22 TÖRTÉNETEK FIZIKUSOKRÓL ÉS MATEMATIKUSOKRÓL

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "22 TÖRTÉNETEK FIZIKUSOKRÓL ÉS MATEMATIKUSOKRÓL"

Átírás

1 ANAGYMŰVÉSZET 1545-ben jelent meg Girolamo Cardano műve, amely a fenti szavakkal kezdődött (latinul Ars magna). A könyv lényegében a harmad- és negyedfokú egyenletek megoldásának problémájával foglalkozott, de matematikatörténeti jelentősége ennél sokkal nagyobb. Később, már a XX. században Felix Klein a következőket írja Cardano könyvéről: Ez a végtelenül nagyszerű mű, amely túllép az antik matematika határain, tartalmazza a modern algebra csíráit. Az európai matematika a XVI. században született újjá hosszú középkori téli álma után. Ezer évre elfelejtődtek, sőt részben örökre elvesztek a görög geométerek munkái. Az arab szövegekből az európaiak nemcsak a Kelet matematikai művészetéről értesültek, hanem az elfeledett antik eredményekről is. Jellemző, hogy a matematikai ismeretek Európában való elterjesztésében fontos szerepet játszottak a kereskedők, akik számára az utazásoknak fontos szerepe volt mind a tudás megszerzésében, mind annak továbbadásában. Különösen érdekes közülük a pisai Leonardo ( ), akit inkább Fibonacci néven (Bonacci fia) ismerünk. Nevét egy figyelemre méltó számsor őrzi az utókor számára (a Fibonacci-számok). A tudomány nagyon gyorsan elvesztheti magas színvonalát, míg annak visszaszerzése akár évszázadokig is eltarthat. Három évszázadon keresztül az európai matematikusok csak tanulók maradtak, bár az előbb említett Fibonaccinak kétségkívül nagyon érdekes megfigyelései is voltak. De csak a XVI. században jelentek meg olyan jelentős eredmények, amelyek mind az antik, mind a keleti tudomány számára ismeretlenek voltak; nevezetesen a harmad- és negyedfokú egyenletek megoldásai. 21

2 22 TÖRTÉNETEK FIZIKUSOKRÓL ÉS MATEMATIKUSOKRÓL Jellemző, hogy az új európai matematika eredményei mind az algebrához tartoznak, ahhoz az új területhez, amelyikkel Keleten kezdtek először foglalkozni, és amelyik ekkor lényegében csak első lépéseit tette meg. Még legalább száz évig az európai matematikusok nemcsak arra nem voltak képesek, hogy valami olyan újdonságot alkossanak a geometriában, ami összemérhető lehetne Eukleidész vagy Arkhimédész eredményeivel, de még csak arra sem, hogy ezeket az eredményeket a maguk teljességében megértsék. Egy legenda azt a kijelentést tulajdonítja Püthagorasznak, hogy: minden szám. De Püthagorasz után a görög matematikában fokozatosan mindent a geometriának rendeltek alá. Eukleidésznél az algebra elemei is geometriai formában jelentek meg. Például, egy négyzet felosztható két, az oldalakkal párhuzamos egyenessel két kisebb négyzetre és két egybevágó téglalapra. A területek összehasonlításából kapjuk, hogy (a + b) 2 = a 2 + b 2 + 2ab. De természetesen, mivel a régi görögök nem használtak szimbólumokat, területek segítségével adták meg ennek az állításnak a végső megfogalmazását. A formulák egyébként is nagyon nehézkesek voltak. A körzővel és vonalzóval megoldandó feladatok tulajdonképpen másodfokú egyenletek megoldásaihoz vezettek, és olyan kifejezések vizsgálatához, amelyek négyzetgyököket tartalmaznak (kvadratikusan irracionális számokhoz). 1 Például Eukleidész (más nyelven fogalmazva) részletesen foglalkozik a + b alakú kifejezésekkel. Bizonyos fokig a görög geométerek megértették a klasszikus, nem megoldható szerkesztési feladatok (a kocka térfogatának megkétszerezése, a szög harmadolása) kapcsolatát a harmadfokú egyenletekkel. Az arab matematikusok hatására az algebra fokozatosan elszakad a geometriától. Bár, mint azt alább látni fogjuk, a harmadfokú egyenletek megoldása először geometriai nyelven fogalmazódott meg (formulák algebrai levezetése még a másodfokú egyenletek esetében is csak 1572-ben jelenik meg Bombellinél). Algebrai állítások arab matematikusoknál először csak mint receptek jelentek meg bizonyos aritmetikai típusú, főképp mindennapi feladatok megoldásaira (amilyen például az örökség elosztása). A szabályokat konkrét példákon mutatják be, de oly módon, hogy segítségükkel hasonló feladatokat is meg lehessen oldani. Egészen a legutóbbi időkig így fogalmazták meg néha bizonyos aritmetikai feladatok megoldási szabályát 1 Így hívják azokat a számokat, amelyek racionális számokból (véges sok) összeadással, kivonással szorzással és négyzetgyökvonással előállíthatóak. Ez a fogalom egyébként a Gaussról szóló fejezetben fontos szerepet játszik (a szerkesztő megjegyzése).

