a fizikai (hullám) optika

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "a fizikai (hullám) optika"

Átírás

1 A fény f hullám m természete a fizikai (hullám) optika Geometriai optika Optika Fizikai optika Fény-anyag kölcsönhatás Összeállította: CSISZÁR IMRE SZTE, Ságvári E. Gyakorló Gimnázium SZEGED, 006. szeptember A jelenségeket egyenes vonalak ún. fénysugarak segítségével írjuk le. A jelenségeket, mint elektromágneses hullámjelenségek írjuk le. A jelenségek értelmezésénél a fényt részecske modellel (foton) írjuk le. A Young-féle interferencia kísérlet(180) k A Young-féle interferencia kísérlet(180) k a rések mérete kb. 0,1mm a rések távolsága kb. 1mm Thomas Young ( ) 1

2 α α A Young-féle interferencia kísérlet(180) k A Young-féle interferencia kísérlet(180) k Erısítés feltétele: = s s 1 = k λ ahol k N A Young-féle interferencia kísérlet(180) k d F 1 F Kioltási helyek feltétele: l x k = l d Maximális erısítésőhelyek feltétele: x k x P λ (k + 1) l λ = k d sinα = d x tgα = l Ha αkicsi, akkor sin tg x d = l l x = d ahol k N ahol k N Kioltás feltétele: = s s 1 λ = (k + 1) ahol k N A Young-féle interferencia kísérlet(180) k

3 Kétsugaras interferencia kísérletekk Kétsugaras interferencia kísérletekk Fresnel-féle kettıs tükör Egy tükrös interferencia kísérlet 3

4 Kétsugaras interferencia kísérletekk Kétsugaras interferencia kísérletekk Vékony lemezes interferencia kísérlet Michelson-féle interferométer Kétsugaras interferencia kísérletekk Diffrak (elhajlás s résen) r 4

5 Diffrak Diffrak (elhajlá (elhajlás ré résen) Diffrak Diffrak (elhajlá (elhajlás ré résen) Diffrak Diffrak (elhajlá (elhajlás ré résen) Diffrak Diffrak (elhajlá (elhajlás ré résen) d 5

6 α Diffrak (elhajlás s résen) r A rés minden pontjából a Huygens-Fresnel elv értelmében elemi (gömb)hullámok indulnak ki. Szemlejünk ki egy párhuzamos nyalábot, mely a rés normálisávalαszöget zár be. Diffrak (elhajlás s résen) r A BG 1 zóna bármely sugarához találáható egy sugár a G 1 G zónából, amely hozzá képestλ/ fázisban van Így ez a két zóna kioltja egymást az ernyın, tehát csak a maradék G A részzóna hatása jelenik meg az ernyın Az 1 és sugár között BC = d sinαaz útkülönbség Nézzünk meg speciális szögeket! A BC szakaszra felmérjük a λ/ hosszúságú BD 1 és D 1 D szakaszokat A D 1 és D pontokból AC-vel párhuzamosokat húzunk, ezáltal az AB rést G 1 és G segítségével zónákra osztjuk Ha αnulla nincs fáziskülönbség a zónák között, így erısítést tapasztalunk az ernyın. Diffrak (elhajlás s résen) r Találunk olyanα1 szöget, ahol AB éppen két zónát tartalmaz. Ekkor: λ BC = d sin α 1 = = λ Az ernyın kioltási helyet látunk Találunk olyanα szöget, ahol AB éppen három zónát tartalmaz. Ekkor: λ BC = d sinα = 3 Ekkor az ernyın maximális intenzitású helyet látunk Összefoglalva: Diffrak (elhajlás s résen) r Kioltési helyek iránya: sin α = k λ, ahol k = 1,,... d Maximális intenzitású helyek iránya: λ sin α = k = d ( k + 1), ahol 1,,... 6

7 őı ı Diffrak (elhajlás s kör k r alakú résen) Diffrak (elhajlás s téglalap t alakú résen) Optikai rács r (Diffraks s rács) r Fényerısebb képet kapunk, ha nem egy rést, hanem milliméterenként több száz rést alkalmazunk. Optikai rács: Egyenl szélesség, egymástól egyenl távolságban párhuzamosan elhelyezked rések összessége. Fontos jellemzıje a rácsállandó, ami a milliméterenkénti (vagy méterenkénti) osztások számát adja meg. Pl.: ha mm-enként 00 osztás van, akkor a rácsállandó: 1 6 d = mm = 0,005mm = (Egy áteresztıés egy nem áteresztıtartomány együttes szélessége.) d m Optikai rács r (Diffraks s rács) r 7

8 Optikai rács r (Diffraks s rács) r Az ábráról leolvasható a két szomszédos nyaláb közötti útkülönbség: = d sinα Az erısítés feltétele: = kλ, ahol k N A rácsegyenlet, amely megadja az erısítési helyek irányát: d sinα = k α λ, ahol k N Optikai rács r (Diffraks s rács) r Mérjük meg a lézer hullámhosszát optikai ráccsal! L x Optikai rács r (Diffraks s rács) r A rács lehet transzmissziós rács, amikor az elhajlási kép a rács mögött keletkezik, vagy lehet reflexiós rács, amikor a rács elıtt. Jedlik Ányos 1845-ben 1mm-re 100 karcolatot tudott készíteni. Mivel az eltérítés függ a hullámhossztól, ezért ha a rácsra összetett fény érkezik, akkor azt a rács szineire bontja. tg α = x L d sinα = k λ k =1 α sin α λ = d sinα 8

9 Polarizá Polarizá Polarizá Polarizá 1808: Etienne Louis Malus ( ) Ha a felsı tükröt a ráesı fénysugár, mint tengely körül körbeforgatjuk, akkor az ernyın felfogott folt negyedfordulatonként elsötétedik és kivilágosodik. Az üveglap a ferdén ráesı fényt polarizálja. A visszavert fényben az E vektor már csak egy meghatározott síkban rezeg. (Az üveglap síkjával párhuzamosan.) Polarizá Polarizá 1669: Erasmus Bartholinus Az izlandi mészpátnak az a tulajdonsága, hogy rajta keresztül nézve a tárgyak kettızve látszanak. Polarizá Polarizá Huygens magyarázata A fény ebben az anyagban kétféle módon terjed. Rendes sugár (ordinárius) és rendkívüli sugár (extraordinárius) 9

