Kvantum renormálási csoport a

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Kvantum renormálási csoport a"

Átírás

1 Kvantum renormálási csoport a Nagy Sándor, Polonyi János, Steib Imola Debreceni Egyetem, Elméleti Fizikai Tanszék Szeged, augusztus 25. a S. Nagy, J. Polonyi, I. Steib, Quantum renormalization group, Phys. Rev. D 93 (2016)

2 Motiváció A renormálási csoport módszerrel szisztematikusan távolíthatjuk el az UV módusokat. A kvantumelméletben a módusok eliminálása kevert állapotokat generál. A szokásos in-out formalizmusban a kezdeti- és végállapot tiszta állapot, és az elimináció során csak tiszta állapotaink vannak. Az in-in vagy CTP formalizmus alkalmas a kevert állapotok figyelembe vételére. A kevert állapotok járuléka adhat új fázisokat, új fixpontokat, új releváns kölcsönhatásokat, lehetőséget nyílt rendszerek tárgyalására alapvető modelleknél is.

3 Renormálási csoport módszer A funkcionális renormálási csoport (RG) módszer segítségével kvantumtérelméleti modellek nemperturbatív vizsgálatát végezhetjük el. Az RG módszer hidat képez a modell ismert nagyenergiás (UV), és keresett, alacsony energiás (IR) leírása között A pályaintegrál elvégése során a csatolásokat felöltöztetik az ő kvantum fluktuációból származó korrekcióival. A vákum-vákuum átmeneti amplitúdó (a generáló funkcionál) alakja: Z[j] = Dφe i S k+ i jφ dφ 0...dφ k k dφ k dφ k+ k...dφ e i S k+ i jφ A pályaintegrált úgy végezzük el, hogy egyesével eltávolítjuk a szabadsági fokokat (módusokat, kvantumfluktuációkat). g k k g kgk+ k (IR) 0 k k k k k+ k k (UV)

4 A CTP formalizmus Skaláris elméletek generáló funkcionálja: Z[j +,j ] = Tr[U(t f,t i ;j + )ρ i U (t f,t i ; j )] = D[ˆφ]e i S[ˆφ]+ i dxĵx ˆφx. Bevezettük a ˆφ = (φ +,φ ) CTP dubletteket; a hatás alakja S[ˆφ] = S 0 [ˆφ]+S i [φ + ] S i [φ ]. A csupasz CTP integrál alakja e i S i[ˆφ] = D[ˆχ]e i 2 dxdyˆχx ˆKx,y ˆχ y dx[u B (φ + x +χ x) U B (φ x +χ x)], ahol aχuv módusokra integrálunnk, melyek impulzusa k < p. A ˆK jelöli a szabad inverz CTP propagátort: ˆK = Kn +ik i K f ik i, K n K f ik i K n +ik i p = p 2 m 2, Kp f = iǫsign(p 0 ), Kp i = iǫ. Az U B (φ) jelöli a csupasz potenciált, a Taylor sorfejtett alakja: U B (φ) = n=2 g B2n (2n)! φ2n.

5 CTP Feynman diagrammok Z[j +,j ] = Tr[U(t f,t i ;j + )ρ i U (t f,t i ; j )]. A Feynman gráfokban szereplő vonalak a szabad CTP propagátor diagonális vagy nem-diagonális elemeihez tartoznak. Típusok: 1. homogén gráfok: a vonalak és a vertexek ugyanahhoz a térváltozóhoz tartoznak 2. inhomogén gráfok: azok a gráfok, amelyek külső lábai vagy a φ + vagy a φ térváltozóhoz tartoznak, a vertexek vegyesek 3. valódi CTP gráfok: a külső lábak mindkét térváltozóhoz tartoznak O(φ +3 φ 5 ) rendű gráf, a szaggatott vonal ad + nem-diagonális propagátor elemhez tartozik. Az IR és az UV módusok közötti kölcsönhatás magasabb rendű gráfoknál könnyebben megvalósulhat.

6 Blokkosítás A blokkosított hatást úgy kapjuk meg, hogy ak skálát infinitezimális lépésenként csökkentjük, k k k. A blokkosítási lépés a k dk < p < k impulzushéjhoz tartozó rendszer módusokat viszi át a környezetbe. A blokkosítás után a hatás alakja: e i S k k[ˆφ] = D[ˆχ]e i S k[ˆφ+ˆχ]. rendszer módusok: φ p < k k környezet módusok: χ k k < p < k A hatást S = S 1 +S 2 alakban keressük, ahol S 1 tartalmazza a lokális potenciált: S 1 [ˆφ] = 1 2 dxdyˆφ x ˆKd x,yˆφy dx[u(φ + x ) U(φ x )], Az S 2 tagról feltesszük, hogy bilokális: S 2 [ˆφ] = dxdyv x y (ˆφ x, ˆφ y ), ahol V x y (ˆφ, ˆφ ) = σ,σ mn 3 1 m!n! φσm v σ,σ m,n,x y φ σ n.