3 ANAGYMŰVÉSZET 23 (például a hármas szabályt 2 s í.t.). A szabályok általános formában való megfogalmazása szinte kikerülhetetlenül megköveteli a fejlett szimbolikát, amire még sokáig kellett várni. Az arab matematikusok nem jutottak tovább a másodfokú és bizonyos speciális harmadfokú egyenletek megoldásainál. A harmadfokú egyenletek megoldásának poblémája mind az arab matematikusokat, mind európai tanítványaikat nyugtalanította. Az egyik figyelemre méltó eredményt a pisai Leonardo (Fibonacci) érte el. Megmutatta, hogy az x 3 + 2x x = 20 egyenlet megoldásai nem fejezhetők ki euklideszi irracionálisokként, azaz a + b formában. 3 Ez a XIII. század elején teljesen váratlan jellegű problémafelvetés, amely előrevetíti annak vizsgálatát, hogy meg lehet-e adni egyenletek megoldását gyökvonások segítségével. Az ilyen problémafelvetés jelentőségét csak jóval később értettek meg. Általános harmadfokú egyenletek megoldására az akkori matematikusok még nem láttak semmilyen módszert. A XV XVI. század fordulóján ismert matematikai eredményeket Luca Pacioli ( ) foglalta össze könyvében, a Summa arithmetica (Summa de arithmetica, geometria, proportioni et proportionalita) című műben, amely az egyik első nyomtatott, matematikai témájú könyv, ráadásul nem latin, hanem olasz nyelven. A könyv végén olvashatjuk azt, hogy a harmadfokú egyenletek megoldásához még nem létezik az algebra művészetében módszer, mint ahogy nem létezik a kör négyszögesítésének módszere sem. Ez az összehasonlítás nagyon meggyőző, ráadásul Pacioli tekintélye oly nagy volt a kor matematikusai között, hogy többségük (és mint látni fogjuk, kezdetben történetünk hősei is ide tartoztak) azon a véleményen volt, hogy harmadfokú egyenleteket az általános esetben nem is lehet megoldani. Scipione del Ferro De volt egy ember, akit Pacioli véleménye nem tántorított el. Ez Scipione del Ferro ( ) volt, a Bolognai Egyetem matematika professzora, aki az x 3 + ax = b (1) 2 Annak a feladatnak (mechanikus) megoldási szabályáról van szó, amelyben három szám ismeretében olyan negyedik számot keresünk, amelynek aránya az egyikhez képest megegyezik a másik két szám arányával (a szerkesztő megjegyzése). 3 A könyv Gaussról szóló fejezetének függeléke tartalmaz egy, a fent említett állításnál jóval tartalmasabb eredményt bizonyítással együtt (a szerkesztő megjegyzése).

4 24 TÖRTÉNETEK FIZIKUSOKRÓL ÉS MATEMATIKUSOKRÓL alakú egyenletekre talált megoldást. Negatív számokat akkor még nem használtak, ezért például az x 3 = ax + b (2) egyenlet már teljesen más típusúnak számított! Erről a megoldásról csak közvetett információink vannak. Del Ferro azt csak vejének, egyben katedrája örökösének, Hannibal della Navénak és tanítványának, Antonio Mario Fiorénak árulta el. Utóbbi tanára halála után úgy döntött, hogy a rábízott titkot arra használja fel, hogy legyőzhetetlenné váljon olyan párviadalokon, ahol matematikai példákat oldottak meg. Ezek akkoriban nagyon elterjedtek voltak február 12-én egy ilyen párviadalnak kis híján Niccolò Tartaglia történetünk egyik főszereplője lett az áldozata. Niccolò Tartaglia Tartaglia 1500 környékén született Bresciában, egy szegény lovas küldönc, Fontane családjában. Gyermekkorában, amikor a franciák elfoglalták szülővárosát, gégéje megsérült, és ezután már csak nagy nehézségek árán tudott beszélni. Ezért kapta a Tartaglia gúnynevet is, ami annyit jelent, hogy dadogós. Korán árvaságra jutott, édesanyja mégis iskolába íratta, ám elfogyott a pénzük, amikor a k betűhöz értek. Tartaglianak úgy kellett elhagynia az iskolát, hogy még a nevét sem tudta leírni. Ezután önállóan folytatta Tartaglia egyetlen ismert képe tanulmányait, és az abakusz magisztere lett (ez kereskedelmi iskolai számtantanárt jelent). Sokat utazott Itália-szerte, míg 1534-ben Velencébe nem került. Itt tudományos tevékenységét tovább ösztönözték a híres velencei fegyvergyár helybéli mérnökeivel és lövészeivel felvett kapcsolatok. Megkérdezték például tőle, hogy milyen szögben kell az ágyút felfelé irányítani, hogy a lövedék a lehető legmesszebb jusson. Azt válaszolta és ezzel teljesen meglepte kérdezőit, hogy 45 -ban. Nem hitték el neki, hogy a csövet ilyen magasra kell emelni, de néhány egyedi kísérlet bebizonyította igazát. Habár Tartaglia azt állította, hogy matematikai következtetések vezették a válaszra, ez inkább empirikus megfigyelés eredménye lehetett (a bizonyítást először Galilei adta meg).