10 ı Etienne Louis Malus ( ) Amikor a Luxembourg-palota ablakáról visszaverıdıfényt nézi, nem két, hanem csak egy kép keletkezik. Ezt helyesen úgy értelmezte, hogy a palota ablakáról visszaverıdött fény síkban polarizált, és a kristály ezért már nem tudja két összetevıre bontani. Mindkét sugár polározott, egymásra mer polarizás síkokban. leges Polarizált fényt ún. polarizás szőrısegítségével is elıállíthatunk. Üveglapra kettısen törıkristályokból álló vékony réteget visznek fel. A kettıstöréssel szétválasztott két fénysugár közül az egyiket az üveglap nagymértékben elnyeli, ezért csak a másik, meghatározott síkban polarizált fénysugár halad át rajta. 10

11 polárszőrınélkül polárszőrıvel polárszőrınélkül polárszőrıvel polárszőrınélkül polárszőrıvel polárszőrınélkül polárszőrıvel 11

12 ő Young 180 fényinterferencia Malus 1808 polarizá Young 1817 transzverzális hullám Fresnel 181 rugalmassági fényelmélet (éter) pol. és transzverzitás kapcs. A cukorlodat elforgatja a fány polarizás síkját. Foucault 1850 mérés c víz < c lev korpuszkuláris elm. Maxwell 1865 elektromágneses fényelmélet A fény transzverzális elektromágneses hullám az elektromos és mágneses tér (E és B vektorok) periodikus változása adja a hullámzást. James Clerk Maxwell ( ) Energiaáram-s r ség: r 1 r r S = E B µ 0 W m [ S ] = A Poynting-vektor azt mutatja meg, hogy milyen irányban, és egységnyi idıalatt mennyi energia áramlik át egy adott felületen. 1

d) Az a pont, ahova a homorú tükör az optikai tengely adott pontjából kiinduló sugarakat összegyőjti.

d) Az a pont, ahova a homorú tükör az optikai tengely adott pontjából kiinduló sugarakat összegyőjti. Optika tesztek 1. Melyik állítás nem helyes? a) A Hold másodlagos fényforrás. b) A foszforeszkáló jel másodlagos fényforrás. c) A gyertya lángja elsıdleges fényforrás. d) A szentjánosbogár megfelelı potrohszelvénye

Részletesebben

Elektromágneses hullámok, a fény

Elektromágneses hullámok, a fény Elektromágneses hullámok, a fény Az elektromos töltéssel rendelkező testeknek a töltésük miatt fellépő kölcsönhatását az elektromos és mágneses tér segítségével írhatjuk le. A kölcsönhatás úgy működik,

Részletesebben

Elektromágneses hullámok - Hullámoptika

Elektromágneses hullámok - Hullámoptika Bevezetés a modern fizika fejezeteibe 2. (c) Elektromágneses hullámok - Hullámoptika Utolsó módosítás: 2015. január 17. 1 Az elektromágneses hullámok visszaverődési és törési törvényei (1) Kérdés: Mi történik

Részletesebben

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika 2. OPTIKA 2.1. Elmélet Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert fényt bocsátanak ki, vagy a rájuk eső fényt visszaverik, és ezt a fényt a szemünk érzékeli. A

Részletesebben

Árnyék. Félárnyék. 3. A fény keletkezése

Árnyék. Félárnyék. 3. A fény keletkezése OPTIKA 1. Az optika tárgya 2. Az optikában használt alapfogalmak Elsődleges fényforrás Másodlagos fényforrás Pontszerű fényforrás Kiterjedt fényforrás Fénysugár Árnyék Félárnyék 3. A fény keletkezése 1685.

Részletesebben

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/ Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/. Coulomb törvény: a pontszerű töltések között ható erő (F) egyenesen arányos a töltések (Q,Q ) szorzatával és fordítottan arányos a

Részletesebben

Fénysugarak visszaverődésének tanulmányozása demonstrációs optikai készlet segítségével

Fénysugarak visszaverődésének tanulmányozása demonstrációs optikai készlet segítségével Fénysugarak visszaverődésének tanulmányozása demonstrációs optikai készlet segítségével Demonstrációs optikai készlet lézer fényforrással Az optikai elemeken mágnesfólia található, így azok fémtáblára

Részletesebben

Leképezési hibák. Főtengelyhez közeli pontok leképezésénél is fellépő hibák Kromatikus aberráció A törésmutató függ a színtől. 1 f

Leképezési hibák. Főtengelyhez közeli pontok leképezésénél is fellépő hibák Kromatikus aberráció A törésmutató függ a színtől. 1 f Leképezési hibák A képalkotás leírásánál eddig paraxiális közelítést alkalmaztunk, azaz az optikai tengelyhez közeli, azzal kis szöget bezáró sugarakra korlátoztuk a vizsgálatot A gyakorlatban szükség

Részletesebben

Miért használjuk? Ásványok keresztezett nikolnál

Miért használjuk? Ásványok keresztezett nikolnál Ásványok keresztezett nikolnál Miért használjuk? Ásványmeghatározás (nem találgatás) Kızettípus meghatározása Kristályosodási sorrend meghatározása Deformációtörténet Kızetelváltozások jellemzése Élvezetes,

Részletesebben

Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint

Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint TÁMOP-.1.4-08/2-2009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint Vasvár,

Részletesebben

Mit mond ki a Huygens elv, és miben több ehhez képest a Huygens Fresnel-elv?

Mit mond ki a Huygens elv, és miben több ehhez képest a Huygens Fresnel-elv? Ismertesse az optika fejlődésének legjelentősebb mérföldköveit! - Ókor: korai megfigyelések - Euklidész (i.e. 280) A fény homogén közegben egyenes vonalban terjed. Legrövidebb út elve (!) Tulajdonképpen

Részletesebben

X. Fénypolarizáció. X.1. A polarizáció jelenségének magyarázata

X. Fénypolarizáció. X.1. A polarizáció jelenségének magyarázata X. Fénypolarizáció X.1. A polarizáció jelenségének magyarázata A polarizáció a fény hullámtermészetét bizonyító jelenség, amely csak a transzverzális rezgések esetén észlelhető. Köztudott, hogy csak a

Részletesebben

Modern Fizika Laboratórium Fizika BSc 22. Kvantumradír

Modern Fizika Laboratórium Fizika BSc 22. Kvantumradír Modern Fizika Laboratórium Fizika BSc 22. Kvantumradír Mérést végezték: Márkus Bence Gábor Kálmán Dávid Kedd délelőtti csoport Mérés ideje: 05/15/2012 Beadás ideje: 05/26/2012 Érdemjegy: 1 1. A mérés rövid

Részletesebben

Geometriai optika. A fénytan (optika) a fényjelenségekkel és a fény terjedési törvényeivel foglalkozik.

