Földelés és EMC Az elektromágneses összeférhetőség alapjai (EMC)

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Földelés és EMC Az elektromágneses összeférhetőség alapjai (EMC)"

Átírás

1 Villamosenergia minőség Alkalmazási segédlet Földelés és EMC Az elektromágneses összeférhetőség alapjai (EMC) Földelés és EMC

2 Földelés és EMC Az elektromágneses összeférhetőség alapjai (EMC) Prof. Dr. rer nat Wolfgang Langguth Hochshule für Technik und Wirtschaft május Magyar Rézpiaci Központ Hungarian Copper Promotion Centre (HCPC) A Magyar Rézpiaci Központ a réztermelők és feldolgozók által támogatott non-profit szervezet, amelynek célja a réz és a rézötvözetek használatának, valamint helyes és hatékony alkalmazásának elősegítése. A szolgáltatások, beleértve a műszaki tanácsadást és információs adatközlést, mindazok rendelkezésére állnak, akik bármilyen vonatkozásban érdekeltek a réz felhasználásában. Az egyesülés összeköttetést teremt a kutatás és a felhasználó ipar között, és szoros kapcsolatot tart fenn a világ többi a rézpiac fejlesztésén tevékenykedő- szervezetével. Európai Réz Intézet European Copper Institute (ECI) Az Európai Réz Intézet az ICA (International Copper Association) és az IWCC (International Wrought Copper Council) támogató tagjai által létrehozott szervezet. Tagjain keresztül az ECI a világ legnagyobb réztermelői és Európa vezető réztermék gyártói nevében dolgozik a réztermékek európai piacfejlesztésén. Az 1996 januárjában megalakult ECI-t tíz Rézpiac Fejlesztési Egyesület (CDA-k) hálózata támogatja a Benelux államokban, Franciaországban, Németországban, Görögországban, Magyarországon, Olaszországban, Lengyelországban, Skandináviában, Spanyolországban és az Egyesült Királyságban. Ezen tevékenység folytatása azon erőfeszítéseknek, amelyeket az 1959-ben alakult Copper Products Development Association (CPDA) és az 1961-ben alakult International Copper Research Association (INCRA) kezdeményezett. Figyelmeztetés A Magyar Rézpiaci Központ és az Európai Réz Intézet elhárítja a felelősséget bármilyen közvetlen, közvetett, okozati, vagy véletlenszerű meghibásodásért, amely az ebben a kiadványban közölt információk felhasználásából, vagy az információk illetve a közölt adatok fel nem használhatóságából eredhetnek. Szerzői jog : Copper Development Association (CDA) Magyar fordítás: Magyar Rézpiaci Központ A kiadvány anyagának másolása, terjesztése engedélyezett, feltéve, hogy az teljes terjedelemben, a forrás megjelölésével történik. Magyar Rézpiaci Központ H-1053 Budapest, Képíró u. 9. Magyarország Tel: (+36 1) Fax: (+36 1) info@hcpcinfo.org Web:

3 Bevezetés Földelés és EMC Régebben a hagyományos épületekben alkalmazott villamos berendezések között túlsúlyban voltak a lineáris terhelések (mint például a váltakozó- és egyenáramú motorok, ellenállásos terhelések, wolframszálas izzó lámpák stb.), amelyek nem, vagy csak nagyon kismértékben okoztak zavarokat a különböző berendezésekben. A ma használatos terhelések között sok a nemlineáris (inverterrel táplált váltakozó-áramú motorok, gázkisüléses lámpák, energiatakarékos lámpák stb.). Ezek részben keskenysávú zavarokat hoznak létre (a 9 khz feletti rögzített frekvencián működő eszközöknek köszönhetően), amelyek a teljes hálózaton szétterjednek. Ilyen jellegű vezetett zavarjelet jellemzően a kapcsolóüzemű tápegységek termelnek, amelyek 10 khz és 100 khz között üzemelnek. Ugyanakkor megfigyelhető a digitális rendszerek használatának növekedése, mint például az információtechnológiai berendezések elterjedése a műszaki életben, az ipari folyamatok automatizálásában, a multimédiás és az üzleti alkalmazásokban. Az elektromágneses zavarokat okozó (EMI) teljesítményelektronikai energiaellátó rendszerek száma és teljesítménye egyre nő, ugyanakkor terjednek a digitális rendszerek, amelyek jelfeszültsége, működési teljesítményszintje egyre csökken, ezért egyre érzékenyebbek az elektromágneses környezetre. Növekszik az adatátviteli sebességük és egyre nagyobb mértékben alkalmazzák ezeket a rendszereket a biztonságtechnikával kapcsolatos feladatokra. Ez a fejlődés mindazokban az épületekben megköveteli a jó minőségű villamos hálózatok kiépítését, ahol az elektromágneses összeférhetőség hiánya akár a költségek növekedését, akár a biztonsági szintek elfogadhatatlan mértékű csökkenését eredményezi. Alapvetően az épületek összes villamosan vezető szerkezeti eleme és berendezési tárgya szerepet játszik az elektromágneses zavarás során akár forrásként (elektromágneses zavar adó), vagy vevőként (elektromágneses zavar vevő). A villamos hálózat vezetői mellett a fémcsövek, a betonszerkezetek vasalása, a fém homlokzatok és az épületek acélszerkezetei mind részesei a teljes EMC folyamatnak, amelyekben az elektromágneses zavarok tovább is terjedhetnek. Gyakran előfordul, hogy valamely szerkezet egyszerre forrásként és vevőként is működik. A jellemző rendszerek a következők: Energia ellátó vonalak Mérő- és szabályozó készülékek Riasztó berendezések Számítógépes hálózatok, beleértve a vezetékezést. Nem megfelelő telepítés és TN-C hálózat esetén a zavarjelek a teljes épületen belül szétterjednek, sőt eljuthatnak a szomszédos épületekbe is. Az Európai Unió felismerte az EMC növekvő jelentőségét. Az Európai Unió 89/336/EEC számú EMC irányelve szerint (amelyet a 91/263/EEC, 92/31/EEC, 93/68/EEC és a 93/97/EEC irányelvek módosítottak, majd a 2004/ 108/EK kiváltott) az épületekben lévő összes villamos berendezésnek ki kell elégítenie az elektromágneses zavartűrésre és zavarkibocsátásra vonatkozó nemzetközi szabványokat. Az irányelv értelmében mindazok a személyek gyártó -nak minősülnek, akik felelősek a tervezésért és gyártásért (összeszerelésért és létesítésért), és teljes felelőséggel tartoznak azért, hogy a berendezés az irányelv összes vonatkozó rendelkezésének megfeleljen az üzembe helyezéskor. Annak érdekében, hogy az épületben kialakítandó villamos hálózat megbízhatóan és költséghatékony módon biztosítsa az EMC követelményeket, már a tervezés legkorábbi szakaszában feltétlenül szükség van az EMC helyzet elemzésére és az EMC terv kidolgozására. Minden villamos berendezés felülvizsgálata és üzembe helyezése EMC területen jártas szakembert igényel. Ennek a résznek az a célja, hogy áttekintse és alapszinten megismertesse az elektromágneses zavarás fő fizikai törvényszerűségeit, és bevezetést nyújtson a zavaró hatások elleni védekezés alapelveibe. Az erőterek, mint az elektromágneses zavarás alapvető forrásai interference Az elektromágneses összeférhetőség a villamos vagy elektronikus rendszereknek, gépeknek, készülékeknek stb. az a képessége, hogy a saját elektromágneses környezetükben kielégítően működnek anélkül, hogy környezetükben bármi számára elviselhetetlen elektromágneses zavarást idéznének elő. 3

4 Az elektromágneses zavarás (EMI) alapvető forrásai az elektrodinamika területén előforduló erőterek és áramok. Kis frekvenciákon a villamos és mágneses erőterek egymástól függetlenül hatnak; nagy frekvenciák esetén csak a terjedő elektromágneses erőtérnek van jelentősége. A kis-, közepes- és nagyfrekvenciájú erőtereket villamos töltések és áramok hozzák létre. Kis frekvenciákon a villamos és mágneses erőterek hatótávolsága viszonylag kicsi. Nagyságuk a forrástól mért távolságnak legalább a reciprokával arányosan csökken, ezért ezek az áramvezető vagy feszültség alatt lévő vezetők közelében koncentrálódnak. Mivel a villamos erőtér a villamos berendezés feszültségével arányos, ezért az elektromágneses zavaráshoz szükséges nagyságú villamos erőtér csak a nagyfeszültségű berendezések közelében alakul ki. Ezzel együtt a legtöbb berendezésben a villamos erőterek nem játszanak jelentős szerepet. Ugyanakkor azonban kis távolságok esetén, mint például a kábelcsatornákban együtt futó több kábel esetén figyelembe kell venni a villamos erőteret, mint az elektromágneses zavarás egyik lehetséges forrását. A mágneses erőtér a villamos áram nagyságával arányos. Számos energiaellátó rendszerben az áramok nagy értékeket érhetnek el, így a létrejövő mágneses erőtér is nagy lesz, ezért jelentős elektromágneses zavaró hatásokkal kell számolni. Ennek különösen a TN-C típusú hálózatokban nagy a valószínűsége. A nulla vezetőnek (N) és a védővezetőnek (PE) a PEN vezetőben történő egyesítése, és az épület egyéb fémszerkezeteinek a bekötése miatt az áramok az épület minden részébe eljuthatnak, és a kialakuló mágneses erőterek szinte mindenhol előidézhetnek elektromágneses zavaró hatásokat. Mivel a nullavezetőn visszafolyó áram egy része külső fémszerkezetekben folyik, a TN-C hálózat eredő árama aszimmetrikus lesz, és a TN-C hálózat körül kialakuló mágneses erőtér nagyságrendekkel megnő. A katódsugárcsöves számítógép monitorokat könnyen meg lehet zavarni 1,5 µt nagyságrendű mágneses indukcióval (a zavarás a képernyő remegésében jelentkezik). Ekkora erőtér jön létre például egyetlen, 10 A nagyságú, 50 Hz frekvenciájú áramot vezető tápvezetéktől 1,3 m távolságban. A nagyobb méretű (>17 hüvelyk) katódsugárcsöves számítógép monitorok még érzékenyebbek a külső mágneses erőterekkel szemben. Ha a tápvezetékben folyó áram nagyobb frekvenciájú összetevőket is tartalmaz, akkor a zavaró hatás még erőteljesebb. Nagyfrekvenciákon a villamos és a mágneses erőterek elektromágneses térré alakulnak át, amely a térben fénysebességgel terjed. Ebből adódóan a zavaró hatása sokkal nagyobb távolságban érvényesül. Manapság az elektromágneses terek legjelentősebb forrásai a radarok, rádió- és tv adók, mobil telefonok, DECT telefonok, vezetéknélküli hálózatok (WLAN), Bluetooth összeköttetések és a mikrohullámú tartományban működő ipari berendezések. Ugyanakkor az energia vezetékek antennaként is működhetnek, miközben vezetik a hálózatban szándékoltan (pl. tápvonali jelátvitel) vagy nem szándékoltan (pl. gyors tranziensek) megjelenő nagyfrekvenciás jeleket. A villamos berendezések elektromágneses erőterekkel szembeni zavartűrésének biztosításához gondos tervezésre és az árnyékolások alapos kialakítására van szükség. Az elektromágneses csatolások fajtái Az elektromágneses zavarás csatolásának elemi modellje Az elektromágneses zavarás tárgyalását célszerű egy nagyon egyszerű modellel kezdeni. Ez tartalmazza a forrást, amely a zavarást okozza, valamilyen csatolási folyamatot vagy csatoló közeget és a zavart eszközt. Az elektromágneses zavar forrása Csatolási folyamat Az elektromágneses zavar vevője 1. ábra: Az elektromágneses zavarás elemi modellje A forrásokra példák lehetnek, az előbbiekben említettek szerint a villamos energiarendszer, a vezeték nélküli helyi hálózatok (LAN) antennái stb. A csatolás az áram útján valósul meg, ha a különböző áramkörök közös vezetői villamos, mágneses vagy elektromágneses térben haladnak. A zavar vevője bármilyen fajta készülék vagy a villamos berendezés bármely része lehet. Természetesen egy adott épületben lévő összes berendezés vagy 4