5 ANAGYMŰVÉSZET 25 Tartaglia két könyvet jelentetett meg, amelyek egymás folytatásai voltak: Az új tudományt (La Nova Scientia, 1537) és a Problémák és különféle találmányok (Quesiti et Inventioni diverse de Niccolo Tartalea, 1546) címűt, amelyben többek között azt ígéri az olvasónak, hogy megismerteti őt... olyan új találmányokkal, amelyeket nem loptak sem Platóntól, sem Plótinosztól 4 sem más görögöktől vagy latinoktól, hanem kizárólag művészet, mérés és ész segítségével találtak. A könyveket olaszul írta, dialógus formájában. Ezt a formát később Galilei is átvette, akinek Tartaglia egy sor kérdésben előfutára volt. Habár első könyvében még megismételte Arisztotelész állítását, amely szerint egy ferde szögben elhajított test először a hajítás irányában egyenesen repül, majd köríven, és végül függőleges irányban lefelé esik; de második könyvében azt írja, hogy a röppálya ívének egyetlen olyan része sincs, amelyik teljesen egyenes lenne. Tartaglia érdeklődött még a lejtőn álló testek egyensúlyi helyzete, továbbá a szabadesés iránt is (tanítványa, Benedetti meggyőzően mutatta meg, hogy a testek esésének jellege nem függhet súlyuktól). Fontos szerepet játszottak még a tudományban Tartaglia Arisztotelész és Eukleidész fordításai olasz nyelvre (amit ő népinek nevez, szemben a latinnal), és a hozzájuk írt részletes kommentárjai. Emberi tulajdonságait tekintve Tartaglia egyáltalán nem volt makulátlan, és kapcsolatai tele voltak bonyodalmakkal. Bombelli (aki ugyan nem volt elfogulatlan, de róla majd később) azt írta róla: ez az ember természeténél fogva annyira csak rosszat tudott mondani másokról, hogy még akkor is, amikor valakit káromolt, azt képzelte, hogy kedvesen nyilatkozott róla. Más tanúk szerint (Pedro Nuñes) időnként annyira izgalomba jött, hogy teljesen őrültnek látszott. De térjünk vissza a párviadalhoz. Tartaglia tapasztalt volt az ilyen párbajokban, és úgy gondolta, hogy könnyű győzelmet fog aratni Fiore felett. Még akkor sem ijedt meg, amikor látta, hogy az ellenfél mind a 30 feladata az (1) képletnek felel meg, különböző a és b értékekkel. Tartaglia úgy gondolta, hogy Fiore maga sem tudja megoldani feladatait, és az volt a szándéka, hogy leleplezi: Úgy gondoltam, hogy egyik feladat sem oldható meg, mert Luca testvér (Pacioli Sz. G.) azt írta könyvében, hogy az ilyen feladatokat nem lehet egységes képlettel megoldani. Amikor már a végéhez közeledett az 50 napos határidő, ami után a feleknek le kellett adniuk megoldásaikat a jegyzőnek, Tartagliának tudomására jutott, hogy Fiore titkos módszerrel rendelkezik az (1) típusú feladatok megoldására. Az a lehetőség, hogy Fiorét és annyi barátját, ahány feladatot ellenfele megoldott, pompás ebéddel vendégeljen 4 Plótinosz ( ), görög filozófus, az újplatonikus iskola alapítója.

6 26 TÖRTÉNETEK FIZIKUSOKRÓL ÉS MATEMATIKUSOKRÓL meg (ezek voltak ugyanis a szabályok!) nem vonzotta Tartagliát. Hatalmas erőfeszítéssel munkához látott, és nyolc nappal a határidő lejárta előtt (1535. február 12-én) rámosolyogott a szerencse: megtalálta a megfelelő módszert! Két óra leforgása alatt Tartaglia az összes feladatot megoldotta. Ellenfele viszont Tartaglia egyik feladatát sem tudta megoldani; furcsa módon még egy olyan feladatot sem, amelyik pedig del Ferro képletével megoldható lett volna. (Tartaglia ezt néhány, a megoldásban felhasználható mesterséges trükkre gondolva adta fel.) Bár később látni fogjuk, hogy a megoldóképlet használata igencsak bonyolult. Egy nappal később Tartaglia a (2) egyenlet általános megoldását is megtalálta. Tartaglia és Fiore párviadaláról sokan tudtak. Ilyen helyzetben a titkos fegyver nem segítette, hanem éppen ellenkezőleg, akadályozta Tartagliát későbbi párviadalokban. Ki lett volna hajlandó kiállni ellene, ha a viadal kimenetele eleve biztos? Mégis Tartaglia jónéhányszor visszautasítja azt a kérést, hogy árulja el a harmadfokú egyenletek megoldásának titkát. Volt azonban egy faggatózó, aki elérte amit akart. Ez Girolamo Cardano volt, történetünk másik hőse. Girolamo Cardano Girolamo Cardano szeptember 24-én született Paviában. Apjáról, Fazio Cardanóról, aki széles érdeklődésű ember és képzett jogász volt, Leonardo da Vinci is említést tesz. Ő volt fia első tanítója. Miután Girolamo befejezte tanulmányait a páduai egyetemen, úgy döntött, hogy az orvoslásnak szenteli életét. Törvénytelen gyermek volt, és ez megakadályozta abban, hogy a milánói orvoskollégiumba bekerülhessen. Sokáig praktizált szerte az országban, míg 1539 augusztusában végül felvételt nyert a kollégiumba, amely külön e célból változtatta meg szabályait. Cardano kora egyik leghíresebb orvosa volt, valószínűleg a második, barátja, Andreas Vesalius után. Idős korában Cardano megírta önéletrajzát Életem könyve (De vita propria liber) címen. Ebben mindössze egy-két utalást találunk csak matematikai munkásságáról, ellenben részletesen ecseteli orvostudományi kutatásait. Azt állította, hogy leírt ötezer nehezen gyógyítható betegséget és azok kezelését, hogy az általa megoldott problémák és kérdések száma eléri a negyvenezret, és apróbb útmutatásainak száma kétszázezerre rúg. Természetesen ezeket a számokat erős szkepszissel kell fogadnunk. Mégis, az orvos Cardano tekintélye megkérdőjelezhetetlen. Könyvében több esetet is leír praxisából, kiemelve azokat, amikor híres embereket gyógyított (Hamilton skót érseket, Morone kardinálist s í.t), és azt állítja, hogy életében csak háromszor

Komplex számok. Wettl Ferenc Wettl Ferenc () Komplex számok / 9

Komplex számok. Wettl Ferenc Wettl Ferenc () Komplex számok / 9 Komplex számok Wettl Ferenc 2010-09-10 Wettl Ferenc () Komplex számok 2010-09-10 1 / 9 Tartalom 1 Számok Egy kis történelem A megoldóképlet egy speciális esetre Lehet számolni negatív szám gyökével Műveletek

Részletesebben

Komplex számok. Wettl Ferenc Wettl Ferenc () Komplex számok / 14

Komplex számok. Wettl Ferenc Wettl Ferenc () Komplex számok / 14 Komplex számok Wettl Ferenc 2012-09-07 Wettl Ferenc () Komplex számok 2012-09-07 1 / 14 Tartalom 1 Számok A számfogalom b vülése Egy kis történelem 2 Miért számolunk velük? A megoldóképlet egy speciális

Részletesebben

Komplex számok. Wettl Ferenc szeptember 14. Wettl Ferenc Komplex számok szeptember / 23