Geometriai optika. A fénytan (optika) a fényjelenségekkel és a fény terjedési törvényeivel foglalkozik. Geometriai optika A fénytan (optika) a fényjelenségekkel és a fény terjedési törvényeivel foglalkozik. A geometriai optika egyszerű modell, amely a fény terjedését a fényforrásból minden irányba kilépő

Részletesebben

MŰSZERTECHNIKA Gépészmérnöki BSc Felkészülési kérdések és válaszok a ZH-hoz

MŰSZERTECHNIKA Gépészmérnöki BSc Felkészülési kérdések és válaszok a ZH-hoz MŰSZERTECHNIKA Gépészmérnöki BSc Felkészülési kérdések és válaszok a ZH-hoz 1. Időben változó mennyiségek mérésének szerepe a gépészetben (egy példán) 1 2. A mérőlánc felépítése és tagjainak feladata 3.

Részletesebben

MŰSZAKI ISMERETEK. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010

MŰSZAKI ISMERETEK. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 MŰSZAKI ISMERETEK Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 Az előadás áttekintése Méret meghatározás Alaki jellemzők Felületmérés Tömeg, térfogat, sűrűség meghatározása

Részletesebben

Egy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged

Egy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged Egy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged A 01. május 8.-i emelt szintű matematika érettségin szerepelt az alábbi feladat. Egy háromszög oldalhosszai egy számtani sorozat egymást

Részletesebben

Definíció (hullám, hullámmozgás):

Definíció (hullám, hullámmozgás): Hullámmozgás Példák: Követ dobva a vízbe a víz felszíne hullámzani kezd. Hajó úszik a vízen, akkor hullámokat kelt. Hullámokat egy kifeszített kötélen is kelthetünk. Ha a kötés egyik végét egy falhoz kötjük,

Részletesebben

EÖTVÖS LABOR EÖTVÖS JÓZSEF GIMNÁZIUM TATA FELADATLAPOK FIZIKA. 11. évfolyam. Gálik András. A Tatai Eötvös József Gimnázium Öveges Programja

EÖTVÖS LABOR EÖTVÖS JÓZSEF GIMNÁZIUM TATA FELADATLAPOK FIZIKA. 11. évfolyam. Gálik András. A Tatai Eötvös József Gimnázium Öveges Programja FELADATLAPOK FIZIKA 11. évfolyam Gálik András ajánlott korosztály: 11. évfolyam 1. REZGÉSIDŐ MÉRÉSE fizika-11-01 1/3! BALESETVÉDELEM, BETARTANDÓ SZABÁLYOK, AJÁNLÁSOK A mérés során használt eszközökkel

Részletesebben

Az optikai jelátvitel alapjai. A fény két természete, terjedése

Az optikai jelátvitel alapjai. A fény két természete, terjedése Az optikai jelátvitel alapjai A fény két természete, terjedése A fény kettős természete 1. A fény: - Elektromágneses hullám (EMH) - Optikai jelenség Egyes dolgokat a hullám természettel könnyű magyarázni,

Részletesebben

V. Gyakorlat: Vasbeton gerendák nyírásvizsgálata Készítették: Friedman Noémi és Dr. Huszár Zsolt

V. Gyakorlat: Vasbeton gerendák nyírásvizsgálata Készítették: Friedman Noémi és Dr. Huszár Zsolt . Gyakorlat: asbeton gerenák nyírásvizsgálata Készítették: Frieman Noémi és Dr. Huszár Zsolt -- A nyírási teherbírás vizsgálata A nyírási teherbírás megfelelő, ha a következő követelmények minegyike egyiejűleg

Részletesebben

Optika Gröller BMF Kandó MTI. Optikai alapfogalmak. Fény: transzverzális elektromágneses hullám. n = c vákuum /c közeg. Optika Gröller BMF Kandó MTI

Optika Gröller BMF Kandó MTI. Optikai alapfogalmak. Fény: transzverzális elektromágneses hullám. n = c vákuum /c közeg. Optika Gröller BMF Kandó MTI Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg 1 Az elektromágneses spektrum 2 Az anyag és s a fény f kölcsk lcsönhatása Visszaverődés, reflexió Törés, kettőstörés,

Részletesebben

4. előadás. Vektorok

4. előadás. Vektorok 4. előadás Vektorok Vektorok bevezetése Ha adottak a térben az A és a B pontok, akkor pontosan egy olyan eltolás létezik, amely A-t B- be viszi. Ha φ egy tetszőleges eltolás, akkor ez a tér minden P pontjához

Részletesebben

A 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. I.

A 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. I. Oktatási Hivatal A 11/1. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható.

Részletesebben

Optoelektronikai Kommunikáció. Optikai alapismeretek

Optoelektronikai Kommunikáció. Optikai alapismeretek Optoelektronikai Kommunikáció Optikai alapismeretek (OK-4) Budapesti Mûszaki Fõiskola Kandó Kálmán Villamosmérnöki Fõiskolai Kar Számítógéptechnikai Intézete Székesfehérvár 2002. Budapesti Mûszaki Fõiskola

Részletesebben

O 1.1 A fény egyenes irányú terjedése

O 1.1 A fény egyenes irányú terjedése O 1.1 A fény egyenes irányú terjedése 1 blende 1 és 2 rés 2 összekötő vezeték Előkészület: A kísérleti lámpát teljes egészében egy ív papírlapra helyezzük. A négyzetes fénynyílást széttartó fényként használjuk

Részletesebben

Mikrohullámok vizsgálata. x o

Mikrohullámok vizsgálata. x o Mikrohullámok vizsgálata Elméleti alapok: Hullámjelenségen valamilyen rezgésállapot (zavar) térbeli tovaterjedését értjük. A hullám c terjedési sebességét a hullámhossz és a T rezgésido, illetve az f frekvencia

Részletesebben

A fény. Abszorpciós fotometria Fluoreszcencia spektroszkópia. A fény. A spektrumok megjelenési formái. A fény kettıs természete: Huber Tamás

A fény. Abszorpciós fotometria Fluoreszcencia spektroszkópia. A fény. A spektrumok megjelenési formái. A fény kettıs természete: Huber Tamás A fény Abszorpciós fotometria Fluoreszcencia spektroszkópia. 2010. október 19. Huber Tamás PTE ÁOK Biofizikai Intézet E A fény elektromos térerısségvektor hullámhossz A fény kettıs természete: Hullám (terjedéskor)