7 Fa-szintű evolúció Ahhoz, hogy megkapjuk a nyeregpontot, meg kell oldanunk a mozgásegyenletet adott ˆφ x -nél ˆχ x -re. Elegendő a linearizált egyenletekkel dolgoznunk, mert a magasabb rendű tagok O( k n ) rendűek. A linearizált mozgásegyenlet: ˆD 1ˆχ = ˆL, ahol (D 1 ) σ,σ = (D 1 0 )σ,σ δ σ,σ σu (φ σ ), és bevezetjük a L σ x = σu (φ σ x) 2 dy φ σ x V x y (ˆφ x, ˆφ y ) kifejezést. A megoldást visszahelyettesítjük a S k [ˆφ+ ˆχ] hatásba. Felhasználva, hogy S k k = S k + S k, azt kapjuk, hogy S k S k k = k 2 dxdyˆl x ˆD(k) x yˆl y, ahol bevezettük a környezeti propagátort. ˆD (k) x y = d 4 q (2π) 4δ( q k)ˆd q e i(x y)q

8 Fa-szintű evolúció A hatás feltételezett alakja miatt használhatjuk a L σ x L σ x = σu (φ σ x) 2 dyw σ x y(ˆφ y ) közelítést. Bevezettük a W σ x y(ˆφ) = φ σ x V x y (ˆφ, ˆφ) φ =0 mennyiséget. A kapott evolúciós egyenlet alakja: ds dk = 1 dxdyˆ Lx ˆD(k) x yˆ Ly 2 = 1 [ dxdy σu (φ σ x 2 )D(k)σ,σ x y σ U (φ σ y ) σ,σ 4 dzwz x(ˆφ σ x )D (k)σ,σ z y σ U (φ σ y) ] +4 dzdz Wz x(ˆφ σ x )D (k)σ,σ z z Wz σ y (ˆφ y ).

9 Fa-szintű evolúció Impulzustérben az evolúciós egyenlet alakja vezető rendben: ds dk = 1 2 d d+1 q (2π) d+1σ[u (φ σ )] q D q (k)σ,σ σ [U (φ σ )] q A fa-szintű evolúció járulékai függetlenek különbözők értékekre. A lokális potenciál fa-szinten nem fejlődik, azaz U(φ) = UB (φ). Ak integrál elvégzése után a bilokális potenciál alakja: V x y (ˆφ x, ˆφ y ) = 1 2 σσ U (φ σ x)d (k,λ)σσ x y U (φ σ y ), σ,σ ahol ˆD (k,λ) x y = d d+1 q (2π) d+1θ( q k)θ(λ q )ˆD q e i(x y)q a propagátor, amely minden eliminált módus járulékát tartlamazza.

10 Eredmények A bilokális csatolások fa-szintű evolúciója: v σ,σ m,n,x y = g m+1g n+1 σd (k,λ)σ,σ x y σ. A bilokális csatolások evolúcióját a lokális csatolások indítják be. A kevert állapotok megjelenéséhez m,n 3 indexekkel rendelkező bilokális csatolások kellenek. Fa-szinten a bilokális csatolások q-függetlenek. Aσ = σ CTP indexszel jellemzett tagok a hagyományos egyidőtengelyes formalizmusban is megjelennek. A (σ = σ ) nem-diagonális tagok adják a kevert állapotok járulékát. A nem-diagonális elemek írják le az IR-UV módusok összefonódását. Ezek a CTP formalizmussal válnak elérhetővé.

11 Kitekintés Multiloka lis kifejte s euklideszi esetben sem vizsgálták RG módszerrel impulzusfüggo csatolások létezhetnek új releváns csatolások a lokális potenciálon alapszik több alapveto eredmény (S, Nagy, J. Polonyi, I. Steib, Renormalization of bilocal potentials, elo készületben)

12 Kitekintés CTP RG egyenletek és fluktuációk A lokális és bilokális potenciál funkcionális alakjának megválasztása. A lokális potenciál valós része off-shell, a komplex része on-shell. A Wegner-Houghton egyenlettel írjuk le, ami tartalmazza a bilokális potenciál járulékát is. A bilokális potenciál nyeregponti része fa-szintű renormálással fejődik. A bilokális potenciál fluktuációs része szintén a Wegner-Houghton egyenlettel kapható meg.

13 Köszönetnyilvánítás A kutatást az OTKA (K112233) és a Bolyai János Ösztöndíj támogatta.

BKT fázisátalakulás és a funkcionális renormálási csoport módszer

BKT fázisátalakulás és a funkcionális renormálási csoport módszer BKT fázisátalakulás és a funkcionális renormálási csoport módszer Nándori István MTA-DE Részecskefizikai Kutatócsoport, Debreceni Egyetem MTA-Atomki, Debrecen Wigner FK zilárdtestfizikai és Optikai Intézet,

Részletesebben

Pósfay Péter. arxiv: [hep-th] Eur. Phys. J. C (2015) 75: 2 PoS(EPS-HEP2015)369

Pósfay Péter. arxiv: [hep-th] Eur. Phys. J. C (2015) 75: 2 PoS(EPS-HEP2015)369 arxiv:1604.01717 [hep-th] Eur. Phys. J. C (2015) 75: 2 PoS(EPS-HEP2015)369 Pósfay Péter ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. Motiváció FRG módszer bemutatása Kölcsönható Fermi-gáz

Részletesebben

Egyesített funkcionális renormálási csoport egyenlet

Egyesített funkcionális renormálási csoport egyenlet Egyesített funkcionális renormálási csoport egyenlet Nándori István MTA-DE Részecskefizikai Kutatócsoport, MTA-Atomki, Debrecen Magyar Fizikus Vándorgyűles, Debrecen, 2013 Kvantumtérelmélet Részecskefizika

Részletesebben

Idegen atomok hatása a grafén vezet képességére

Idegen atomok hatása a grafén vezet képességére hatása a grafén vezet képességére Eötvös Loránd Tudományegyetem, Komplex Rendszerek Fizikája Tanszék Mahe Tisk'11 Vázlat 1 Kisérleti eredmények Kémiai szennyez k hatása a Fermi-energiára A vezet képesség