Komplex számok. Wettl Ferenc szeptember 14. Wettl Ferenc Komplex számok szeptember / 23 Komplex számok Wettl Ferenc 2014. szeptember 14. Wettl Ferenc Komplex számok 2014. szeptember 14. 1 / 23 Tartalom 1 Számok A számfogalom b vülése Egy kis történelem 2 Miért számolunk velük? A megoldóképlet

Részletesebben

Molnár Zoltán. A matematika reneszánsza

Molnár Zoltán. A matematika reneszánsza Molnár Zoltán A matematika reneszánsza Művelődéstörténeti korszak, korstílus, stílusirányzat 1350/1400-1600. (XV-XVI. század) A szó (renaissance) jelentése: újjászületés Visszatérés az antikvitáshoz (ókori

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Komplex számok StKis, EIC 2019-02-06 Wettl Ferenc

Részletesebben

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18 Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök

Részletesebben

Algebra es sz amelm elet 3 el oad as Nevezetes sz amelm eleti probl em ak Waldhauser Tam as 2014 oszi f el ev

Algebra es sz amelm elet 3 el oad as Nevezetes sz amelm eleti probl em ak Waldhauser Tam as 2014 oszi f el ev Algebra és számelmélet 3 előadás Nevezetes számelméleti problémák Waldhauser Tamás 2014 őszi félév Tartalom 1. Számok felbontása hatványok összegére 2. Prímszámok 3. Algebrai és transzcendens számok Tartalom

Részletesebben

Követelmény a 6. évfolyamon félévkor matematikából

Követelmény a 6. évfolyamon félévkor matematikából Követelmény a 6. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Halmazba rendezés adott tulajdonság alapján, részhalmaz felírása, felismerése. Két véges halmaz közös részének,

Részletesebben

Matematika a középkorban ( )

Matematika a középkorban ( ) Matematika a középkorban (476-1492) 1) A középkori matematika fejlődésének területei a) Kína b) India c) Iszlám d) Európa e) Magyarország 2) A klasszikus indiai matematika a) Korát meghazudtoló eredményei

Részletesebben

A RENESZÁNSZ MATEMATIKA EGYIK LEGSZEBB EREDMÉNYE

A RENESZÁNSZ MATEMATIKA EGYIK LEGSZEBB EREDMÉNYE A RENESZÁNSZ MATEMATIKA EGYIK LEGSZEBB EREDMÉNYE Szabó Péter Gábor PhD, egyetemi adjunktus, u Görög előzmények A matematika az ókori görögök révén vált és Mezopotámia matematikai tárgyú emlé kei arról

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Klasszikus algebra előadás. Waldhauser Tamás április 14.

Klasszikus algebra előadás. Waldhauser Tamás április 14. Klasszikus algebra előadás Waldhauser Tamás 2014. április 14. Többhatározatlanú polinomok 4.3. Definíció. Adott T test feletti n-határozatlanú monomnak nevezzük az ax k 1 1 xk n n alakú formális kifejezéseket,

Részletesebben

Követelmény az 5. évfolyamon félévkor matematikából

Követelmény az 5. évfolyamon félévkor matematikából Követelmény az 5. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Néhány elem kiválasztása adott szempont szerint. Néhány elem sorba rendezése, az összes lehetséges sorrend felsorolása.

Részletesebben

Mi az, hogy egyenlet. Megoldhatók-e az egyenletek. Mi az, hogy egyenlet. Mi az, hogy egyenlet. Számokat keresünk 3.

Mi az, hogy egyenlet. Megoldhatók-e az egyenletek. Mi az, hogy egyenlet. Mi az, hogy egyenlet. Számokat keresünk 3. A probléma Megoldhatók-e az egyenletek. Időutazás a matematika 4000 éves történetében. Klukovits Lajos TTIK Bolyai Intézet 2015. november 24. Egy egyszerű definíció. Egy vagy több olyan matematikai objektumot

Részletesebben

1. Interpoláció. Egyértelműség (K2.4.10) Ha f és g ilyen polinomok, akkor n helyen megegyeznek, így a polinomok azonossági tétele miatt egyenlők.

1. Interpoláció. Egyértelműség (K2.4.10) Ha f és g ilyen polinomok, akkor n helyen megegyeznek, így a polinomok azonossági tétele miatt egyenlők. 1. Interpoláció Az interpoláció alapproblémája Feladat Olyan polinomot keresünk, amely előre megadott helyeken előre megadott értékeket vesz fel. A helyek: páronként különböző a 1,a 2,...,a n számok. Az

Részletesebben

SZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM

SZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM SZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM A vizsga szerkezete: A vizsga írásbeli és szóbeli vizsgarészből áll. 1.) Írásbeli vizsga Időtartama: 45 perc Elérhető pontszám: 65 pont Feladattípusok:

Részletesebben

TANMENET. Matematika

TANMENET. Matematika Bethlen Gábor Református Gimnázium és Szathmáry Kollégium 6800 Hódmezővásárhely, Szőnyi utca 2. Telefon: +36-62-241-703 www.bgrg.hu OM: 029736 TANMENET Matematika 2016/2017 9. B tagozat Összeállította:

Részletesebben

ALGEBRAI KIFEJEZÉSEK, EGYENLETEK

ALGEBRAI KIFEJEZÉSEK, EGYENLETEK ALGEBRAI KIFEJEZÉSEK, EGYENLETEK AZ ALGEBRAI KIFEJEZÉS FOGALMÁNAK KIALAKÍTÁSA (7-9. OSZTÁLY) Racionális algebrai kifejezés (betűs kifejezés): betűket és számokat a négy alapművelet véges sokszori alkalmazásával

Részletesebben

Az első könyvviteli tankönyv

Az első könyvviteli tankönyv Az első könyvviteli tankönyv 520 évvel ezelőtt 1494-ben látott napvilágot Fra Luca Pacioli dal Borgo San Sepolcro: Summa de arithmetica, geometria, proportioni et proportionalita Vinegia c. munkája. E

Részletesebben

A törzsszámok sorozatáról

A törzsszámok sorozatáról A törzsszámok sorozatáról 6 = 2 3. A 7 nem bontható fel hasonló módon két tényez őre, ezért a 7-et törzsszámnak nevezik. Törzsszámnak [1] nevezzük az olyan pozitív egész számot, amely nem bontható fel

Részletesebben

ARANYMETSZÉS. - érettségi dolgozat védése analízis és algebrából - Készítette: Szénási Eszter Mentor: Dr. Péics Hajnalka június 11.