Részletesebben

Tartalom. Descartes-koordináták. Geometriai értelmezés. Pont. Egyenes. Klár Gergely tremere@elte.hu. 2010/2011. tavaszi félév

Tartalom. Descartes-koordináták. Geometriai értelmezés. Pont. Egyenes. Klár Gergely tremere@elte.hu. 2010/2011. tavaszi félév Tartalom Pont Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar Egyenes Sík Háromszög Gömb 2010/2011. tavaszi félév Descartes-koordináták Geometriai értelmezés

Részletesebben

IX. Az emberi szem és a látás biofizikája

IX. Az emberi szem és a látás biofizikája IX. Az emberi szem és a látás biofizikája IX.1. Az emberi szem felépítése A szem az emberi szervezet legfontosabb érzékelő szerve, mivel a szem és a központi idegrendszer közreműködésével az elektromágneses

Részletesebben

Biofizika tesztkérdések

Biofizika tesztkérdések Biofizika tesztkérdések Egyszerű választás E kérdéstípusban A, B,...-vel jelölt lehetőségek szerepelnek, melyek közül az egyetlen megfelelőt kell kiválasztani. A választ írja a kérdés előtt lévő kockába!

Részletesebben

Elektromágneses terek gyakorlat - 6. alkalom

Elektromágneses terek gyakorlat - 6. alkalom Elektromágneses terek gyakorlat - 6. alkalom Távvezetékek és síkhullám Reichardt András 2015. április 23. ra (evt/hvt/bme) Emt2015 6. alkalom 2015.04.23 1 / 60 1 Távvezeték

Részletesebben

2. Interpolációs görbetervezés

2. Interpolációs görbetervezés 2. Interpolációs görbetervezés Gondoljunk arra, hogy egy grafikus tervező húz egy vonalat (szabadformájú görbét), ezt a vonalat nekünk számítógép által feldolgozhatóvá kell tennünk. Ennek egyik módja,

Részletesebben

1. Ha két közeg határfelületén nem folyik vezetési áram, a mágneses térerősség vektorának a(z). komponense folytonos.

1. Ha két közeg határfelületén nem folyik vezetési áram, a mágneses térerősség vektorának a(z). komponense folytonos. Az alábbi kiskérdéseket a korábbi Pacher-féle vizsgasorokból és zh-kból gyűjtöttük ki. A többségnek a lefényképezett hivatalos megoldás volt a forrása (néha még ezt is óvatosan kellett kezelni, mert egy

Részletesebben

19. Az elektron fajlagos töltése

19. Az elektron fajlagos töltése 19. Az elektron fajlagos töltése Hegyi Ádám 2015. február Tartalomjegyzék 1. Bevezetés 2 2. Mérési összeállítás 4 2.1. Helmholtz-tekercsek.............................. 5 2.2. Hall-szonda..................................

Részletesebben

9. modul Szinusz- és koszinusztétel. Készítette: Csákvári Ágnes

9. modul Szinusz- és koszinusztétel. Készítette: Csákvári Ágnes 9. modul Szinusz- és koszinusztétel Készítette: Csákvári Ágnes Matematika A 11. évfolyam 9. modul: Szinusz- és koszinusztétel Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

Síkban polarizált hullámok síkban polarizált lineárisan polarizált Síkban polarizált hullámok szuperpozíciója cirkulárisan polarizált

Síkban polarizált hullámok síkban polarizált lineárisan polarizált Síkban polarizált hullámok szuperpozíciója cirkulárisan polarizált Síkban polarizált hullámok Tekintsünk egy z-tengely irányában haladó fénysugarat. Ha a tér egy adott pontjában az idő függvényeként figyeljük az elektromos (ill. mágneses) térerősség vektorokat, akkor

Részletesebben

5. Trigonometria. 2 cos 40 cos 20 sin 20. BC kifejezés pontos értéke?

5. Trigonometria. 2 cos 40 cos 20 sin 20. BC kifejezés pontos értéke? 5. Trigonometria I. Feladatok 1. Mutassuk meg, hogy cos 0 cos 0 sin 0 3. KöMaL 010/október; C. 108.. Az ABC háromszög belsejében lévő P pontra PAB PBC PCA φ. Mutassuk meg, hogy ha a háromszög szögei α,

Részletesebben

Tantárgy kódja Meghirdetés féléve Kreditpont Összóraszám (elm+gyak) Előfeltétel (tantárgyi kód)

Tantárgy kódja Meghirdetés féléve Kreditpont Összóraszám (elm+gyak) Előfeltétel (tantárgyi kód) Tantárgy neve Tantárgy kódja Meghirdetés féléve Kreditpont Összóraszám (elm+gyak) Számonkérés módja Előfeltétel (tantárgyi kód) Tantárgyfelelős neve Tantárgyfelelős beosztása Fizikai alapismeretek Dr.

Részletesebben

2. előadás: További gömbi fogalmak

2. előadás: További gömbi fogalmak 2 előadás: További gömbi fogalmak 2 előadás: További gömbi fogalmak Valamely gömbi főkör ívének α azimutja az ív egy tetszőleges pontjában az a szög, amit az ív és a meridián érintői zárnak be egymással

Részletesebben

103. számú melléklet: 104. számú Elıírás. Hatályba lépett az Egyezmény mellékleteként 1998. január 15-én

103. számú melléklet: 104. számú Elıírás. Hatályba lépett az Egyezmény mellékleteként 1998. január 15-én 1998. január 22. ENSZ - EGB 104. sz. Elıírás EGYEZMÉNY A KEREKES JÁRMŐVEKRE, VALAMINT AZ ILYEN JÁRMŐVEKRE FELSZERELHETİ ÉS/VAGY ILYENEKEN ALKALMAZHATÓ SZERELVÉNYEKRE ÉS ALKATRÉSZEKRE VONATKOZÓ EGYSÉGES

Részletesebben

B2. A FÉNY FOGALMA, FÉNYJELENSÉGEK ISMERTETÉSE,

B2. A FÉNY FOGALMA, FÉNYJELENSÉGEK ISMERTETÉSE, B2. A FÉNY FOGALMA, FÉNYJELENSÉGEK ISMERTETÉSE, FÉNYVISSZAVERŐDÉS, FÉNYTÖRÉS, FÉNYINTERFERENCIA, FÉNYPOLARIZÁCIÓ, FÉNYELHAJLÁS Fény: elektromágneses sugárzás (Einstein meghatározása, hogy idesorolta a

Részletesebben

TANMENET FIZIKA 11. osztály Rezgések és hullámok. Modern fizika

TANMENET FIZIKA 11. osztály Rezgések és hullámok. Modern fizika TANMENET FIZIKA 11. osztály Rezgések és hullámok. Modern fizika BEVEZETÉS TANMENET Óra Tananyag Tevékenység, megjegyzések I. Mechanikai rezgések és hullámok 1. Bevezetés Emlékeztet : A fejezet feldolgozásához

Részletesebben

Méréssel kapcsolt 3. számpélda

Méréssel kapcsolt 3. számpélda Méréssel kapcsolt 3. számpélda Eredmények: m l m 1 m 3 m 2 l l ( 2 m1 m2 m l = 2 l2 ) l 2 m l 3 = m + m2 m1 Méréssel kapcsolt 4. számpélda Állítsuk össze az ábrán látható elrendezést. Használjuk a súlysorozat

Részletesebben

Fizika 12. osztály. 1. Az egyenletesen változó körmozgás kinematikai vizsgálata... 2. 2. Helmholtz-féle tekercspár... 4. 3. Franck-Hertz-kísérlet...

Fizika 12. osztály. 1. Az egyenletesen változó körmozgás kinematikai vizsgálata... 2. 2. Helmholtz-féle tekercspár... 4. 3. Franck-Hertz-kísérlet... Fizika 12. osztály 1 Fizika 12. osztály Tartalom 1. Az egyenletesen változó körmozgás kinematikai vizsgálata.......................... 2 2. Helmholtz-féle tekercspár.....................................................

Részletesebben

Optika feladatok (szemelvények a 333 Furfangos Feladat Fizikából könyvből)

Optika feladatok (szemelvények a 333 Furfangos Feladat Fizikából könyvből) Fénytan 1 Optika feladatok (szemelvények a 333 Furfangos Feladat Fizikából könyvből) Feladatok F. 1. Vízszintes asztallapra fektetünk egy negyedhenger alakú üvegtömböt, amelynek függőlegesen álló síklapját

Részletesebben

Hidraulika. 5. előadás

Hidraulika. 5. előadás Hidraulika 5. előadás Automatizálás technika alapjai Hidraulika I. előadás Farkas Zsolt BME GT3 2014 1 Hidraulikus energiaátvitel 1. Előnyök kisméretű elemek alkalmazásával nagy erők átvitele, azaz a teljesítménysűrűség

Részletesebben

Slovenská komisia Fyzikálnej olympiády 49. ročník Fyzikálnej olympiády v školskom roku 2007/2008

Slovenská komisia Fyzikálnej olympiády 49. ročník Fyzikálnej olympiády v školskom roku 2007/2008 Slovenská komisia Fyzikálnej olympiády 49. ročník Fyzikálnej olympiády v školskom roku 2007/2008 Szlovákiai Fizikai Olimpiász Bizottság Fizikai Olimpiász 49. évfolyam, 2007/2008-as tanév Az FO versenyzıinek

Részletesebben

A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK

A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK - 1 - A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK 1. Newton törvényei Newton I. törvénye Kölcsönhatás, mozgásállapot, mozgásállapot-változás, tehetetlenség,

Részletesebben

17. Kapcsolok. 26. Mit nevezünk crossbar kapcsolónak? Egy olyan kapcsoló, amely több bemenet és több kimenet között kapcsol mátrixos módon.

17. Kapcsolok. 26. Mit nevezünk crossbar kapcsolónak? Egy olyan kapcsoló, amely több bemenet és több kimenet között kapcsol mátrixos módon. Fotonika 4.ZH 17. Kapcsolok 26. Mit nevezünk crossbar kapcsolónak? Egy olyan kapcsoló, amely több bemenet és több kimenet között kapcsol mátrixos módon. 27. Soroljon fel legalább négy optikai kapcsoló

Részletesebben

Gömbtükrök, leképezési hibák, OPTIKA. Dr. Seres István

Gömbtükrök, leképezési hibák, OPTIKA. Dr. Seres István Gömbtükrök, leképezési hibák, OPTIKA Dr. Seres István Tükrök http://www.mozaik.info.hu/mozaweb/feny/fy_ft11.htm Seres István 2 http://fft.szie.hu Gömbtükrök Domború tükör képalkotása Jellegzetes sugármenetek

Részletesebben

Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013

Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013 Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István tankönyv 0 Mozaik Kiadó Szeged, 03 TARTALOMJEGYZÉK Gondolkodási módszerek. Mi következik ebbõl?... 0. A skatulyaelv... 3. Sorba rendezési

Részletesebben

Egy csodálatos egyenesről (A Simson-egyenes) Bíró Bálint, Eger

Egy csodálatos egyenesről (A Simson-egyenes) Bíró Bálint, Eger Egy csodálatos egyenesről (A Simson-egyenes) Bíró Bálint, Eger. feladat Állítsunk merőlegeseket egy húrnégyszög csúcsaiból a csúcsokon át nem menő átlókra. Bizonyítsuk be, hogy a merőlegesek talppontjai

Részletesebben

Sugárzási alapismeretek

Sugárzási alapismeretek Sugárzási alapismeretek Energia 10 20 J Évi bejövő sugárzásmennyiség 54 385 1976-os kínai földrengés 5006 Föld széntartalékának energiája 1952 Föld olajtartalékának energiája 179 Föld gáztartalékának energiája

Részletesebben

Bepárlás. Vegyipari és biomérnöki műveletek segédanyag Simándi Béla, Székely Edit BME, Kémiai és Környezeti Folyamatmérnöki Tanszék

Bepárlás. Vegyipari és biomérnöki műveletek segédanyag Simándi Béla, Székely Edit BME, Kémiai és Környezeti Folyamatmérnöki Tanszék Bepárlás Vegyipari és biomérnöki műveletek segédanyag Simándi Béla, Székely Edit BME, Kémiai és Környezeti Folyamatmérnöki Tanszék Megköszönjük Szternácsik Klaudia és Wolowiec Szilvia hallgatóknak a diák

Részletesebben

Pontszerű test, pontrendszer és merev test egyensúlya és mozgása (Vázlat)

Pontszerű test, pontrendszer és merev test egyensúlya és mozgása (Vázlat) Pontszerű test, pontrendszer és merev test egyensúlya és mozgása (Vázlat) I. Pontszerű test 1. Pontszerű test modellje. Pontszerű test egyensúlya 3. Pontszerű test mozgása a) Egyenes vonalú egyenletes

Részletesebben

A projekt eredetileg kért időtartama: 2002 február 1. 2004. december 31. Az időtartam meghosszabbításra került 2005. december 31-ig.

