Csordás Mihály Konfár László Kothencz Jánosné Kozmáné Jakab Ágnes Pintér Klára Vincze Istvánné. tankönyv. Hetedik, javított kiadás

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Csordás Mihály Konfár László Kothencz Jánosné Kozmáné Jakab Ágnes Pintér Klára Vincze Istvánné. tankönyv. Hetedik, javított kiadás"

Átírás

1 Csordás Mihály Konfár László Kothencz Jánosné Kozmáné Jakab Ágnes Pintér Klára Vincze Istvánné tankönyv 6 Hetedik, javított kiadás Mozaik Kiadó Szeged, 0

2 Tartalomjegyzék Oszthatóság. A természetes számok többszörösei és osztói (ismétlés) Vizsgáljuk a maradékot!.... Az összeg, a különbség és a szorzat oszthatósága Oszthatósági szabályok.... Oszthatóság a szám számjegyeinek összege alapján További oszthatósági szabályok Prímszámok, összetett számok Összetett számok felírása prímszámok szorzataként Közös osztók, legnagyobb közös osztó Közös többszörösök, legkisebb közös többszörös.... Vegyes feladatok... 9 Hogyan oldjunk meg feladatokat?. Mi a kérdés? Vizsgáljuk meg az adatokat! Következtessünk visszafelé! Készítsünk ábrát!.... Tartsunk egyensúlyt! Ellenõrizzük a megoldást! Válaszoljunk a kérdésre! A feladatmegoldás lépései Vegyes feladatok... 9 A racionális számok I.. Az egész számok (ismétlés) Az egész számok összeadása, kivonása (ismétlés) Az összevonás Az egész számok szorzása Az egész számok osztása A tizedes törtek összevonása A tizedes törtek szorzása Osztás a tizedes törtek körében Vegyes feladatok

3 Tengelyes szimmetria. A tengelyes szimmetria a környezetünkben.... A tengelyesen szimmetrikus háromszögek A tengelyesen szimmetrikus sokszögek és a kör.... A körzõ és a vonalzó használata.... Merõleges egyenesek szerkesztése Párhuzamos egyenesek szerkesztése Szögfelezés, szögmásolás, szögszerkesztés Alakzatok tengelyes tükörképének szerkesztése Tengelyesen szimmetrikus sokszögek szerkesztése Vegyes feladatok... 8 A racionális számok II.. A törtekrõl tanultak ismétlése Mûveletek törtekkel (ismétlés) A negatív törtek Tört szorzása törtszámmal A számok reciproka Osztás törttel Mûveleti sorrend A racionális számok Vegyes feladatok... Arányosság. Az egyenes arányosság Egyenes arányossággal megoldható feladatok A fordított arányosság.... Fordított arányossággal megoldható feladatok Az arány Arányos osztás.... Vegyes feladatok... 8

4 Százalékszámítás. A tört kiszámítása.... Az egész kiszámítása A százalék fogalma A százalékérték kiszámítása A százalékalap kiszámítása A százalékláb kiszámítása Vegyes feladatok... Valószínûség, statisztika. Biztos esemény, lehetetlen esemény Diagramok Grafikonok Átlagszámítás Vegyes feladatok... 9 Kiegészítõ anyagek. Nyitott mondatok Szimmetria a térben Sorozatok... 0 Az új szakszavak jegyzéke... 0 Elõszó és útmutató a tankönyv használatához Gondolkodni jó! De ne higgyétek, hogy ezt csak azok érezhetik, akiknek jó jegyük van matekból! Mindenki, aki örült már annak, hogy következetes és logikus gondolkodással meg tudott birkózni egy megoldhatatlannak tûnõ problémával, átélhette a siker élményét. Ebben az évben nagyon sok gyakorlati feladattal találkozhattok. Megérthetitek majd például, mit jelent a hirdetésekben naponta látott-hallott százalék fogalma; megtanultok egyszerû diagramokat készíteni; körzõvel és vonalzóval alakzatokat szerkeszteni. És legfõképpen a sok-sok feladat megoldása során fejleszthetitek a gondolkodásotokat. A leckék legtöbbször kidolgozott példákkal kezdõdnek. Ezeket érdemes elemezni és megérteni, mert mintát nyújtanak a további feladatok megoldásához is. A megtanulandó legfontosabb szabályokat és meghatározásokat a könyv zöld aláfestéssel és vastag betûs kiemeléssel jelzi. A *-gal jelölt gyakorló feladatok megoldásához ügyes ötletek szükségesek. A lapszélen olvasható apró betûs információk a mindennapi élettel, a matematika alkalmazásával kapcsolatos érdekességek, magyarázatok, kiegészítõ ismeretek vagy kérdések. 8

5 . Oszthatósági szabályok Az oszthatóság megállapítása az utolsó számjegy alapján A 0; 0 és 00 számok utolsó számjegye 0. Ezek a számok felírhatók 0 = 0; 0 = 0; 00 = 0 0 alakban, ezért oszthatók 0-zel. El tudják-e egyenlõen osztani a gyerekek az ajándékkosár árát? Ha egy természetes szám utolsó számjegye 0, akkor osztható 0-zel. Ha egy természetes szám osztható 0-zel, akkor felírható egy természetes szám tízszereseként. Például 0 =0; 96 0 =960; 0 0 = 00. Minden természetes szám tízszeresének utolsó számjegye 0. Ha egy természetes szám osztható 0-zel, akkor az utolsó számjegye 0. A két elõbbi szabály együtt megfogalmazva: Egy természetes szám pontosan akkor osztható 0-zel, ha az utolsó számjegye 0.. példa Jóska sétálni indul. Melyik lábbal teszi meg a., az 8. és a 8. lépést, ha az elsõ lépést jobb lábbal teszi meg? Megoldás Jobb lábbal teszi meg az.,.,.,., 9.,... lépést. Bal lábbal teszi meg a.,., 6., 8., 0.,... lépést, köztük a 0 valamennyi többszörösét is. Minden további lépésszámot felbonthatunk olyan kéttagú összegre, melynek az elsõ tagja 0 valamely többszöröse, a második tagja pedig egyjegyû szám. = = = 80 + bal jobb bal bal bal jobb Jóska a. és a 8. lépést jobb, az 8. lépést bal lábbal teszi meg. -vel nem osztható számok: ; ; ; ; 9;... -vel osztható számok: 0; ; ; 6; 8; 0;...

6 OSZTHATÓSÁG Ha egy természetes szám utolsó számjegye 0; ; ; 6 vagy 8, akkor osztható -vel. Ha egy természetes szám osztható -vel, akkor az utolsó számjegye 0; ; ; 6 vagy 8. A két elõbbi szabály együtt megfogalmazva: Egy természetes szám pontosan akkor osztható -vel, ha az utolsó számjegye 0; ; ; 6 vagy 8. = ( )+. példa Gyöngyi egy könyvet olvasott, és észrevette, hogy minden olyan oldalon (és csak azokon) van kép, amelyek oldalszáma -tel osztható. Soroljuk fel, hányadik oldalakon talált képet Gyöngyi, ha a könyv 8 oldalas! Mit veszünk észre? Megoldás A képet tartalmazó oldalszámok: 0; 0; ; 0; ; 0; ; 0; ; 0; ; 60; 6; 0; ; 80. Észrevehetõ, hogy azokon az oldalakon van kép, amelyek sorszáma 0-ra vagy -re végzõdik A 0-nek osztója az. Magyarázzuk meg a példában szereplõ észrevételt! A 0-ra végzõdõ számok (0; 0; 0; 0; 0; 60;...) tízzel oszthatók, ezért a 0 osztójával, az -tel is oszthatók. Az -re végzõdõ számokat felírhatjuk kéttagú összeg alakban: Pl.: = 0 + ; = 0 + ; = 0 + ;... = 0 +. Az összeg mindkét tagja osztható -tel, ezért az összeg is osztható -tel. A 0-ra és az -re végzõdõ számok oszthatók -tel. Ha a szám ; ; ; ; 6; ; 8; 9-re végzõdik, akkor nem osztható -tel. = ( )+ Egy természetes szám -ös maradéka megegyezik utolsó jegyének ötös maradékával. ötös osztási ötös osztási maradék maradék Például: = = = 0 + = 0 + = = = = ² ² osztható nem osztható osztható nem osztható -tel -tel -tel -tel Egy természetes szám pontosan akkor osztható -tel, ha az utolsó számjegye 0 vagy. 8

7 Az oszthatóság megállapítása az utolsó két számjegy alapján Egy természetes szám pontosan akkor osztható 00-zal, ha az utolsó két számjegye nulla. Például: = = = = ² ² az utolsó osztható osztható az utolsó két számjegy 0 00-zal 00-zal két számjegy 0 Ha egy szorzat egyik tényezõje 00, akkor a szorzat osztható 00-zal és a 00 valamennyi osztójával, így a -gyel, -tel, 0-szal és 0-nel is példa Állapítsuk meg az osztás elvégzése nélkül, hogy a 8, az 8 és az 8 osztható-e -gyel! Megoldás A számokat felírhatjuk kéttagú összeg alakban a következõképpen: 08 = = = A szorzat osztható 00-zal, ezért a 00 osztójával, a -gyel is. Az utolsó két számjegybõl álló számot kell vizsgálni! 8-nak osztója a ; -nek osztója a ; -nek nem osztója a. A 8 és az 8 osztható -gyel, az 8 nem osztható -gyel. Egy természetes szám pontosan akkor osztható -gyel, ha az utolsó két számjegyébõl álló kétjegyû szám osztható -gyel. Ha egy természetes szám utolsó két számjegyébõl álló kétjegyû szám osztható -gyel, akkor a szám osztható -gyel. Ha egy természetes szám osztható -gyel, akkor az utolsó két számjegyébõl álló kétjegyû szám osztható -gyel. Hasonlóan belátható, hogy egy természetes szám 0-szal, -tel és 0-nel való oszthatóságának vizsgálatakor elég az utolsó két számjegyébõl álló kétjegyû számot vizsgálnunk. Például a osztható -tel, mert: = 00 + A szorzat osztható 00-zal, ezért a 00 osztójával, a -tel is. Az utolsó két számjegybõl álló szám osztható -tel. Egy természetes szám pontosan akkor osztható -tel, ha az utolsó két számjegyébõl álló kétjegyû szám osztható -tel. 9