ARANYMETSZÉS. - érettségi dolgozat védése analízis és algebrából - Készítette: Szénási Eszter Mentor: Dr. Péics Hajnalka június 11. ARANYMETSZÉS - érettségi dolgozat védése analízis és algebrából - Készítette: Szénási Eszter Mentor: Dr. Péics Hajnalka 2014. június 11. Zenta TARTALMI ÁTTEKINTÉS Az aranymetszés fogalma eredete és előfordulása

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 016. ősz 1. Diszkrét matematika 1. középszint 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Milyen a modern matematika?

Milyen a modern matematika? Milyen a modern matematika? Simonovits Miklós Milyen a modern matematika? p.1 Miért rossz ez a cím? Nem világos, mit értek modern alatt? A francia forradalom utánit? Általában olyat tanulunk, amit már

Részletesebben

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában 9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában Bevezet : A témakörben els - és másodfokú egyenl tlenségek megoldásának

Részletesebben

Magasabbfokú egyenletek 1.

Magasabbfokú egyenletek 1. Magasabbfokú egyenletek. XVI XVIII. század. Előzmények. Csak pozitív együtthatókat megengedve a következő három típussal kell foglalkozni (azt már az iszlám matematikusok is tudták, hogy hogyan lehet megszabadulni

Részletesebben

Orbán Béla EGY CSEPP GEOMETRIA

Orbán Béla EGY CSEPP GEOMETRIA Orbán Béla EGY CSEPP GEOMETRIA A matematikai feladatok egy része olyan szellemi erőfeszítést igénylő rejtvényként fogható fel, amelynek megoldása jóleső érzést (sikerélményt) biztosít. Fokozott mértékben

Részletesebben

2018/2019. Matematika 10.K

2018/2019. Matematika 10.K Egész éves dolgozat szükséges felszerelés: toll, ceruza, radír, vonalzó, körző, számológép, függvénytáblázat 2 órás, 4 jegyet ér 2019. május 27-31. héten Aki hiányzik, a következő héten írja meg, e nélkül

Részletesebben

Matematika 8. osztály

Matematika 8. osztály ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Hat évfolyamos Matematika 8. osztály I. rész: Algebra Készítette: Balázs Ádám Budapest, 2018 2. Tartalomjegyzék Tartalomjegyzék I. rész: Algebra................................

Részletesebben

Fejezetek a Matematika

Fejezetek a Matematika Fejezetek a Matematika Kultúrtörténetéből Dormán Miklós Szegedi Tudományegyetem TTIK Bolyai Intézet 2013 október 25 Az ókori Görögország matematikája 2 rész Éliszi Hippiász (kb 420 körül): az egyik szögharmadoló

Részletesebben

Lineáris algebra mérnököknek

Lineáris algebra mérnököknek B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Vektorok, testek, komplex számok Kf81 2018-09-14

Részletesebben

Matematika osztályozó vizsga témakörei 9. évfolyam II. félév:

Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: 7. Függvények: - függvények fogalma, megadása, ábrázolás koordináta- rendszerben - az elsőfokú függvény, lineáris függvény - a másodfokú függvény

Részletesebben

Waldhauser Tamás szeptember 15.

Waldhauser Tamás szeptember 15. Algebra és számelmélet előadás Waldhauser Tamás 2016. szeptember 15. Házi feladat a gyakorlatra 4. feladat. Ábrázolja a Gauss-féle számsíkon az alábbi számhalmazokat. { (a) z C: 0 arg (zi) < π } (b) {z

Részletesebben

Mi az, hogy egyenlet. Megoldhatók-e az egyenletek. Mi az, hogy egyenlet. Több egyenlet együttese az ókorban. Számokat keresünk 2.

Mi az, hogy egyenlet. Megoldhatók-e az egyenletek. Mi az, hogy egyenlet. Több egyenlet együttese az ókorban. Számokat keresünk 2. A probléma Mi az, hogy egyenlet. Megoldhatók-e az egyenletek. Időutazás a matematika 4000 éves történetében. Klukovits Lajos TTIK Bolyai Intézet 2017. május 4. Egy egyszerű definíció. Egy vagy több olyan

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,

Részletesebben

Követelmény a 7. évfolyamon félévkor matematikából

Követelmény a 7. évfolyamon félévkor matematikából Követelmény a 7. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Elemek halmazba rendezése több szempont alapján. Halmazok ábrázolása. A nyelv logikai elemeinek helyes használata.

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Typotex Kiadó. Bevezetés

Typotex Kiadó. Bevezetés Bevezetés A bennünket körülvevő világ leírásához ősidők óta számokat is alkalmazunk. Tekintsük át a számfogalom kiépülésének logikai-történeti folyamatát, amely minden valószínűség szerint a legkorábban

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

TANMENET. a matematika tantárgy tanításához 10. E.osztályok számára

TANMENET. a matematika tantárgy tanításához 10. E.osztályok számára Az iskola fejbélyegzője TANMENET a matematika tantárgy tanításához 10. E.osztályok számára Készítette: Természettudományi Munkaközösség matematikát tanító tanárai Készült: a gimnáziumi tanterv alapján

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2) 2. előadás Komplex számok (2) 1. A a + bi (a, b) kölcsönösen egyértelmű megfeleltetés lehetővé teszi, hogy a komplex számokat a sík pontjaival, illetve helyvektoraival ábrázoljuk. A derékszögű koordináta

Részletesebben

Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag!

Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag! Részletes követelmények Matematika házivizsga Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag! A vizsga időpontja: 2015. április

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika

Részletesebben

Számsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás

Számsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás 12. évfolyam Osztályozó vizsga 2013. augusztus Számsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás Ismerje a számsorozat

Részletesebben

Egy ismerős fizika - feladatról. Az interneten találtuk az [ 1 ] könyvet, benne egy ismerős fizika - feladattal 1. ábra.

Egy ismerős fizika - feladatról. Az interneten találtuk az [ 1 ] könyvet, benne egy ismerős fizika - feladattal 1. ábra. 1 Egy ismerős fizika - feladatról Az interneten találtuk az [ 1 ] könyvet, benne egy ismerős fizika - feladattal 1. ábra. 1. ábra forrása: [ 1 ] A feladat szerint beleejtünk egy kútba / aknába egy követ,

Részletesebben

6. OSZTÁLY. Az évi munka szervezése, az érdeklõdés felkeltése Feladatok a 6. osztály anyagából. Halmazok Ismétlés (halmaz megadása, részhalmaz)

6. OSZTÁLY. Az évi munka szervezése, az érdeklõdés felkeltése Feladatok a 6. osztály anyagából. Halmazok Ismétlés (halmaz megadása, részhalmaz) 6. OSZTÁLY Óraszám 1. 1. Az évi munka szervezése, az érdeklõdés felkeltése a 6. osztály anyagából Tk. 13/elsõ mintapélda 42/69 70. 96/elsõ mintapélda 202/16. 218/69. 2 3. 2 3. Halmazok Ismétlés (halmaz

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/7 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

TANMENET 2015/16. Készítette: KOVÁCS ILONA, Felhasználja: Juhász Orsolya

TANMENET 2015/16. Készítette: KOVÁCS ILONA, Felhasználja: Juhász Orsolya Tantárgy: Matematika Osztály: 10. B Készítette: KOVÁCS ILONA, Felhasználja: Juhász Orsolya Vetési Albert Gimnázium, Veszprém Heti óraszám: 3 Éves óraszám: 108 Tankönyv: Hajdu Sándor Czeglédy István Hajdu

Részletesebben

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél Emelt szintű matematika érettségi előkészítő 11. évfolyam Tematikai egység/fejlesztési cél Órakeret 72 óra Kötelező Szabad Összesen 1. Gondolkodási módszerek Halmazok, matematikai logika, kombinatorika,

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 10 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Függvény fogalma, jelölések 15

Függvény fogalma, jelölések 15 DOLGO[Z]ZATOK 9.. 1. Függvény fogalma, jelölések 1 1. Az alábbi hozzárendelések közül melyek függvények? a) A magyarországi megyékhez hozzárendeljük a székhelyüket. b) Az egész számokhoz hozzárendeljük

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

A Szekszárdi I. Béla Gimnázium Helyi Tanterve

A Szekszárdi I. Béla Gimnázium Helyi Tanterve A Szekszárdi I. Béla Gimnázium Helyi Tanterve Matematika Készítette: a gimnázium reál szakmai munkaközössége 2015. Tartalom Emelt szintű matematika képzés... 3 Matematika alapóraszámú képzés... 47 Matematika

Részletesebben

Matematika pótvizsga témakörök 9. V

Matematika pótvizsga témakörök 9. V Matematika pótvizsga témakörök 9. V 1. Halmazok, műveletek halmazokkal halmaz, halmaz eleme halmazok egyenlősége véges, végtelen halmaz halmazok jelölése, megadása természetes számok egész számok racionális

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.

Részletesebben

P ÓTVIZSGA F ELKÉSZÍTŐ FÜZETEK UNIÓS RENDSZERŰ PÓTVIZSGÁHOZ. 9. osztályosoknak SZAKKÖZÉP

P ÓTVIZSGA F ELKÉSZÍTŐ FÜZETEK UNIÓS RENDSZERŰ PÓTVIZSGÁHOZ. 9. osztályosoknak SZAKKÖZÉP J UHÁSZ I STVÁN P ÓTVIZSGA F ELKÉSZÍTŐ FÜZETEK UNIÓS RENDSZERŰ PÓTVIZSGÁHOZ T é m a k ö r ö k é s p r ó b a f e l a d a t s o r 9. osztályosoknak SZAKKÖZÉP 1. oldal 9. OSZTÁLYOS PÓTVIZSGA TÉMAKÖRÖK: I.

Részletesebben

Lineáris egyenletrendszerek Műveletek vektorokkal Geometriai transzformációk megadása mátrixokkal Determinánsok és alkalmazásaik

Lineáris egyenletrendszerek Műveletek vektorokkal Geometriai transzformációk megadása mátrixokkal Determinánsok és alkalmazásaik 1. Bevezetés A félév anyaga. Komplex számok Műveletek Kapcsolat a geometriával Gyökvonás Polinomok A gyökök száma A gyökök és együtthatók összefüggése Szorzatra bontás, számelméleti kérdések A harmad-

Részletesebben

: s s t 2 s t. m m m. e f e f. a a ab a b c. a c b ac. 5. Végezzük el a kijelölt m veleteket a változók lehetséges értékei mellett!

: s s t 2 s t. m m m. e f e f. a a ab a b c. a c b ac. 5. Végezzük el a kijelölt m veleteket a változók lehetséges értékei mellett! nomosztással a megoldást visszavezethetjük egy alacsonyabb fokú egyenlet megoldására Mivel a 4 6 8 6 egyenletben az együtthatók összege 6 8 6 ezért az egyenletnek gyöke az (mert esetén a kifejezés helyettesítési

Részletesebben

A másod- és harmadfokú egyenletek nomogramjai

A másod- és harmadfokú egyenletek nomogramjai A másod- és harmadfokú egyenletek nomogramjai Bálint Roland és Szalkai István Pannon Egyetem, Veszprém, balint.roland@virt.uni-pannon.hu, szalkai@almos.uni-pannon.hu 07..8. Kivonat A másodfokú egyenletet

Részletesebben

Diszkrét matematika 1.