A projekt eredetileg kért időtartama: 2002 február 1. 2004. december 31. Az időtartam meghosszabbításra került 2005. december 31-ig. Szakmai zárójelentés az Ultrarövid infravörös és távoli infravörös (THz-es) fényimpulzusok előállítása és alkalmazása című, T 38372 számú OTKA projekthez A projekt eredetileg kért időtartama: 22 február

Részletesebben

Fókuszált fénynyalábok keresztpolarizációs jelenségei

Fókuszált fénynyalábok keresztpolarizációs jelenségei Fókuszált fénynyalábok keresztpolarizációs jelenségei K házi-kis Ambrus, Klebniczki József Kecskeméti F iskola GAMF Kar Matematika és Fizika Tanszék, 6000 Kecskemét, Izsáki út 10. Véges transzverzális

Részletesebben

EXAMENUL DE BACALAUREAT

EXAMENUL DE BACALAUREAT EXMEUL DE BCLURET - 007 Proba E: ecializarea : matematic informatic, tiin e ale naturii Proba F: Profil: tehnic toate secializ rile unt obligatorii to i itemii din dou arii tematice dintre cele atru rev

Részletesebben

OPTIKA. Teljes visszaverődés plánparallel lemez, prizma. Dr. Seres István

OPTIKA. Teljes visszaverődés plánparallel lemez, prizma. Dr. Seres István OPTIKA Teljes visszaverődés plánparallel lemez, prizma Dr. Seres István Snellius-Descartes törvény, fénytörés sin sin c c 1 n 2,1 2 Ha a fény optikailag ritkább közegből sűrűbb közegbe jut (n 21 >1): Levegő

Részletesebben

VONALVEZETÉS TERVEZÉSE

VONALVEZETÉS TERVEZÉSE VONALVEZETÉS TERVEZÉSE A vonalvezetés tervezésének általános követelményei A tervezési sebesség Látótávolságok Vízszintes vonalvezetés Magassági vonalvezetés Burkolatszélek vonalvezetése Térbeli tervezés

Részletesebben

Kör-Fiz 3 gyak.; Mérések refraktométerekkel; PTE Környezetfizika és Lézersp. Tanszék

Kör-Fiz 3 gyak.; Mérések refraktométerekkel; PTE Környezetfizika és Lézersp. Tanszék 3. Folyadékok törésmutatójának mérése refraktométerekkel, refraktométer alkalmazása célkészülékként A MÉRÉS CÉLJA: Az oldatok törésmutatójának mérésére szolgáló alapkészüléknek (Abbé-féle refraktométer)

Részletesebben

Rutherford-féle atommodell

Rutherford-féle atommodell Rutherfordféle atommodell Manchesteri Egyetem 1909 1911 Hans Geiger, Ernest Marsden Ernest Rutherford vezetésével Az arany szerkezetének felderítésére irányuló szóráskísérletek Alfarészecskékkel bombáztak

Részletesebben

Felkészülést segítő kérdések Gépszerkesztés alapjai tárgyból

Felkészülést segítő kérdések Gépszerkesztés alapjai tárgyból Felkészülést segítő kérdések Gépszerkesztés alapjai tárgyból - Ismertesse a kézi rajzkészítési technikát (mikor használjuk, előny-hátrány stb.)! Kézi technikák közül a gondolatrögzítés leggyorsabb, praktikus

Részletesebben

Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x =

Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x = 2000 Írásbeli érettségi-felvételi feladatok Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a egyenletet! cos x + sin2 x cos x +sinx +sin2x = 1 cos x (9 pont) 2. Az ABCO háromszög

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Csordásné Marton Melinda. Fizikai példatár 1. FIZ1 modul. Optika feladatgyűjtemény

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Csordásné Marton Melinda. Fizikai példatár 1. FIZ1 modul. Optika feladatgyűjtemény Nyugat-magyarországi Egyetem Geoinformatikai Kara Csordásné Marton Melinda Fizikai példatár 1 FIZ1 modul Optika feladatgyűjtemény SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999

Részletesebben

ALAPFOGALMAK ÉS ALAPTÖRVÉNYEK

ALAPFOGALMAK ÉS ALAPTÖRVÉNYEK A ALAPFOGALMAK ÉS ALAPTÖVÉNYEK Elektromos töltés, elektromos tér A kémiai módszerekkel tová nem ontható anyag atomokól épül fel. Az atom atommagól és az atommagot körülvevő elektronhéjakól áll. Az atommagot

Részletesebben

TERMÉKSZIMULÁCIÓ I. 12. elıadás

TERMÉKSZIMULÁCIÓ I. 12. elıadás TERMÉKSZIMULÁCIÓ I. 12. elıadás Dr. Kovács Zsolt egyetemi tanár Kardán hajtás Változatos kontaktusok - Csavaros kapcsolatok hengeres csap kapcsolat Modellezés héjelemekkel Héjelemek alsó és felsı felülete

Részletesebben

Geodézia 4. Vízszintes helymeghatározás Gyenes, Róbert

Geodézia 4. Vízszintes helymeghatározás Gyenes, Róbert Geodézia 4. Vízszintes helymeghatározás Gyenes, Róbert Geodézia 4.: Vízszintes helymeghatározás Gyenes, Róbert Lektor: Homolya, András Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel

Részletesebben

11. ÉVFOLYAM FIZIKA. TÁMOP 3.1.3 Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban

11. ÉVFOLYAM FIZIKA. TÁMOP 3.1.3 Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban TÁMOP 3.1.3 Természettudományos 11. ÉVFOLYAM FIZIKA Szerző: Pálffy Tamás Lektorálta: Szabó Sarolta Tartalomjegyzék Bevezető... 3 Laborhasználati szabályok, balesetvédelem, figyelmeztetések... 4 A mágneses

Részletesebben

Kísérletek mikrohullámokkal I-II.

Kísérletek mikrohullámokkal I-II. A kísérlet célkitűzései: Az elektromágneses hullámok tulajdonságainak vizsgálata Diákradar készülékkel. Eszközszükséglet: TZA 1996 Diákradar készlet vonalzó Eszközismertető Kísérletünkhöz a Diákradar készüléket

Részletesebben

Matematikai modellalkotás

Matematikai modellalkotás Konferencia A Korszerű Oktatásért Almássy Téri Szabadidőközpont, 2004. november 22. Matematikai modellalkotás (ötletek, javaslatok) Kosztolányi József I. Elméleti kitekintés oktatási koncepciók 1. Realisztikus

Részletesebben

P. Nagy József, Akadémiai Kiadó A hangszigetelés elmélete és gyakorlata

P. Nagy József, Akadémiai Kiadó A hangszigetelés elmélete és gyakorlata 1. Ajánlott irodalom P. Nagy József, Akadémiai Kiadó A hangszigetelés elmélete és gyakorlata. Alafogalmak, hullám jellemzői Hullám jellemzői eriódusidő (T) [s] frekvenciája (f) [Hz] hullámhossz (λ) [m]

Részletesebben

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 ) Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden

Részletesebben

Topográfia 7. Topográfiai felmérési technológiák I. Mélykúti, Gábor

Topográfia 7. Topográfiai felmérési technológiák I. Mélykúti, Gábor Topográfia 7. Topográfiai felmérési technológiák I. Mélykúti, Gábor Topográfia 7. : Topográfiai felmérési technológiák I. Mélykúti, Gábor Lektor : Alabér, László Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Gyenes Róbert. Geodézia 4. GED4 modul. Vízszintes helymeghatározás

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Gyenes Róbert. Geodézia 4. GED4 modul. Vízszintes helymeghatározás Nyugat-magyarországi Egyetem Geoinformatikai Kara Gyenes Róbert Geodézia 4. GED4 modul Vízszintes helymeghatározás SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999. évi LXXVI. törvény

Részletesebben

10. évfolyam, ötödikepochafüzet

10. évfolyam, ötödikepochafüzet 10. évfolyam, ötödikepochafüzet (Hasonlóság, trigonometria) Tulajdonos: ÖTÖDIK EPOCHAFÜZET TARTALOM I. Geometriai transzformációk... 3 I.1. A geometriai transzformációk ismétlése... 3 I.2. A vektorok ismétlése...

Részletesebben

CCD detektorok Spektrofotométerek Optikai méréstechnika. Németh Zoltán 2013.11.15.

CCD detektorok Spektrofotométerek Optikai méréstechnika. Németh Zoltán 2013.11.15. CCD detektorok Spektrofotométerek Optikai méréstechnika Németh Zoltán 2013.11.15. Detektorok Működésük, fontosabb jellemző adataik Charge Coupled Device - töltéscsatolt eszköz Az alapelvet 1970 körül fejlesztették

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Dr. Engler Péter. Fotogrammetria 2. FOT2 modul. A fotogrammetria geometriai és matematikai alapjai

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Dr. Engler Péter. Fotogrammetria 2. FOT2 modul. A fotogrammetria geometriai és matematikai alapjai Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Engler Péter Fotogrammetria 2. FOT2 modul A fotogrammetria geometriai és matematikai alapjai SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői

Részletesebben

A lineáris programozás 1 A geometriai megoldás

A lineáris programozás 1 A geometriai megoldás A lineáris programozás A geometriai megoldás Készítette: Dr. Ábrahám István A döntési, gazdasági problémák optimalizálásának jelentős részét lineáris programozással oldjuk meg. A módszer lényege: Az adott

Részletesebben

V. A MIKROSZKÓP. FÉNYMIKROSZKÓPOS VIZSGÁLATOK A MIKROSZKÓP FELÉPÍTÉSE ÉS MŐKÖDÉSE

V. A MIKROSZKÓP. FÉNYMIKROSZKÓPOS VIZSGÁLATOK A MIKROSZKÓP FELÉPÍTÉSE ÉS MŐKÖDÉSE V. A MIKROSZKÓP. FÉNYMIKROSZKÓPOS VIZSGÁLATOK A MIKROSZKÓP FELÉPÍTÉSE ÉS MŐKÖDÉSE Minden olyan optikai eszközt, amely arra szolgál, hogy a tiszta látás távolságán belül megnövelje a látószöget abból a

Részletesebben

SPEKTROFOTOMETRIAI MÉRÉSEK

SPEKTROFOTOMETRIAI MÉRÉSEK SPEKTROFOTOMETRIAI MÉRÉSEK Elméleti bevezetés Ha egy anyagot a kezünkbe veszünk (valamilyen technológiai céllal alkalmazni szeretnénk), elsı kérdésünk valószínőleg az lesz, hogy mi ez az anyag, milyen

Részletesebben

A fény terjedése és kölcsönhatásai

A fény terjedése és kölcsönhatásai A fény terjedése és kölcsönhatásai A fény terjedése és kölcsönhatásai Kellermayer Miklós A fénytörés (refrakció) alkalmazásai A fényhullám érzékelhető paraméterei A fényhullám fázisa; fáziskontraszt mikroszkópia

Részletesebben

Vetülettani és térképészeti alapismeretek

Vetülettani és térképészeti alapismeretek Vetülettani és térképészeti alapismeretek A geodéziában - mint ismeretes - a földalak első megközelítője a geoid. Geoidnak nevezzük a nehézségi erőtér potenciáljának azt a szintfelületét, amelynek potenciálértéke

Részletesebben

Az elektromágneses spektrum

Az elektromágneses spektrum IR Az elektromágneses spektrum V Hamis színes felvételek Elektromágnes hullámok Jellemzők: Amplitúdó Hullámhossz E ~ A 2 / λ 2 Információ ~ 1/λ UV Összeállította: Juhász Tibor 2008 Függ a közegtől Légüres

Részletesebben

Á Ü Ü ó É ű ö ő Á ű ö ó í Á í ó ó ö ő Á ö ó í ó ö í ó ó ó Á í ó ő ő ü ó í ó ü ü ő ó í ü ű ö ó í ó ő ű ö ó ű ö ő ő ó ű ö ó ű ö ő ű ő í ü ó í í ó ó ó ü í í ő í ö ő ü ü ü ü ó ó ö ő ö ö ü ü ő ő ű ö í Á ű ö

Részletesebben

í ű ü ű ó í Ü ö ö ó ó í ü ü Í ú ő ő ő í ó ő í ő ó ó ú ő ó ó ö ő ó ö Ü ö ú ő ö ó ő ó ó ó ű ó ó ü Ü ó ó í ő ó í ő í ő ó őí ü ő ó ő ő í Í ö ő ó ö ő ő í ó Ü ö ö ő ó í ó ő ó ó í ö ü ö ő ö ü ő í Ü ő í ü ö ő

Részletesebben

Á É Í ő ő ő ó ő ó ő í ü ó í ó í Í ő í ó í í í ö ő ő ű í ő ö ő ő ó ó ő í ő ő ó í ő ó ő í ü ü ó ú ő í ő ó ö ö ő ü ö ő í ő ő í í ő ö ő ü ö ő ő ő í ó ő ő í ő í ő ü ü ö ö ü ó ő í í Í í í Ó ö ö ő ő ó ö í ö ö

Részletesebben

ő ő ö ő ü ö ő ő ö Ö ő ü ő ő ő ö ő ü ő ö í ö ő ő ö ö ö ő ő ő ü ő ő ü í ő ő ö ő ü ő ö ő ü ö ő ü ö ő ü ü í Ő ü ö ö ö í Ő ü ö ő ö ö í ö ü í í ö í ő í ö ö ö ő ő ü ö ő ü ő ü ú í ü ö ő ö í ö í ö ö í őí ü í ü

Részletesebben

ú ő ú ú í ö ú ö ű ű ö ő í í Ú ó í ö í ő ő ü ű ö ő í ü ü ű ö ő ű ó í ö ö ü ú ö ö ő ó ü ú ő ű í ő ű í ü ö ú ó ő ü ő ü ö ö ő í ő ü ö ú ö ö ő í ü í ő ú ő í ö ö ú í í í ú ő í ö ú ő ő Á Á ó ö ú í ó ö ó ó őí

Részletesebben

ő ő ő ü É Á Á É ő ő ő ü í ő ű í í í í í í í í Í Í ű Í ü Í ű í ü í ő ő ü ő í í í ő ű í ő ő ü ő ő ü í ő í í ő ü í ő ő őí í í ő í ő í Ü ü í ő ü í í í ő í ő í ü ú í ő ü Í ő ő ő ő É Ó Ó É Í É í Í Í őí ő ő Ó

Részletesebben

ö ú Á ő ö í ő ú í ő ö Ö ő ü ö Ö ő í ő ü ő ő í ő ő ü ü í í ő ü ű í ö ú í ö ö Ö ü ű ő ő í ö ő ű ő ö ő ü ö í Í ü ö ő ö ö ő í ű ö ö ű ö ü ö ő í ú ű ű ű ö ő ü ő ü ö ő í í í ő ö í ő Í Ö Ö Ü ő ő í ő Ő ő ő í ü

Részletesebben

ü í í ű ű í ü ü í ő ú ü í ő ú í í ü í ü í ő ü í í ő ő ü í í ú ú ő ő ü ú ü ű ű í ű í ü ű ú ü í ü í ő ő ű ő ő í ű í ő í ő ü ő ű ű í ű ú ű í ú í ő ü ú ú ő ő í ü ú ü ő ő ő ü í ú ő ő í í ő ú ú ő ú ő ü ő í ő

Részletesebben

Á í Á í ó í í ó ö ö ő ő ő ö í í ó É Á í ó í ó ó ü ű ö í ó í ő ö ö ö ü í ó ü ü ü ö í í ő í ő í í Á í í í í ő ő í í ú í ó ö ö ö í ó í í ő ó í ű ö ö ó í ö ő ö ú ö ö ű ő ő ő ö ö ó í ő ó í ű ű ö ő ű ó í ű ő

Részletesebben

ó ü Á Ó Ó ó ó ú ó ú í ó ű ü í ú í ő í ú í ó ö ó ó ő ő ö É í ú í ű ő ű í ü í ó ö í í í ő ó ö í ú ó ó ö í ó í ó í ü í ó í í í ű í ú ű í ö ő í í í í í í ő ö ö í í í í í í ó ö ő í ü ü ö í í ó ó ó í ö ű ű ó

Részletesebben

ő Ú Ú ú ó ú Ó í ő ő ű ú ó ő ú ü ü ő ő ő ó í ó ü ó ő í ű ő ű í ó ü ű ő Ü ő ő ű ő ó í í ű ű ó í ű Ü ó ű Ü ű ű ó Ü ő ű ő í ó ó í ó ó Ü ó ó ó ó í ő ú ű ó ó ő ő ő ő ó í ő ó ó ó í ó í Ü ő ó ú í ó ő ü ú ő ű í

Részletesebben

Ü Á í É Ü Ó Ü Ü ú ú Ó í Ű Ó ö ű Ö Ó Ó Ú ű Ü í ö Ó Ó ö Ü ü ő Ó Ó í í Ú í Ú Ü Ö ő Ő ő ú Ó Ó ü ö ö ö ö ú í ő ő ő ú í ü ő ő ő ő ő Á Ő ú í í ő ü ö ö ö ü ü ü ő í ő ű ö Í ú ü ú ú ö ü ö ő ü ü Ó Ó ö ö ö ú ő ő

Részletesebben

ű ö ö ő ő ő ö í ő ö ö Ö Ö ő ő ö ő ö ű í ő ö ö í ő ö ü í ő ö í ű ő ö ő ő ő ö ő ü ü Í ő ö í ő í ö ö í ö ö ű ö ő ő ő ő í ü ö ö ő ü ő ő ő ö ő í ö ö ö í ő ű ő í í ö ü í ő ő ö ű Á í ö ö ö ü í ő ö ü ő ő ö ő í

Részletesebben

É í Í Í ő ö í ű ö í í ö öí í ö ő ő ő ő ő ő í ő ő í í ő í ő ü í Ő ő Á Á É Á Ö Ö Á Á Á É Á É É Ö É É Á Ö ö Á Ő É Í É Á Ö Ö Á Ó ö ö ö í ö őí ő í ú ö ő ö ö ő ö ö Ö ő ő ő ő ő ő ő ö ő í ő ö ö ö ő í í ű ő ö ü

Részletesebben

ó ő ő í ó ó í í ő ó ő ő Á ü ó Á Á Á Á Ö Á É Ó ó Á É í É Á É É í ó É ó É ü É Á í í ő ó ü í ú í í ó ő ő ü ü ó ó ü ű ó ő ő ő í ű ő ú ő í í í ü ő ű ő í í ű ő ő í ő ó ő ő í ó í ő ü í ó ő ű ó ű ő ó őí ü í őí

Részletesebben