8 OSZTHATÓSÁG Egy természetes szám -gyel osztva ugyanannyit ad maradékul, mint amennyit az utolsó két számjegyébõl álló szám. Pl.: = 00 + és = 8 + 0, tehát a négyes maradéka 0; 69 = és 69 = +, tehát a 69 négyes maradéka. Hasonlóan megmutatható, hogy egy természetes szám 0-szal, -tel, 0-nel és 00-zal osztva ugyanannyit ad maradékul, mint amennyit az utolsó két számjegyébõl álló szám. Az oszthatóság megállapítása az utolsó három számjegy alapján Egy természetes szám pontosan akkor osztható 000-rel, ha az utolsó három számjegye 0. Például: 000 = = = = ² ² az utolsó osztható osztható az utolsó számjegy rel 000-rel számjegy Az 000-nek osztója a 8. Ha egy szorzat egyik tényezõje 000, akkor a szorzat osztható 000-rel és az 000 valamennyi osztójával, így a 8-cal, a -tel, a 0-nel és az 00-zal is.. példa Állapítsuk meg az osztás elvégzése nélkül, hogy az, a 8 és a osztható-e 8-cal! Megoldás Írjuk fel a számokat kéttagú összeg alakban a következõ módon: 0 = = = A szorzat osztható 000-rel, ezért az 000 osztójával, a 8-cal is. Az utolsó három számjegybõl álló számot kell vizsgálni. = 8 -nek osztója a 8; 8 = nak osztója a 8; = nek nem osztója a 8. Az és a 8 osztható 8-cal, a nem osztható 8-cal. Egy természetes szám pontosan akkor osztható 8-cal, ha az utolsó három számjegyébõl álló háromjegyû szám osztható 8-cal. 0

9 Hasonlóan belátható, hogy egy természetes szám -tel, 00-zal, 0-nel és 00-zal való oszthatóságának vizsgálatakor elég az utolsó három számjegyébõl álló háromjegyû számot vizsgálnunk. Például a 6 0 osztható -tel, mert: 6 0 = A szorzat osztható 000-rel, ezért az 000 osztójával, a -tel is. Az utolsó három számjegybõl álló szám osztható -tel. Az 000-nek osztója a. Egy természetes szám pontosan akkor osztható -tel, ha az utolsó három számjegyébõl álló háromjegyû szám osztható -tel. Egy természetes szám 8-cal osztva ugyanannyit ad maradékul, mint amennyit az utolsó három számjegyébõl álló szám. Pl.: = és = 9 8+0, tehát a 8-as maradéka 0, 69 = és 69 = 8 8+, tehát a 69 8-as maradéka. Hasonlóan megmutatható, hogy egy természetes szám 0-nel, -tel, 00-zal, 0-nel, 00-zal és 000-rel osztva ugyanannyit ad maradékul, mint amennyit az utolsó három számjegyébõl álló szám. Mennyi maradékot ad a 6 és az 6, a) -tel; b) 00-zal; c) 00-zal osztva? a) 6 = = = b) 6 = = = c) 6 = = = A maradékokat szemléltethetjük számegyenesen: a) 6 6 b) c) Feladatok. a) Hová kerülne a halmazábrán a rel osztható számok halmaza? b) Írjunk igaz, illetve hamis állításokat a halmazábra alapján! 0-zel osztható számok zal oszthatók rel oszthatók

10 OSZTHATÓSÁG. a) Soroljuk fel azokat a kétjegyû számokat, amelyek a -gyel osztható számok végzõdései lehetnek! b) Mely számokkal oszthatók azok a számok, melyek a következõ háromjegyû számokra végzõdnek: 000,, 0,, 00, 6, 0, 8?. Soroljuk fel azokat a -tel osztható számokat, amelyek nem kisebbek, mint 00, és nem nagyobbak, mint 6 000! Hány ilyen szám van?. Soroljuk fel azokat a -tel osztható számokat, amelyek nem kisebbek 0-nél, de nem nagyobbak 80-nél!. Állapítsuk meg a 8; 689; 9; 80; 999 számok a) -es; b) -es; c) -ös; d) 8-as; e) -ös; f) -ös maradékát! 6. Mennyi a összeg a) -es; b) -es; c) -ös; d) -ös; e) -ös; f) 8-as maradéka?. Készítsünk a füzetbe az itt láthatóhoz hasonló halmazábrát, és írjuk bele a következõ számokat! 0; ; ; ; 0; 8; 60; 9; 8; ; 9; ; 900. Fogalmazzuk meg, milyen tulajdonságú számok kerültek a két halmaz közös ébe! Az adott számok halmaza -vel oszthatók -tel oszthatók 8. Készítsünk a füzetbe az itt láthatóhoz hasonló halmazábrát, és írjuk bele a következõ számokat! 6; 800; 9 00; 0; 8; ; 9; 000; 8; ; ; 0 900; 9. Fogalmazzuk meg, milyen tulajdonságú számok kerültek a két halmaz közös ébe! Az adott számok halmaza -gyel oszthatók -tel oszthatók 9. Készítsünk a füzetbe az itt láthatóhoz hasonló halmazábrát, és írjuk bele a következõ számokat! 8; ; 6; 0; 6; ; 0; 9 ; 000; 00; 6 06; 6 8; Fogalmazzuk meg, milyen tulajdonságú számok kerültek a két halmaz közös ébe! Az adott számok halmaza 8-cal oszthatók -tel oszthatók 0. Jelöljük halmazábrán a -gyel és 8-cal osztható számok halmazát, majd írjuk be a következõ számokat! Mit vehetünk észre? 6; 0; 00; ; 6; ; 900; 9; 000; 8; 0 000; ; 680 6; 0.

11 . Állapítsuk meg a következõ számok hiányzó számjegyeit úgy, hogy -gyel és -tel is oszthatók legyenek! Mit állapíthatunk meg a -gyel és -tel osztható számokról? a) ÂÒ0 ÂÒ = b) ÀÐ8 ÀÐ = 0. A számkártyákból képezzük az összes lehetséges háromjegyû számot! Készítsünk halmazábrát, jelöljük a -vel és az -tel osztható számok halmazát, és írjuk be a számokat! 0. A számkártyákból alkossunk a) -gyel osztható háromjegyû számokat! Ezek közül melyek oszthatók -tel is? Mit mondhatunk a -gyel is és -tel is osztható számokról? b) -tel, -tel és 0-nel osztható háromjegyû számokat, és írjuk ezeket halmazábrába! Mondjunk igaz állításokat a halmazábra alapján!. Döntsük el, hogy az alábbi állítások közül melyik igaz, melyik hamis! a) Ha egy szám utolsó két számjegyébõl álló szám osztható -gyel, akkor maga a szám is osztható -gyel. b) Egy szám akkor osztható -gyel, ha utolsó két számjegye osztható -gyel. c) Ha egy szám -gyel és -tel is osztható, akkor 0-szal is osztható. d) Ha egy szám -gyel és -vel is osztható, akkor 8-cal is osztható.. Döntsük el, hogy az alábbi állítások közül melyik igaz, melyik hamis! a) Ha egy szám osztható 0-nel, akkor -tel is osztható. b) Minden -tel osztható szám 0-nel is osztható. c) Ha egy szám többszöröse -nek, akkor -nek is többszöröse. d) Van olyan -tel osztható szám, amelynek minden számjegye páratlan. 6. Egy országos matematikaverseny szervezõi tréfás kiszámolóba rejtve közölték a tvevõkkel, hogy mi a fõdíj. Számoljatok balról jobbra és jobbról balra egyesével -tõl kezdve a következõ módon:. A,. B,. C,. D,. E, 6. D,. C, 8. B, 9. A, 0. B,. C...! Ha így haladtok tovább, akkor 000-hez érve éppen a fõdíjra mutattok. Mi a verseny fõdíja? E) B) D) A) C) Rejtvény Egy vastag könyvbõl kiesett néhány egymás után következõ lap. A legelsõ a. oldal volt, a legutolsó kiesett oldalon pedig ugyanezek a számjegyek szerepeltek, csak más sorrendben. Hány lap esett ki a könyvbõl?

12 HOGYAN OLDJUNK MEG FELADATOKAT?. Következtessünk visszafelé! Géza a térképvázlat alapján haladt, és minden útelágazásnál eldöntötte, hogy milyen irányban menjen tovább. Melyik pontból indult, ha az útelágazásoknál az alább jelölt irányokba fordulva ért a sajthoz? Több probléma megoldásakor segítséget jelenthet, ha a végsõ helyzetbõl kiindulva visszafelé következtetünk. Játsszátok el a feladatot, majd találjatok ki hasonlókat!. példa Gondoltam egy számra, elosztottam -tel, hozzáadtam 6-ot, ezt megszoroztam 8-cal, és így 80-at kaptam. Melyik számra gondoltam? Megoldás Kövessük nyomon az eredeti szám változását! a gondolt szám +6 8 a kapott szám. szám. szám. szám. szám =0 µ6 8 0µ 6= 80 8=0 80 Az eredeti szám a 0. Ellenõrzés: Válasz: 0 = ; + 6 = 0; 0 8 = 80, ami a feladat szövegének megfelel. Tehát a 0-ra gondoltam. 0

13 . példa A házunk elõtt három fa áll, egy barack-, egy dió- és egy meggyfa. Reggel 8 veréb repült a házunkhoz, és leszállt a három fára. Késõbb 8 veréb a barackfáról átszállt a diófára, majd 6 veréb átszállt a diófáról a meggyfára. Ekkor mindegyik fán ugyanannyi veréb ült. Hány veréb telepedett le eredetileg a barackfán, a diófán és a meggyfán? Megoldás A röpködések után a 8 veréb úgy helyezkedett el a három fán, hogy mindegyiken ugyanannyi veréb ült, vagyis mindhárom fán 8 =6 veréb volt. Foglaljuk táblázatba a verebek számát a fákon! Végsõ állapot Közbülsõ állapot Eredeti helyzet barackfa diófa meggyfa = µ8 +8 µ = µ 8 = 6 µ6 +6 µ6 +6 6µ 6=0 0 Ellenõrzés: A barackfán µ 8 = 6 veréb maradt. A diófán + 8 µ 6 = 6 veréb maradt. A meggyfán = 6 veréb lett. Válasz: A táblázatból leolvasható a megoldás: eredetileg a barackfára veréb szállt le, a diófára, a meggyfára pedig 0.. példa Egy tál teli volt gombóccal. Elõször Bence ért haza, és megette a gombócok felét és még egy fél gombócot. Majd megjött Ákos, és megette a maradék gombócok felét. Ezután gombóc maradt. Hány gombóc volt eredetileg a tálban? Megoldás Jelöljük egy szakasszal az összes gombócot! az összes gombóc fele a maradék ez is a maradék Bence ennyi gombócot evett fele fele Ákos ennyi gombócot evett Hogyan ehette meg Bence a gombócok felét és még egy fél gombócot úgy, hogy egy gombócot sem kellett kettévágnia? Ákos a Bence által meghagyott gombócok felét ette meg. A másik fele a maradék gombóc, azaz Ákos is gombócot evett meg. Így Bence = 0 gombócot hagyott. Ha Bence nem ette volna meg a fél gombócot, akkor épp az összes gombóc felét ette volna meg, ami 0. Tehát a tálon eredetileg 0 = gombóc volt.

14 HOGYAN OLDJUNK MEG FELADATOKAT? Ellenõrzés: A tálon gombóc volt. Bence megevett + = 0 + = gombócot. Maradt 0 gombóc. Ákos megevett 0 = gombócot. Valóban gombóc maradt. Válasz: Eredetileg gombóc volt a tálban. Feladatok. Gondoltam egy számot, elvettem belõle 9-et, megszoroztam -tel, elosztottam - gyel, és -et kaptam. Melyik számra gondoltam?. Gondoltam egy számot, hozzáadtam 8-at, elosztottam 0-zel, a kapott számot megszoroztam 9-cel, majd hozzáadtam 9-et, és 00-at kaptam. Melyik számra gondoltam?. Melyik az a szám, amelyiknek a felénél -tel kisebb szám a?. Peti egy mûveletsor végén 0-at kapott. Késõbb rájött, hogy az utolsó mûveletet eltévesztette, és ahelyett, hogy 89-et kivont volna, 89-et hozzáadott. Mennyi a helyes végeredmény?. Pali egy mûveletsor végén 80-at kapott. Késõbb rájött, hogy az utolsó mûveletet eltévesztette, és ahelyett, hogy -gyel osztott volna, -gyel szorzott. Mennyi a helyes végeredmény? 6. András, Béla és Csaba társasjátékot játszottak. A játékszabály szerint aki egy fordulót megnyert, az a vesztesektõl kapott - zsetont. A 6. kör végén egyformán osztoztak a 60 zsetonon. A 6. kört Béla nyerte, az. kört Csaba, a. kört András. Kinek hány zsetonja volt a. kör végén?. Egy méhraj repült az udvarunkba. A méhek fele a barackfára szállt, a maradék fele az aranyvesszõre, a többi 8 méh pedig a tulipánokra. Hány méh röpült az udvarunkba? 8. A párizsi kiránduláson Réka és Árpi sokat fotózott. Szerdán a képek felét az Eiffeltoronynál, a maradék kétharmad ét a Notre Dame-nál, a maradék 8 képet pedig a Diadalívnél készítették. Összesen hány képet készítettek szerdán?

15 9. Egy vég szövetbõl az üzletben elõször m-t, aztán m-t, majd, m-t adtak el. Utána egy varrónõ megvette a maradék szövet felét, majd egy másik is elvitt 0 m-t, így az utolsó vevõnek m maradt. Hány méter szövet volt a végben? 0. Ha egy téglalap egyik szemközti oldalpárját kétszeresére, másik szemközti oldalpárját pedig háromszorosára növeljük, akkor egy olyan négyzetet kapunk, amelynek a kerülete 8 cm. Mekkorák az eredeti téglalap oldalai?. A 6. C osztályban a tanulók harmada lány. A fiúk negyede kosárlabdázik. Ha olyan fiú van, aki nem kosárlabdázik, akkor hány tanuló jár az osztályba? *. Egy használtautó-kereskedõ egy hétig nem vett autót, csak eladott. Hétfõn eladta az autók felét meg még egy fél autót, kedden a maradék felét meg még egy fél autót, szerdán a maradék felét meg még egy felet, így egy autója maradt, amivel elment nyaralni. Hány autót adott el hétfõn? *. Egy gazdag ember a vagyona felét és még 000 aranyat a feleségére hagyott. A maradék felét és még 000 aranyat a leányára, a maradék felét és még 000 aranyat az inasára, a maradék felét és még 000 aranyat a kutyájára, a megmaradt aranyat pedig jótékonysági célra hagyományozta. Hány arany volt a gazdag ember vagyona? Játék Ezt a játékot ketten játsszátok egy bábuval! A bábu a START-ról indul, és felváltva léphettek vele egyszerre legalább -et, de legfeljebb -öt. Az gyõz, aki be tud lépni a CÉL-ba. Tud-e a kezdõ játékos úgy játszani, hogy biztosan gyõzzön? Rejtvény Egy hordóban 0 liter drága olaj van. Hogyan lehet ebbõl egy literes és egy 9 literes edény segítségével pontosan 6 litert kimérni, ha nincs más edényünk, és egyetlen cseppje sem veszhet kárba?

16 A RACIONÁLIS SZÁMOK I.. A tizedes törtek szorzása Beszélgessetek a fotókon látható mérõeszközökrõl! Fogalmazzatok meg szorzásokat! Tizedes tört szorzása egész számmal. példa Egy lépcsõs piramis alsó három lépcsõfokát betemette a sivatag homokja. A piramis egy lépcsõfoka,8 m magas. a) Milyen magasan van a piramis csúcsa a homokfelszín felett, ha a piramis összesen lépcsõbõl áll? b) Hol kezdõdik a piramis elsõ lépcsõje a homokfelszínhez képest? Megoldás a) A piramis lépcsõbõl áll, ezért lépcsõ van a homokfelszín felett., 8 8,,8 +,8 +,8 +,8 = =,8 = 8,. A piramis csúcsa 8, m magasan van a sivatag homokfelszíne felett. b) A homokfelszín alatti elsõ lépcsõ µ,8 méteren van., 8, (µ,8) + (µ,8) + (µ,8) = (µ,8) = µ,. A piramis alja a homokfelszínhez képest µ, méteren van. Ha tizedes törtet egész számmal szorzunk, a szorzatban annyi tizedesjegyet jelölünk, amennyi a tizedes törtben van. A szorzat elõjelét ugyanúgy állapítjuk meg, mint az egész számok szorzásakor.