Diszkrét matematika 1. Diszkrét matematika 1. Nagy Gábor nagy@compalg.inf.elte.hu nagygabr@gmail.com ELTE IK Komputeralgebra Tanszék 014. ősz 014-15 őszi félév Gyakorlat: 1. ZH tervezett időpontja: október 1.,. ZH tervezett

Részletesebben

2017/2018. Matematika 9.K

2017/2018. Matematika 9.K 2017/2018. Matematika 9.K Matematika javítóvizsga 2018. augusztus szóbeli 3 rövidebb (feladat, definíció, tétel) és 3 hosszabb feladat megoldása a 30 perces felkészülési idő alatt a megoldás ismertetése

Részletesebben

MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ

MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: középszinten a

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten KOMPLEX SZÁMOK Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 Történeti bevezetés

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam

Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam Helyi tanterv Német nyelvű matematika érettségi előkészítő 11. évfolyam Tematikai egység címe órakeret 1. Gondolkodási és megismerési módszerek 10 óra 2. Geometria 30 óra 3. Számtan, algebra 32 óra Az

Részletesebben

2015. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 11. évfolyam

2015. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 11. évfolyam 015. évi Bolyai János Megyei Matematikaverseny A közölt megoldási utak a feladatoknak nem az egyetlen helyes megoldási módját adják meg, több eltérő megoldás is lehetséges. Az útmutatótól eltérő megoldásokat

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:

Részletesebben

Tartalom. Algebrai és transzcendens számok

Tartalom. Algebrai és transzcendens számok Nevezetes számelméleti problémák Tartalom 6. Nevezetes számelméleti problémák Számok felbontása hatványok összegére Prímszámok Algebrai és transzcendens számok 6.1. Definíció. Az (x, y, z) N 3 számhármast

Részletesebben

TARTALOM. MATEMATIKA - MD Matematika oktatótablók 135 Geometriai oktatótablók 136 Táblai vonalzók 137 Geometria 138 Fóliamappák 139 141

TARTALOM. MATEMATIKA - MD Matematika oktatótablók 135 Geometriai oktatótablók 136 Táblai vonalzók 137 Geometria 138 Fóliamappák 139 141 TARTALOM MATEMATIKA - MD Matematika oktatótablók 135 Geometriai oktatótablók 136 Táblai vonalzók 137 Geometria 138 Fóliamappák 139 141 INFORMATIKA Informatikai falitablók 142 MATEMATIKAI OKTATÓTABLÓK 50

Részletesebben

Vizsgakövetelmények matematikából a 2. évfolyam végén

Vizsgakövetelmények matematikából a 2. évfolyam végén Vizsgakövetelmények matematikából az 1. évfolyam végén - - Ismert halmaz elemeinek adott szempont szerinti összehasonlítására, szétválogatására. Az elemek közös tulajdonságainak felismerésére, megnevezésére.

Részletesebben

Középkori matematika

Középkori matematika Fizikatörténet Középkori matematika Horváth András SZE, Fizika és Kémia Tsz. v 1.0 Bevezetés Láttuk korábban: A természettudomány forradalmát a középkor társadalmi, technikai és tudományos eredményei készítik

Részletesebben

pontos értékét! 4 pont

pontos értékét! 4 pont DOLGO[Z]ZATOK 10. kifejezést, és adjuk meg az értelmezé-. Írjuk fel gyökjel nélkül a si tartományát! 9x 1x1 3. Határozzuk meg azt az x valós számot, amelyre igaz, hogy x 1!. Határozzuk meg a következő

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító ME-III.1./1 2 Azonosító: Változatszám : Érvényesség kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK-DC-2013 2013. 09. 01. MATEMATIKA

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

Tanmenet a Matematika 10. tankönyvhöz

Tanmenet a Matematika 10. tankönyvhöz Tanmenet a Matematika 10. tankönyvhöz (111 óra, 148 óra, 185 óra) A tanmenetben olyan órafelosztást adunk, amely alkalmazható mind a középszintû képzés (heti 3 vagy heti 4 óra), mind az emelt szintû képzés

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 5 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

A(a; b) = 2. A(a; b) = a+b. Példák A(37; 49) = x 2x = x = : 2 x = x = x

A(a; b) = 2. A(a; b) = a+b. Példák A(37; 49) = x 2x = x = : 2 x = x = x 10. osztály:nevezetes középértékek Összeállította:Keszeg ttila 1 1 számtani közép efiníció 1. (Két nemnegatív szám számtani közepe) Két nemnegatív szám számtani közepének a két szám összegének a felét

Részletesebben

16. modul: ALGEBRAI AZONOSSÁGOK

16. modul: ALGEBRAI AZONOSSÁGOK MATEMATIK A 9. évfolyam 16. modul: ALGEBRAI AZONOSSÁGOK KÉSZÍTETTE: VIDRA GÁBOR, DARABOS NOÉMI ÁGNES Matematika A 9. évfolyam. 16. modul: ALGEBRAI AZONOSSÁGOK Tanári útmutató 2 A modul célja Időkeret Ajánlott

Részletesebben

Matematika 9. nyelvi előkészítő évfolyam. 1 óra/hét (37 óra) Kiselőadások tartása, interjúk készítése (matematikatörténeti

Matematika 9. nyelvi előkészítő évfolyam. 1 óra/hét (37 óra) Kiselőadások tartása, interjúk készítése (matematikatörténeti Matematika 9. nyelvi előkészítő évfolyam Témakörök Gondolkodási és megismerési módszerek Számtan, algebra Összefüggések, függvények, sorozatok Geometria, mérés Statisztika, valószínűség Év végi összefoglaló

Részletesebben

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet   takach november 30. 1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű

Részletesebben

Fényi Gyula Jezsuita Gimnázium és Kollégium Miskolc, Fényi Gyula tér Tel.: (+36-46) , , , Fax: (+36-46)

Fényi Gyula Jezsuita Gimnázium és Kollégium Miskolc, Fényi Gyula tér Tel.: (+36-46) , , , Fax: (+36-46) Fényi Gyula Jezsuita Gimnázium és Kollégium 529 Miskolc, Fényi Gyula tér 2-12. Tel.: (+6-46) 560-458, 560-459, 560-58, Fax: (+6-46) 560-582 E-mail: fenyi@jezsuita.hu Honlap: www.jezsu.hu A JECSE Jesuit

Részletesebben

MATEMATIKA. 9 10. évfolyam. Célok és feladatok. Fejlesztési követelmények

MATEMATIKA. 9 10. évfolyam. Célok és feladatok. Fejlesztési követelmények MATEMATIKA 9 10. évfolyam 1066 MATEMATIKA 9 10. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata, hogy megalapozza a tanulók korszerű, alkalmazásra képes matematikai műveltségét,

Részletesebben

Egy sajátos ábrázolási feladatról

Egy sajátos ábrázolási feladatról 1 Egy sajátos ábrázolási feladatról Régen volt, ha volt egyáltalán. Én bizony nem emlékszem a ferde gerincvonalú túleme - lés ~ átmeneti megoldásra 1. ábra az ( erdészeti ) útépítésben. 1. ábra forrása:

Részletesebben

projektív geometria avagy

projektív geometria avagy A probléma eredete. Előzmények. Egy művészetből született tudomány, a projektív geometria avagy Hogyan lett a barackmagból atommag? Klukovits Lajos TTIK Bolyai Intézet 2015. november 17. A képzőművészeti

Részletesebben

TANMENET. a matematika tantárgy tanításához a 12. E osztályok számára

TANMENET. a matematika tantárgy tanításához a 12. E osztályok számára Az iskola fejbélyegzője TANMENET a matematika tantárgy tanításához a 12. E osztályok számára Készítette: Természettudományi Munkaközösség matematikát tanító tanárai Készült: a gimnáziumi tanterv alapján

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)

Részletesebben

PISA2000. Nyilvánosságra hozott feladatok matematikából

PISA2000. Nyilvánosságra hozott feladatok matematikából PISA2000 Nyilvánosságra hozott feladatok matematikából Tartalom Tartalom 3 Almafák 8 Földrész területe 12 Háromszögek 14 Házak 16 Versenyautó sebessége Almafák M136 ALMAFÁK Egy gazda kertjében négyzetrács

Részletesebben

Követelmény a 8. évfolyamon félévkor matematikából

Követelmény a 8. évfolyamon félévkor matematikából Követelmény a 8. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Halmazokkal kapcsolatos alapfogalmak ismerete, halmazok szemléltetése, halmazműveletek ismerete, eszköz jellegű

Részletesebben

Matematika tanmenet 10. osztály (heti 3 óra) A gyökvonás 14 óra

Matematika tanmenet 10. osztály (heti 3 óra) A gyökvonás 14 óra Matematika tanmenet 10. osztály (heti 3 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 10. Példatárak: Fuksz Éva Riener Ferenc: É rettségi feladatgyűjtemény matematikából

Részletesebben

Egy általános iskolai feladat egyetemi megvilágításban

Egy általános iskolai feladat egyetemi megvilágításban Egy általános iskolai feladat egyetemi megvilágításban avagy mit kell(ene) tudnia egy 8.-osnak a matematika versenyeken Kunos Ádám Középiskolás pályázat díjkiosztó SZTE Bolyai Intézet 2011. november 12.

Részletesebben

Poncelet egy tételéről

Poncelet egy tételéről 1 Poncelet egy tételéről Már régebben találkoztunk az [ 1 ] műben egy problémával, mostanában pedig a [ 2 ] műben a megoldásával. A probléma lényege: határozzuk meg a egyenletben szereplő α, β együtthatókat,

Részletesebben

A logika, és a matematikai logika alapjait is neves görög tudós filozófus Arisztotelész rakta le "Analitika" című művében, Kr.e. IV. században.

A logika, és a matematikai logika alapjait is neves görög tudós filozófus Arisztotelész rakta le Analitika című művében, Kr.e. IV. században. LOGIKA A logika tudománnyá válása az ókori Görögországban kezdődött. Maga a logika szó is görög eredetű, a logosz szó jelentése: szó, fogalom, ész, szabály. Már az első tudósok, filozófusok, és politikusok

Részletesebben

ÍRÁSBELI BELSŐ VIZSGA MATEMATIKA 8. évfolyam reál tagozat Az írásbeli vizsga gyakorlati és elméleti feladatai a következő témakörökből származnak.

ÍRÁSBELI BELSŐ VIZSGA MATEMATIKA 8. évfolyam reál tagozat Az írásbeli vizsga gyakorlati és elméleti feladatai a következő témakörökből származnak. ÍRÁSBELI BELSŐ VIZSGA MATEMATIKA 8. évfolyam reál tagozat Az írásbeli vizsga gyakorlati és elméleti feladatai a következő témakörökből származnak. Időtartam: 60 perc 1. Halmazműveletek konkrét halmazokkal.

Részletesebben

A szabályos sokszögek közelítő szerkesztéséhez

A szabályos sokszögek közelítő szerkesztéséhez 1 A szabályos sokszögek közelítő szerkesztéséhez A síkmértani szerkesztések között van egy kedvencünk: a szabályos n - szög közelítő szerkesztése. Azért vívta ki nálunk ezt az előkelő helyet, mert nagyon

Részletesebben

II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés

II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés Nagyon könnyen megfigyelhetjük, hogy akármilyen két számmal elindítunk egy Fibonacci sorozatot, a sorozat egymást követő tagjainak

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2017/2018-as tanév 2. forduló Haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2017/2018-as tanév 2. forduló Haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 017/018-as tanév. forduló Haladók II. kategória Megoldások és javítási útmutató 1. Egy tanár kijavította egy 1 f s csoport dolgozatait.

Részletesebben

hogy a megismert fogalmakat és tételeket változatos területeken használhatjuk Az adatok, táblázatok, grafikonok értelmezésének megismerése nagyban

hogy a megismert fogalmakat és tételeket változatos területeken használhatjuk Az adatok, táblázatok, grafikonok értelmezésének megismerése nagyban MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben