai Kutatóközpont, veres.miklos@wigner.mta.hu Vázlat A Raman-szórás Időkapuzott Raman-spektroszkópia Térben eltolt Raman-spektroszkópia

Részletesebben

A hőmérsékleti sugárzás

A hőmérsékleti sugárzás A hőmérsékleti sugárzás Alapfogalmak 1. A hőmérsékleti sugárzás Értelmezés (hőmérsékleti sugárzás): A testek hőmérsékletével kapcsolatos, a teljes elektromágneses spektrumra kiterjedő sugárzást hőmérsékleti

Részletesebben

Infravörös spektroszkópiai analitikai módszerek

Infravörös spektroszkópiai analitikai módszerek Infravörös spektroszkópiai analitikai módszerek Kémiai elemzések (min. és menny.) általános módszere: Jelképző folyamat keresése M(inta) + R(eagens) (kölcsönhatás, reakció) M(inta) + R(eagens) változás(ok)

Részletesebben

KÉMIAI ANYAGSZERKEZETTAN

KÉMIAI ANYAGSZERKEZETTAN KÉMIAI ANYAGSZERKEZETTAN (Ábragyűjtemény) / tanév /. BEVEZETÉS.. ábra. A Fraunhofer-vonalak a Nap színképében Minta omorú holografikus rács Rések Fényforrás Fotódiódatömb.. ábra. Egyutas UV-látható abszorpciós

Részletesebben

Mikroszerkezeti vizsgálatok

Mikroszerkezeti vizsgálatok Mikroszerkezeti vizsgálatok Dr. Szabó Péter BME Anyagtudomány és Technológia Tanszék 463-2954 szpj@eik.bme.hu www.att.bme.hu Tematika Optikai mikroszkópos vizsgálatok, klasszikus metallográfia. Kristálytan,

Részletesebben

A csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD

A csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD A csillagközi anyag Interstellar medium (ISM) gáz + por Ebből jönnek létre az újabb és újabb csillagok Bonyolult dinamika turbulens áramlások lökéshullámok MHD Speciális kémia porszemcsék képződése, bomlása

Részletesebben

Koherens fény (miért is különleges a lézernyaláb?)

Koherens fény (miért is különleges a lézernyaláb?) Koherens fény (miért is különleges a lézernyaláb?) Inkoherens fény Atomok egymástól függetlenül sugároznak ki különböző hullámhosszon sugároznak ki elektromágneses hullámokat Pl: Termikus sugárzó Koherens

Részletesebben

Newton kísérletei a fehér fénnyel. Sir Isaac Newton ( )

Newton kísérletei a fehér fénnyel. Sir Isaac Newton ( ) Newton kísérletei a fehér fénnyel Sir Isaac Newton (1642 1727) Az infravörös sugárzás felfedezése 1781: Herschel felfedezi az Uránuszt 1800: Felfedezi az infravörös sugárzást Sir William Herschel (1738

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6. Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia Értékelés: A beadás dátuma: 28. május 13. A mérést végezte: 1/5 A mérés célja A mérés célja az

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria A fény Abszorpciós fotometria Barkó Szilvia PTE ÁOK Biofizikai ntézet 2011. február E A fény elektromos térerősségvektor hullámhossz A fény kettős termzete: Hullám (terjedkor) Rzecske (kölcsönhatáskor)

Részletesebben

Infravörös és CD spektroszkópia a fehérjeszerkezet vizsgálatában

Infravörös és CD spektroszkópia a fehérjeszerkezet vizsgálatában Infravörös és CD spektroszkópia a fehérjeszerkezet vizsgálatában Mi történhet, ha egy mintát fénnyel világítunk meg? megvilágító fény (elnyelt fény) minta átjutott fény Abszorpció UV-VIS, IR, CD spektr.

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson

Részletesebben

Az NMR és a bizonytalansági elv rejtélyes találkozása

Az NMR és a bizonytalansági elv rejtélyes találkozása Az NMR és a bizonytalansági elv rejtélyes találkozása ifj. Szántay Csaba MTA Kémiai Tudományok Osztálya 2012. február 21. a magspínek pulzus-gerjesztésének értelmezési paradigmája GLOBÁLISAN ELTERJEDT

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (a) Kvantummechanika Utolsó módosítás: 2015. november 15. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

A fény mint elektromágneses hullám és mint fényrészecske

A fény mint elektromágneses hullám és mint fényrészecske A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá

Részletesebben

Röntgensugárzás. Röntgensugárzás

Röntgensugárzás. Röntgensugárzás Röntgensugárzás 2012.11.21. Röntgensugárzás Elektromágneses sugárzás (f=10 16 10 19 Hz, E=120eV 120keV (1.9*10-17 10-14 J), λ

Részletesebben

OPT TIKA. Hullámoptika. Dr. Seres István

OPT TIKA. Hullámoptika. Dr. Seres István OPT TIKA Dr. Seres István : A fény elektromágneses hullám r S S = r E r H Seres István 2 http://fft.szie.hu Elektromágneses spektrum c = λf Elnevezés Hullámhossz Frekvencia Váltóáram > 3000 km < 100 Hz

Részletesebben

Akusztikai tervezés a geometriai akusztika módszereivel

Akusztikai tervezés a geometriai akusztika módszereivel Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika

Részletesebben

Anyagvizsgálati módszerek a bűnüldözésben

Anyagvizsgálati módszerek a bűnüldözésben Anyagvizsgálati módszerek a bűnüldözésben (Textíliák kriminalisztikai vizsgálata II.) Dr. Gál Tamás i.ü. vegyészszakértő 2017.02.20. 1 Textilszálak összehasonlításainak és azonosításának leggyakrabban

Részletesebben

Sugárzások és anyag kölcsönhatása

Sugárzások és anyag kölcsönhatása Sugárzások és anyag kölcsönhatása Az anyaggal kölcsönhatásba lépő részecskék Töltött részecskék Semleges részecskék Nehéz Könnyű Nehéz Könnyű T D p - + n Radioaktív sugárzás + anyag energia- szóródás abszorpció

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Röntgen sugárzás. Wilhelm Röntgen. Röntgen feleségének keze

Röntgen sugárzás. Wilhelm Röntgen. Röntgen feleségének keze Röntgendiffrakció Kardos Roland 2010.03.08. Előadás vázlata Röntgen sugárzás Interferencia Huygens teória Diffrakció Diffrakciós eljárások Alkalmazás Röntgen sugárzás 1895 röntgen sugárzás felfedezés (1901

Részletesebben

A fény és az anyag kölcsönhatása

A fény és az anyag kölcsönhatása A fény és az anyag kölcsönhatása Bohr-feltétel : E = E 2 E 1 = hν abszorpció foton (hν) E 2 E 2 E 1 E 1 E 2 E 2 spontán emisszió E 1 E 1 stimulált (kényszerített) emisszió E 2 E 2 E 1 E 1 Emissziós és

Részletesebben

OH ionok LiNbO 3 kristályban (HPC felhasználás) 1/16

OH ionok LiNbO 3 kristályban (HPC felhasználás) 1/16 OH ionok LiNbO 3 kristályban (HPC felhasználás) Lengyel Krisztián MTA SZFKI Kristályfizikai osztály 2011. november 14. OH ionok LiNbO 3 kristályban (HPC felhasználás) 1/16 Tartalom A LiNbO 3 kristály és

Részletesebben

13. Előadás. A Grid Source panelen a Polarization fül alatt megadhatjuk a. Rendre az alábbi lehetőségek közül választhatunk:

13. Előadás. A Grid Source panelen a Polarization fül alatt megadhatjuk a. Rendre az alábbi lehetőségek közül választhatunk: 13. Előadás Polarizáció és anizotrópia A Grid Source panelen a Polarization fül alatt megadhatjuk a sugár polarizációs állapotát Rendre az alábbi lehetőségek közül választhatunk: Polarizálatlan Lineáris

Részletesebben

Lumineszcencia. Lumineszcencia. mindenütt. Lumineszcencia mindenütt. Lumineszcencia mindenütt. Alapjai, tulajdonságai, mérése. Kellermayer Miklós

Lumineszcencia. Lumineszcencia. mindenütt. Lumineszcencia mindenütt. Lumineszcencia mindenütt. Alapjai, tulajdonságai, mérése. Kellermayer Miklós Alapjai, tulajdonságai, mérése Kellermayer Miklós Fotolumineszcencia Radiolumineszcencia Fotolumineszcencia Radiolumineszcencia Aurora borrealis (sarki fény) Biolumineszcencia GFP-egér Biolumineszcencia

Részletesebben

Geometriai és hullámoptika. Utolsó módosítás: május 10..

Geometriai és hullámoptika. Utolsó módosítás: május 10.. Geometriai és hullámoptika Utolsó módosítás: 2016. május 10.. 1 Mi a fény? Részecske vagy hullám? Isaac Newton (1642-1727) Pierre de Fermat (1601-1665) Christiaan Huygens (1629-1695) Thomas Young (1773-1829)

Részletesebben

Az infravörös spektroszkópia analitikai alkalmazása

Az infravörös spektroszkópia analitikai alkalmazása Az infravörös spektroszkópia analitikai alkalmazása Egy molekula nemcsak haladó mozgást végez, de az atomjai (atomcsoportjai) egymáshoz képest is állandó mozgásban vannak. Tételezzünk fel egy olyan mechanikai

Részletesebben

OPTIKA STATISZTIKUS OPTIKA IDŐBELI KOHERENCIA. Budapesti Műszaki és Gazdaságtudományi Egyetem Atomfizika Tanszék, dr. Erdei Gábor

OPTIKA STATISZTIKUS OPTIKA IDŐBELI KOHERENCIA. Budapesti Műszaki és Gazdaságtudományi Egyetem Atomfizika Tanszék, dr. Erdei Gábor OPTIKA STATISZTIKUS OPTIKA IDŐBELI KOHERENCIA Budpesti Műszki és Gzdságtudományi Egyetem Atomfizik Tnszék, dr. Erdei Gáor Ágzti felkészítés hzi ELI projekttel összefüggő képzési és K+F feldtokr Young-féle

Részletesebben

Optikai tulajdonságok (áttetszőség, szín) Fogorvosi anyagtan fizikai alapjai 10. Optikai tulajdonságok. Összefoglalás

Optikai tulajdonságok (áttetszőség, szín) Fogorvosi anyagtan fizikai alapjai 10. Optikai tulajdonságok. Összefoglalás Optikai tulajdonságok (áttetszőség, szín) szín 3 fluoreszcencia Beeső fény spektrális összetétele! Megfigyelő szemének érzékenysége! Fogorvosi anyagtan fizikai alapjai 10. Tankönyv fej.: 20, 21 Optikai

Részletesebben

Dekonvolúció a mikroszkópiában. Barna László MTA Kísérleti Orvostudományi Kutatóintézet Nikon-KOKI képalkotó Központ

Dekonvolúció a mikroszkópiában. Barna László MTA Kísérleti Orvostudományi Kutatóintézet Nikon-KOKI képalkotó Központ Dekonvolúció a mikroszkópiában Barna László MTA Kísérleti Orvostudományi Kutatóintézet Nikon-KOKI képalkotó Központ 2015 Fourier-Sorok Minden 2π szerint periodikus függvény előállítható f x ~ a 0 2 + (a

Részletesebben

A szubmikronos anyagtudomány néhány eszköze. Havancsák Károly ELTE TTK Központi Kutató és Műszer Centrum július.

A szubmikronos anyagtudomány néhány eszköze. Havancsák Károly ELTE TTK Központi Kutató és Műszer Centrum július. 1 A szubmikronos anyagtudomány néhány eszköze Havancsák Károly ELTE TTK Központi Kutató és Műszer Centrum 2012. július. Mikroszkópok 2 - Transzmissziós elektronmikroszkóp (TEM), - Pásztázó elektronmikroszkóp

Részletesebben