Részletesebben

Kevert állapoti anholonómiák vizsgálata

Kevert állapoti anholonómiák vizsgálata Kevert állapoti anholonómiák vizsgálata Bucz Gábor Témavezet : Dr. Fehér László Dr. Lévay Péter Szeged, 2015.04.23. Bucz Gábor Kevert állapoti anholonómiák vizsgálata Szeged, 2015.04.23. 1 / 27 Tartalom

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

Fluktuáló terű transzverz Ising-lánc dinamikája

Fluktuáló terű transzverz Ising-lánc dinamikája 2016. szeptember 8. Phys. Rev. B 93, 134305 Modell H(t) = 1 2 L 1 σi x σi+1 x h(t) 2 i=1 h(t)-fluktuáló mágneses tér. Hogyan terjednek jelek a zajos rendszerben? L σi z, i=1 Zajok típusai 1 fehér zaj 2

Részletesebben

Erős terek leírása a Wigner-formalizmussal

Erős terek leírása a Wigner-formalizmussal Erős terek leírása a Wigner-formalizmussal Berényi Dániel 1, Varró Sándor 1, Vladimir Skokov 2, Lévai Péter 1 1, MTA Wigner FK, Budapest 2, RIKEN/BNL, Upton, USA Wigner 115 2017. November 15. Budapest

Részletesebben

Sinkovicz Péter, Szirmai Gergely október 30

Sinkovicz Péter, Szirmai Gergely október 30 Hatszögrácson kialakuló spin-folyadék fázis véges hőmérsékletű leírása Sinkovicz Péter, Szirmai Gergely MTA Wigner Fizikai Kutatóközpont Szilárdtestfizikai és Optikai Intézet 2012 október 30 Áttekintés

Részletesebben

Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza

Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza odor@mfa.kfki.hu 1. Bevezetõ, dinamikus skálázás, kritikus exponensek, térelmélet formalizmus, renormalizáció, topológius fázis diagrammok,

Részletesebben

GROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15.

GROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15. ELTE, MSc II. 2011.dec.15. Áttekintés Feladat Algoritmus Kvantum keresési algoritmus áttekintése Input: N = 2 n elemű tömb, Ψ 1 = 0 1 kezdőállapot, f x0 (x) orákulum függvény. Output: x 0 keresett elem

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r,

January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r, Közelítő módszerek January 16, 27 1 A variációs módszer A variációs módszer szintén egy analitikus közelítő módszer. Olyan esetekben alkalmazzuk mikor ismert az analitikus alak amelyben keressük a sajátfüggvényt,

Részletesebben

Az elektron-foton kölcsönhatás (folyamatok)

Az elektron-foton kölcsönhatás (folyamatok) Az elektron-foton kölcsönhatás (folyamatok) Itten most a Compton-szórás hatáskeresztmetszetét kell kiszámolni, felhasználva a QED-ben és úgy általában a kvantumtérelméletben ismert dolgokat (Feynman-szabályok,

Részletesebben

Egy mozgástani feladat

Egy mozgástani feladat 1 Egy mozgástani feladat Előző dolgozatunk melynek jele és címe: ED ~ Ismét az ellipszis egyenleteiről folytatásának tekinthető ez az írás. Leválasztottuk róla, mert bár szorosan kapcsolódnak, más a céljuk.

Részletesebben

Kvantumos jelenségek lézertérben

Kvantumos jelenségek lézertérben Kvantumos jelenségek lézertérben Atomfizika Benedict Mihály SZTE Elméleti Fizikai Tanszék Az előadást támogatta a TÁMOP-4.2.1/B-09/1/KONV-2010-0005 sz. Kutatóegyetemi Kiválósági Központ létrehozása a Szegedi

Részletesebben

Analízis III. gyakorlat október

Analízis III. gyakorlat október Vektoranalízis Analízis III. gyakorlat 216. október Gyakorló feladatok és korábbi zh feladatok V1. Igazolja az alábbi "szorzat deriválási" szabályt: div(ff) = F, f + f div(f). V2. Legyen f : IR 3 IR kétszer

Részletesebben

Geometriai fázisok és spin dinamika. Zaránd Gergely Budapesti Műszaki és Gazdaságtudományi Egyetem

Geometriai fázisok és spin dinamika. Zaránd Gergely Budapesti Műszaki és Gazdaságtudományi Egyetem Geometriai fázisok és spin dinamika Zaránd Gergely Budapesti Műszaki és Gazdaságtudományi Egyetem Vázlat Hogyan manipulálnak egyetlen spint? Mitől relaxál egy spin? Magspinek (hiperfinom kölcsönhatás)

Részletesebben

Felügyelt önálló tanulás - Analízis III.

Felügyelt önálló tanulás - Analízis III. Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:

Részletesebben

1.1. Vektorok és operátorok mátrix formában

1.1. Vektorok és operátorok mátrix formában 1. Reprezentáció elmélet 1.1. Vektorok és operátorok mátrix formában A vektorok és az operátorok mátrixok formájában is felírhatók. A végtelen dimenziós ket vektoroknak végtelen sok sort tartalmazó oszlopmátrix

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás

Részletesebben

Lagrange és Hamilton mechanika

Lagrange és Hamilton mechanika Lagrange és 2010. október 17. Lagrange és Tartalom 1 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek 2 3 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája

Részletesebben

2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések

2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések . REZGÉSEK.1. Harmonikus rezgések: Harmonikus erő: F = D x D m ẍ= D x (ezt a mechanikai rendszert lineáris harmonikus oszcillátornak nevezik) (Oszcillátor körfrekvenciája) ẍ x= Másodrendű konstansegyütthatós

Részletesebben

Szeminárium. Kaposvári István október 01. Klasszikus Térelmélet Szeminárium

Szeminárium. Kaposvári István október 01. Klasszikus Térelmélet Szeminárium Klasszikus Térelmélet 2012. október 01. Tartalom: Jelölések bevezetése Kovariáns deriváltak kommutátora és a Riemann-tenzor Vektor megváltozása zárt görbe mentén Riemann-tenzor és a Stokes-tétel Geodetikus

Részletesebben

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III. Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak

Részletesebben

elemi gerjesztéseinek vizsgálata

elemi gerjesztéseinek vizsgálata Hatszögrácson kialakuló spin-folyadék fázis elemi gerjesztéseinek vizsgálata Sinkovicz Péter, Szirmai Gergely MTA Wigner Fizikai Kutatóközpont Szilárdtestfizikai és Optikai Intézet 2013 április 29 Áttekintés

Részletesebben

Vektorok, mátrixok, lineáris egyenletrendszerek

Vektorok, mátrixok, lineáris egyenletrendszerek a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.

Részletesebben

A KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek

A KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek 10. gyakorlat Mátrixok sajátértékei és sajátvektorai Azt mondjuk, hogy az A M n mátrixnak a λ IR szám a sajátértéke, ha létezik olyan x IR n, x 0 vektor, amelyre Ax = λx. Ekkor az x vektort az A mátrix

Részletesebben

(1 + (y ) 2 = f(x). Határozzuk meg a rúd alakját, ha a nyomaték eloszlás. (y ) 2 + 2yy = 0,

(1 + (y ) 2 = f(x). Határozzuk meg a rúd alakját, ha a nyomaték eloszlás. (y ) 2 + 2yy = 0, Feladatok az 5. hétre. Eredményekkel és kidolgozott megoldásokkal. Oldjuk meg az alábbi másodrend lineáris homogén d.e. - et, tudva, hogy egy megoldása az y = x! x y xy + y = 0.. Oldjuk meg a következ

Részletesebben

2015/16/1 Kvantummechanika B 2.ZH

2015/16/1 Kvantummechanika B 2.ZH 2015/16/1 Kvantummechanika B 2.ZH 2015. december 10. Információk 0. A ZH ideje minimum 90 perc, maximum 180 perc. 1. Az összesen elérhet pontszám 270 pont. 2. A jeles érdemjegy eléréséhez nem szükséges

Részletesebben

DIFFERENCIAEGYENLETEK

DIFFERENCIAEGYENLETEK DIFFERENCIAEGYENLETEK Példa: elsőrendű állandó e.h. lineáris differenciaegyenlet Ennek megoldása: Kezdeti feltétellel: Kezdeti feltétel nélkül ha 1 és a végtelen összeg (abszolút) konvergens: / 1 Minden

Részletesebben

1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban!

1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban! . Egyváltozós függgvények deriválása.. Feladatok.. Feladat A definíció alapján határozzuk meg a következő függvények deriváltját az x pontban! a) f(x) = x +, x = 5 b) f(x) = x + 5, x = c) f(x) = x+, x

Részletesebben

Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben

Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben Demeter Gábor MTA Wigner Fizikai Kutatóközpont, RMI Demeter Gábor (MTA Wigner RCP... / 4 Bevezetés / Motiváció

Részletesebben

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Vektorterek. =a gyakorlatokon megoldásra ajánlott Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,

Részletesebben

Energiatételek - Példák

Energiatételek - Példák 9. Előadás Húzott rúd potenciális energiája: Hooke-modell: σ = Eε Geom. hetséges Geometriai egyenlet: + geom. peremfeltételek: u εx = ε = x u(0) = 0 ul () = 0 du dx Energiatételek Példák = k l 0 pudx l

Részletesebben

Unification of functional renormalization group equations

Unification of functional renormalization group equations Unification of functional renormalization group equations István Nándori MTA-DE Részecsefiziai Kutatócsoport, MTA-Atomi, Debrecen MTA-DE Részecsefiziai Kutatócsoport és a ATOMKI Rács-QCD Lendület Kutatócsoport

Részletesebben

A kémiai kötés eredete; viriál tétel 1

A kémiai kötés eredete; viriál tétel 1 A kémiai kötés ereete; viriál tétel 1 Probléma felvetés Ha egy molekula atommagjai közötti távolság csökken, akkor a közöttük fellép elektrosztatikus taszításhoz tartozó energia n. Ugyanez igaz az elektronokra

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

Differenciálegyenletek numerikus integrálása április 9.

Differenciálegyenletek numerikus integrálása április 9. Differenciálegyenletek numerikus integrálása 2018. április 9. Differenciálegyenletek Olyan egyenletek, ahol a megoldást függvény alakjában keressük az egyenletben a függvény és deriváltjai szerepelnek

Részletesebben

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat.

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. AZ ELEKTRON MÁGNESES MOMENTUMA Mágneses dipólmomentum: m H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. M = m H sinϕ (Elektromos töltés, q: monopólus

Részletesebben

Pelletek térfogatának meghatározása Bayes-i analízissel

Pelletek térfogatának meghatározása Bayes-i analízissel Pelletek térfogatának meghatározása Bayes-i analízissel Szepesi Tamás KFKI-RMKI, Budapest, Hungary P. Cierpka, Kálvin S., Kocsis G., P.T. Lang, C. Wittmann 2007. február 27. Tartalom 1. Motiváció ELM-keltés

Részletesebben

Az inga mozgásának matematikai modellezése

Az inga mozgásának matematikai modellezése Az inga mozgásának matematikai modellezése Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Természet és Matematika Szeged, SZTE L. Csizmadia (Szeged) Őszi Kulturális Fesztivál, 2011. 2011.10.08.

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

Atomok és molekulák elektronszerkezete

Atomok és molekulák elektronszerkezete Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre

Részletesebben

2012. október 23. Csanád Máté, ELTE Atomfizikai Tanszék Részecske- és magfizikai szeminárium 1 / 18

2012. október 23. Csanád Máté, ELTE Atomfizikai Tanszék Részecske- és magfizikai szeminárium 1 / 18 Az erős és az elektrogyenge kölcsönhatás elmélet Csanád Máté ELTE Atomfizikai Tanszék Részecske- és magfizikai szeminárium 2012. október 23. Csanád Máté, ELTE Atomfizikai Tanszék Részecske- és magfizikai

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

Az Univerzum felforrósodása

Az Univerzum felforrósodása Az Univerzum felforrósodása Patkós András Eötvös Egyetem, Fizikai Intézet Vázlat Az inflációs korszak vége (gyors áttekintés) Az inflaton elbomlásának két hatásos módja: TACHYONIKUS INSTABILITÁS vs. PARAMETRIKUS

Részletesebben

1. feladatsor Komplex számok

1. feladatsor Komplex számok . feladatsor Komplex számok.. Feladat. Kanonikus alakban számolva határozzuk meg az alábbi műveletek eredményét. (a) i 0 ; i 8 ; (b) + 4i; 3 i (c) ( + 5i)( 6i); (d) i 3+i ; (e) 3i ; (f) ( +3i)(8+i) ( 4

Részletesebben

Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei

Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei Indukált mátrixnorma Definíció A. M : R n n R mátrixnormát a. V : R n R vektornorma által indukált mátrixnormának nevezzük, ha A M = max { Ax V : x V = 1}. Az indukált mátrixnorma geometriai jelentése:

Részletesebben

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/ Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és

Részletesebben

A spin. November 28, 2006

A spin. November 28, 2006 A spin November 28, 2006 1 A spin a kvantummechanikában Az elektronnak és sok más kvantummechanikai részecskének is van egy saját impulzusnyomatéka amely független a mozgásállapottól. (Úgy is mondhatjuk,

Részletesebben

Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata

Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata Referencia egyenlet x D Α x Α x x 0 Α sin Ω t req t,t x t D Α t x t Α x t x 0 Α Sin Ω t Α x t D Α x t x t Α Sin t Ω x 0 Homogén rész megoldása

Részletesebben

Van-e a vákuumnak energiája? A Casimir effektus és azon túl

Van-e a vákuumnak energiája? A Casimir effektus és azon túl Van-e a vákuumnak energiája? és azon túl MTA-ELTE Elméleti Fizikai Kutatócsoport Bolyai Kollégium, 2007. október 3. Van-e a vákuumnak energiája? és azon túl Vázlat 1 2 3 4 5 Van-e a vákuumnak energiája?

Részletesebben

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt. Matematika szigorlat, Mérnök informatikus szak I. 2009. máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.: 180 perc 0-49 pont: elégtelen, 50-61 pont: elégséges, 62-73 pont:

Részletesebben

Ő Ö ö Ö É Á Ü É ó É ó ü É É Ö Ö Á É Ő ú É Á ú Ő Ö Ü Ö Ö ü ó ó ü Ü ű ö ú ó Á í ó ö ö ö ö ó ü í í Á í Ó í ó ü Ö ö ú ó ó ö ü ó ó ö í í ű ö ó í ü í ö í í ű ö ü Ő ü ú Ö ö ó ö ó ö ö ö ü ó ö í ó Ö ö Ő ü Ö Ö ü

Részletesebben

ú ű ö ö ü ü Í ö ö ö ö É Í É ú ú É ú ú ö É ö Í Ü ú Í ö ö Í ú ö ö ö ö ü ö ö ú ü Ü ö ü Í ö ö ű ö ö Í ű ú ö ö ö ö Í ö ö ű ö ö Í ü Í ü ú Í É ö ö ü ö ö Ü ö ö Í ü Í ö ü Í Í ö Í ö Í ü ö ú Í ú Í ö É ú Í ö ö Í É

Részletesebben

É ö ö Í Í Í Ó Í Í Á Ó Á Ü Ú Í Á Á ű Á Ó Í Í É Á Ó Á Á ö ö Á Í Á Á ö ö ű ö ö Í Í ű Ö ű ö ö ű Í Í Ü ö ö Ó ű Í ö ö Í ö ö Ó ö Ö Í ö ö Ö ö ű ö ö Ó Í ű Ó ö ö ű ö ű Ö Ü Ö ű ű ö ö ö ö ö ö Íö ö Í Ö Ó ű ö ű ö ö

Részletesebben

ő ö é ü ö é Ö é ő ü é í ü é é ő ö é ő ö Á ó ü ö é í é ö é Ö é ő ü ü é í é é ó é é í í é é ő ü í ő Ö í é ő é é ő é ő éü ú ü ö ő í Ú Ú ö É í í ü ó ó ó ü ő ö é í ó ö é í ö é é í ö é ó ű ő ö é ő ű ő í é í

Részletesebben

ö Á ö É É ü ü É É Ő ö É ö Á ó ü É Ó Ö Á ú é ü ö é Ö é ü é é ü ü é é Ü é ö ö Ö ö é Á é é é é é ó é é é é ü é ö ö ö í é ü ú é é é ü ü é é é ü é é ö é ö é é ó ö ü é é é é ó ó ö í ó é ó é é é ó é é é ű ö é

Részletesebben

Á Ó Á Ü ő ű Ú ö í ő Ó ú ö Á ú Ű Ó ű Ó í ű ö í ö ő ö ö í ö ö ő É ö Á ű Ó ö Á Ó ö í Á í í ö ű ö ú ö ö ú ö Ú ö ű Ó Ú ö Á í Ó í í Í í í Í ö Ú ö Á ú í Ó ő í ú ö Á ú Á í ú ö Á ú í ö Á ú í Ó ö ű Ó Ú Ú ű ő ö ü

Részletesebben

Á Á É Á Ü ö ű ű ő í ő ö ő í ő ö í É ő í ű ö ő ő í ö ü ő ő ü ő ü í ö ö ü ö ü ő ő ü ü ő ü ö ő ő ő ő íő ö ö ö ü ő ő ő ő í ú ő ő í ü ö ő í ű ü ö ő ő ő ő í ú ö ö ő ö ö ö ö ü ő ő ö ő ő í í ő ö ü ö í ö ö ö ö

Részletesebben

ó Í ó ó Ü ó ő Ú ő É ó É Í ő Ö ő ő ó Íó ó Ú ó É Ö ó ő ő Ú Íő ő ő ő ő ő Ú ő ó ó ő ő ő ő ó ő ő ő ő ő ő Í ő ő ó ő ő ó ő Í ő ó ő ő ő ő ő ó ó ó ő ő ó ő ő ő ő ő ő ó ő ő ő ó ő ő Á ű ő ő ő ő ő ő Í ó ő ő ő ő ó ó

Részletesebben

Á Á Í ó ó ó ö ó Ü ö ú Í ó ö ö ó ú ö ó ö ö Ü ö ú ó ó ó ó ö ü ó ö ö ü Ü ö ö ú ó ó ö ú ö ó ó ó ó ö ó ö ó ö ó ö ű ö ö ö ű ö ö ű ö ö ö ű ö ö ó ö ö ó ó ü ö ö ű ö ö ö ó ö ű ö Ü ö ö ú ó ö ó ü ü ö ü ü ö Í ö ü ö

Részletesebben

ó ő ó ó ö ö ú Á Í ö ó ő ö ú Í ó ü ó ő ö ú ö ó ő ó ő ü ő ű ö ö ü ő ü ó Ó ö ó ó ő ő ő ö Í ó ö ö ö ó ő ö ő Í ü ö ö ö ö ö ö ő ö ö ö ö ú ú ű ö ű ó ó ö ö ő ű ö ú ö ö ö ö ö ó Á ö ö ö ő ő ó ő ő Ö ő ú ó ö ú ú ű

Részletesebben

É ő ő íí í ú í ő Ő ő ü ü ü ü ü Ü Ü ő ő ő ő í ő ő ő í íí í ő ű í Ó Ó Ó í Ö Ö í Á Ö Ü Ö É í Ö í ő Ö Ö Ö Á í Á ő ő ő ő É Í Í ő ú Ú ú Ö í ő Á Ö ő Í Í ő ű í ő ú ü íí í Ö ő ő ő ő Í ő ő ő ő í ő ő ő ő í É É í

Részletesebben

Í ö Í ű ú ö ö ú ö É í í ö Ó ű í ö ö í ö ö ö í í ö í í ö ö í ö ö ö ű í ö ö ö ö ö ö ö ú ö í ö ö í ö ö ö ö ö ú ű ű ú ö ö í ö É í ö ö í ö ö ö ú ű ö ö í ö ú ű ö ö í í ú ö ö í ö í í ö ö ö ú ö ö ö ö Í ö ú ö ú

Részletesebben

ö Ö ö Ö ö ö ö ö ö ö ö Ö ö Ö ö ö ö ö ö ű ö ö ö ö Ö ö Ő Ü ö ö Ö Ö ö ö ö ö ö ö ö ö Ü ö ö ö ű ö ö ö ö ű ö ű ö Ö Ü Ü ö ö ú Ű ÍŐ Ö Ő ÍŐ ö ö ö ö ű ö Ö Ö Ó ö ö Ö ö ö Ö ö ö Ö ö ű ö ö É ö ö Í Á Á Ő ű ö ű ú Ö Ü Á

Részletesebben

í ö Ö Á í ö í í ö í ö ö í í ö ö ö ö í í ö í ö í ö í ü í í ö í í í í í ö ö í í í ú ö í í ö Á Á Á ü ú í ö Á í í í ö í í ü ö ö ö ö í ö í í í ú í í ű ú í í í í ö í ű í ö ö ü ö ű ö ö í í í í í ö ü í ö í ö ű

Részletesebben

ű í ö ö Á ü ü ö ö ö í í É ú ú ö ö ű í ö ü ö ú ü ű ú ö í í ú ö ú í ö ü í í ö í Á Ó É í ű ö ü ö ü ú ü ö ü ú ű ö ü ű ü í ü ű ü ü ö ű í ü í ö ü í í í í ö í ö ö ö Á ű ú ű ö ö ű í ö ö í ú í í ű í ö ú ö ö í Á

Részletesebben

ö é Ö é ü ö é ü ö é Ö é ü í ü ü ü é é ü é é Ö ö é é é é ö ü ö ü ö é é ö é é ö é é ö ö é í é ü é é é í é ö é é ö é ö é ü é ü ú é é é é é í é é é é ö ö é é ö ö é é í í é í é ü ö ü Á é ö Á í ö í é ö ü ö é

Részletesebben

ö ú í í í ő ű Ü Ű Í í Ő Á Á Ö Ő Ű Í ö ú í í í ú ő ö ű í í í ö Ó ő í í í ö ú í ö ö ö ö Ü ő ö ö ö ú ű ő ú ű ö ö ú ö ö ő Ü ö ö í í ő ö í í í í í í ö ö í ö ö í í ő í ő ö ő í ú í ö í ö í í ö ű ö ö Ó Ü ö ő ő

Részletesebben

Ő Ö Ü Ö Ö ő ü ó í ü ü ő ü ó Ö ó ő ó ó ő ó ő í ő í ü ő ö ö ö ü í ü ö ö ö ö Ö ő ő Ö ő í ó ő ó ő Ö í ő ő ő ő ü ő ő ö ó ű ö ó ö ú ő ő ó ü ö í ü ö ö ó í ú ő ó ő í ö ö ö í ő ö ő ő ó ü ö ú ü ő ó ó ő ó ő ó í í

Részletesebben

É É É Ó Ö É í Ö ő ü ó ő ó ű Á ű ó ő ó ü ó ő ű ő Ö ü É É É ó É ó ü ű í Ö ü ó ű í ó ő ó ő ü ó ü ő ó É Í ő ő ő Ú ó ő ő ő ó ű ó ő ó ü ő ő ő í ü ő ü ő ó Ü ő ó ő ő ó ő Ú ő ő ó ő í ó ő ü ó Í ő ő ü ő É í ő ü ó

Részletesebben

ú Ö ü ő ő ú ú ű ő í ó ó í ó ú ő ü ú ű ő í ó ó í ó ű í ó ő Í ő ü ú ő ő í ó ú Ö ő Ü ó ő ő É ó ó ó ó ő ő ú ű ő í ó ú ű ő ú ú ő ű ő í ő ó í ű ő ü ú ó ő ő ó ű ő ő í í í í ó ű ú ő Á ó ő Á ú ó ó ő ó í ó ű í í

Részletesebben

ú ő ó ú ö ő ü ú ö ő ó ó ó ü ő í ö í ó ú ő ó ó ó ú ó ú ó ő ő ö ö ő ó ú ó ő ó ő í Á Á ö ö ó ő ú ö ő ú ó í ő ü ü ü í ú ü ü ü ó ú í ü í ó ő ó ő í ú ü ú ó ü ü ö ó ü ó í ü ó ő ö ö í ü ú ó ő ó í ó ő ó í ó ó í

Részletesebben

Á ó ü ő Ö Á ü ó ü ő Í ü Í Ó ü ő ő ó ó ó Í ó ü ó ő ő ó ó ü ú Í ő ő ó Ó ő ó ü ó Á ü ó ő ó Í Á Í ő ó ó ó ő ő Á ó ó ú ő Í ő ű ó Ó ü ó ó ú ó ő ú ü ő ó ó ó ő ó ó Ö ó ó ő ó ő ó ő ü ű ő ó ó ő ú ő ú ü Í ü ő ó ó

Részletesebben

ü ö Ö ü ó ü ó ó ó Á Ő É ö Ö ü ó ü ú ó ó ó ö ó í í ö ú Ó É ö Ö ü ó ü ü ó ó ó ö ó í ü ö Ö ó ü ü ü ó ó ó ö ó ü í í í ó í ú ű ű ü ű ú í ü ö ö í ö ú ü ó ú ú ű í ü ö ö ó ú ó í ü ú ó ü ó ó ű ó í ü ű ü í ű í

Részletesebben

ü ó Ö ü í ü ü ü ö É ó ó í ó ó ö ó ö ö ö í í ű ü ü ü Í í ü ü ü ö í ó í ó ó í ó í É ü ö í Í É í ö ú í ó í ö ö ó í ö ó ó ó ö ó ö í í ó ó í ó ó Ö í ö ö ó ö ó ú ó ö ó í ó ó í í ü ó í ö ó ó ü ü ó ö ó ú í ó í

Részletesebben

Í ú ó ú ó ú ó ó Á ó ó ö ű ú Á ú ó ó ó Í ó ö ö ö Í ö ó ó ö ó ó ó ö ó ö ö ö ö ó ö ó ö ó ü ó ó ü ó ü ö ö ö ö Ő ó ó Íó ó ó ü ó ű ó ó ű ű ó ö ü ö ú ö ü ű ö ö ö ö ó ú ö ö ö ü Í Í Í Á ó ó ú ü ú Á ü ö Á ó ü ó

Részletesebben

í ö ő í ú ö ö í íí ü Ú Í Á ú ü í ö í ő í ö ő ű Í í ö ü ü ő ő ú í ő í ő ü ü ő Í ő Í í ü ö ö ö ö í ű ő ö ö ö í ü í Ó ö í ő ő í í ő Ó Ú Ő Íő Ő Ó ő ö ő ü ű í í ü ú Ő Í ő ő ő í ü ő É í Ő í ü ü ö ő í ü ö ö ü

Részletesebben

ü Ü ö ö ú Í ó í í ó ó ó ü ó ű ó í ó ó í ö ó ö ú ü ö Í í í ó ó ó ó Í ó ü ű ó í ó ó í ó Í í ó ü ö ú ó ó ó í í ó í í ű í ü ö í ó í ö í ú ó í ú ü ú Í í ü Í í í ó ü ö í ó í ó ü ö ó Í í í ó Í É ó ó ó Í í ö ö

Részletesebben

θ & új típusú differenciálegyenlet: vektormező egy körön lehetségesek PERIODIKUS MEGOLDÁSOK példa: legalapvetőbb modell az oszcillátorokra fixpont:

θ & új típusú differenciálegyenlet: vektormező egy körön lehetségesek PERIODIKUS MEGOLDÁSOK példa: legalapvetőbb modell az oszcillátorokra fixpont: 3. előadás & θ új típusú differenciálegyenlet: vektormező egy körön f ( θ ) lehetségesek PERIODIKUS MEGOLDÁSOK legalapvetőbb modell az oszcillátorokra példa: & θ sinθ θ & fixpont: θ & 0 θ θ & > 0 nyilak:

Részletesebben

Stacionárius tengelyszimmetrikus terek a Kerr-Newman téridő

Stacionárius tengelyszimmetrikus terek a Kerr-Newman téridő 1 / 32 Stacionárius tengelyszimmetrikus terek a Kerr-Newman téridő Fodor Gyula MTA KFKI Részecske- és Magfizikai Kutatóintézet Integrálhatóság Nyári Iskola Budapest, 2008 augusztus 25 Bevezetés 2 / 32

Részletesebben

Simított részecskedinamika Smoothed Particle Hydrodynamics (SPH)

Simított részecskedinamika Smoothed Particle Hydrodynamics (SPH) Smoothed Particle Hydrodynamics (SPH) Áramlások numerikus modellezése II. Tóth Balázs BME-ÉMK Vízépítési és Vízgazdálkodási Tanszék Numerikus módszerek Osztályozás A numerikus sémák két csoportosítási

Részletesebben

Bevezetés a görbe vonalú geometriába

Bevezetés a görbe vonalú geometriába Bevezetés a görbe vonalú geometriába Metrikus tenzor, Christoffel-szimbólum, kovariáns derivált, párhuzamos eltolás, geodetikus Pr hle Zsóa A klasszikus térelmélet elemei (szeminárium) 2012. október 1.

Részletesebben

Matematikai geodéziai számítások 8.

Matematikai geodéziai számítások 8. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr Bácsatyai László Matematikai geodéziai számítások 8 MGS8 modul Szintezési hálózat kiegyenlítése SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői

Részletesebben

7. Térelméleti S-mátrix, funkcionálintegrálok, Feynman-gráfok

7. Térelméleti S-mátrix, funkcionálintegrálok, Feynman-gráfok 7. Térelméleti S-mátrix, funkcionálintegrálok, Feynman-gráfok Lukács Árpád 2004. június 4.. Szórásjelenségek leírása. In és out-állapotok A részecskezikában leggyakrabban vizsgált kísérlettípus: a végtelenb

Részletesebben

1. Oldja meg a z 3 (5 + 3j) (8 + 2j) 2. Adottak az A(1,4,3), B(3,1, 1), C( 5,2,4) pontok a térben.

1. Oldja meg a z 3 (5 + 3j) (8 + 2j) 2. Adottak az A(1,4,3), B(3,1, 1), C( 5,2,4) pontok a térben. Szak: Műszaki menedzser I. Dátum: 006. június. MEGOLDÓKULCS Tárgy: Matematika szigorlat Idő: 0 perc Neptun kód: Előadó: Berta Gábor szig 06 06 0 Pontszám: /00p. Oldja meg a z (5 + j (8 + j + = (+5j (7

Részletesebben

Differenciálegyenletek megoldása Laplace-transzformációval. Vajda István március 21.

Differenciálegyenletek megoldása Laplace-transzformációval. Vajda István március 21. Analízis előadások Vajda István 2009. március 21. A módszer alkalmazásának feltételei: Állandó együtthatós, lineáris differenciálegyenletek megoldására használhatjuk. A módszer alkalmazásának feltételei:

Részletesebben

Dekoherencia Markovi Dinamika Diósi Lajos. Elméleti Fizikai Iskola Tihany, augusztus szeptember 3.

Dekoherencia Markovi Dinamika Diósi Lajos. Elméleti Fizikai Iskola Tihany, augusztus szeptember 3. Dekoherencia Markovi Dinamika Diósi Lajos Elméleti Fizikai Iskola Tihany, 2010. augusztus 30. - szeptember 3. Tartalomjegyzék 1 Projektív dekoherencia 2 Nyitott rendszer - Lindblad egy. 3 Dekoherencia

Részletesebben

Bell-kísérlet. Máté Mihály, Fizikus MSc I. ELTE. Eötvös Loránd Tudományegyetem. Modern zikai kísérletek szemináriuma, 2016.

Bell-kísérlet. Máté Mihály, Fizikus MSc I. ELTE. Eötvös Loránd Tudományegyetem. Modern zikai kísérletek szemináriuma, 2016. Bell-kísérlet Máté Mihály, Fizikus MSc I. ELTE Eötvös Loránd Tudományegyetem Modern zikai kísérletek szemináriuma, 2016. Máté Mihály (ELTE) Bell-kísérlet 1 / 15 Tartalom 1 Elmélet Összefonódás EPR Bell

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Bevezetés a modern fizika fejezeteibe. 1.(a) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 1.(a) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 1.(a) Rugalmas hullámok Utolsó módosítás: 2012. szeptember 28. 1 A deformálható testek mozgása (1) A Helmholtz-féle kinematikai alaptétel: A deformálható test elegendően

Részletesebben

Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével

Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 213. október 8. Javítva: 213.1.13. Határozzuk

Részletesebben

Statisztika elméleti összefoglaló

Statisztika elméleti összefoglaló 1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11

Részletesebben

Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata

Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Egyenáramú hálózatok vizsgálata ellenállások, generátorok, belső ellenállások

Részletesebben

Forgó molekulák áthaladása apertúrán

Forgó molekulák áthaladása apertúrán Forgó molekulák áthaladása apertúrán Egy egyszer kvantummechanikai modell Dömötör Piroska SZTE-TTIK Elméleti Fizikai Tanszék Tanszéki szeminárium, Szeged, 215. február 26. Bevezetés A vizsgálandó kérdés

Részletesebben

Relativisztikus pont-mechanika

Relativisztikus pont-mechanika Relativisztikus pont-mechanika Balog János MTA Wigner FK RMI, Budapest Pont-mechanika és kauzalitás, no-interaction tétel Relativisztikus és prediktív mechanika Kanonikus relativisztikus mechanika Ruijsenaars-Schneider

Részletesebben