5 hálózat között fellépő teljes elektromágneses kölcsönhatás ezeknek az elemi kölcsönhatásoknak a nagyon bonyolult kombinációja. Ráadásul bármely zavarvevő elektromágneses zavarforrásként is működhet, és fordítva. Új létesítéskor vagy felújítás esetén a tervezési szakaszban meg kell határozni az összes lehetséges forrást, csatolási utat és zavart objektumot tartalmazó mátrixot. Ennek a mátrixnak a segítségével kell megbecsülni a kölcsönhatások lehetséges mértékét, majd megítélni, hogy milyen fajta elektromágneses zavarok alakulhatnak ki, és ezek közül várhatóan melyek lesznek jelentősek. Csak ennek az elektromágneses zavarok kölcsönhatását tartalmazó mátrixnak az alapján lehet a védőintézkedéseket már a kezdeteknél megtervezni, lehetővé téve a gyors és költséghatékony megoldást. Négy különböző fajta elemi elektromágneses zavarást lehet megkülönböztetni: Galvanikus csatolás Induktív csatolás Kapacitív csatolás Csatolás sugárzás útján A különböző csatolási módok alapvető fizikai tulajdonságait foglalja össze a következő táblázat: Forrás Frekvenciatartomány Csatolás Hatótávolság Vevő Villamos tér Kisfrekvencia Kapacitív Kicsi Nagy- és kisfeszültségű kábelek Mágneses tér Kisfrekvencia Induktív Kicsi Nagy- és kisfeszültségű kábelek Elektromágneses tér Nagyfrekvencia Sugárzás Nagy Nagy- és kisfeszültségű kábelek 1. táblázat: Az elektromágneses csatolási módok alapvető fizikai tulajdonságai Épületekben a zavarjelenségek legnagyobb részét az induktív csatolások, kisebb részét pedig a kapacitív és a galvanikus csatolások idézik elő. A sugárzás útján történő csatolásnak mindeddig nem volt általában különösebb jelentősége, mivel a fellépő térerősségek rendszerint jóval alatta maradnak az Európai Unió EMC irányelvében előírt zavartűrési vizsgálatok során megkövetelt határértéknek. Azonban a vezetéknélküli alkalmazások terjedése a jövőben az ilyen jellegű elektromágneses zavarási jelenségek megszaporodásához vezethet. Galvanikus csatolás Galvanikus csatolás akkor lép fel, ha különböző áramkörök közös vezetőket és/vagy csatolóimpedanciákat tartalmaznak. Ez például akkor fordulhat elő, ha különböző áramköröket azonos feszültségforrás táplál. A galvanikus csatolás alapelve a 2. ábrán látható. Az I. áramkör legyen például az energiaellátó hálózat része, a II. áramkör pedig egy adatátviteli hálózat. A közös Z c = R c + jvl c csatoló impedancia miatt az u 2 jelfeszültségre szuperponálódó feszültség kis értékű Z c (Z c <<Z i + Z L ) esetén a következő összefüggéssel számítható: (1) 2. ábra: Galvanikus csatolás Ha az i 1 áram és/vagy a Z c csatoló impedancia elég nagy, akkor a szuperponálódó u k feszültség az u 2 jelfeszültséghez képest elég nagy lehet ahhoz, hogy megzavarja az adatátviteli áramkört. 5

6 A közös vonalszakasz impedanciája ohmos és induktív összetevőkből áll: Z c (ω) = R c + jωl c. Míg a csatolás ohmos összetevője nem függ a frekvenciától (a szkinhatástól eltekintve), addig az induktív összetevő jelentősége megnő a nagyobb frekvenciákon. A jelenség rövid magyarázatához tekintsük a következő modellt: 1. egység 2. egység 3. ábra: A galvanikus csatolás egyszerű modellje A Z c impedancián fellépő udist zavarfeszültség a 2. egység jelére szuperponálódik, és az i(t) áramtól valamint annak időbeli di(t)/dt változásától függ. Az egyszerűsített modellben a zavarfeszültséget a következő összefüggéssel lehet becsülni: (2) Ha a modellünk paramétereit a gyakorlatból vett értékekkel vesszük figyelembe (a vonal hossza l = 2 m, az öninduktivitás L c = 1 µh/m, az ellenállás R c = 1 Ω, az áram i = 1 A és az áramváltozás nagysága di/dt = 1 A / 100 ns), akkor a galvanikus csatolásból származó feszültségértékek a következőképpen alakulnak: (3) Nagyfrekvenciákon egyértelműen a vonalak öninduktivitása a meghatározó. Ez még akkor is igaz, ha figyelembe vesszük a szkinhatás miatti látszólagos ellenállás növekedést, amelyet a gyors tranziensek és a digitális jelek esetén nem lehet elhanyagolni. A Kirchhoff törvények szerint a zavarjelek szétterjedhetnek a hálózaton a teljes létesítményen belül, sőt a szomszédos létesítmények hálózatain is megjelenhetnek. A galvanikus csatolás csökkentése érdekében kerülni kell a független rendszerek közötti összeköttetéseket. Abban az esetben, ha összeköttetésekre szükség van, ezek öninduktivitását a lehető legkisebb értéken kell tartani. A gyakorlatban a villamos energiaellátó áramkörök galvanikus szétválasztását a legegyszerűbben a TN-C rendszer helyett TN-S rendszer alkalmazásával lehet elérni. Induktív csatolás Az időben változó külső i 1 (t) áram maga körül B(t) mágneses indukciót hoz létre, amely a közelben lévő áramkörben u dist (t) zavarfeszültséget indukál. A jelenség leírására alkalmas áramköri modellben a csatolást az M kölcsönös induktivitás segítségével lehet figyelembe venni. Az u dist (t) zavarfeszültség olyan közös módusú i 2 (t) áramot indít meg az áramkörben, amely a külső teret gyengítő mágneses erőteret hoz létre. Az i 2 (t) áram a zavart rendszer áramaira szuperponálódik, ami a rendszer hibás működéséhez vezethet. Különböző rendszerek mágneses erőtereinek csatolását a csatolt áramkörök közötti kölcsönös impedanciát figyelembe vevő helyettesítő áramkörrel lehet modellezni (4. ábra). 6

7 a) b) 4. ábra: Induktív csatolás a) erőtér modell, b) helyettesítő áramkör A csatolás mértéke alapvetően három paramétertől függ: a zavaró áram nagyságától a forrás és a vevő közötti távolságtól a zavaró erőtér frekvenciájától. A zavarjel akkor lesz nagy és jelentős, ha: a külső áramkörben folyó áram nagy az elmenő és visszatérő vezetőben folyó áramok aszimmetrikusak (mint pl. a TN-C hálózatban) az áramkörök közel vannak egymáshoz, és nagy hurkot írnak le a külső áramkörben folyó áram időben gyorsan változó, és emiatt jelentős a nagyfrekvenciás tartalma. Az induktív csatolás ugyanakkor a zavarás mérséklése során hasznos is lehet. Ha a kábeltálcák és a koaxiális kábelek telepítése megfelelő (azaz, ha rövid vezetőkkel megbízhatóan vannak összekötve, amelyek impedanciája nagyfrekvenciákon is kicsi), akkor ez, különösen nagyobb frekvenciákon a kábelek árnyékolását biztosítja a külső mágneses erőterekkel szemben. Az induktív csatolás függése a geometriától Az induktív csatolás függését a villamos hálózat típusától és geometriájától a következő példa kapcsán lehet szemléltetni. A következtetések a hálózatok elektromágneses összeférhetősége szempontjából fontosak. Tekintsünk két esetet: az elsőben egyetlen vezető, a másodikban egy elmenő és egy visszavezető vonal hatását számítsuk ki egy tőlük r távolságra lévő derékszögű hurokkal modellezett áramkörre. A mágneses indukciót a két esetben a következő összefüggésekkel lehet pontosan kiszámítani: ahol (4) A mágneses erőtér az i(t) árammal arányos. Azonban, amíg az egyvezetős gerjesztés esetén az erőtér csak a távolság reciprokával arányosan csökken, addig a kétvezetős vonal esetén az erőtér már a távolság négyzetének reciprokával arányosan csökken nagyobb távolságok esetén. Ez okozza a távolság hatásának jelentős különbségét a két esetben. A következő ábrán a mágneses indukciónak és az egységnyi hosszra eső kölcsönös induktivitásnak az alakulása látható. A példában az i(t) áram értékét 1 A-nek, az a távolságot 1,5 mm-nek választottuk. A szimmetrikus kétvezetős vonal által létrehozott mágneses erőtér két nagyságrenddel kisebb, ráadásul a távolsággal gyorsabban csökken, mint egyetlen vezető esetén. Ugyanez érvényes a kölcsönös induktivitásra 7

8 a) b) Egy- vagy kétvezetős vonal Villamos áramkör Mágneses indukció 5. ábra: a) Egy- és kétvezetős vonal, mint a mágneses erőtér forrása b) villamos áramkör, mint vevő a) b) Egyetlen vezető Egyetlen vezető Kétvezetős gerjesztés Kétvezetős gerjesztés 6. ábra: a) Az egy- és kétvezetős gerjesztés által létrehozott mágneses indukció b) egy hurok és az egy- illetve kétvezetős gerjesztés közötti egységnyi hosszra eső kölcsönös induktivitás is. A kölcsönös induktivitásnak a hurok területétől való függése a 6.b) ábrához hasonlóan alakul. Ez a példa rávilágít a legalapvetőbb ismeretekre, amelyekből az elektromágneses összeférhetőség követelményeit kielégítő hálózatok tervezésének néhány aranyszabálya következik: minden villamos hálózat hurokméretét a lehető legkisebbre kell választani a nagyáramú vezetőktől a lehető legnagyobb távolságot kell tartani az energiaellátó vonalakat és az adatvonalakat el kell választani egymástól csak TN-S hálózatot szabad alkalmazni. Csak a TN-S hálózatok nyújtanak EMC-barát megoldást. A TN-C hálózatokban aszimmetrikus áramok jelenhetnek meg, és így a TN-C hálózatban az aszimmetrikus áramot vezető egyetlen vonal hatása lesz a meghatározó a mágneses indukció létrehozásában. Azonos hálózati elrendezés esetén az aszimmetrikus áram által létrehozott mágneses indukció legalább két nagyságrenddel lesz nagyobb, mint a TN-S hálózat esetén. 8

9 Az induktív csatolás frekvencia függése Az induktív csatolás frekvencia függésének ismerete elengedhetetlenül fontos az olyan villamos hálózatok kialakítása során, amelyek a külső nagyfrekvenciás zavarokkal szemben optimális védelmet nyújtanak. Vegyünk újra egy, az 5.b) ábrához hasonló ideális kísérleti elrendezést. A 7. ábra mutatja az elrendezés helyettesítő áramkörét, amelyben a kisméretű hurok öninduktivitása L 2, ellenállása R 2, a gerjesztést adó külső vonalban i1(t) áram folyik és a kettő közötti kölcsönös induktivitás M. 7. ábra: Az induktív csatolás helyettesítő kapcsolása Ha meghatározott ω körfrekvenciájú áramokat vizsgálunk (i 1,2 (t) = i 1,2 (ω)e jωt ), akkor az egyszerű modell esetén az i 1 (ω) zavaró áramnak és az i 2 (ω) indukált áramnak pontosan ki lehet számítani az átviteli függvényét, amelyre az 5. egyenlet adódik: (5) Annak a megértéséhez, hogy ez az összefüggés mit jelent egy valóságos hálózatban, vegyünk egy l = 0,3 m hosszúságú és w = 0,1 m szélességű hurkot, amely d = 2 mm távolságra van a zavaró áramot vezető vonaltól. A belső ellenállás értékét válasszuk R 2 = 50 Ω-nak. Az öninduktivitást és a kölcsönös induktivitást az adatokból ki lehet számítani, értékük: L 2 = 0,9 µh és M = 0,2 µh. Az indukált áramnak a külső zavaró áramhoz viszonyított i 2 (ω) / i 1 (ω) értéke a következő ábrán látható: 8. ábra: Az áram átviteli függvényének esettanulmánya Az i 2 indukált áram nő, ha az i 1 zavaró áram és annak frekvenciája nő. Kisfrekvenciákon az ω-val arányosan növekszik, míg nagyfrekvenciákon az i 2 elér egy telítési értéket. Ezt a telítési értéket az M/L 2 arány határozza meg. Az elektromágneses zavaró hatások csökkentése érdekében az elektromágneses összeférhetőség követelményeit kielégítő hálózatban a csatolt áramkörre vonatkozó M kölcsönös indukciónak a lehető legkisebbnek, míg az L 2 önindukciónak a lehető legnagyobbnak kell lennie. Mivel a gyors zavarok több és nagyobb nagyfrekvenciás összetevőket tartalmaznak, ezért ezek nagyobb zavarokat okoznak. Ez látható a 9. ábrán, ahol a digitális jelet helyettesítő trapéz formájú áram-hullámalak által létrehozott indukált áram számított értékei láthatók. 9

10 Mivel a gyors zavarok több és nagyobb nagyfrekvenciás összetevőket tartalmaznak, ezért ezek nagyobb zavarokat okoznak. Ez látható a 9. ábrán, ahol a digitális jelet helyettesítő trapéz formájú áram-hullámalak által létrehozott indukált áram számított értékei láthatók. 9. ábra: Lassú és gyors, trapéz alakú áramok által létrehozott indukált áramok A 9. ábrán látni lehet, hogy az indukált áram a lassú felfutású külső áram amplitúdójának több, mint 10 %-át éri el, gyors felfutású külső áram esetén pedig annak több, mint 15 %-át. Ezek a nagy értékek a digitális jelek meredek felfutásából erednek. Hasonlóan nagy értékek adódnak minden elektronikus kapcsolási folyamatból, mint pl. a fázisszög-vezérelt fényerősség szabályozókból. A fényerősség szabályozó kapcsolását trapéz alakú jellel lehet modellezni. Az 50 Hz-es jel többi része gyakorlatilag elhanyagolható. Eddig az elektromágneses zavarás vevőjeként rövidrezárt hurkot vizsgáltunk. Ebben az esetben a villamos jellemzőket kell optimalizálni annak érdekében, hogy az i 2 (t) indukált áram a lehető legkisebb legyen. Az i 2 (t) indukált áramnak azt a tulajdonságát, hogy az őt létrehozó külső mágneses erőteret csökkentő mágneses erőteret hoz létre, szintén fel lehet használni a burkolt, érzékeny villamos vagy elektronikus rendszerek árnyékolásában. Ebben az esetben a rövidrezárt hurok villamos paramétereit úgy kell megválasztani, hogy a mágneses erőtér csökkenését eredményező i 2 (t) értéke legyen optimális, és ezáltal a hurokban fellépő mágneses fluxus a lehető legkisebb legyen. Erre a célra fel lehet használni például az árnyékolt kábelek árnyékolását, a kábeltálcákat, a kábelek kihasználatlan ereit stb. A rövidrezárt hurok modellünkben fellépő eredő mágneses fluxus értékét a következő összefüggéssel lehet számítani: (6) Megfigyelhető, hogy az eredő mágneses fluxus kis R 2 értékek esetén lesz a legkisebb. A rövidrezárt hurok modellünk árnyékolási tulajdonságainak alakulását különböző R 2 értékek esetén a 10. ábrán követhetjük nyomon. Az árnyékolás hatékonysága rohamosan nő a rövidrezárt hurok ellenállásának csökkentésével. Az ábrán az R 2 =, 500, 50, 5 Ω hoz tartozó görbék szerepelnek. Ezekből az eredményekből az épületekben alkalmazandó fontos létesítési szabályok következnek. Az árnyékoló szerkezetek, mint pl. a kábeltálcák, kábelcsatornák, szekrények stb. összes összekötésének nagyfrekvenciákon kis ellenállással kell rendelkezniük. A szkinhatás miatt a frekvencia növelésével minden vezető ellenállása növekszik. Ezért a vezetők geometriáját úgy kell megválasztani, hogy nagyfrekvenciákon a látszólagos ellenállás a lehető legkisebb legyen. Az optimális vezetőgeometria a lapos szalag, amely lehet tömör vagy fonott, és amelynek a felülete nagy, viszont a vastagsága kicsi. A szabványos körkeresztmetszetű vezetők nem ideálisak. Természetesen egy rövidrezárt hurok csak abban az esetben fejthet ki hatékony árnyékoló hatást, ha benne kialakulhat az indukált áram, azaz ha a rövidrezárt hurokban nincs szakadás. Az árnyékolásokat tehát mindkét végükön le kell földelni annak érdekében, hogy ne korlátozzuk az áramot. 10

11 10. ábra: Rövidrezárt hurok árnyékolásának hatékonysága az R 2 hurokellenállás különböző értékei esetén Kapacitív csatolás Külső rendszer időben változó villamos tere a zavart rendszerben a töltések időbeli változását eredményezi. A zavarfeszültségeket létrehozó eltolási áramokat a két rendszer közötti szórt kapacitásokat figyelembe vevő helyettesítő áramkörrel lehet modellezni. a) b) 11. ábra: Kapacitív csatolás a) erőtér modell, b) helyettesítő áramkör A kapacitív csatolás akkor lesz jelentős, ha: a két áramkör közel van egymáshoz a két áramkör közötti feszültségkülönbség nagy a zavart okozó pl.külső áramkörben lévő jelek időben gyorsan változnak, és emiatt jelentős a nagyfrekvenciás tartalmuk. Példaként tekintsük egy energiaellátó áramkör kábeleit és egy helyi hálózat (LAN) áramkörét, amelyek egy kábeltálcában, egymáshoz közel párhuzamosan haladnak 10 m hosszúságban. Ha az erősáramú kábelben folyó 230 V feszültségszintű és 50 Hz frekvenciájú áram tisztán szinuszos, akkor az adatkábelben megjelenő zavarjel amplitúdója 10 V-ot ér el, amely még elfogadható érték. Azonban, ha az erősáramú kábelben a nemlineáris terhelések miatt nagyfrekvenciás összetevők is jelen vannak, akkor az adatkábelben kialakuló zavarjel amplitúdója meghaladhatja a 90 V-ot, amely az adathálózatok működőképesség romlását vagy hibás működését eredményezheti. Ha a kábelezés és az árnyékolás tervezése megfelelő, és a kivitelezést gondosan végezték el, akkor ezek a fajta zavarok elkerülhetők, de legalábbis elviselhető mértékűre lehet őket csökkenteni. 11

12 A kapacitív csatolás legfontosabb tulajdonságainak vizsgálatához ismét tekintsünk egy olyan elemi modellt, amelyet analitikusan meg lehet oldani. A modell két áramkörből áll, amelyek az egyszerűség kedvéért közös visszatérő vezetőt használnak. Az elrendezés helyettesítő áramköre a következő ábrán látható: Az a és c vonal a külső rendszer része, a b és c vonal pedig a zavart rendszeré. 12. ábra: Háromvezetős modell a kapacitív csatoláshoz Ha meghatározott ω körfrekvenciájú feszültségeket vizsgálunk (u 1,2 (t) = u 1,2 (ω)e jωt ), akkor az egyszerű modell esetén az u 1 (ω) zavaró feszültség és az u 2 (ω) becsatolt feszültség közötti kapcsolatot pontosan ki lehet számítani: (7) A modell paramétereire válasszuk a következő értékeket: R 2 =1kV, C ab = C cb =100 pf. Ezek az értékek megfelelnek 1 mm vastagságú, egymástól 5 mm távolságban, 10 m hosszúságban párhuzamosan haladó kábeleknek. A külső feszültség értéke u 1 = 220 V. A kapacitív úton becsatolt u 2 feszültség frekvenciamenete a 13. ábrán látható. 13. ábra: A kapacitív csatolás frekvenciafüggése A kapacitív csatolás alakulása nagyon hasonló az induktív csatoláséhoz. Az u 2 becsatolt feszültség kisfrekvenciákon az u 1 zavaró jel frekvenciájával arányosan nő, és nagy frekvenciákon elér egy telítési értéket. A nagyfrekvenciás összetevőket tartalmazó gyors zavaró jelek itt is jelentős zavaró hatást eredményeznek. A 14. ábra a normál 220 V-os, 50 Hz-es szinuszhullám és a fázisszög-vezérelt fényerőszabályozó által létrehozott becsatolt feszültségeket szemlélteti. A szinuszhullám kb. 7 mv amplitúdójú szinuszos jelet eredményez, amely a legtöbb esetben elhanyagolható. Ezzel szemben, a fényerő-szabályozó kapcsolási folyamatai 110 V-os csúcsértéket hoznak létre. 12

13 14. ábra: a) 50 Hz-es szinuszhullám, b) fázisszög-vezérelt fényerőszabályozó által kapacitív csatolással létrehozott jelek A kapacitív csatolás mértékét árnyékolt kábelek alkalmazásával lehet csökkenteni. A két árnyékolt kábelből álló modell a következő ábrán látható. S 1 C 13 S 2 C 34 C ábra: Két árnyékolt kábel közötti kapacitív csatolás Az S 1 és S 2 vezetőképes árnyékolás egy ponton csatlakozik a rendszerhez. Az u 2 becsatolt feszültség alakulása megegyezik a 7. egyenlettel, ahol: C ab - t a kifejezéssel, és C bc -t C 34 -gyel kell helyettesíteni. A becsatolt feszültség legnagyobb értéke lehet, 13

14 amiből az következik, hogy a vezető és az árnyékolás közötti jó kapacitív csatolás (C 34 ) növeli az árnyékolás hatékonyságát. A következő ábra egy gyors tranziens impulzussal (burst) szemben mutatja különböző kapacitív csatolások esetén az árnyékolás hatékonyságát. 16. ábra: Különböző belső kapacitív csatolással rendelkező árnyékolás hatékonysága burst impulzussal szemben Csatolás sugárzás útján Az elektromágneses terek a térben fénysebességgel (c = 2, m/s) terjednek, és befolyásolhatják a forrás közelében vagy attól távol lévő villamos berendezéseket. Az elektromágneses terek leggyakoribb forrásai a tv adók, mobil telefonok és mindenféle vezetéknélküli alkalmazás. A gyors jelek vagy a gyors tranziensek (ESD, lökőhullám, burst impulzus) nagyfrekvenciás összetevőinek hatására a kábelek vagy a villamos hálózat egyéb vezető részei elektromágneses sugárzást hoznak létre, amely zavarhatja az épület más részeiben lévő villamos hálózatokat. Ha az energiaellátó- vagy adathálózat nagyfrekvenciás összetevőjű zavarokat tartalmaz, akkor a hálózat elemei antennaként működhetnek, és elektromágneses sugárzást bocsáthatnak ki. A jelenség a Hertz dipólussal modellezhető, amellyel megbecsülhető a sugárzott erőterek nagysága. A villamos berendezések minden egyes vezető része felfogható antennaként, így többek között: a kábelek a burkolatok, tokozások nyílásai, rései a nyomtatott áramköri lapok áramvezető fóliái. f [MHz] λ [m] A berendezések burkolatain található nyílások és rések zavarokat sugároznak a környezetükbe vagy a saját belsejükbe, ezzel zavarják a környezetükben lévő többi berendezést és/vagy az elektromágneses erőtereket bejuttatják a rendszerek belsejébe. Példaként tekintsünk egy emberi test és egy fémlap között kialakuló elektrosztatikus kisülést. Átíveléskor az elektrosztatikus kisülés nemcsak jelentős áramot szállít, hanem elektromágneses teret is létrehoz, amelynek hatására 1 m-nél kisebb távolságban 0,5-4 kv feszültség is keletkezhet adott esetben. Ezek az elektromágneses terek a nem megfelelően kialakított burkolat belsejében lévő villamos rendszert megzavarhatják az antennaként működő nyílások miatt táblázat: Néhány frekvenciaérték és a hozzájuk tartozó hullámhosszak A vezető részek, mint a kábelek és a nyílások akkor kezdenek el sugározni, ha a hosszúságuk meghaladja a hullámhossznak kb. a felét. Az elektromágneses hullámok hullámhossza és frekvenciája között a fénysebesség teremt kapcsolatot: λ = c / f. Néhány jellemző adatpár található a 2. táblázatban. 14

15 A gyakorlatban a berendezések burkolata nem lehet teljesen zárt. A bemenő kábelek és a hűtés miatti nyílások valamint az ajtók körüli rések elkerülhetetlenek. Ezek a nyílások minden burkolat árnyékolásának hatékonyságát csökkentik. A burkolat célszerű kialakításával viszont elfogadható szintű árnyékolást lehet elérni. Az árnyékoláson lévő nyílások miatti áteresztőképesség alapvetően három tényezőtől függ: a nyílás legnagyobb lineáris mérete a hullámimpedancia a forrás frekvenciája. l = λ / 2 hosszúságú rés esetén az árnyékolás hatékonysága a következő: (8) Fele olyan hosszúságú rés esetén az árnyékolás 6 db-lel növekszik. A 17. ábra az árnyékolás hatékonyságát mutatja a frekvencia függvényében, különböző hosszúságú rések esetén. S [db] Range l= 1cm l= 5 cm l= 10cm l= 50 cm l= 1 m 17. ábra: Különböző hosszúságú rések árnyékolási hatékonysága a frekvencia függvényében A gyakorlatban a berendezéseken legfeljebb a hullámhossz 1/20-ánál rövidebb rések lehetnek, ha legalább 20 db árnyékolási hatékonyságot szeretnénk biztosítani. A 8. egyenletből és a 17. ábráról meghatározható a kívánt árnyékolási hatékonysághoz tartozó legnagyobb réshossz. f Komplex elektromágneses zavarás a gyakorlatban A gyakorlatban fellépő elektromágneses zavarás során a korábbiakban tárgyalt elemi csatolási folyamatok bonyolult kombinációja jelentkezik. Egy automatizálási rendszer egyszerű modellje látható a 18. ábrán, amelyben az összes csatolás egy rendszeren jelenik meg, amely ugyanakkor kapcsolatban van a saját környezetével. Minden egyes egyedi rendszer be van ágyazva más rendszerekből álló hálózatba, és ezek együtt alkotják az elektromágneses zavarás bonyolult kölcsönhatásait. A teljes rendszer megfelelő működésének biztosításához létre kell hozni az u.n. EMC mátrixot, amelyet mind az új épületek, mind a felújítások tervezési folyamatában figyelembe kell venni. Az EMC irányelv és annak jelentősége az épületek berendezései szempontjából Az Európai Unió irányelveinek célja annak biztosítása, hogy az Európai Unióban gyártott vagy forgalomba hozott minden egyes termék megfeleljen a közös szabványoknak, és így a tagállamokban minden további szabályozás nélkül forgalomba lehessen hozni ezeket. Az elektromágneses összeférhetőség területén a 89/336/ EEC európai direktíva (amelyet a 91/263/EEC, 92/31/EEC, 93/68/EEC és a 93/97/EEC irányelvek módosítanak) 15

16 Elektromágneses terek Bemenő/Kimenő jelvezetékek Automatizálási rendszer Busz vezetékek Energiaellátás Földelő vezetékek Figure 18 - Various couplings paths of an automation system minden termék esetén meghatározza azokat az általános szabványokat, amelyek a termék zavarkibocsátásának korlátozásával és a külső elektromágneses zavarokkal szembeni zavartűrés legkisebb értékének előírásával biztosítják az elektromágneses összeférhetőséget. Minden egyes hordozható termék gyártójának nyilatkoznia kell, hogy a termék megfelel az Európai Unió szabványainak. A terméket CE jelöléssel kell ellátni, amely a fogyasztó számára igazolja, hogy a termék kielégíti az EMC összeférhetőségi irányelveket. Ami a villamos hálózatokat illeti, megfelelőségi nyilatkozatra és CE jelölésre ugyan nincs szükség, azonban az európai irányelv szabványainak való megfelelőséget biztosítani kell. Ez azoknak a feladata, akik a villamos hálózat tervezéséért és kivitelezéséért felelősek. A megfelelőség biztosításának és ellenőrzésének megvannak a módszerei. Az első lehetőség EMC szempontból minősített részegységek alkalmazása, amelyeket EMC területen kioktatott dolgozók építenek be. A második lehetőség tetszőleges részegységek alkalmazása, de ekkor egy EMC laboratóriumnak vagy kijelölt tanúsító szervnek a berendezés megfelelőségét méréssel kell igazolnia. Mindkét esetben a tervezőnek megfelelő dokumentumokkal kell bizonyítania az európai irányelv szabványainak való megfelelőséget. Kiegészítésképpen a berendezés gyártójának az európai irányelv III. melléklete szerint egyértelmű kezelési és karbantartási utasítást kell biztosítania. Ezeknek az utasításoknak tájékoztatást kell adniuk a rendeltetésszerű üzemeltetési, létesítési, összeszerelési, beállítási, beavatkozási és karbantartási körülményekről. Szükség esetén fel kell hívni a figyelmet az esetleges üzemeltetési korlátozásokra. Egy létesítmény villamos berendezés megfelelőségét a következő szabályok alkalmazásával lehet a legbiztonságosabb módon elérni: Az EMC szempontokat már a legkorábbi szakaszban figyelembe kell venni, és ha szükséges, igénybe kell venni EMC szakértők szolgálatait Csak EMC minősítéssel rendelkező egységeket és anyagokat szabad használni EMC területen kiképzett dolgozók végezzék a létesítést EMC területen képzett mérnökök felügyeljék a kivitelezést. Mivel az EMC területén folyó képzések még viszonylag újak, ezért indokolt a téma oktatásának fejlesztése. 16

17 Irodalomjegyzék G Durcansky: EMC Correct Design of Apparatus (in German), Francis, 1995 Electromagnetic Compatibility (EMC), Guide to the Application of Directive 89/336/EEC, European Communities 1997 S Fassbinder: Disturbances of the Power Supply Network by Active and Passive Components (in German), VDE Verlag 2002 J Goedbloed: Electromagnetic Compatibility (in German), Pflaum Verlag, 1990 M Grapentin: EMC for the Installation of Buildings (in German), Verlag Technik, 2000 E Habiger: Electromagnetic Compatibility (in German), Hüthig, 1998 B Keiser: Principles of EMC, Artech House, 1987 VP Kodali: Engineering Electromagnetic Compatibility, IEEE Press, 1996 A Kohling: EMC of Buildings, Facilities and Apparatus (in German), VDE-Verlag, 1998 G Lehner: Theory of Electromagnetic Fields (in German), Springer, 1994 H W Ott: Noise Reduction Techniques in Electronic Systems, A Wiley, 1988 C R Paul: Introduction to Electromagnetic Compatibility, John Wiley, 1992 D Peier: Electromagnetic Compatibility (in German), Hüthig, 1990 A Rodewald: Electromagnetic Compatibility (in German), Vieweg, 1995 W Rudolph, O Winter: EMC according VDE 0100 (in German), VDE-Verlag, 2000 W Rudolph: An EMC Primer for Electricians (in German), VDE-Verlag, 2001 Guideline Electromagnetic Compatibility (in German), EMC-Guideline ZX62920D, 1998, Groupe Schneider A Schwab: Electromagnetic Compatibility (in German), Springer, 1996 DIN/VDE 0848 : Safety in Electrical, Magnetic and Electromagnetic Fields (in German) 17

18 Jegyzetek 18

19 Referencia és Alapító Tagok* European Copper Institute* (ECI) ETSII - Universidad Politécnica de Madrid LEM Instruments Akademia Gorniczo-Hutnicza (AGH) Fluke Europe MGE UPS Systems Centre d'innovació Tecnològica en Convertidors Estàtics i Accionaments (CITCEA-UPC) Hochschule für Technik und Wirtschaft* (HTW) Otto-von-Guericke-Universität Magdeburg Comitato Elettrotecnico Italiano (CEI) Hogeschool West-Vlaanderen Departement PIH Polish Copper Promotion Centre* (PCPC) Copper Benelux* International Union for Electricity Applications (UIE) Università di Bergamo* Copper Development Association* (CDA UK) ISR - Universidade de Coimbra University of Bath Deutsches Kupferinstitut* (DKI) Istituto Italiano del Rame* (IIR) The University of Manchester Engineering Consulting & Design* (ECD) Katholieke Universiteit Leuven* (KU Leuven) Wroclaw University of Technology* EPRI Solutions Inc Laborelec Szerkesztőségi bizottság David Chapman (Chief Editor) CDA UK david.chapman@copperdev.co.uk Prof Angelo Baggini Università di Bergamo angelo.baggini@unibg.it Dr Araceli Hernández Bayo ETSII - Universidad Politécnica de Madrid ahernandez@etsii.upm.es Prof Ronnie Belmans UIE ronnie.belmans@esat.kuleuven.ac.be Dr Franco Bua ECD franco.bua@ecd.it Jean-Francois Christin MGE UPS Systems jean-francois.christin@mgeups.com Prof Anibal de Almeida ISR - Universidade de Coimbra adealmeida@isr.uc.pt Hans De Keulenaer ECI hdk@eurocopper.org Prof Jan Desmet Hogeschool West-Vlaanderen jan.desmet@howest.be Dr ir Marcel Didden Laborelec marcel.didden@laborelec.com Dr Johan Driesen KU Leuven johan.driesen@esat.kuleuven.ac.be Stefan Fassbinder DKI sfassbinder@kupferinstitut.de Prof Zbigniew Hanzelka Akademia Gorniczo-Hutnicza hanzel@uci.agh.edu.pl Stephanie Horton ERA Technology stephanie.horton@era.co.uk Dr Antoni Klajn Wroclaw University of Technology antoni.klajn@pwr.wroc.pl Kees Kokee Fluke Europe BV kees.kokee@fluke.nl Prof Dr Wolfgang Langguth HTW wlang@htw-saarland.de Prof Henryk Markiewicz Wroclaw University of Technology henryk.markiewicz@pwr.wroc.pl Carlo Masetti CEI masetti@ceiuni.it Mark McGranaghan EPRI Solutions mmcgranaghan@eprisolutions.com Dr Jovica Milanovic The University of Manchester jovica.milanovic@manchester.ac.uk Dr Miles Redfern University of Bath eesmar@bath.ac.uk Dr ir Tom Sels KU Leuven tom.sels@esat.kuleuven.ac.be Prof Dr-Ing Zbigniew Styczynski Universität Magdeburg Sty@E-Technik.Uni-Magdeburg.de Andreas Sumper CITCEA-UPC sumper@citcea.upc.edu Roman Targosz PCPC cem@miedz.org.pl Dr Ahmed Zobaa Cairo University azmailinglist@link.net

20 Hochschule für Technik und Wirtschaft des Saarlandes University of Applied Sciences Hochschule für Technik und Wirtschaft EMC Laboratory University of Applied Sciences Goebenstrasse Saarbrücken Germany Prof Dr Wolfgang Langguth Tel: Fax: Website: Magyar Rézpiaci Központ H-1053 Budapest, Képíró u. 9. Magyarország Tel: (+36 1) Fax: (+36 1) Web: European Copper Institute 168 Avenue de Tervueren B-1150 Brussels Belgium Tel: Fax: eci@eurocopper.org Website:

Feszültség zavarok Alapvetô ismeretek az aszimmetriáról

Feszültség zavarok Alapvetô ismeretek az aszimmetriáról Villamosenergia-minôség Alkalmazási segédlet Feszültség zavarok Alapvetô ismeretek az aszimmetriáról 5..3 Feszültség zavarok Feszültség zavarok Alapvetô ismeretek az aszimmetriáról Dr Johan Driesen & Dr

Részletesebben

Harmonikusok Források és hatások

Harmonikusok Források és hatások Villamosenergia-minôség Alkalmazási segédlet Harmonikusok Források és hatások 3.1 Harmonikusok Harmonikusok Források és Hatások David Chapman Copper Development Association 2001. március Magyar Rézpiaci

Részletesebben

Szójegyzék/műszaki lexikon

Szójegyzék/műszaki lexikon Tartalom Szójegyzék/műszaki lexikon Szójegyzék/műszaki lexikon Tápegységek Áttekintés.2 Szabványok és tanúsítványok.4 Szójegyzék.6.1 Tápegységek áttekintés Tápegységek - áttekintés A hálózati tápegységek

Részletesebben

Földelés és EMC A földelés mint rendszer

Földelés és EMC A földelés mint rendszer Villamosenergia-minôség Alkalmazási segédlet Földelés és EMC A földelés mint rendszer 6.1 Földelés és EMC Földelés és EMC A földelés, mint rendszer Reyer Venhizen KEMA T&D Power 2001. Májs Magyar Rézpiaci

Részletesebben

Colin Hargis Elektromágneses összeférhetõség - útmutató erõsáramú mérnökök részére

Colin Hargis Elektromágneses összeférhetõség - útmutató erõsáramú mérnökök részére Colin Hargis Elektromágneses összeférhetõség - útmutató erõsáramú mérnökök részére A Control Techniques Plc, mint a hajtástechnika vezetõ világcége fontosnak tartja, hogy a legkorszerûbb technológia felhasználásával

Részletesebben

Janklovics Zoltán. Hálózatvédelem 2. Villámvédelem EMC 2012.05.08. Tel.: +36 304119712. janklovics@t-online.hu Túlfeszültség-védelem, EMC

Janklovics Zoltán. Hálózatvédelem 2. Villámvédelem EMC 2012.05.08. Tel.: +36 304119712. janklovics@t-online.hu Túlfeszültség-védelem, EMC Hálózatvédelem 2. Villámvédelem EMC 2012.05.08. Tel.: +36 304119712 janklovics@t-online.hu 1 Távközlő hálózatok villámvédelme Tematika - A hálózatban fellépő túlfeszültségek, - Védelmi módszerek, - A hálózatvédelem

Részletesebben

AZ ELEKTROMÁGNESES KOMPATIBILITÁS BEVEZETÉS

AZ ELEKTROMÁGNESES KOMPATIBILITÁS BEVEZETÉS Teréki Csaba mérnök százados Szabó Gyula mérnök őrnagy egyetemi tanársegéd Zrínyi Miklós Nemzetvédelmi Egyetem Vezetés- és Szervezéstudományi Kar Fedélzeti rendszerek tanszék Az elektromágneses összeférhetőség

Részletesebben

Készülékek és szigetelések

Készülékek és szigetelések Készülékek és szigetelések BMEVIVEM174 Koller, László Novák, Balázs Tamus, Ádám Készülékek és szigetelések írta Koller, László, Novák, Balázs, és Tamus, Ádám Publication date 2012 Szerzői jog 2011 Tartalom

Részletesebben

Modern berendezések és készülékek által keltett elektromágneses terek, az ún. elektroszmog lehetséges egészségi ártalmai

Modern berendezések és készülékek által keltett elektromágneses terek, az ún. elektroszmog lehetséges egészségi ártalmai SUGÁRZÁSOK 5.2 Modern berendezések és készülékek által keltett elektromágneses terek, az ún. elektroszmog lehetséges egészségi ártalmai Tárgyszavak: elektromágneses tér; elektronika; berendezés; egészségi

Részletesebben

Jármőipari EMC mérések

Jármőipari EMC mérések Jármőipari EMC mérések (EMC-jelő mérés) Készítette : Szőcs László 2008 A mérés a Robert Bosch Kft. támogatásával jött létre. 1. A mérés célja A mérés célja az EMC méréstechnika gépjármő iparban használatos

Részletesebben

Elektromos zajcsökkentés vezetékelés és földelés szerepe. BME Fizika Tanszák Nanoszeminárium előadás 2012.11.29. Balogh Zoltán

Elektromos zajcsökkentés vezetékelés és földelés szerepe. BME Fizika Tanszák Nanoszeminárium előadás 2012.11.29. Balogh Zoltán Elektromos zajcsökkentés vezetékelés és földelés szerepe BME Fizika Tanszák Nanoszeminárium előadás 2012.11.29. Balogh Zoltán Egyszerű mérési elrendezés: Tápegység minta feszültséghez Csak a minimális

Részletesebben

3. számú mérés Szélessávú transzformátor vizsgálata

3. számú mérés Szélessávú transzformátor vizsgálata 3. számú mérés Szélessávú transzformátor vizsgálata A mérésben a hallgatók megismerkedhetnek a szélessávú transzformátorok főbb jellemzőivel. A mérési utasítás első része a méréshez szükséges elméleti

Részletesebben

Fényforrások EMC vizsgálata

Fényforrások EMC vizsgálata Fényforrások EMC vizsgálata PhD értekezés tézisei (tézisfüzet) Istoc Robert BME Villamos Energetika Tanszék Nagyfeszültségű Technika és Berendezések Csoport Témavezető: Dr. Berta István egyetemi tanár

Részletesebben

Mikrohullámú aluláteresztő szűrők tápvonalas megvalósítása

Mikrohullámú aluláteresztő szűrők tápvonalas megvalósítása Mikrohullámú aluláteresztő szűrők tápvonalas megvalósítása Nagy Lajos BME-HVT Szélessávú Hírközlés és Villamosságtan Tanszék (kutatási jelentés) 5 Pro Progressio Alapítvány Mikrohullámú aluláteresztő szűrők

Részletesebben

DT1100 xx xx. Galvanikus leválasztó / tápegység. Kezelési útmutató

DT1100 xx xx. Galvanikus leválasztó / tápegység. Kezelési útmutató Galvanikus leválasztó / tápegység Kezelési útmutató Tartalomjegyzék 1. Kezelési útmutató...4 1.1. Rendeltetése... 4 1.2. Célcsoport... 4 1.3. Az alkalmazott szimbólumok... 4 2. Biztonsági útmutató...5

Részletesebben

Elektrotechnika Feladattár

Elektrotechnika Feladattár Impresszum Szerző: Rauscher István Szakmai lektor: Érdi Péter Módszertani szerkesztő: Gáspár Katalin Technikai szerkesztő: Bánszki András Készült a TÁMOP-2.2.3-07/1-2F-2008-0004 azonosítószámú projekt

Részletesebben

III/1. Kisfeszültségű vezetékméretezés általános szempontjai (feszültségesés, teljesítményveszteség fogalma, méretezésben szokásos értékei.

III/1. Kisfeszültségű vezetékméretezés általános szempontjai (feszültségesés, teljesítményveszteség fogalma, méretezésben szokásos értékei. III/1. Kisfeszültségű vezetékméretezés általános szempontjai (feszültségesés, teljesítményveszteség fogalma, méretezésben szokásos értékei. A vezetékméretezés során, mint minden műszaki berendezés tervezésénél

Részletesebben

Feszültségzavarok A feszültségletörést mérséklő eszközök kiválasztásának szempontjai

Feszültségzavarok A feszültségletörést mérséklő eszközök kiválasztásának szempontjai Villamosenergia minőség Alkalmazási segédlet Feszültségzavarok A feszültségletörést mérséklő eszközök kiválasztásának szempontjai 5.3.4 Szabályozók Motorok Érzékeny fogyasztók Áramszolgáltatói hálózat

Részletesebben

A stabil üzemű berendezések tápfeszültségét a hálózati feszültségből a hálózati tápegység állítja elő (1.ábra).

A stabil üzemű berendezések tápfeszültségét a hálózati feszültségből a hálózati tápegység állítja elő (1.ábra). 3.10. Tápegységek Az elektronikus berendezések (így a rádiók) működtetéséhez egy vagy több stabil tápfeszültség szükséges. A stabil tápfeszültség időben nem változó egyenfeszültség, melynek értéke független

Részletesebben

Elektromágneses terek gyakorlat - 6. alkalom

Elektromágneses terek gyakorlat - 6. alkalom Elektromágneses terek gyakorlat - 6. alkalom Távvezetékek és síkhullám Reichardt András 2015. április 23. ra (evt/hvt/bme) Emt2015 6. alkalom 2015.04.23 1 / 60 1 Távvezeték

Részletesebben

Az EuroProt készülékcsalád

Az EuroProt készülékcsalád EuroProt rendszerismertető Az EuroProt készülékcsalád A Protecta Elektronikai Kft. EuroProt készülékcsaládja azzal a céllal készült, hogy tagjai a villamosenergia rendszer valamennyi védelmi és automatika

Részletesebben

= szinkronozó nyomatékkal egyenlő.

= szinkronozó nyomatékkal egyenlő. A 4.45. ábra jelöléseit használva, tételezzük fel, hogy gépünk túllendült és éppen a B pontban üzemel. Mivel a motor által szolgáltatott M 2 nyomaték nagyobb mint az M 1 terhelőnyomaték, a gép forgórészére

Részletesebben

Önhűtött, motortól független frekvenciaátalakító. PumpDrive 2 Eco. Üzemeltetési/összeszerelési útmutató

Önhűtött, motortól független frekvenciaátalakító. PumpDrive 2 Eco. Üzemeltetési/összeszerelési útmutató Önhűtött, motortól független frekvenciaátalakító PumpDrive 2 Eco Üzemeltetési/összeszerelési útmutató Impresszum Üzemeltetési/összeszerelési útmutató PumpDrive 2 Eco Eredeti üzemeltetési útmutató Minden

Részletesebben

Villamosenergia minőség Alkalmazási segédlet

Villamosenergia minőség Alkalmazási segédlet Villamosenergia minőség Alkalmazási segédlet Earthing & EMC Földelő rendszerek Alapvető létesítési szempontok 6.5.1 Földelés és EMC Földelés és EMC Földelő rendszerek Alapvető létesítési szempontok Henryk

Részletesebben

Csatlakozósorok. A Knürr AG licence alapján gyártja a KONTASET Kft.

Csatlakozósorok. A Knürr AG licence alapján gyártja a KONTASET Kft. Csatlakozósorok A Knürr AG licence alapján gyártja a KONTASET Kft. KONTASET VÁZSZERKEZET GYÁRTÓ ÉS SZOLGÁLTATÓ KFT. 1201 Budapest, Helsinki út 53. Telefon: 421-3001 Telefax: 421-3000 6600 Szentes, Csongrádi

Részletesebben

A villamos biztonság és földelés új szempontjai a váltakozóáramú energia- és villamos vontatási rendszerekben

A villamos biztonság és földelés új szempontjai a váltakozóáramú energia- és villamos vontatási rendszerekben 2015. NOVEMBER 17-19./ SIÓFOK HOTEL AZÚR A villamos biztonság és földelés új szempontjai a váltakozóáramú energia- és villamos vontatási rendszerekben Dr. VARJÚ GYÖRGY Professor Emeritus BME Villamos Energetika

Részletesebben

5 Egyéb alkalmazások. 5.1 Akkumulátorok töltése és kivizsgálása. 5.1.1 Akkumulátor típusok

5 Egyéb alkalmazások. 5.1 Akkumulátorok töltése és kivizsgálása. 5.1.1 Akkumulátor típusok 5 Egyéb alkalmazások A teljesítményelektronikai berendezések két fõ csoportját a tápegységek és a motorhajtások alkotják. Ezekkel azonban nem merülnek ki az alkalmazási lehetõségek. A továbbiakban a fennmaradt

Részletesebben

Egyszerû és hatékony megoldások

Egyszerû és hatékony megoldások Moduláris túlfeszültség-levezetôk Egyszerû és hatékony megoldások A siker egyértelmû! A legtöbbet tesszük a villamosságért. A villámmal kapcsolatos kockázatok A villám a talajjal kondenzátort képezô zivatarfelhôkben

Részletesebben

Billenő áramkörök Jelterjedés hatása az átvitt jelre

Billenő áramkörök Jelterjedés hatása az átvitt jelre Billenő áramkörök Jelterjedés hatása az átvitt jelre Berta Miklós 1. Billenőkörök A billenőkörök pozitívan visszacsatolt digitális áramkörök. Kimeneti feszültségük nem folytonosan változik, hanem két meghatározott

Részletesebben

Harmonikus zavarok, mint a villamosítás ellensége

Harmonikus zavarok, mint a villamosítás ellensége Túróczi József (1954) Okl. Erősáramú Villamos Mérnök Túróczi és Társa Erősáramú Mérnöki Iroda KFT Tulajdonos Túróczi Péter (1979) GAMF Üzemmérnök Túróczi és Társa Erősáramú Mérnöki Iroda KFT Ügyvezető

Részletesebben

A különbözõ módszerek hatásossága és jellemzõ tulajdonságai

A különbözõ módszerek hatásossága és jellemzõ tulajdonságai Frekvenciaváltók tápláló hálózatára ható felharmonikus terhelés csökkentése Megoldások a Control Techniques feszültséginvertereiben Az erõsáramú elektronikus berendezések nemlineáris és kapcsolóüzemû részegységei

Részletesebben

5. Mérés Transzformátorok

5. Mérés Transzformátorok 5. Mérés Transzformátorok A transzformátor a váltakozó áramú villamos energia, feszültség, ill. áram értékeinek megváltoztatására (transzformálására) alkalmas villamos gép... Működési elv A villamos energia

Részletesebben

Tantárgy: TELJESÍTMÉNYELEKTRONIKA Tanár: Dr. Burány Nándor Tanársegéd: Mr. Divéki Szabolcs 3. FEJEZET

Tantárgy: TELJESÍTMÉNYELEKTRONIKA Tanár: Dr. Burány Nándor Tanársegéd: Mr. Divéki Szabolcs 3. FEJEZET Tantárgy: TELJESÍTMÉNYELEKTRONIKA Tanár: Dr. Burány Nándor Tanársegéd: Mr. Divéki Szabolcs 5. félév Óraszám: 2+2 1 3. FEJEZET TÁPEGYSÉGEK A tápegységek építése, üzemeltetése és karbantartása a teljesítményelektronika

Részletesebben

Háromfázisú hálózat.

Háromfázisú hálózat. Háromfázisú hálózat. U végpontok U V W U 1 t R S T T U 3 t 1 X Y Z kezdőpontok A tekercsek, kezdő és végpontjaik jelölése Ha egymással 10 -ot bezáró R-S-T tekercsek között két pólusú állandó mágnest, vagy

Részletesebben

MELLÉKLETEK. a következőhöz: a Bizottság.../.../EU felhatalmazáson alapuló rendelete

MELLÉKLETEK. a következőhöz: a Bizottság.../.../EU felhatalmazáson alapuló rendelete EURÓPAI BIZOTTSÁG Brüsszel, 2014.12.8. C(2014) 9198 final ANNEXES 15 to 16 MELLÉKLETEK a következőhöz: a Bizottság.../.../EU felhatalmazáson alapuló rendelete a 167/2013/EU európai parlamenti és tanácsi

Részletesebben

80-as sorozat - Idõrelék 6-8 - 16 A

80-as sorozat - Idõrelék 6-8 - 16 A -as sorozat - Idõrelék 6-8 - A.01.11.21 Egy vagy többfunkciós idõrelék öbbfunkciós irõrelé: 6 mûködési funkcióval öbbfeszültségû kivitel: (12...240) V AC/DC öbb idõzítési funkció: 6 idõzítési tartomány,

Részletesebben

A készülék leírása Energiaellátás A VivaLight polarizált fényt elõállító lámpa A cserélhetõ polarizációs színszûrõ eltávolítása illetve felhelyezése

A készülék leírása Energiaellátás A VivaLight polarizált fényt elõállító lámpa A cserélhetõ polarizációs színszûrõ eltávolítása illetve felhelyezése TARTALOM Tisztelt Felhasználó! Figyelem! Általános leírás Élettani hatásmechanizmus A mûszer fizikai tartalmának leírása A készülék biztonsági elemei A készülék leírása Energiaellátás A VivaLight polarizált

Részletesebben

A rendszerbe foglalt reléprogram 1954 óta. Újdonságok - 2012 nyara

A rendszerbe foglalt reléprogram 1954 óta. Újdonságok - 2012 nyara A rendszerbe foglalt reléprogram 1954 óta Újdonságok - 2012 nyara Tartalomjegyzék 72-es sorozat - Feszültségfelügyeleti relék 72.31-es típus - 3-fázisú hálózat felügyelete oldal 1-3 7S sorozat - Relék

Részletesebben

AZ INFORMATIKAI RENDSZEREK BIZTONSÁGÁNAK EGY SAJÁTOS RÉSZTERÜLETE

AZ INFORMATIKAI RENDSZEREK BIZTONSÁGÁNAK EGY SAJÁTOS RÉSZTERÜLETE IV. Évfolyam 1. szám - 2009. március Munk Sándor Zrínyi Miklós Nemzetvédelmi Egyetem munk.sandor@zmne.hu Zsigmond Gyula Zrínyi Miklós Nemzetvédelmi Egyetem zsigmond.gyula@zmne.hu AZ INFORMAIKAI RENDSZEREK

Részletesebben

i TE a bemenetére kapcsolt jelforrást és egyéb fogyasztókat (F) táplál. Az egyes eszközök

i TE a bemenetére kapcsolt jelforrást és egyéb fogyasztókat (F) táplál. Az egyes eszközök Elektronika 2. Feladatok a zaj témakörhöz Külső zajok 1. Sorolja fel milyen jellegű külső eredetű zavarok hatnak az elektronikus áramkörök (például az erősítők) bemenetére! Szemléltesse egy-egy ábrán az

Részletesebben

Mozgásátalakítók, csigahajtás, csavarorsó felépítése és működése.hibalehetőségek és javításuk

Mozgásátalakítók, csigahajtás, csavarorsó felépítése és működése.hibalehetőségek és javításuk Molnár István Mozgásátalakítók, csigahajtás, csavarorsó felépítése és működése.hibalehetőségek és javításuk A követelménymodul megnevezése: Gépelemek szerelése A követelménymodul száma: 0221-06 A tartalomelem

Részletesebben

Elektromágneses hullámok, a fény

Elektromágneses hullámok, a fény Elektromágneses hullámok, a fény Az elektromos töltéssel rendelkező testeknek a töltésük miatt fellépő kölcsönhatását az elektromos és mágneses tér segítségével írhatjuk le. A kölcsönhatás úgy működik,

Részletesebben

15- 15-ös sorozat - Elektronikus dimmerek 15.91 15.51 15.81. Épu letinstallációs készu lékek

15- 15-ös sorozat - Elektronikus dimmerek 15.91 15.51 15.81. Épu letinstallációs készu lékek - Elektronikus dimmerek 15- Fényáramszabályozás memóriafunkcióval rendelkező elektronikus dimmerekkel Használható izzólámpákkal, halogénlámpákkal (közvetlenül vagy transzformátorral) A 15.81-es típus dimmelhető

Részletesebben

4. mérés Jelek és jelvezetékek vizsgálata

4. mérés Jelek és jelvezetékek vizsgálata 4. mérés Jelek és jelvezetékek vizsgálata (BME-MI, H.J.) Bevezetés A mérési gyakorlat első része a mérésekkel foglalkozó tudomány, a metrológia (méréstechnika) néhány alapfogalmával foglalkozik. A korszerű

Részletesebben

67.22-4300 67.23-4300. 2 NO (záróérintkező) nyitott érintkezők táv. 3 mm NYÁK-ba építhető. Csatlakozók nézetei

67.22-4300 67.23-4300. 2 NO (záróérintkező) nyitott érintkezők táv. 3 mm NYÁK-ba építhető. Csatlakozók nézetei 50 -es teljesítményrelék NYÁK-ba szereléshez, inverterekben történő alkalmazásra 2 vagy 3 záróérintkező (hídérintkezők) nyitott érintkezők távolsága 3 mm, a VDE 0126-1-1, EN 62109-1, EN 62109-2 szerint

Részletesebben

Kiegészítés a Párbeszédes Informatikai Rendszerek tantárgyhoz

Kiegészítés a Párbeszédes Informatikai Rendszerek tantárgyhoz Kiegészítés a Párbeszédes Informatikai Rendszerek tantárgyhoz Fazekas István 2011 R1 Tartalomjegyzék 1. Hangtani alapok...5 1.1 Periodikus jelek...5 1.1.1 Időben periodikus jelek...5 1.1.2 Térben periodikus

Részletesebben

Elosztott energiatermelés és megújuló energiaforrások

Elosztott energiatermelés és megújuló energiaforrások Villamosenergia - minőség és Szolgáltatói Útmutató Elosztott energiatermelés és megújuló energiaforrások 8.3.5 Kapcsolt energiatermelés Siemens press picture Siemens press picture Elosztott energiatermelés

Részletesebben

mobil rádióhálózatokban

mobil rádióhálózatokban Magyar Tudomány 2007/7 Az interferencia elnyomása mobil rádióhálózatokban Pap László az MTA rendes tagja, egyetemi tanár BME Híradástechnikai Tanszék pap@hit.bme.hu Imre Sándor az MTA doktora, egyetemi

Részletesebben

HITELESÍTÉSI ELŐÍRÁS HE 24-2012

HITELESÍTÉSI ELŐÍRÁS HE 24-2012 HITELESÍTÉSI ELŐÍRÁS GÉPJÁRMŰ-GUMIABRONCSNYOMÁS MÉRŐK HE 24-2012 TARTALOMJEGYZÉK 1. AZ ELŐÍRÁS HATÁLYA... 5 2. MÉRTÉKEGYSÉGEK, JELÖLÉSEK... 6 2.1 Használt mennyiségek... 6 2.2 Jellemző mennyiségi értékek

Részletesebben

Kapacitív áramokkal működtetett relés áramkörök 621.316.92S:621.318.B7:S21.3S2.$

Kapacitív áramokkal működtetett relés áramkörök 621.316.92S:621.318.B7:S21.3S2.$ DR. GÁL JÓZSEF Budapesti Műszaki Egyetem Kapacitív áramokkal működtetett relés áramkörök BTO 621.316.92S:621.318.B7:S21.3S2.$ A cikk cím szerinti témáját két, egymástól időben nagyon távoleső kapcsolási

Részletesebben

20 kva 60 kva UPS PÁRHUZAMOS REDUNDÁNS RENDSZER HASZNÁLATI UTASÍTÁSA

20 kva 60 kva UPS PÁRHUZAMOS REDUNDÁNS RENDSZER HASZNÁLATI UTASÍTÁSA 9305 20 kva 60 kva UPS PÁRHUZAMOS REDUNDÁNS RENDSZER HASZNÁLATI UTASÍTÁSA 9305 20 kva 60 kva UPS párhuzamos redundáns rendszer Tartalomjegyzék 1. Bevezetés... 5 2. A rendszer ismertetése... 5 2.1. Általános

Részletesebben

Szakmai ajánlás. az egységes villamos energia feszültség minőség monitoring rendszer kialakítására

Szakmai ajánlás. az egységes villamos energia feszültség minőség monitoring rendszer kialakítására ES-891/9/2008. Szakmai ajánlás az egységes villamos energia feszültség minőség monitoring rendszer kialakítására Budapest, Tartalomjegyzék 1. Célkitűzés... 3 2. Bevezetés... 3 3. Nemzetközi kitekintés...

Részletesebben

Oscillating Wave Test System Oszcilláló Hullámú Tesztrendszer OWTS

Oscillating Wave Test System Oszcilláló Hullámú Tesztrendszer OWTS Oscillating Wave Test System Oszcilláló Hullámú Tesztrendszer Kompakt, részleges kisülés mérésén alapuló, Tettex a választás. PD-TEAM Mérnöki Iroda Kft. 1134 Budapest Kassák L. u. 62. T: 237 0527 F: 237

Részletesebben

Az elektroncsövek, alap, erősítő kapcsolása. - A földelt katódú erősítő. Bozó Balázs

Az elektroncsövek, alap, erősítő kapcsolása. - A földelt katódú erősítő. Bozó Balázs Az elektroncsövek, alap, erősítő kapcsolása. - A földelt katódú erősítő. Bozó Balázs Az elektroncsöveket alapvetően erősítő feladatok ellátására használhatjuk, azért mert már a működésénél láthattuk, hogy

Részletesebben

72-es sorozat - Folyadékszintfigyelõ relék 16 A

72-es sorozat - Folyadékszintfigyelõ relék 16 A 72-es sorozat - Folyadékszintfigyelõ relék 16 A Vezetõképes folyadékok szintfelügyelete Pozitív biztonsági logika töltés és ürítés vezérléséhez Beállított szint vagy tartomány figyelhetõ Érzékenység állítható

Részletesebben

1. Válaszd ki a helyes egyenlőségeket! a. 1C=1A*1ms b. 1 μc= 1mA*1ms. 2. Hány elektron halad át egy fogyasztón 1 perc alatt, ha az I= 20 ma?

1. Válaszd ki a helyes egyenlőségeket! a. 1C=1A*1ms b. 1 μc= 1mA*1ms. 2. Hány elektron halad át egy fogyasztón 1 perc alatt, ha az I= 20 ma? 1. Válaszd ki a helyes egyenlőségeket! a. 1C=1A*1ms b. 1 μc= 1mA*1ms c. 1mC 1 A = d. 1 ms A 1mC 1 m = 1 ns 2. Hány elektron halad át egy fogyasztón 1 perc alatt, ha az I= 20 ma? ( q = 1,6 *10-16 C) - e

Részletesebben

Traszformátorok Házi dolgozat

Traszformátorok Házi dolgozat Traszformátorok Házi dolgozat Horváth Tibor lkvm7261 2008 június 1 Traszformátorok A traszformátor olyan statikus (mozgóalkatrészeket nem tartalmazó) elektromágneses átalakító, amely adott jellemzőkkel

Részletesebben

BIZTONSÁGTECHNIKAI ÚTMUTATÓ A BETÖRÉSES LOPÁS-RABLÁSBIZTOSÍTÁSI KOCKÁZATOK KEZELÉSÉRE. B.1.10. Fejezet. Kapacitív mezőváltozás érzékelők követelmények

BIZTONSÁGTECHNIKAI ÚTMUTATÓ A BETÖRÉSES LOPÁS-RABLÁSBIZTOSÍTÁSI KOCKÁZATOK KEZELÉSÉRE. B.1.10. Fejezet. Kapacitív mezőváltozás érzékelők követelmények BIZTONSÁGTECHNIKAI ÚTMUTATÓ A BETÖRÉSES LOPÁS-RABLÁSBIZTOSÍTÁSI KOCKÁZATOK KEZELÉSÉRE (AJÁNLÁS) B.1.10. Fejezet Kapacitív mezőváltozás érzékelők követelmények kiadás A dokumentum megnevezése kiadva visszavonva

Részletesebben

Optoelektronikai Kommunikáció. Az elektromágneses spektrum

Optoelektronikai Kommunikáció. Az elektromágneses spektrum Optoelektronikai Kommunikáció (OK-2) Budapesti Mûszaki Fõiskola Kandó Kálmán Villamosmérnöki Fõiskolai Kar Számítógéptechnikai Intézete Székesfehérvár 2002. 1 Budapesti Mûszaki Fõiskola Kandó Kálmán Villamosmérnöki

Részletesebben

(1. és 2. kérdéshez van vet-en egy 20 oldalas pdf a Transzformátorokról, ide azt írtam le, amit én kiválasztanék belőle a zh-kérdéshez.

(1. és 2. kérdéshez van vet-en egy 20 oldalas pdf a Transzformátorokról, ide azt írtam le, amit én kiválasztanék belőle a zh-kérdéshez. 1. A transzformátor működési elve, felépítése, helyettesítő kapcsolása (működési elv, indukált feszültség, áttétel, felépítés, vasmag, tekercsek, helyettesítő kapcsolás és származtatása) (1. és 2. kérdéshez

Részletesebben

Elosztott energiatermelés és megújuló energiaforrások

Elosztott energiatermelés és megújuló energiaforrások Villamosenergia - minőség és Szolgáltatói Útmutató Elosztott energiatermelés és megújuló energiaforrások 8.1 Általános elvek E.ON Renewables Elosztott energiatermelés és megújuló energiaforrások Általános

Részletesebben

Állandó permeabilitás esetén a gerjesztési törvény más alakban is felírható:

Állandó permeabilitás esetén a gerjesztési törvény más alakban is felírható: 1. Értelmezze az áramokkal kifejezett erőtörvényt. Az erő iránya a vezetők között azonos áramirány mellett vonzó, ellenkező irányú áramok esetén taszító. Az I 2 áramot vivő vezetőre ható F 2 erő fellépését

Részletesebben

Közbeszerzési Értesítő száma: 2015/27. Tájékoztató a szerződés módosításáról/ké/2013.07.01 KÉ. Hirdetmény típusa:

Közbeszerzési Értesítő száma: 2015/27. Tájékoztató a szerződés módosításáról/ké/2013.07.01 KÉ. Hirdetmény típusa: 1.sz.szerződésmódosítás - Közvilágítás korszerűsítése az ÉMOP-3.1.3-11-2012-0143 azonosítószámon nyilvántartott Füzér község kisléptékű településfejlesztése Program keretében Közbeszerzési Értesítő száma:

Részletesebben

Földelés és EMC Földelô rendszerek számítási és tervezési alapok

Földelés és EMC Földelô rendszerek számítási és tervezési alapok illamosenergia-minôség Alkalmazási segédlet Földelés és MC Földelô rendszerek számítási és tervezési alapok 6.3.1 * S * T Földelés és MC Földelés és MC Földelô rendszerek számítási és tervezési alapok

Részletesebben

ENP-04/BS nıvérhívó. rendszer leírása. (Rövidített változat)

ENP-04/BS nıvérhívó. rendszer leírása. (Rövidített változat) Az ENP-04/BS nıvérhívó rendszer leírása (Rövidített változat) H-3636 Sajógalgóc, Szent István tér 6. H-6600 Szentes, Wesselényi u. 52/A. H-6601, Szentes Pf.: 106 +36 63 400 912 és +36 48 505 241 Fax: +36

Részletesebben

Feszültségzavarok Villogásmérés

Feszültségzavarok Villogásmérés Villamosenergia minőség Alkalmazási segédlet Feszültségzavarok Villogásmérés 5.2.3 Fényáram Feszültség 10 U/U [%] 1 0.1 0.1 1 10 230 V 120 V 100 V 100 1000 10 k Négyszögjel alakú feszültség-változások

Részletesebben

Feszültségzavarok Feszültségletörések hatása folyamatos technológiájú üzem termelésére Esettanulmány

Feszültségzavarok Feszültségletörések hatása folyamatos technológiájú üzem termelésére Esettanulmány Villamosenergia-minôség Alkalmazási segédlet Feszültségzavarok Feszültségletörések hatása folyamatos technológiájú üzem termelésére Esettanulmány 5.5.1 Siemens Press Photo Adagoló Extruder Polimer granulátum

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Csordásné Marton Melinda. Fizikai példatár 4. FIZ4 modul. Elektromosságtan

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Csordásné Marton Melinda. Fizikai példatár 4. FIZ4 modul. Elektromosságtan Nyugat-magyarországi Egyetem Geoinformatikai Kara Csordásné Marton Melinda Fizikai példatár 4 FIZ4 modul Elektromosságtan SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999 évi LXXVI

Részletesebben

ACTIVE frekvenciaváltó. Kezelési Kézikönyv 230V / 400V 0,55 kw 132,0 kw

ACTIVE frekvenciaváltó. Kezelési Kézikönyv 230V / 400V 0,55 kw 132,0 kw ACTIVE frekvenciaváltó Kezelési Kézikönyv 230V / 400V 0,55 kw 132,0 kw Dokumentációra vonatkozó általános információ Az alábbi dokumentáció az ACT 201 és ACT 401 sorozatú frekvenciaváltókra érvényes. Gyári

Részletesebben

3 Tápegységek. 3.1 Lineáris tápegységek. 3.1.1 Felépítés

3 Tápegységek. 3.1 Lineáris tápegységek. 3.1.1 Felépítés 3 Tápegységek A tápegységeket széles körben alkalmazzák analóg és digitális berendezések táplálására. Szerkezetileg ezek az áramkörök AC-DC vagy DC-DC átalakítók. A kimenet tehát mindig egyenáramú, a bemenet

Részletesebben

EGYEZMÉNY. (2. felülvizsgált változat, amely tartalmazza az 1995. október 16-án hatályba lépett módosításokat) 9. Melléklet: 10.

EGYEZMÉNY. (2. felülvizsgált változat, amely tartalmazza az 1995. október 16-án hatályba lépett módosításokat) 9. Melléklet: 10. E/ECE/324 }Add.9/Rev.2 E/ECE/TRANS/505 1997. december 8. ENSZ-EGB 10. számú Elõírás EGYEZMÉNY A KÖZÚTI JÁRMÛVEKRE, A KÖZÚTI JÁRMÛVEKBE SZERELHETÕ ALKATRÉSZEKRE, ILLETVE A KÖZÚTI JÁRMÛVEKNÉL HASZNÁLATOS

Részletesebben

VILLAMOS ENERGETIKA ELŐVIZSGA DOLGOZAT - A csoport

VILLAMOS ENERGETIKA ELŐVIZSGA DOLGOZAT - A csoport VILLAMOS ENERGETIKA ELŐVIZSGA DOLGOZAT - A csoport 2013. május 22. NÉV:... NEPTUN-KÓD:... Terem és ülőhely:... 1. 2. 3. 4. 5. Értékelés: Ha az 1. feladat eredménye

Részletesebben

Tanulmányozza az 5. pontnál ismertetett MATLAB-modell felépítést és működését a leírás alapján.

Tanulmányozza az 5. pontnál ismertetett MATLAB-modell felépítést és működését a leírás alapján. Tevékenység: Rajzolja le a koordinaátarendszerek közti transzformációk blokkvázlatait, az önvezérelt szinkronmotor sebességszabályozási körének néhány megjelölt részletét, a rezolver felépítését és kimenőjeleit,

Részletesebben

Gépjármű Diagnosztika. Szabó József Zoltán Főiskolai adjunktus BMF Mechatronika és Autótechnika Intézet

Gépjármű Diagnosztika. Szabó József Zoltán Főiskolai adjunktus BMF Mechatronika és Autótechnika Intézet Gépjármű Diagnosztika Szabó József Zoltán Főiskolai adjunktus BMF Mechatronika és Autótechnika Intézet 14. Előadás Gépjármű kerekek kiegyensúlyozása Kiegyensúlyozatlannak nevezzük azt a járműkereket, illetve

Részletesebben

TRIMx-EP DIGITÁLIS SZINKRON KAPCSOLÁS TRANSZFORMÁTOROK. Alkalmazási terület

TRIMx-EP DIGITÁLIS SZINKRON KAPCSOLÁS TRANSZFORMÁTOROK. Alkalmazási terület TRIMx-EP DIGITÁLIS SZINKRON KAPCSOLÁS VEZÉRLŐ KÉSZÜLÉK TRANSZFORMÁTOROK BEKAPCSOLÁSI ÁRAMLÖKÉSÉNEK CSÖKKENTÉSÉRE Alkalmazási terület A TRIMx-EP készülék feladata a transzformátorok bekapcsolási áramlökésének

Részletesebben

Használati útmutató. Automatikus TrueRMS multiméter USB interfésszel AX-176

Használati útmutató. Automatikus TrueRMS multiméter USB interfésszel AX-176 Használati útmutató Automatikus TrueRMS multiméter USB interfésszel AX-176 CÍM Tartalomjegyzék OLDALSZÁM 1. ÁLTALÁNOS INFORMÁCIÓK. 4 1.1. A biztonsággal kapcsolatos információk 4 1.1.1. Munkakezdés előtt.

Részletesebben

Dokumentációra vonatkozó általános információ

Dokumentációra vonatkozó általános információ Dokumentációra vonatkozó általános információ Az alábbi dokumentáció az ACT 201 és ACT 401 sorozatú frekvenciaváltókra érvényes. Gyári beállításokkal mindkét készüléksorozat széles felhasználási körben

Részletesebben

2.9C LCR híd mérőműszer kit dr. Le Hung

2.9C LCR híd mérőműszer kit dr. Le Hung 2.9C LCR híd mérőműszer kit dr. Le Hung A 2.9C LCR híd mérőműszer kit (gyakran még RLC mérőnek is hívják, vagy más néven LC mérő, ellenállás mérő (R), egyben in-circuit ESR mérő) egy precíziós mérőműszer,

Részletesebben

Mezőorientált szabályozású áraminverteres hajtás

Mezőorientált szabályozású áraminverteres hajtás Mezőorientált szabályozású áraminverteres hajtás A mérés célja: Az áraminverter működésének megismerése. A közvetett mezőorientált szabályozás vizsgálata. A mikroszámítógépes irányítás tanulmányozása.

Részletesebben

Villamos szakmai rendszerszemlélet II. - A földelőrendszer

Villamos szakmai rendszerszemlélet II. - A földelőrendszer Villamos szakmai rendszerszemlélet II. A földelőrendszer A villamos szakmai rendszerszemléletről szóló cikksorozat bevezető részében felsorolt rendszerelemek közül elsőként a földelőrendszert tárgyaljuk.

Részletesebben

2. ábra Soros RL- és soros RC-kör fázorábrája

2. ábra Soros RL- és soros RC-kör fázorábrája SOOS C-KÖ Ellenállás, kondenzátor és tekercs soros kapcsolása Az átmeneti jelenségek vizsgálatakor soros - és soros C-körben egyértelművé vált, hogy a tekercsen késik az áram a feszültséghez képest, a

Részletesebben

NEUTRON-DETEKTOROK VIZSGÁLATA. Mérési útmutató BME NTI 1997

NEUTRON-DETEKTOROK VIZSGÁLATA. Mérési útmutató BME NTI 1997 NEUTRON-DETEKTOROK VIZSGÁLATA Mérési útmutató Gyurkócza Csaba, Balázs László BME NTI 1997 Tartalomjegyzék 1. Bevezetés 3. 2. Elméleti összefoglalás 3. 2.1. A neutrondetektoroknál alkalmazható legfontosabb

Részletesebben

FÖLDELÉS HATÁSOSSÁG ÉS TRANSZFER POTENCIÁL KAPCSOLATA

FÖLDELÉS HATÁSOSSÁG ÉS TRANSZFER POTENCIÁL KAPCSOLATA MEE 57. Vándorgyűlés és Kiállítás Siófok 2010. szeptember 15-17. A4 Szekció Alállomások műszaki kérdései FÖLDELÉS HATÁSOSSÁG ÉS TRANSZFER POTENCIÁL KAPCSOLATA Ladányi József egy. tanársegéd BME Villamos

Részletesebben

ZAJCSILLAPÍTOTT SZÁMÍTÓGÉPHÁZ TERVEZÉSE

ZAJCSILLAPÍTOTT SZÁMÍTÓGÉPHÁZ TERVEZÉSE ZAJCSILLAPÍTOTT SZÁMÍTÓGÉPHÁZ TERVEZÉSE Kovács Gábor 2006. április 01. TARTALOMJEGYZÉK TARTALOMJEGYZÉK... 2 1. FELADAT MEGFOGALMAZÁSA... 3 2. LÉGCSATORNA ZAJCSILLAPÍTÁSA... 3 2.1 Négyzet keresztmetszet...

Részletesebben

Vektorugrás védelmi funkció blokk

Vektorugrás védelmi funkció blokk Vektorugrás védelmi funkció blokk Dokumentum azonosító: PP-13-21101 Budapest, 2015. augusztus A leírás verzió-információja Verzió Dátum Változás Szerkesztette Verzió 1.0 07.03.2012. First edition Petri

Részletesebben

Biztonsági utasítások a WAREMA vezérlésekhez

Biztonsági utasítások a WAREMA vezérlésekhez Biztonsági utasítások a WAREMA vezérlésekhez Érvényesség kezdete: 2015. október 01. 2014274_0 hu Biztonsági utasítások a WAREMA vezérlésekhez 1 Alapvető információk A jelen dokumentum a WAREMA vezérlésekre

Részletesebben

9. Áramlástechnikai gépek üzemtana

9. Áramlástechnikai gépek üzemtana 9. Áramlástechnikai gépek üzemtana Az üzemtan az alábbi fejezetekre tagozódik: 1. Munkapont, munkapont stabilitása 2. Szivattyú indítása soros 3. Stacionárius üzem kapcsolás párhuzamos 4. Szivattyú üzem

Részletesebben

Feszültségzavarok EN 50160 szabvány A közcélú elosztóhálózatokon szolgáltatott villamos energia feszültségjellemzői

Feszültségzavarok EN 50160 szabvány A közcélú elosztóhálózatokon szolgáltatott villamos energia feszültségjellemzői Villamosenergia minőség Alkalmazási segédlet Feszültségzavarok EN 50160 szabvány A közcélú elosztóhálózatokon szolgáltatott villamos energia feszültségjellemzői 5.4.2 tápfeszültség-letörés, t >10 ms tápfeszültség

Részletesebben

Villamos áram élettani hatása

Villamos áram élettani hatása Villamos áram élettani hatása Ember és a villamosság kapcsolata Légköri, elektrosztatikus feltöltődés, villamos erőművek, vezetékek, fogyasztók, berendezések, készülékek, stb. A villamos energia előnyösebben

Részletesebben

1. Adja meg az áram egységének mértékrendszerünkben (m, kg, s, A) érvényes definícióját!

1. Adja meg az áram egységének mértékrendszerünkben (m, kg, s, A) érvényes definícióját! 1. Adja meg az áram egységének mértékrendszerünkben (m, kg, s, A) érvényes definícióját! A villamos áram a villamos töltések rendezett mozgása. A villamos áramerősség egységét az áramot vivő vezetők közti

Részletesebben

GÉPBIZTONSÁG. A gépekre és a munkaeszközökre vonatkozó előírások. Jogszabályok és szabványok. Déri Miklós. munkabiztonsági szakértő

GÉPBIZTONSÁG. A gépekre és a munkaeszközökre vonatkozó előírások. Jogszabályok és szabványok. Déri Miklós. munkabiztonsági szakértő GÉPBIZTONSÁG A gépekre és a munkaeszközökre vonatkozó előírások Jogszabályok és szabványok Déri Miklós munkabiztonsági szakértő TÖRVÉNYI SZINT KORMÁNY RENDELETI SZINT MINISZTERI RENDELETI SZINT Gyártói,

Részletesebben

Kondenzátorok. Fizikai alapok

Kondenzátorok. Fizikai alapok Kondenzátorok Fizikai alapok A kapacitás A kondenzátorok a kapacitás áramköri elemet megvalósító alkatrészek. Ha a kondenzátorra feszültséget kapcsolunk, feltöltődik. Egyenfeszültség esetén a lemezeken

Részletesebben

4a 4b 4c. 8a 8b 8c 11. 9a 9b 9d 9e 9c

4a 4b 4c. 8a 8b 8c 11. 9a 9b 9d 9e 9c 5 2 6 4a 4b 4c 3 8a 8b 8c 11 9a 9b 9d 9e 9c 1 10 12 5 5 6 3 = reg. TM of Multi Media dyras LLC Kezelési útmutató a dyras ALDS-430 5.1-es házimozi hangszórórendszerhez Kezelési útmutató a dyras ALDS-430

Részletesebben

Fizika 2. Feladatsor

Fizika 2. Feladatsor Fizika 2. Felaatsor 1. Egy Q1 és egy Q2 =4Q1 töltésű részecske egymástól 1m-re van rögzítve. Hol vannak azok a pontok amelyekben a két töltéstől származó ereő térerősség nulla? ( Q 1 töltéstől 1/3 méterre

Részletesebben

Váltakozó áram. A váltakozó áram előállítása

Váltakozó áram. A váltakozó áram előállítása Váltakozó áram A váltakozó áram előállítása Mágneses térben vezető keretet fogatunk. A mágneses erővonalakat metsző vezetőpárban elektromos feszültség (illetve áram) indukálódik. Az indukált feszültség

Részletesebben

PQRM5100 31 Ux Ix xx xx (PS) Háromfázisú multifunkciós teljesítmény távadó. Kezelési útmutató

PQRM5100 31 Ux Ix xx xx (PS) Háromfázisú multifunkciós teljesítmény távadó. Kezelési útmutató Háromfázisú multifunkciós teljesítmény távadó Kezelési útmutató Tartalomjegyzék 1. Kezelési útmutató...5 1.1. Rendeltetése... 5 1.2. Célcsoport... 5 1.3. Az alkalmazott szimbólumok... 5 2. Biztonsági útmutató...6

Részletesebben

A CAN mint ipari kommunikációs protokoll CAN as industrial communication protocol

A CAN mint ipari kommunikációs protokoll CAN as industrial communication protocol A CAN mint ipari kommunikációs protokoll CAN as industrial communication protocol Attila FODOR 1), Dénes FODOR Dr. 1), Károly Bíró Dr. 2), Loránd Szabó Dr. 2) 1) Pannon Egyetem, H-8200 Veszprém Egyetem

Részletesebben

Szerelési és karbantartási utasítás

Szerelési és karbantartási utasítás 7216 1300 09/2005 HU (HU) Szakcég részére Szerelési és karbantartási utasítás Logamax plus GB022-24/24K kondenzációs gázkazán Szerelés és karbantartás elõtt kérjük, gondosan olvassa el 10 1 2 11 12 13

Részletesebben