17 Tizedes tört szorzása tizedes törttel. példa Egy téglalap alakú terasz méretei láthatóak az ábrán. Hány négyzetméter területû ez a terasz?,6 m Megoldás a =,6 m b =, m, m b T =? Becslés: T = a b T» 6 m = 8 m a T =,6, m Induljunk ki az egész számok szorzásából, és figyeljük meg a szorzat változásait! A mértékegységek közti összefüggések alapján a terület: T = 6 dm T = 9 dm T =,9 m 6 = 9 0 0,6 = 9, 0 0,6, =, Tizedes törttel számolva: T =,6, m T =,9 m, 6, 6 8, 9 A terasz területe,9 m.. példa A. példában szereplõ teraszt a kert felõli szélén zöld, a többi en drapp színû járólappal akarjuk lefedni. Hány négyzetméter lesz a zöld színû téglalap, ha a hossza,6 m, a szélessége cm? Megoldás A zöld színû téglalap egyik oldala,6 m, a másik cm hosszú., m a =,6 m c = cm = 0, m cm T =? Becslés: T = a c T» 6 0, m =,8 m T =,6 0, m,6 m a b c A mértékegységek közti összefüggések alapján a terület: T = 60 cm T = 90 cm T =,9 m A szorzat változásai alapján: 6 = ,6 0, =,9 A zöld színû területe,9 m. Tizedes törttel számolva: T =,6 0, m T =,9 m, 6 0, 6 8, 9

18 A RACIONÁLIS SZÁMOK I. Tizedes törtek szorzásakor a szorzatban annyi tizedesjegyet jelölünk, amennyi a tényezõkben összesen van. Például:, 6, 0 8, 8 8, , 8 6, 0, , 9 0 A többtényezõs szorzatokat lépésenként számoljuk. (µ0,), (µ,) = (µ,8) (µ,) =,69 µ,8 +,69 Feladatok. Hány tizedesjegy szerepel a következõ szorzatokban, ha a szorzatot nem egyszerûsítjük vagy nem bõvítjük? Becsüljük meg a szorzatot! Végezzük el a szorzást! a), ; b) 0,0 06; c), (µ); d), 0; e),6,; f),8,; g) 0,6,; h) 0, 0; i),0,0; j),0 00; k),,,8; l), 0,6.. Számítsuk ki a szorzatokat! Mit veszünk észre? a) 68 ; b) 6,8 ; c) 6,8,; d) 6,8 ; e),68 ; 6,8 ;,68 ;,68,;,68 0,;,68 0,0;,68 ; 0,68 ; 0,68,; 0,68 0,0;,68 0,00.. Végezzük el a szorzást! Elõtte becsüljük meg a szorzatot! a) (+,) (+0,8) (µ); b) (µ,) (+) (µ0,08) (µ000).. Végezzük el a,, szorzást! Változtassuk úgy valamelyik tényezõt, hogy a szorzat a) kétszeresére; b) négyszeresére; c) tízszeresére változzon!. Rendezzük a szorzatokat csökkenõ sorrendbe! Hányszorosa a legnagyobb a legkisebbnek? (Próbáljunk a szorzatok kiszámítása nélkül válaszolni!) a) A),,8 ; B),,8 ; C) µ,,8 ; D) 0,,8 ; b) A) 0,, ; B) µ0,, ; C) 0, 0, ; D) 0, 0, 0 ; c) A) µ,6 8, ; B) µ,6 (µ0,8), ; C) µ,6 (µ0,8) (µ,).

19 6. Döntsük el, hogy melyik szorzat, illetve összeg a nagyobb! Számolással ellenõrizzük a döntésünk helyességét! a), vagy,0 0; b) 6, 0, vagy 0,6,; c) 6,8, vagy,68 ; d) µ, +,, vagy (µ, +,),.. A gyógyszeek a gyógyszerek elõállításánál nagyon kis tömegekkel dolgoznak. Az egyik gyógyszer tablettájában 0, mg hatóanyag és, mg tejcukor van. Hány grammot fogyaszt egy évben a hatóanyagból és a tejcukorból az a beteg, aki minden nap tablettát szed be ebbõl a gyógyszerbõl? 8. Péter és apukája az országúton egyszerre indulnak el kerékpárral a faluból a városba. Péter 8, km-t, az apukája 6,8 km-t tesz meg óránként. Péter, óra múlva beér a városba. Mennyi utat kell még megtennie az apukájának, hogy õ is a városba érjen? 9. Egy villanyszerelõ-mûhelyben elosztókat állítanak össze. Egy elosztó vezetéke, m hosszú, és a szereléshez még 8 cm vezeték kell. Egy mûszak alatt 8 elosztó készül el. Hány méter vezetéket használnak fel? Számoljunk többféleképpen! 0. Egy méteráruboltban függönyöket veszünk. Sötétítõ függönynek, m-t vásárolunk,, m-rel kevesebbet, mint csipkefüggönynek. A sötétítõ függöny méterének ára 60 Ft, a csipkefüggönyé 6 Ft. Mennyit fizetünk?. Egy négyzet alakú asztalterítõ oldalai,6 m hosszúak. A terítõre csipkeszegélyt varrunk. Hány méter csipkét vegyünk, ha a terítõ sarkainál - cm a ráhagyás?. A házunk olyan téglalap alakú telekre épül, amelynek egyik oldala, m, a másik ennek a,-szerese. Hány méteren kell kerítést készíteni, ha a ház a telekhatárból,6 m-t, a kapu pedig, m-t foglal el? Hány m a telek területe? a =, m Kapu Ház. Számítsuk ki a téglalapok területét négyzetméterben, ha oldalaik hossza:. a = 6 m dm;. a = 9 dm;. a = 0 cm; b = 0 m dm; b =, dm; b =,8 m!. Hány négyzetcentiméter a felszíne és hány köbcentiméter a térfogata egy olyan fakockának, amelynek egy éle, cm? Ezekbõl a fakockákból egy olyan nagyobb kockát építünk, amelyik kis kockából áll. Mekkora a nagyobb kocka felszíne és térfogata?. Egy akvárium hossza 8, dm; szélessége cm; magassága pedig mm. Hány négyzetdeciméter területû üveglapot használtak fel a készítésekor, ha az akváriumnak nincs teteje? Hány literes az akvárium? (Az üveg vastagságától eltekinthetünk.) Rejtvény Melyik kétjegyû számra igaz, hogy az,-szerese ugyanazokból a számjegyekbõl áll, mint maga a szám?

20 A RACIONÁLIS SZÁMOK II. 6. Osztás törttel 6 = = 60 = = reciproka. példa Hány embert tudunk megkínálni pizzából, ha mindenkinek a) ; b) ; c) pizzát adunk?. megoldás A fenti ábráról leolvashatjuk a keletkezett szeletek számát. Ugyanezt osztással is megkaphatjuk: a) =; b) =6; c) =.. megoldás A hányados tulajdonságai alapján tudjuk, hogy ha az osztandó változatlan és az osztó felére, ötödére csökken, akkor a hányados kétszeresére, ötszörösére nõ. b) = c) = ² ² = ² ² =. Az egész pizzákkal, a fél pizzákkal 6, az egyötöd pizzákkal embert tudunk megkínálni. Az -del való osztás -vel való szorzást, az -del való osztás -tel való szorzást jelent.. példa Négy liter õszibaracklevet áttöltünk a) literes üvegekbe; b) literes poharakba; c) literes korsókba. Hány üveg, hány pohár és hány korsó telik meg? 0

21 Megoldás üvegek poharak korsók egész számot osztunk Az ábra alapján: a) az üvegek száma: =. b) a poharak száma: = =. c) a korsók száma: = 6. A hányados változása alapján: = ² ² = ² ² =. 6 A -dal való osztás -del való szorzást jelent. A a reciproka.. példa Végezzük el a következõ osztásokat! a) ; b) ; c). Megoldás a) Az elsõ példában láttuk, hogy = =. b) A hányados változásai alapján számolunk. = az osztó -szeresére nõ ² ² a hányados -ed ére csökken = ( ) = = = = c) A hányados változásai alapján számolunk. A b) esetbõl indulunk ki. = az osztandó -ed ére csökken ² ² a hányados -ed ére csökken = = 8 = egész számot osztunk törtet osztunk 8 Törttel úgy osztunk, hogy az osztandót az osztó reciprokával szorozzuk.

22 Feladatok A RACIONÁLIS SZÁMOK II. Törttel való osztáskor az egyszerûsítést akkor végezhetjük el, ha az osztást átírtuk reciprokkal való szorzásra. Ha az osztásban vegyes szám szerepel, akkor a vegyes számot elõször törtté alakítjuk = = = = 8 Ha elõjeles számokat osztunk, a hányados elõjelét az egész számoknál tanult módon állapítjuk meg. = = = Ê ˆ Ê ˆ Ê ˆ 6 µ = µ =µ Á =µ =µ Ë Á Ë Á Á Ë Ê ˆ Ê ˆ Ê ˆ Ê ˆ µ µ = µ µ = = = Ë Á 8 Ë Á Ë Á 8 Ë Á Végezzük el a kijelölt osztásokat, majd ellenõrizzük számításunk helyességét! 8 a) ; b) ; c) ; d) ; e) ; f) Ê ˆ ( µ ) µ ; g) Ê ˆ Ê ˆ µ µ ; h). Ë Ë Ë. Mennyi a hányados? Ellenõrizzük! 6 0 a) ; b) ; c) ; d) Ê ˆ µ ; 9 Ë 0 e) ; f) Ê ; g) Ê ; h) Ê µ8 ˆ µ ˆ µ 9 ˆ Ê µ ˆ. 8 Ë Ë 9 Ë 0 8 Ë. Mekkora számot visznek a teljes szerelvényen?

23 . Milyen számot írhatunk a jelek helyére, hogy az egyenlõség igaz legyen? 9 a) Ò = ; b) Ê ˆ µ Ò = ; c) Ò = ; Ë 0 8 d) Ê µ ˆ Ò = ; e) Ò = ; f) Ò = 9. Ë 6 0 Ê. a) Mennyi a hányados, ha a µ6 ˆ -et -dal osztjuk? Ë 6 Ê b) Hányszorosa a µ6 ˆ a -nak? Ë 6 Ê c) Hányszorosa a a µ6 ˆ -nek? 6 Ë Ê d) Mennyivel kell szorozni a -ot, hogy µ6 ˆ -et kapjunk? 6 Ë 6. Végezzük el az osztásokat! Állapítsuk meg, hogy az osztandó vagy a hányados a nagyobb! 9 a) ; ;. b) ; ; Egy téglalap területe m. Mennyi a téglalap kerülete, ha az egyik oldala 8 m? 8. Írjunk fel minél több osztást, ha a tényezõket és a hányadost is az alábbi számok közül választhatjuk! 9 6 ; µ; ; ; ; µ ; Vince és Csabi már másfél órája bicikliznek, amikor a túrájuk énél tartanak. Hányad ét tették meg az útjuknak óra alatt? Mennyi idõ telik el a túra befejezéséig, ha az eddigi tempóban haladnak tovább? Rejtvény Egy számot megszoroztunk -del, utána elosztottuk -del. Az alábbiak közül melyik mûvelettel helyettesíthetõ ez a két mûvelet? 9 9 A) osztás -dal; B) osztás -dal; C) szorzás -dal; D) szorzás -del; E) osztás -del. 0 0

24 SZÁZALÉKSZÁMÍTÁS. Az egész kiszámítása. példa Egy alpinista már 80 m magasra mászott, amikor a szikla jutott. Hány méter magas a szikla? éig Megoldás egész = 80 m?m 80m =60m 60 m = 0 m Az alpinista 0 m magas sziklára mászik fel. 80 m Mennyi a 0-nek a e? Mennyi a 80 és a hányadosa? = 80 = 0 Melyik szám e a 80? Ha a 80 az egésznek a e, akkor az egész t úgy is kiszámít- hatjuk, hogy a 80-at elosztjuk -del. 60

25 . példa Ádám a hónap elején megkapta a havi zsebpénzének 800 Ft-ot. Hány forint Ádám havi zsebpénze?. megoldás (következtetéssel) A zsebpénz e. megoldás (osztással) egész = 800 Ft?Ft ét, azaz Ha 800 Ft; 00 a 800 Ft = 800 Ft = 00 Ft. Mindkét esetben ugyanazt az eredményt kaptuk. Ádám havi zsebpénze 00 Ft. 800 Ft = 00 Ft 00 Ft = 00 Ft ( ) 800 = = = = = 800 Egy szám ébõl úgy számítjuk ki az egész ét, hogy a számot el- osztjuk -dal.. példa Egy kerékpártúra elsõ napján az egész út, a második napon pedig a ét tettük meg. Hány kilométer van még hátra, ha az elsõ nap 0 km-t haladtunk? Megoldás Az elsõ nap megtett út az egész út Az egész út 0 km. e, azaz 0 km. 0 km?ft 0km =km km = 0 km

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA tankönyv ötödikeseknek címû tankönyvéhez A heti 3 óra, évi 111 óra B heti 4 óra, évi 148 óra Javaslat témazáró dolgozatra: Dr. Korányi Erzsébet: Matematika

Részletesebben

MATEMATIKA VERSENY --------------------

MATEMATIKA VERSENY -------------------- Eötvös Károly Közös Fenntartású Általános Iskola 2013. és Alapfokú Művészetoktatási Intézmény 831 Vonyarcvashegy, Fő u. 8/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok

Részletesebben

I. Egységtörtek. Ha az egységet nyolc egyenlő részre vágjuk, akkor ebből egy rész 1-nyolcadot ér.

I. Egységtörtek. Ha az egységet nyolc egyenlő részre vágjuk, akkor ebből egy rész 1-nyolcadot ér. Tudnivaló I. Egységtörtek Ha az egységet nyolc egyenlő részre vágjuk, akkor ebből egy rész 1-nyolcadot ér. Ezt röviden így írhatjuk: A nevező megmutatja, hogy az egységet hány egyenlő részre vágjuk. A

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

Matematika (alsó tagozat)

Matematika (alsó tagozat) Matematika (alsó tagozat) Az értékelés elvei és eszközei A tanév során az értékelés alapja a tanulók állandó megfigyelése. Folyamatos fejlesztő célzatú szóbeli értékelés visszajelzést ad a tanuló számára

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

SZÁMTANI SOROZATOK. Egyszerű feladatok. 1. Egy számtani sorozatban:

SZÁMTANI SOROZATOK. Egyszerű feladatok. 1. Egy számtani sorozatban: SZÁMTANI SOROZATOK Egyszerű feladatok. Egy számtani sorozatban: a) a, a 29, a? 0 b) a, a, a?, a? 80 c) a, a 99, a?, a? 0 20 d) a 2, a2 29, a?, a90? 2 e) a, a, a?, a00? 2. Hány eleme van az alábbi sorozatoknak:

Részletesebben

6. OSZTÁLY. Az évi munka szervezése, az érdeklõdés felkeltése Feladatok a 6. osztály anyagából. Halmazok Ismétlés (halmaz megadása, részhalmaz)

6. OSZTÁLY. Az évi munka szervezése, az érdeklõdés felkeltése Feladatok a 6. osztály anyagából. Halmazok Ismétlés (halmaz megadása, részhalmaz) 6. OSZTÁLY Óraszám 1. 1. Az évi munka szervezése, az érdeklõdés felkeltése a 6. osztály anyagából Tk. 13/elsõ mintapélda 42/69 70. 96/elsõ mintapélda 202/16. 218/69. 2 3. 2 3. Halmazok Ismétlés (halmaz

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

1.) Csaba egy 86 oldalas könyv 50 oldalát elolvasta. Hány nap alatt fejezi be a könyvet ha egy nap 9 oldalt olvas belőle? A) 6 B) 4 C) 3 D) 5

1.) Csaba egy 86 oldalas könyv 50 oldalát elolvasta. Hány nap alatt fejezi be a könyvet ha egy nap 9 oldalt olvas belőle? A) 6 B) 4 C) 3 D) 5 WWW.ORCHIDEA.HU 1 1.) Csaba egy 86 oldalas könyv 50 oldalát elolvasta. Hány nap alatt fejezi be a könyvet ha egy nap 9 oldalt olvas belőle? A) 6 B) 4 C) 3 D) 5 2.) Számítsd ki a végeredményt: 1 1 1 1 1

Részletesebben

Oszthatósági problémák

Oszthatósági problémák Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,

Részletesebben

MEGOLDÓKULCSOK. 1. feladatsor (1. osztály)

MEGOLDÓKULCSOK. 1. feladatsor (1. osztály) MEGOLDÓKULCSOK 1. feladatsor (1. osztály) 1. feladat 8 9 10 14 15 16 10 11 12 18 19 20 1. pontdoboz: Hibátlan számszomszédok írása 1 pont, hiba 0 pont. 2. feladat 20 17 14 11 8 5 2 2. pontdoboz: Szabályfelismerésért

Részletesebben

4) Hány fecskének van ugyanannyi lába, mint 33 kecskének? 6) A hét törpe életkorának összege 484 év. Mennyi lesz az életkoruk összege 4 év múlva?

4) Hány fecskének van ugyanannyi lába, mint 33 kecskének? 6) A hét törpe életkorának összege 484 év. Mennyi lesz az életkoruk összege 4 év múlva? PANNONHALMA TKT RADNÓTI MIKLÓS ÁLTALÁNOS ISKOLA, ÓVODA ÉS ALAPFOKÚ MŐVÉSZETOKTATÁSI INTÉZMÉNY Akik vonzódnak a matematikához, azokat izgalomba hozza a feladat, akiknek nincs érzékük hozzá, azokat elriasztja.

Részletesebben

Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó. Második félév. Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 2013

Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó. Második félév. Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 2013 Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó Második félév Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 0 SZORZÁS ÉS OSZTÁS -VEL Mesélj a képrõl! Hány kerékpár és kerék van a képen?

Részletesebben

Az egyszerűsítés utáni alak:

Az egyszerűsítés utáni alak: 1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű

Részletesebben

A) 1 óra 25 perc B) 1 óra 15 perc C) 1 óra 5 perc A) 145 B) 135 C) 140

A) 1 óra 25 perc B) 1 óra 15 perc C) 1 óra 5 perc A) 145 B) 135 C) 140 1.) Melyik igaz az alábbi állítások közül? 1 A) 250-150>65+42 B) 98+24

Részletesebben

TANMENET javaslat. a szorobánnal számoló. osztály számára. Vajdáné Bárdi Magdolna tanítónő

TANMENET javaslat. a szorobánnal számoló. osztály számára. Vajdáné Bárdi Magdolna tanítónő 2 TANMENET javaslat a szorobánnal számoló 2. osztály számára Szerkesztette: Dr. Vajda József - Összeállította az Első Szorobán Alapítvány megbízásából: Vajdáné Bárdi Magdolna tanítónő Makó, 2001. 2010.

Részletesebben

III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló

III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló 1. Mennyi az eredmény 15+17 15+17 15+17=? A) 28 B) 35 C) 36 D)96 2. Melyik szám van a piramis csúcsán? 42 82 38 A) 168 B) 138

Részletesebben

KOMPETENCIA ALAPÚ FELADATGYÛJTEMÉNY MATEMATIKÁBÓL 6. ÉVFOLYAM MEGOLDÁSOK

KOMPETENCIA ALAPÚ FELADATGYÛJTEMÉNY MATEMATIKÁBÓL 6. ÉVFOLYAM MEGOLDÁSOK KOMPETENCIA ALAPÚ FELADATGYÛJTEMÉNY MATEMATIKÁBÓL 6. ÉVFOLYAM MEGOLDÁSOK Egész számok.. a) Igaz; b) igaz; c) hamis; d) igaz; e) igaz; f) hamis.. A felsorolt számok közül a legkisebb szám: 0, a legkisebb

Részletesebben

50. modul 1. melléklet 2. évfolyam tanítói fólia

50. modul 1. melléklet 2. évfolyam tanítói fólia 50. modul 1. melléklet 2. évfolyam tanítói fólia 50. modul 2. melléklet 2. évfolyam tanítói fólia 50. modul 3. melléklet 2. évfolyam tanítói fólia 50. modul 4. melléklet 2. évfolyam tanítói fólia és csoport

Részletesebben

Gál Józsefné. Tanmenetjavaslat. a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez

Gál Józsefné. Tanmenetjavaslat. a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez Gál Józsefné Tanmenetjavaslat a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez Dinasztia Tankönyvkiadó Budapest, 2002 Írta: Gál Józsefné Felelôs szerkesztô: Ballér Judit ISBN 963 657 144 9

Részletesebben

Dudás Gabriella Hetényiné Kulcsár Mária Machánné Tatár Rita Sós Mária. sokszínû. 5 gyakorló. kompetenciafejlesztõ munkafüzet. 2.

Dudás Gabriella Hetényiné Kulcsár Mária Machánné Tatár Rita Sós Mária. sokszínû. 5 gyakorló. kompetenciafejlesztõ munkafüzet. 2. Dudás Gabriella Hetényiné Kulcsár Mária Machánné Tatár Rita Sós Mária sokszínû gyakorló kompetenciafejlesztõ munkafüzet. kötet Mozaik Kiadó Szeged, Színesrúd-készlet. Törtek bõvítése és egyszerûsítése

Részletesebben

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz Gedeon Veronika (Budapest) A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok részekre

Részletesebben

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6 Kategória P 6 1. Írjátok le azt a számot, amely a csillag alatt rejtőzik: *. 5 = 9,55 2. Babszem Jankó 25 ször kisebb, mint Kukorica Jancsi. Írjátok le, hogy hány centiméter Babszem Jankó, ha Kukorica

Részletesebben

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. MODUL SZÁMELMÉLET Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. Számelmélet Közös osztók, közös többszörösök Tanári útmutató MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5.

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet

Részletesebben

4. évfolyam A feladatsor

4. évfolyam A feladatsor Név: 4. évfolyam A feladatsor Osztály: Kedves Vizsgázó! Olvasd el figyelmesen a feladatokat, gondold át a megoldások menetét! Eredményes, sikeres munkát kívánunk!. a) Írd le számjegyekkel! Rendezd a számokat

Részletesebben

Sokszínû matematika 6. A KITÛZÖTT FELADATOK EREDMÉNYE

Sokszínû matematika 6. A KITÛZÖTT FELADATOK EREDMÉNYE Sokszínû matematika. A KITÛZÖTT FELADATOK EREDMÉNYE Összeállította: CSATORDAI ZSUZSANNA általános iskolai tanár Tartalom. Oszthatóság.... Hogyan oldjunk meg feladatokat?... 0. A racionális számok I....

Részletesebben

Érettségi feladatok: Síkgeometria 1/6

Érettségi feladatok: Síkgeometria 1/6 Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

148 feladat 21 + + 20 20 ) + ( 1 21 + 2 200 > 1 2. 1022 + 1 51 + 1 52 + + 1 99 2 ) (1 1 100 2 ) =?

148 feladat 21 + + 20 20 ) + ( 1 21 + 2 200 > 1 2. 1022 + 1 51 + 1 52 + + 1 99 2 ) (1 1 100 2 ) =? 148 feladat a Kalmár László Matematikaversenyről 1. ( 1 19 + 2 19 + + 18 19 ) + ( 1 20 + 2 20 + + 19 20 ) + ( 1 21 + 2 21 + + 20 21 ) + ( 1 22 + 2 22 + + 21 22 ) =? Kalmár László Matematikaverseny megyei

Részletesebben

- hányadost és az osztót összeszorozzuk, majd a maradékot hozzáadjuk a kapott értékhez

- hányadost és az osztót összeszorozzuk, majd a maradékot hozzáadjuk a kapott értékhez 1. Számtani műveletek 1. Összeadás 73 + 19 = 92 összeadandók (tagok) összeg Összeadáskor a tagok felcserélhetőek, az összeg nem változik. a+b = b+a Összeadáskor a tagok tetszőlegesen csoportosíthatóak

Részletesebben

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4 . Orchidea Iskola VI. Matematika verseny 0/0 II. forduló = x + = x ++ = x +++ = x Ennek ismeretében mennyivel egyenlő ++++...+9+99=? A ) 0. D ) 0 000 6 C ) 0 D ) A Földközi-tengerben a só-víz aránya :

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály A mellékelt ábrán két egymás melletti mező számának összege mindig a közvetlen felettük lévő mezőben szerepel. Fejtsétek meg a hiányzó számokat! 96 23 24 17 A baloldali három mezőbe tartozó

Részletesebben

A III. forduló megoldásai

A III. forduló megoldásai A III. forduló megoldásai 1. Egy dobozban pénzérmék és golyók vannak, amelyek vagy ezüstből, vagy aranyból készültek. A dobozban lévő tárgyak 20%-a golyó, a pénzérmék 40%-a ezüst. A dobozban levő tárgyak

Részletesebben

Csordás Mihály Konfár László Kothencz Jánosné Kozmáné Jakab Ágnes Pintér Klára Vincze Istvánné. tankönyv. Mozaik Kiadó Szeged, 2013

Csordás Mihály Konfár László Kothencz Jánosné Kozmáné Jakab Ágnes Pintér Klára Vincze Istvánné. tankönyv. Mozaik Kiadó Szeged, 2013 Csordás Mihály Konfár László Kothencz Jánosné Kozmáné Jakab Ágnes Pintér Klára Vincze Istvánné tankönyv 5 Mozaik Kiadó Szeged, 2013 A TERMÉSZETES SZÁMOK 13. A szorzat változásai Az iskolai könyvtáros 10

Részletesebben

Törtek. Rendelhetőek nagyon jó szemléltethető eszközök könyvesboltokban és internetek is, pl:

Törtek. Rendelhetőek nagyon jó szemléltethető eszközök könyvesboltokban és internetek is, pl: Törtek A törteknek kétféle értelmezése van: - Egy egészet valamennyi részre (nevező) osztunk, és abból kiválasztunk valahány darabot (számláló) - Valamennyi egészet (számláló), valahány részre osztunk

Részletesebben

Feladatgyűjtemény matematikából

Feladatgyűjtemény matematikából Feladatgyűjtemény matematikából 1. Pótold a számok között a hiányzó jelet: 123: 6 a 45:9.10 2. Melyik az a kifejezés, amelyik 2c-7 tel nagyobb, mint a 3c+7 kifejezés? 3. Határozd meg azt a legnagyobb természetes

Részletesebben

VII. Apáczai Matematika Kupa 7. osztály 2011. Pontozási útmutató

VII. Apáczai Matematika Kupa 7. osztály 2011. Pontozási útmutató 1. feladat: VII. Apáczai Matematika Kupa 7. osztály 011. Pontozási útmutató Egy szöcske ugrál a számegyenesen. Ugrásainak hossza egység. A számegyenesen a 10-et jelölő pontból a 1-et jelölő pontba ugrással

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK Telefon: 37-8900 Fax: 37-8901 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK 1. 1. Egy osztási műveletben az osztandó és az osztó összege 89.

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 6. évfolyam eszközök diákok és csoportok részére 1. félév A kiadvány KHF/4632-14/2008. engedélyszámon 2008.12.16. időponttól tankönyvi engedélyt kapott Educatio

Részletesebben

Tartalom Tartalom I. rész Játékok és fejtörők: összeadás és kivonás II. rész Játékok és fejtörők: szorzás és osztás

Tartalom Tartalom I. rész Játékok és fejtörők: összeadás és kivonás II. rész Játékok és fejtörők: szorzás és osztás Tartalom Tartalom A szerzőről, a fordítóról és a lektorról.... 7 Bevezetés.................................................................... 9 Áttekintő táblázatok.... 11 I. rész Játékok és fejtörők:

Részletesebben

Munkafüzet megoldások 7. osztályos tanulók számára. Makara Ágnes Bankáné Mező Katalin Argayné Magyar Bernadette Vépy-Benyhe Judit

Munkafüzet megoldások 7. osztályos tanulók számára. Makara Ágnes Bankáné Mező Katalin Argayné Magyar Bernadette Vépy-Benyhe Judit Kalandtúra 7. unkafüzet megoldások 7. osztályos tanulók számára akara Ágnes Bankáné ező Katalin Argayné agyar Bernadette Vépy-Benyhe Judit BEELEGÍTŐ GONDOLKODÁS. SZÓRAKOZTATÓ FELADVÁNYOK. oldal. 6... 6.

Részletesebben

Érettségi feladatok: Sorozatok

Érettségi feladatok: Sorozatok Érettségi feladatok: Sorozatok 2005. május 10. 8. Egy mértani sorozat első tagja 8, hányadosa 2. Számítsa ki a sorozat ötödik tagját! 14. Egy számtani sorozat második tagja 17, harmadik tagja 21. a) Mekkora

Részletesebben

835 + 835 + 835 + 835 + 835 5

835 + 835 + 835 + 835 + 835 5 Orchidea Iskola VI. Matematika verseny 20/20 II. forduló. A macska és az egér jobbra indulnak el. Ha az egér négyzetet ugrik, akkor a macska 2 négyzetet lép előre. Melyik négyzetnél éri utol a macska az

Részletesebben

Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész

Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR I. rész A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok megoldásához

Részletesebben

0653. MODUL TÖRTEK. Szorzás törttel, osztás törttel KÉSZÍTETTE: BENCZÉDY LACZKA KRISZTINA, MALMOS KATALIN

0653. MODUL TÖRTEK. Szorzás törttel, osztás törttel KÉSZÍTETTE: BENCZÉDY LACZKA KRISZTINA, MALMOS KATALIN 06. MODUL TÖRTEK Szorzás törttel, osztás törttel KÉSZÍTETTE: BENCZÉDY LACZKA KRISZTINA, MALMOS KATALIN 06. Törtek Szorzás törttel, osztás törttel Tanári útmutató MODULLEÍRÁS A modul célja Időkeret Ajánlott

Részletesebben

Nagy Erika. Matekból Ötös. 5. osztályosoknak. www.matek.info

Nagy Erika. Matekból Ötös. 5. osztályosoknak. www.matek.info Nagy Erika Matekból Ötös 5. osztályosoknak www.matek.info 1 Készítette: Nagy Erika 2009 Javított kiadás 2010 MINDEN JOG FENNTARTVA! Jelen kiadványt vagy annak részeit tilos bármilyen eljárással (elektronikusan,

Részletesebben

Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz

Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz MATEMATIKA 6. Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz Témák 1. Játékos feladatok Egyszerű, matematikailag is értelmezhető hétköznapi szituációk megfogalmazása szóban és írásban.

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

Próbaérettségi feladatsor_a NÉV: osztály Elért pont:

Próbaérettségi feladatsor_a NÉV: osztály Elért pont: Próbaérettségi feladatsor_a NÉV: osztály Elért pont: I. rész A feladatsor 1 példából áll, a megoldásokkal maximum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy osztály tanulói a

Részletesebben

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba A kompetencia alapú matematika oktatás tanmenete a 9. osztályban Készítette Maitz Csaba Szerkesztési feladatok 1. Síkgeometriai alapfogalmak 2. Egyszerűbb rajzok, szerkesztések körző, vonalzó használata

Részletesebben

Számok és műveletek 10-től 20-ig

Számok és műveletek 10-től 20-ig Számok és műveletek től 20ig. Hány gyerek vesz részt a síversenyen? 2. Hányas számú versenyző áll a 4. helyen, 3. helyen,. helyen? A versenyzők közül hányadik helyen áll a 4es számú, 3as számú, es számú?

Részletesebben

Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET

Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA a 2011/2012-es tanévben TESZT 1 matematikából

Részletesebben

szöveges feladatok (2. osztály) 1. Marika vett 8 kacsát, 7 lovat, 9 tyúkot és 3 szamarat a vásárban. Hány állatott vett összesen?

szöveges feladatok (2. osztály) 1. Marika vett 8 kacsát, 7 lovat, 9 tyúkot és 3 szamarat a vásárban. Hány állatott vett összesen? 1. Marika vett 8 kacsát, 7 lovat, 9 tyúkot és 3 szamarat a vásárban. Hány állatott vett összesen? 2. Péter vett 3 dm gatyagumit, de nem volt elég, ezért vissza ment a boltba és vett még 21 cm-t. Hány cm-t

Részletesebben

148 feladat 20 ) + ( 1 21 + 2 21 + + 20 200 > 1 2. 1022 + 1. 5. Igazoljuk minél rövidebben, hogy a következő egyenlőség helyes: 51 + 1 52 + + 1

148 feladat 20 ) + ( 1 21 + 2 21 + + 20 200 > 1 2. 1022 + 1. 5. Igazoljuk minél rövidebben, hogy a következő egyenlőség helyes: 51 + 1 52 + + 1 148 feladat a Kalmár László Matematikaversenyről 1. ( 1 19 + 2 19 + + 18 19 ) + ( 1 20 + 2 20 + + 19 20 ) + ( 1 21 + 2 21 + + 20 21 ) + ( 1 22 + 2 22 + + 21 22 ) =? Kalmár László Matematikaverseny megyei

Részletesebben

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

MATEMATIKA C 12. évfolyam 4. modul Még egyszer! MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Általános iskola Matematika Évfolyam: 1 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Halmazok összehasonlítása

Részletesebben

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes.

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes. Heti 4 óra esetén, 37 tanítási hétre összesen 148 óra áll rendelkezésre. A tanmenet 132 óra beosztását tartalmazza. Heti 5 óra esetén összesen 37-tel több órában dolgozhatunk. Ez összesen 185 óra. Itt

Részletesebben

1. Melyek azok a kétjegyű számok, amelyek oszthatók számjegyeik

1. Melyek azok a kétjegyű számok, amelyek oszthatók számjegyeik 1991. évi verseny, 1. nap 1. Számold össze, hány pozitív osztója van 16 200-nak! 2. Bontsd fel a 60-at két szám összegére úgy, hogy az egyik szám hetede egyenlő legyen a másik szám nyolcadával! 3. Van

Részletesebben

OECD adatlap - Tanmenet

OECD adatlap - Tanmenet OECD adatlap - Tanmenet Iskola neve: IV. Béla Általános Iskola Iskola címe: 3664, Járdánháza IV. Béla út 131. Tantárgy: Matematika Tanár neve: Lévai Gyula Csoport életkor (év): 13 Kitöltés dátuma 2003.

Részletesebben

Feladatok MATEMATIKÁBÓL II.

Feladatok MATEMATIKÁBÓL II. Feladatok MATEMATIKÁBÓL a 12. évfolyam számára II. 1. Alakítsuk át a következő kifejezéseket úgy, hogy teljes négyzetek jelenjenek meg: a) x 2 2x + b) x 2 6x + 10 c) x 2 + x + 1 d) x 2 12x + 11 e) 2x 2

Részletesebben

PYTAGORIÁDA Súťažné úlohy okresného kola maďarský preklad 35. ročník, školský rok 2013/2014 KATEGÓRIA P 3

PYTAGORIÁDA Súťažné úlohy okresného kola maďarský preklad 35. ročník, školský rok 2013/2014 KATEGÓRIA P 3 KATEGÓRIA P 3 1. Misi két csomag rágógumiért 4 eurót fizetne. Írjátok le, hogy hány eurót fog Misi fizetni, ha mindhárom testvérének egy-egy csomag, saját magának pedig két csomag rágógumit vett! 2. Írjátok

Részletesebben

Mintafeladatsor Matematikaverseny ált. iskola 7-8.osztályosainak Bajza József Gimnázium és Szakközépiskola, Hatvan

Mintafeladatsor Matematikaverseny ált. iskola 7-8.osztályosainak Bajza József Gimnázium és Szakközépiskola, Hatvan Mintafeladatsor Matematikaverseny ált. iskola 7-8.osztályosainak Bajza József Gimnázium és Szakközépiskola, Hatvan TOLLAL DOLGOZZ, SZÁMOLÓGÉPET NEM HASZNÁLHATSZ, A LAPRA SZÁMOLJ! 1. A következő ábrán egy

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2 Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Ellentett) Egy szám ellentettjén azt a számot értjük, amelyet a számhoz hozzáadva az 0 lesz. Egy szám ellentettje megegyezik a szám ( 1) szeresével. Számfogalmak kialakítása:

Részletesebben

Kompetenciaalapú mérés 2009/2010. M A T E M A T I K A 9. é v f o l y a m A változat

Kompetenciaalapú mérés 2009/2010. M A T E M A T I K A 9. é v f o l y a m A változat Az iskola Az osztály neme: Kompetenciaalapú mérés 2009/2010. M A T E M A T I K A 9. é v f o l y a m A változat Az iskola bélyegzője: Az MFFPPTI nem járul hozzá a feladatok részben vagy egészben történő

Részletesebben

Curie Matematika Emlékverseny 8. évfolyam I. forduló 2011/2012.

Curie Matematika Emlékverseny 8. évfolyam I. forduló 2011/2012. Curie Matematika Emlékverseny 8. évfolyam I. forduló 2011/2012. A feladatokat írta: Kozma Lászlóné, Sajószentpéter Tóth Jánosné, Szolnok Lektorálta: Lengyel Lászlóné, Nádudvar Név:........ Iskola:.. Beküldési

Részletesebben

MATEMATIKA TANMENET 6.OSZTÁLY KÉSZÍTETTE: KULCSÁRNÉ BALÁZSI ERIKA

MATEMATIKA TANMENET 6.OSZTÁLY KÉSZÍTETTE: KULCSÁRNÉ BALÁZSI ERIKA MATEMATIKA TANMENET 6.OSZTÁLY KÉSZÍTETTE: KULCSÁRNÉ BALÁZSI ERIKA JELÖLÉSEK: Nem szakrendszerű órák jelölése zöld színnel, számok a programterv A 6. évfolyam tanmenetből valók Infokommunikációs technológia

Részletesebben

MÛVELETEK TIZEDES TÖRTEKKEL

MÛVELETEK TIZEDES TÖRTEKKEL MÛVELETEK TIZEDES TÖRTEKKEL Tizedes törtek írása, olvasása, összehasonlítása 7. a) Két egész hét tized; kilenc tized; három egész huszonnégy század; hetvenkét század; öt egész száztizenkét ezred; ötszázhetvenegy

Részletesebben

Matematika kisérettségi

Matematika kisérettségi Matematika kisérettségi 2010. május 11. I. rész Fontos tudnivalók 1. A feladatok megoldására 30 percet fordíthat, az idő elteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetszőleges. 3.

Részletesebben

Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz. Fejlesztőfeladatok

Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz. Fejlesztőfeladatok Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz Fejlesztőfeladatok MATEMATIKA 4. szint 2015 Oktatáskutató és Fejlesztő Intézet

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.

Részletesebben

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot!

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot! Elméleti kérdés minták (3 x 5 pont) 1. Deiniálja két halmaz unióját! Készítsen hozzá Venn-diagramot!. Csoportosítsa a négyszögeket az oldalak párhuzamossága, és egyenlősége alapján! 3. Határozza meg a

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0511 ÉRETTSÉGI VIZSGA 005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam

MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam BEVEZETŐ Ez a helyi tanterv a kerettanterv Emelet matematika A változata alapján készült. Az emelt oktatás során olyan tanulóknak kívánunk magasabb szintű ismerteket nyújtani, akik matematikából átlag

Részletesebben

A KITŰZÖTT FELADATOK MEGOLDÁSAI

A KITŰZÖTT FELADATOK MEGOLDÁSAI Sokszínű matematika 7. évfolyam A KITŰZÖTT FELADATOK MEGOLDÁSAI munkaanyag A * az egész dokumentumban a szorzás jelét helyettesíti! .o. /. : 0, b) : 0, c) : 0, d) 7 7 : 7,87 7 7 e) 0 0 : 8, 8 f) : 8, 8

Részletesebben

Érettségi feladatok: Halmazok, logika

Érettségi feladatok: Halmazok, logika Érettségi feladatok: Halmazok, logika 2005. május 10 18. Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először Ádám

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II. Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:

Részletesebben

Név:. Dátum: 2013... 01a-1

Név:. Dátum: 2013... 01a-1 Név:. Dátum: 2013... 01a-1 Ezeket a szorzásokat a fejben, szorzótábla nélkül végezze el! 1. Mennyi 3 és 3 szorzata?.. 2. Mennyi 4 és 3 szorzata?.. 3. Mennyi 4 és 4 szorzata?.. 4. Mennyi 5 és 3 szorzata?..

Részletesebben

2 2 = 2 p. = 2 p. 2. Végezd el a kijelölt műveleteket! 3. Végezd el a kijelölt műveleteket! 4. Alakítsad szorzattá az összeget!

2 2 = 2 p. = 2 p. 2. Végezd el a kijelölt műveleteket! 3. Végezd el a kijelölt műveleteket! 4. Alakítsad szorzattá az összeget! Matematika vizsga 014. 9. osztály Név: Az 1-1. feladatok megoldását a feladatlapra írd! A 1-19. feladatokat a négyzetrácsos lapon oldd meg! 1. Számítsd ki az alábbi kifejezések pontos értékét! 0, = = p

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 5 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Munkaformák Módszerek Eszközök Modul készségek, célok Szervezési feladatok Rendezés, a füzet vezetése EM Magyarázat Tankönyv, füzetek.

Munkaformák Módszerek Eszközök Modul készségek, célok Szervezési feladatok Rendezés, a füzet vezetése EM Magyarázat Tankönyv, füzetek. Idő Óraszám 09. 01. 1. 09. 03. 1. 09. 04. 2. 09.07. 3. 09. 08. 4. 09. 10. 2. 09.11. 5. 09.14. 6 09.15. 7. Tananyag Fejlesztési képességek, Munkaformák Módszerek Eszközök Modul készségek, célok Szervezési

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító ME-III.1./1 2 Azonosító: Változatszám : Érvényesség kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK-DC-2013 2013. 09. 01. MATEMATIKA

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Másodfokú egyenletek. 2. Ábrázoljuk és jellemezzük a következő,a valós számok halmazán értelmezett függvényeket!

Másodfokú egyenletek. 2. Ábrázoljuk és jellemezzük a következő,a valós számok halmazán értelmezett függvényeket! Másodfokú egyenletek 1. Alakítsuk teljes négyzetté a következő kifejezéseket! a.) - 4 + 4 b.) - 6 + 8 c.) + 8 - d.) - 4 + 9 e.) - + 8 - f.) - - 4 + 3 g.) + 8-5 h.) - 4 + 3 i.) -3 + 6 + 1. Ábrázoljuk és

Részletesebben

MATEMATIKA 5-6. Motiváció és közelítés a mindennapokhoz az OFI kísérleti tankönyveiben

MATEMATIKA 5-6. Motiváció és közelítés a mindennapokhoz az OFI kísérleti tankönyveiben A Nemzeti Alaptantervhez illeszkedő tankönyv-, taneszköz-, és Nemzeti Közoktatási Portál fejlesztése TÁMOP-3.1.2-B/13-2013-0001 MATEMATIKA 5-6. Motiváció és közelítés a mindennapokhoz az OFI kísérleti

Részletesebben

Melléklet a Matematika című részhez

Melléklet a Matematika című részhez Melléklet a Matematika című részhez Az arányosság bemutatása Az első könyvsorozatban 7. osztály, Tk-2 és Tk-3-ban 6. osztály, Tk-3b-ben 5. osztály(!), Tk-4-ben ismét 6. osztály, és végül Tk-4b-ben 5-6.

Részletesebben

PYTAGORIÁDA A járási forduló feladatai 34. évfolyam, 2012/2013-as tanév KATEGÓRIA P3

PYTAGORIÁDA A járási forduló feladatai 34. évfolyam, 2012/2013-as tanév KATEGÓRIA P3 KATEGÓRIA P3 1. Két kalácsért 32 centet fizetnénk. Hány centet fizet Peti, ha saját magának és három testvérének is vesz egy-egy kalácsot? 2. Írjátok le egy szóval, hogy milyen műveleti jelet kell a példában

Részletesebben

Színes érettségi feladatsorok matematikából középszint írásbeli

Színes érettségi feladatsorok matematikából középszint írásbeli Színes érettségi feladatsorok matematikából középszint írásbeli I. rész 1. Mivel egyenlő ( x 3) 2, ha x tetszőleges valós számot jelöl? A) x 3 B) 3 x C) x 3 2. Mekkora az a és b szöge az ábrán látható

Részletesebben

1 pont Bármely formában elfogadható pl.:, avagy. 24 4

1 pont Bármely formában elfogadható pl.:, avagy. 24 4 2012. február 2. 8. évfolyam TMat2 feladatlap Javítókulcs / 1 Javítókulcs MATEMATIKA FELADATOK 8. évfolyamosok számára, tehetséggondozó változat TMat2 A javítókulcsban feltüntetett válaszokra a megadott

Részletesebben

Matematika felvételi feladatok bővített levezetése 2013 (8. osztályosoknak)

Matematika felvételi feladatok bővített levezetése 2013 (8. osztályosoknak) Matematika felvételi feladatok bővített levezetése 2013 (8. osztályosoknak) Erre a dokumentumra az Edemmester Gamer Blog kiadványokra vonatkozó szabályai érvényesek. 1. feladat: Határozd meg az a, b és

Részletesebben

Számológép nélkül! százasokra:,,zsinór ; ezresekre:,,lótuszvirág ; tízezresekre:,,ujj ; százezresekre:

Számológép nélkül! százasokra:,,zsinór ; ezresekre:,,lótuszvirág ; tízezresekre:,,ujj ; százezresekre: Számológép nélkül! Manapság az iskolában a matematika órán szinte mindenhez megengedett a számológép használata. Persze mindezen a mai világban már meg se lepődünk, hiszen a mindennapi tevékenységeink

Részletesebben

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b? 1. Feladatsor I. rész 1. Adott két halmaz. A a 9-nél kisebb páros pozitív egészek; B a 30-nál kisebb, 6-tal osztható pozitív egészek halmaza. Adja meg az A B és a B \ A halmazokat!. Andi keresett két olyan

Részletesebben

PYTAGORIÁDA Az iskolai forduló feladatai 34. évfolyam 2012/2013-as tanév KATEGÓRIA P3

PYTAGORIÁDA Az iskolai forduló feladatai 34. évfolyam 2012/2013-as tanév KATEGÓRIA P3 KATEGÓRIA P3 1. A mesebeli Barnabás bogárnak 28 lába van. Írjátok le, hogy összesen hány lába van Barnabás hat testvérének! 2. Írjátok le az összeadás eredményét: 5 + 15 + 25 + 35 = 3. A 2 és a 3 számok

Részletesebben

Comenius Angol - Magyar Két Tanítási Nyelvű Általános Iskola. Matematika tanmenet 2015-2016.

Comenius Angol - Magyar Két Tanítási Nyelvű Általános Iskola. Matematika tanmenet 2015-2016. Comenius Angol - Magyar Két Tanítási Nyelvű Általános Iskola Matematika tanmenet 2015-2016. Tankönyv: Árvainé Lángné Szabados: Sokszínű Matematika 3. /1. és 2. félév/ Árvainé Lángné Szabados: Sokszínű

Részletesebben

Curie Matematika Emlékverseny 7. évfolyam I. forduló 2011/2012.

Curie Matematika Emlékverseny 7. évfolyam I. forduló 2011/2012. Curie Matematika Emlékverseny 7. évfolyam I. forduló 2011/2012. A feladatokat írta: Kozma Lászlóné, Sajószentpéter Tóth Jánosné, Szolnok Lektorálta: Fodor Csaba, Szeged Név:..... Iskola:. Beküldési határidő:

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben