Sinkovicz Péter, Szirmai Gergely október 30

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Sinkovicz Péter, Szirmai Gergely október 30"

Átírás

1 Hatszögrácson kialakuló spin-folyadék fázis véges hőmérsékletű leírása Sinkovicz Péter, Szirmai Gergely MTA Wigner Fizikai Kutatóközpont Szilárdtestfizikai és Optikai Intézet 2012 október 30

2 Áttekintés Rövid áttekintés A vizsgált modell bemutatása Hubbard-modell Heisenberg-modell, mint a Hubbard-modell határesete ismertetése Hubbard-Stratonovich tér bevezetése Átlagtér megoldás véges hőmérsékleten Gráfszabályok Segédtér propagátora egy hurok szinten Elemi gerjesztések

3 Modell bemutatása Hubbard-modell Hubbard-modell Rácsra tett párkölcsönható fermion rendszer: Ĥ = N i=1 ˆp 2 i 2m i N U( r i r j )Î := ˆT (1) + Û(2). i,j=1 i j Térelméleti leíráshoz térjünk át olyan Fock-reprezentációra, ahol az egyrészecske hullámfüggvényeket a TONR Wannier-állapotokon fejtünk ki: Ĥ = t i,j ĉ i,αĉj,α U i,j;i,j ĉ i,αĉ j,βĉi,βĉ j,α

4 Modell bemutatása Hubbard-modell Felhasználva, a következő közeĺıtő feltevéseket: Wannier-állapotok rácspontokra lokalizáltak lokalizált fermionokat írnak le, így a hopping csak első szomszédok között számottevő t i,j = t i,j a kölcsönhatás on-site-nak vehető Homogén és izotrop a rács U i,j;i,j = Uδ i,jδ i,j δ i,i t i,j = t Megkapjuk a homogén Hubbard-modelt Ĥ = t i,j α=, ĉ i,αĉj,α + U N i=1 ˆn i, ˆn i,

5 Modell bemutatása Heisenberg-modell Heisenberg-modell Véve a Hubbard-modell alacsony hőmérsékletű, erősen kölcsönható, egyszeresen betöltött T/T c 0 U/t 1 n i = ĉ i,αĉi,α = 1 α határesetének vezető rendjét megkapjuk a Heisenberg-modellt. Heisenberg-modell Ĥ Heisenberg = g i,j α,β= ĉ i,αĉj,αĉ j,βĉi,β ahol g = 4t 2 /U < 0 egy taszító csatolási állandó.

6 Modell bemutatása Heisenberg-modell Heienberg-modell általánosítása ahol A spin Schwinger-fermionokkal reprezentálható ĉ i,αĉi,α = 1(, 0), így Ŝ i = ĉ i,αˆσ α,βĉi,β, Ĥ Heisenberg = g i,j Ŝ i Ŝ j, ami általánosítható két tetszőleges, lokalizált spin olyan kölcsönhatásának a leírására, ami nem változtatja meg a spinek nagyságát. ˆσ ˆτ g g/n

7 Modell bemutatása Heisenberg-modell Mott-szigetelő fázis A perturbációszámítás során látható, hogy a Heisenberg-modell egy másodrendű folyamatot ír le: Tehát tetszőleges U > 0 kölcsönhatás esetén az egyszeresen betöltött Heisenberg-modell alapállapota mindig szigetelő fázis.

8 Modell bemutatása Heisenberg-modell Spinssűrűség hullám (SDW) A g < 0 csatolási állandójú Heisenberg-modell alapállapotában nem a klasszikus értelemben vett G,,... antiferomágneses Néél-állapot alakul ki, mivel egyetlen Néél-állapot se sajátvektora a Ĥ Heisenberg Ŝ i Ŝ j = ) (Ŝ+ i Ŝ j + Ŝ i Ŝ+ j + Ŝz i Ŝz j i,j i,j operátornak. Azonban egy lehetséges alapállapot lehet a kvantum Néél-állapot (klasszikus Néél-állapotok lineáris kombinációja), melyben a spinek nem lokalizáltak.

9 Modell bemutatása Heisenberg-modell Spin folyadék fázis Található olyan SDW az alapállapotban és az a körüli fluktuácók közelében, melyben a töltések rögzítettek (csak spin dinamika); tudja a Ĥ összes szimmetriáját. Alkáliföldfém spin forgatási szimmetria csoportja Az i. rácspont eredő spinje: Ŝ i = îi + Ĵi = îi esetünkben a magspin maximális vetülete I = 5/2, így a modell SU(N = 2I + 1) = SU(6) szimmetrikus

10 Kísérleti megvalósítás Optikai csapda Ultrahideg csapdázott fermion rendszer ahol Ĥ Hubbard + csapda = t ĉ i,αĉi,α + h.c. + U ˆn i,αˆn i,β + ( ) + V csapda i µ i,α ˆn i,α [ 2 2 ] t = i 2m V csapda i i Ha V csapda i = V 0 sin 2 ( k r i )-nek válaszuk, akkor a paramétereket a következőképpen hangolhatjuk t V 3/4 0 e 2 V 0 U V 3/4 0 W. Zwerger: Journal of Optics B, S9. 2, 5, 90 (2003)

11 Nagykanonikus állapotösszeg származtatása A modell nagykanonikus állapotösszegének származtatása A statisztikusfizika nagykanonikus állapotösszege [ ] Z β = Tr e β ˆK = D[c, c]e 1 S β[c,c] nem más, mint egy τ = iβ komplex idejű propagátor, melyben az időlépést a ˆK = Ĥ µ ˆN nagykanonikus Hamilton-operátor fejleszt. S β [c, c] = β dτ L(τ; c, c] = 0 β = dτ [c i,α (τ) ( τ + µ i ) c i,α (τ)] g c i,α (τ)c j,α (τ)c j,β (τ)c i,β (τ) i,α i,j 0 α,β

12 Nagykanonikus állapotösszeg származtatása Hubbard-Stratonovich transzformáció A probléma látszólag orvosolható egy χ bozon segédtér bevezetésével. A transzformáció alapgondolata: definiáljuk úgy a χ funkcionál integrált, hogy teljesüljön a következő: g 1 = D[ χ, χ χ i,j (τ) χ j,i (τ) i,j ]e a funkcionál integrál eltolás invariáns, így az előző kifejezés invariáns a χ i,j (τ) χ i,j (τ) α c i,α (τ)c j,α (τ) cserére.

13 Nagykanonikus állapotösszeg származtatása Átlagtér bevezetése Hubbard-Stratonovich bozonterek mozgásegyenletei χ i,j (τ) = α c i,α (τ)c j,α (τ) χ j,i (τ) = χ i,j(τ) A segédteret bontsuk fel a következő képpen: χ i,j (τ) := χ i,j + δχ i,j (τ) ahol a mean-field rész a Schwinger-fermionok korrelációs mátrixának a várható értéke χ i,j = α c i,α c j,α

14 Nagykanonikus állapotösszeg származtatása Ansatz Megoldási feltevés: hatszög elemi cella Méhsejt-ansatz Szereposztás: elemi cellák indexelése 6db különböző rácspont χ i,j χ (ν) Közeĺıtés következményei véges probléma kémiai potenciál rögzítése

15 Nagykanonikus állapotösszeg származtatása A teljes hatás Kvázirészecskék és fluktuációk teljes hatása S[c, c, δχ, δχ ] = S 0 [c, c] + g 1 S 1 [α, α, δχ, δχ ] + g 2 S 2 [ δχ 2 ] A fermion részben Gauss-integrálra vezető tag S 0 [c, c] = c k,n;σ G (0) 1 c k,n k,n;σ E 0 (χ) k,n σ ahol c k = (a, b,..., f) = α (i) v (i) k. Melyből meghatározható a k i fermionok szabad propagátora G (0)(i j) k,n i j = a ( v (a) k )i ( v (a) k )j iω n 1 ε (i) k

16 Nagykanonikus állapotösszeg származtatása Vegyes tagok, melyek a vertexeket adják S 1 [α, α, δχ, δχ ] = [ ( α (i) k,n ;σ α(j) ( k k),(n n);σ δχ(ν) λ (ν) k,n k,n )i,j + ν;σ k,n k,n ( + α (i) k,n ;σ α(j) ( k k),(n n);σ δχ(ν) λ (ν) k,n k,n )i,j melyből összesen 9x2db vertex adódik ]

17 Nagykanonikus állapotösszeg származtatása δχ-ben másodrendű tagok S 2 [ δχ 2 ] = δχ (ν) D (0)(ν ν ) 1 k,n δχ (ν ) k,n k,n k,n ν,ν Melyből meghatározható a bozon-tér propagátora (első rendben) ν ν 1 = δ k,n ν,ν βv D (0)(ν ν ) A gráf elemek és a hurok, illetve csomóponti törvények segítségével meghatározhatjuk a gráfszabályokat. Az előbb bemutatott gráfszabályok csak formálisak, teljes ismeretükhöz még szükségünk van a χ értékére. A buborék összeg még nem egy perturbációs sor, így minden gráf járulékát figyelembe kell vennünk.

18 Nyeregpont közeĺıtés Z nyeregpont közeĺıtése Amire hajtunk Kezelhető állapotösszeg megkonstruálása (ln det eliminálása) Egy S[c, c, δχ, δχ ] = S 0 [c, c]+g 1 S 1 [α, α, δχ, δχ ]+S eff. [δχ, δχ ] effektív hatás találása, ahol S eff. [δχ, δχ ] = q ν,ν n [ ( δχ (ν) D (ν,ν ) alakú és δχ a m.f. érték körüli fluktuáció. Kollektív elemi gerjesztések megtalálása. ) + D (ν,ν) ] δχ (ν )

19 Nyeregpont közeĺıtés Nyeregpont helye = χ átlagtér beálĺıtása Nyeregpont rögzítésére vonatkozó kényszerfeltételek: χ = χ helyen a hatásnak szélsőértéke van 2 9db δs[... ] δχ (ν) = 0 χ (ν) = g V n (i) k k,i v (i) k ˆλ(ν) k v (i) k típusú egyenlet. minden rácspont egyszeresen van betöltve (kémiai potenciál beálĺıtása) ) ) (c k,σ (c k,σ = 1 ( ( n (i) m m v (i) k v k )m (i) k )m = 1 6 k,i k,σ Ezen kényszerek együttes teljesülése mellett χ meghatározható.

20 Nyeregpont közeĺıtés Megoldások szimmetriája és Wilson-hurkok definiálása A Heisenberg-modell lokális U(1) szimmetriája öröklődik a χ terekre χ i,j = σ c i,σ c j,σ σ c i,σ c j,σ e i(ϑ j ϑ i ) = χ i,j e iϕ i.j Fizikailag különböző megoldások osztályozásához Wilson-hurkok definiálása (bármilyen zárt görbe): Π 1 := χ (1) χ (2) χ (3) χ (4) χ (5) χ (6) Π Π 2 Π 3 χ χ χ χ χ χ χ χ χ Π 2 := χ (1) χ (8) χ (5) χ (9) χ (3) χ (7) Π 3 := χ (6) χ (7) χ (4) χ (8) χ (2) χ (9)

21 Nyeregpont közeĺıtés T = 0 megoldások: E Π 1 Π 2 Π r0 iφ r0 iφ r0 iφ r0 iφ r0 iφ r0 iφ i r 1 r 2 e iπ r 2 e iπ r 2 e iπ r 1 r 2 e iπ r 2 e iπ r 2 e iπ r Φ 0 Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ királis fázis Π Π Π 0 0 Π Π Π 0 0 kvázi plakett fázis plakett fázis G. Szirmai, E. Szirmai, A. Zamora, and M. Lewenstein, PRA, 84, (2011)

22 Nyeregpont közeĺıtés T = 0: Π = r 0 e iφ királis fázis esetén a kvázi részecskék energiaspektruma E m.f. [g] Teljesen betöltött π 2π k 1 [ 1 L ]

23 Nyeregpont közeĺıtés E m.f. [g] π π k 2 [ 1 k 1 [ 1 0 L ] L ] 4π 3 3 ky[ 1 L ] 0 2π π 3 2π 3

24 Nyeregpont közeĺıtés Egyenlőre ismeretlen fázisátalakulás királis kváziplakett plakett χ (1) T c = T [ 1 k B ]

25 Nyeregpont közeĺıtés Fluktuációk effektív leírása (nyeregpont görbülete) Generáló funkcionál bevezetése: Z[η, η] := = + 1 S[... ]+ k,n,i ( ) α (i) η (i) +c.c. k,n k,n D[... ]e = [ D[χ, χ ] 1 1 [ δ S k.h. δη, δ ], χ, χ + δη ( 1 ) ] 2 1 2! S2 k.h [... ] +... Z 0 [η, η] := = Z (0) [η, η] + Z (1) [η, η] +Z (2) [η, η] +... }{{} =0 Z 0 [η, η] az α kvázi részecskékben Gauss-integrált tartalmaz.

26 Nyeregpont közeĺıtés Z (0) és Z (2) tagokat megtartva a következő effektív hatás származtatható a H-S bozontérre: S eff. = [ ( ) ] δχ (ν) D (ν ν ) 1 + D (ν ν) 1 δχ (ν ) + ν,ν + [ ] A (ν ν ) 1 δχ (ν) ) δχ(ν q, n + c.c. ν,ν ahol D (ν ν ) = a várt propagátor A (ν ν ) = nem várt anomális propagátor

27 Nyeregpont közeĺıtés Királis fázis, β = 100 Királis fázis, β = D 1 1 4π π π k 1[ 1 L ] 2π 0 π k 2[ 1 L ] [ D (ν ν ) 1 = 1 δ ν,ν + 6 βv V ky[ 1 L ] 0 2π 3 3 k,i,j v (i) v (j) k k+ qˆλ(ν) k+ q v (i) k 0 π 3 iω n n (i) k ] v (j) ) k+ qˆλ(ν k+ q k x[ 1 L ] n (j) k+ q 2π 3 ( ε (j) k+ q ε (i) k )

28 Nyeregpont közeĺıtés Királis fázis, β = 100 Királis fázis, β = 100 A 1 1 4π π π k 1[ 1 L ] 2π 0 π k 2[ 1 L ] ky[ 1 L ] 0 2π π 3 k x[ 1 L ] 2π 3 A (ν ν ) 1 = 1 βv 6 V k,i,j v (i) k v (j) k+ qˆλ(ν ) k+ q iω n n (i) k n (j) k+ q ( ) v (i) ε (j) ε (i) k k+ q k v (j) k+ qˆλ(ν)

29 Elemi gerjesztések Elemi gerjesztések Az anomális propagátorokat nullának véve értelmezhetjük a fluktuációk propagátorát: ( ) D (ν ν ) = ˆTn δχ (ν ) dω n δχ(ν) ϱ (ν ν ) = 2π iω n ω n amit ha analitikusan elfolytatunk a teljes ω n komplex síkra, akkor a pólusok helyét azonosíthatjuk az elemi gerjesztésekkel (gyenge perturbációra adott válasz rezonancia helye) ha Im ω n > 0 akkor dinamikailag instabil gerjesztés ha Im ω n 0 és Re ω > 0 stabil gerjesztés ha Im ω n 0 és Re ω 0 termodinamikailag instabil gerjesztés

30 Elemi gerjesztések D q=0,n polusainak a helye tisztán valós tartományban λ (ν) q=0,n ω (1) ω (2) ω (3) ω (4) ω (5) n = n = n = n = n = ω n [g]

31 Köszönöm a figyelmet!

elemi gerjesztéseinek vizsgálata

elemi gerjesztéseinek vizsgálata Hatszögrácson kialakuló spin-folyadék fázis elemi gerjesztéseinek vizsgálata Sinkovicz Péter, Szirmai Gergely MTA Wigner Fizikai Kutatóközpont Szilárdtestfizikai és Optikai Intézet 2013 április 29 Áttekintés

Részletesebben

Ultrahideg atomok topológiai fázisai

Ultrahideg atomok topológiai fázisai Ultrahideg atomok topológiai fázisai Szirmai Gergely MTA SZFKI 2011. június 14. Szirmai Gergely (MTA SZFKI) Ultrahideg atomok topológiai fázisai 2011. június 14. 1 / 1 Kvantum fázisátalakulások I (spontán

Részletesebben

January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r,

January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r, Közelítő módszerek January 16, 27 1 A variációs módszer A variációs módszer szintén egy analitikus közelítő módszer. Olyan esetekben alkalmazzuk mikor ismert az analitikus alak amelyben keressük a sajátfüggvényt,

Részletesebben

A spin. November 28, 2006

A spin. November 28, 2006 A spin November 28, 2006 1 A spin a kvantummechanikában Az elektronnak és sok más kvantummechanikai részecskének is van egy saját impulzusnyomatéka amely független a mozgásállapottól. (Úgy is mondhatjuk,

Részletesebben

Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje

Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje Kvantummechanika gyakorlat 015 1. Beadandó feladatsor Határid : 4. heti gyakorlatok eleje 1. Mutassuk meg, hogy A és B tetsz leges operátorokra igaz, hogy e B A e B = A + [B, A] + 1![ B, [B, A] ] +....

Részletesebben

Idegen atomok hatása a grafén vezet képességére

Idegen atomok hatása a grafén vezet képességére hatása a grafén vezet képességére Eötvös Loránd Tudományegyetem, Komplex Rendszerek Fizikája Tanszék Mahe Tisk'11 Vázlat 1 Kisérleti eredmények Kémiai szennyez k hatása a Fermi-energiára A vezet képesség

Részletesebben

Pósfay Péter. arxiv: [hep-th] Eur. Phys. J. C (2015) 75: 2 PoS(EPS-HEP2015)369

Pósfay Péter. arxiv: [hep-th] Eur. Phys. J. C (2015) 75: 2 PoS(EPS-HEP2015)369 arxiv:1604.01717 [hep-th] Eur. Phys. J. C (2015) 75: 2 PoS(EPS-HEP2015)369 Pósfay Péter ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. Motiváció FRG módszer bemutatása Kölcsönható Fermi-gáz

Részletesebben

Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben

Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben Demeter Gábor MTA Wigner Fizikai Kutatóközpont, RMI Demeter Gábor (MTA Wigner RCP... / 4 Bevezetés / Motiváció

Részletesebben

Fluktuáló terű transzverz Ising-lánc dinamikája

Fluktuáló terű transzverz Ising-lánc dinamikája 2016. szeptember 8. Phys. Rev. B 93, 134305 Modell H(t) = 1 2 L 1 σi x σi+1 x h(t) 2 i=1 h(t)-fluktuáló mágneses tér. Hogyan terjednek jelek a zajos rendszerben? L σi z, i=1 Zajok típusai 1 fehér zaj 2

Részletesebben

Belső szimmetriacsoportok: SU(2), SU(3) és a részecskék rendszerezése, a kvarkmodell alapjai

Belső szimmetriacsoportok: SU(2), SU(3) és a részecskék rendszerezése, a kvarkmodell alapjai Belső szimmetriacsoportok: SU(), SU() és a részecskék rendszerezése, a kvarkmodell alapjai Izospin Heisenberg, 9: a proton és a neutron nagyon hasonlít egymásra, csak a töltésük különbözik. Ekkor, -ben

Részletesebben

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban.

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban. Kvantum statisztika A kvantummechanika előadások során már megtanultuk, hogy az anyagot felépítő részecskék nemklasszikus, hullámtulajdonságokkal is rendelkeznek aminek következtében viselkedésük sok szempontból

Részletesebben

BKT fázisátalakulás és a funkcionális renormálási csoport módszer

BKT fázisátalakulás és a funkcionális renormálási csoport módszer BKT fázisátalakulás és a funkcionális renormálási csoport módszer Nándori István MTA-DE Részecskefizikai Kutatócsoport, Debreceni Egyetem MTA-Atomki, Debrecen Wigner FK zilárdtestfizikai és Optikai Intézet,

Részletesebben

Az elméleti mechanika alapjai

Az elméleti mechanika alapjai Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.

Részletesebben

Bevezetés a részecske fizikába

Bevezetés a részecske fizikába Bevezetés a részecske fizikába Kölcsönhatások és azok jellemzése Kölcsönhatás Erősség Erős 1 Elektromágnes 1 / 137 10-2 Gyenge 10-12 Gravitációs 10-44 Erős kölcsönhatás Közvetítő részecske: gluonok Hatótávolság:

Részletesebben

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat.

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. AZ ELEKTRON MÁGNESES MOMENTUMA Mágneses dipólmomentum: m H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. M = m H sinϕ (Elektromos töltés, q: monopólus

Részletesebben

!!! Egzotikus kvantumfázisok és kölcsönhatások ultrahideg atomi rendszerekben. Kanász-Nagy Márton. Témavezető: Dr. Zaránd Gergely. Ph.D.

!!! Egzotikus kvantumfázisok és kölcsönhatások ultrahideg atomi rendszerekben. Kanász-Nagy Márton. Témavezető: Dr. Zaránd Gergely. Ph.D. Egzotikus kvantumfázisok és kölcsönhatások ultrahideg atomi rendszerekben Kanász-Nagy Márton Témavezető: Dr. Zaránd Gergely Ph.D. tézisfüzet Budapesti Műszaki és Gazdaságtudományi Egyetem Elméleti Fizika

Részletesebben

Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. (

Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. ( FELADATOK A LEKÉPEZÉSEK, PERMUTÁCIÓK TÉMAKÖRHÖZ Diszkrét Matematika 4. LEKÉPEZÉSEK Értelmezési tartomány és értékkészlet meghatározása : Összefoglaló feladatgyűjtemény matematikából ( zöld könyv ): XIII.

Részletesebben

Forgó molekulák áthaladása apertúrán

Forgó molekulák áthaladása apertúrán Forgó molekulák áthaladása apertúrán Egy egyszer kvantummechanikai modell Dömötör Piroska SZTE-TTIK Elméleti Fizikai Tanszék Tanszéki szeminárium, Szeged, 215. február 26. Bevezetés A vizsgálandó kérdés

Részletesebben

Hegedüs Árpád, MTA Wigner FK, RMI Elméleti osztály, Holografikus Kvantumtérelméleti csoport. Fizikus Vándorgyűlés Szeged,

Hegedüs Árpád, MTA Wigner FK, RMI Elméleti osztály, Holografikus Kvantumtérelméleti csoport. Fizikus Vándorgyűlés Szeged, Hegedüs Árpád, MTA Wigner FK, RMI Elméleti osztály, Holografikus Kvantumtérelméleti csoport Fizikus Vándorgyűlés Szeged, 2016.08.25 Vázlat Mértékelméletek Tulajdonságaik Milyen fizikát írnak le? Perturbációszámítás

Részletesebben

RENDSZERTECHNIKA 8. GYAKORLAT

RENDSZERTECHNIKA 8. GYAKORLAT RENDSZERTECHNIKA 8. GYAKORLAT ÜTEMTERV VÁLTOZÁS Gyakorlat Hét Dátum Témakör Házi feladat Egyéb 1 1. hét 02.09 Ismétlés, bevezetés Differenciálegyenletek mérnöki 2 2. hét 02.16 szemmel 1. Hf kiadás 3 3.

Részletesebben

1.1. Vektorok és operátorok mátrix formában

1.1. Vektorok és operátorok mátrix formában 1. Reprezentáció elmélet 1.1. Vektorok és operátorok mátrix formában A vektorok és az operátorok mátrixok formájában is felírhatók. A végtelen dimenziós ket vektoroknak végtelen sok sort tartalmazó oszlopmátrix

Részletesebben

Kvantum termodinamika

Kvantum termodinamika Kvantum termodinamika Diósi Lajos MTA Wigner FK Budapest 2014. febr. 4. Diósi Lajos (MTA Wigner FKBudapest) Kvantum termodinamika 2014. febr. 4. 1 / 12 1 Miért van 1 qubitnek termodinamikája? 2 QuOszcillátor/Qubit:

Részletesebben

dinamikai tulajdonságai

dinamikai tulajdonságai Szilárdtest rácsok statikus és dinamikai tulajdonságai Szilárdtestek osztályozása kötéstípusok szerint Kötések eredete: elektronszerkezet k t ionok (atomtörzsek) tö Coulomb- elektronok kölcsönhatás lokalizáltak

Részletesebben

Kvantum renormálási csoport a

Kvantum renormálási csoport a Kvantum renormálási csoport a Nagy Sándor, Polonyi János, Steib Imola Debreceni Egyetem, Elméleti Fizikai Tanszék Szeged, 2016. augusztus 25. a S. Nagy, J. Polonyi, I. Steib, Quantum renormalization group,

Részletesebben

Egyesített funkcionális renormálási csoport egyenlet

Egyesített funkcionális renormálási csoport egyenlet Egyesített funkcionális renormálási csoport egyenlet Nándori István MTA-DE Részecskefizikai Kutatócsoport, MTA-Atomki, Debrecen Magyar Fizikus Vándorgyűles, Debrecen, 2013 Kvantumtérelmélet Részecskefizika

Részletesebben

Atomok és molekulák elektronszerkezete

Atomok és molekulák elektronszerkezete Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre

Részletesebben

Lagrange és Hamilton mechanika

Lagrange és Hamilton mechanika Lagrange és 2010. október 17. Lagrange és Tartalom 1 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek 2 3 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája

Részletesebben

Reciprocitás - kvantumos és hullámjelenségek egy szimmetriája

Reciprocitás - kvantumos és hullámjelenségek egy szimmetriája Reciprocitás - kvantumos és hullámjelenségek egy szimmetriája Fülöp Tamás + Deák László MTA Wigner FK RMI MTA Wigner FK RMI, Budapest, 2012.06.22 Mi a reciprocitás? A fénysugár útja megfordítható G. Stokes,

Részletesebben

Az elektron-foton kölcsönhatás (folyamatok)

Az elektron-foton kölcsönhatás (folyamatok) Az elektron-foton kölcsönhatás (folyamatok) Itten most a Compton-szórás hatáskeresztmetszetét kell kiszámolni, felhasználva a QED-ben és úgy általában a kvantumtérelméletben ismert dolgokat (Feynman-szabályok,

Részletesebben

7. Térelméleti S-mátrix, funkcionálintegrálok, Feynman-gráfok

7. Térelméleti S-mátrix, funkcionálintegrálok, Feynman-gráfok 7. Térelméleti S-mátrix, funkcionálintegrálok, Feynman-gráfok Lukács Árpád 2004. június 4.. Szórásjelenségek leírása. In és out-állapotok A részecskezikában leggyakrabban vizsgált kísérlettípus: a végtelenb

Részletesebben

Alkalmazott spektroszkópia

Alkalmazott spektroszkópia Alkalmazott spektroszkópia 009 Bányai István MR és a fémionok: koordinációs kémiai alkalmazások Bányai István Debreceni Egyetem TEK Kolloid- és Környezetkémiai Tanszék A mágnesség A mágneses erő: F pp

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

Relativisztikus pont-mechanika

Relativisztikus pont-mechanika Relativisztikus pont-mechanika Balog János MTA Wigner FK RMI, Budapest Pont-mechanika és kauzalitás, no-interaction tétel Relativisztikus és prediktív mechanika Kanonikus relativisztikus mechanika Ruijsenaars-Schneider

Részletesebben

Kevert állapoti anholonómiák vizsgálata

Kevert állapoti anholonómiák vizsgálata Kevert állapoti anholonómiák vizsgálata Bucz Gábor Témavezet : Dr. Fehér László Dr. Lévay Péter Szeged, 2015.04.23. Bucz Gábor Kevert állapoti anholonómiák vizsgálata Szeged, 2015.04.23. 1 / 27 Tartalom

Részletesebben

Rádl Attila december 11. Rádl Attila Spalláció december / 21

Rádl Attila december 11. Rádl Attila Spalláció december / 21 Spalláció Rádl Attila 2018. december 11. Rádl Attila Spalláció 2018. december 11. 1 / 21 Definíció Atommagok nagyenergiás részecskével történő ütközése során másodlagos részecskéket létrehozó rugalmatlan

Részletesebben

Magfizika szeminárium

Magfizika szeminárium Paritássértés a Wu-kísérletben Körtefái Dóra Magfizika szeminárium 2019. 03. 25. Áttekintés Szimmetriák Paritás Wu-kísérlet Lederman-kísérlet Szimmetriák Adott transzformációra invaráns mennyiségek. Folytonos

Részletesebben

Fázisátalakulások, avagy az anyag ezer arca. Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium

Fázisátalakulások, avagy az anyag ezer arca. Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium Fázisátalakulások, avagy az anyag ezer arca Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium Atomoktól a csillagokig, Budapest, 2016. december 8. Fázisátalakulások Csak kondenzált anyag? A kondenzált

Részletesebben

Energiatételek - Példák

Energiatételek - Példák 9. Előadás Húzott rúd potenciális energiája: Hooke-modell: σ = Eε Geom. hetséges Geometriai egyenlet: + geom. peremfeltételek: u εx = ε = x u(0) = 0 ul () = 0 du dx Energiatételek Példák = k l 0 pudx l

Részletesebben

Paritássértés FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM PARITÁSSÉRTÉS 1

Paritássértés FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM PARITÁSSÉRTÉS 1 Paritássértés SZEGEDI DOMONKOS FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM 2013.11.27. PARITÁSSÉRTÉS 1 Tartalom 1. Szimmetriák 2. Paritás 3. P-sértés 1. Lee és Yang 2. Wu kísérlet 3. Lederman kísérlet

Részletesebben

rendszerek kritikus viselkedése

rendszerek kritikus viselkedése Hosszú hatótávolságú, rendezetlen rendszerek kritikus viselkedése Juhász Róbert MTA Wigner FK, SZFI Iglói Ferenc (Wigner FK, SZTE) Kovács István (Wigner FK; Northeastern University, Boston) Hosszú hatótávolságú,

Részletesebben

Diszkrét matematika gyakorlat 1. ZH október 10. α csoport

Diszkrét matematika gyakorlat 1. ZH október 10. α csoport Diszkrét matematika gyakorlat 1. ZH 2016. október 10. α csoport 1. Feladat. (5 pont) Adja meg az α 1 β szorzatrelációt, amennyiben ahol A {1, 2, 3, 4}. α {(1, 2), (1, 3), (2, 1), (3, 1), (3, 4), (4, 4)}

Részletesebben

Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István

Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István Sajátértékek és sajátvektorok A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris transzformáció Vektorok lineáris transzformációja: általános esetben az x vektor iránya és nagysága

Részletesebben

DIFFERENCIAEGYENLETEK

DIFFERENCIAEGYENLETEK DIFFERENCIAEGYENLETEK Példa: elsőrendű állandó e.h. lineáris differenciaegyenlet Ennek megoldása: Kezdeti feltétellel: Kezdeti feltétel nélkül ha 1 és a végtelen összeg (abszolút) konvergens: / 1 Minden

Részletesebben

Simított részecskedinamika Smoothed Particle Hydrodynamics (SPH)

Simított részecskedinamika Smoothed Particle Hydrodynamics (SPH) Smoothed Particle Hydrodynamics (SPH) Áramlások numerikus modellezése II. Tóth Balázs BME-ÉMK Vízépítési és Vízgazdálkodási Tanszék Numerikus módszerek Osztályozás A numerikus sémák két csoportosítási

Részletesebben

Csoportelmélet ( ) ϕ ψ adatokra ( ) ( ) ( ) ( )

Csoportelmélet ( ) ϕ ψ adatokra ( ) ( ) ( ) ( ) Csoportelmélet ( A csoportaxiómák nem tartalmaznak ellentmondást mert az { } csoportot alkot. Fizika felépítése: fizikai valóság fizikai modellek matematikai modellek (átjárhatók reprezentációk (áttranszformálhatók

Részletesebben

Bevezetés a Standard Modellbe

Bevezetés a Standard Modellbe Trócsányi Zoltán Bevezetés a Standard Modellbe MAFIHE Részecskefizika Iskola Gyenesdiás, 008. február 3. Indul az LHC Az LHC célkitűzése a Higgs-bozon kísérleti kimutatása, új részecskék felfedezése A

Részletesebben

Magszerkezet modellek. Folyadékcsepp modell

Magszerkezet modellek. Folyadékcsepp modell Magszerkezet modellek Folyadékcsepp modell Az atommag összetevői (emlékeztető) atommag Z proton + (A-Z) neutron (nukleonok) szorosan kötve Állapot leírása: kvantummechanika + kölcsönhatások Nem relativisztikus

Részletesebben

Felügyelt önálló tanulás - Analízis III.

Felügyelt önálló tanulás - Analízis III. Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:

Részletesebben

Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek:

Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek: 3. Gyakorlat 34-5 Egy Ω ellenállású elektromos fűtőtestre 56 V amplitúdójú váltakozó feszültséget kapcsolunk. Mekkora a fűtőtest teljesítménye? Jelölések: R = Ω, U o = 56 V fűtőtestben folyó áram amplitudója

Részletesebben

differenciálegyenletek

differenciálegyenletek Állandó együtthatójú lineáris homogén differenciálegyenletek L[y] = y (n) + a 1y (n 1) + + a ny = 0 a i R (1) a valós, állandó együtthatójú lineáris homogén n-ed rendű differenciálegyenlet Megoldását y

Részletesebben

Fluktuáló momentumok egy- és kétdimenziós Mott-szigetelőkben

Fluktuáló momentumok egy- és kétdimenziós Mott-szigetelőkben Fluktuáló momentumok egy- és kétdimenziós Mott-szigetelőkben PhD tézisfüzet Lajkó Miklós PhD témavezető: Penc Karlo Fizika Tanszék, Budapesti Műszaki és Gazdaságtudományi Egyetem Szilárdtestfizikai és

Részletesebben

Relativisztikus Kvantummechanika alapok,

Relativisztikus Kvantummechanika alapok, Relativisztikus Kvantummechanika alapok, 2. rész January 25, 25 A folytonossági egyenlet Akárcsak a Schrödinger és Klein-Gordon egyenlet esetén, azt reméljük, hogy a Dirac egyenletben szereplő bispinor

Részletesebben

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ) Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok

Részletesebben

AZ INSTACIONER HŐVEZETÉS ÉPÜLETSZERKEZETEKBEN. várfalvi.

AZ INSTACIONER HŐVEZETÉS ÉPÜLETSZERKEZETEKBEN. várfalvi. AZ INSTACIONER HŐVEZETÉS ÉPÜLETSZERKEZETEKBEN várfalvi. IDÉZZÜK FEL A STACIONER HŐVEZETÉST q áll. t x áll. q λ t x t λ áll x. λ < λ t áll. t λ áll x. x HŐMÉRSÉKLETELOSZLÁS INSTACIONER ESETBEN Hőáram, hőmérsékleteloszlás

Részletesebben

ANALÍZIS III. ELMÉLETI KÉRDÉSEK

ANALÍZIS III. ELMÉLETI KÉRDÉSEK ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. május 15. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

u u IR n n = 2 3 t 0 <t T

u u IR n n = 2 3 t 0 <t T IR n n =2 3 u() u u u u IR n n = 2 3 ξ A 0 A 0 0 0 < T F IR n F A 0 A 0 A 0 A 0 F :IR n IR n A = F A 0 A 0 A 0 0 0 A F A 0 A F (, y) =0 a = T>0 b A 0 T 1 2 A IR n A A A F A 0 A 0 ξ A 0 = F (ξ) ε>0 δ ε

Részletesebben

Bevezet fejezetek a molekulák. elektronszerkezetének elméleti leírásába. Jegyzet. Bogár Ferenc

Bevezet fejezetek a molekulák. elektronszerkezetének elméleti leírásába. Jegyzet. Bogár Ferenc Bevezet fejezetek a molekulák elektronszerkezetének elméleti leírásába Jegyzet Bogár Ferenc E-mail: bogar@sol.cc.u-szeged.hu Honlap: http://ovrisc.mdche.szote.u-szeged.hu/~bogar Cím: MTA-SZTE Supramolekuláris

Részletesebben

Dekoherencia Markovi Dinamika Diósi Lajos. Elméleti Fizikai Iskola Tihany, augusztus szeptember 3.

Dekoherencia Markovi Dinamika Diósi Lajos. Elméleti Fizikai Iskola Tihany, augusztus szeptember 3. Dekoherencia Markovi Dinamika Diósi Lajos Elméleti Fizikai Iskola Tihany, 2010. augusztus 30. - szeptember 3. Tartalomjegyzék 1 Projektív dekoherencia 2 Nyitott rendszer - Lindblad egy. 3 Dekoherencia

Részletesebben

Trócsányi Zoltán. Az eltőnt szimmetria nyomában - a évi fizikai Nobel-díj

Trócsányi Zoltán. Az eltőnt szimmetria nyomában - a évi fizikai Nobel-díj Trócsányi Zoltán Az eltőnt szimmetria nyomában - a 2008. évi fizikai Nobel-díj A Fizikai Nobel-díj érme: Inventas vitam juvat excoluisse per artes Kik felfedezéseikkel jobbítják a világot Fizikai Nobel-díj

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása, június 10

Gazdasági matematika II. vizsgadolgozat megoldása, június 10 Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett

Részletesebben

Erős terek leírása a Wigner-formalizmussal

Erős terek leírása a Wigner-formalizmussal Erős terek leírása a Wigner-formalizmussal Berényi Dániel 1, Varró Sándor 1, Vladimir Skokov 2, Lévai Péter 1 1, MTA Wigner FK, Budapest 2, RIKEN/BNL, Upton, USA Wigner 115 2017. November 15. Budapest

Részletesebben

A Relativisztikus kvantummechanika alapjai

A Relativisztikus kvantummechanika alapjai A Relativisztikus kvantummechanika alapjai January 25, 2005 A kvantummechanika Schrödinger egyenletének a felírása után azonnal kiderül, hogy ez az egyenlet nem relativisztikusan kovariáns. (Aránylag könnyen

Részletesebben

2012. október 23. Csanád Máté, ELTE Atomfizikai Tanszék Részecske- és magfizikai szeminárium 1 / 18

2012. október 23. Csanád Máté, ELTE Atomfizikai Tanszék Részecske- és magfizikai szeminárium 1 / 18 Az erős és az elektrogyenge kölcsönhatás elmélet Csanád Máté ELTE Atomfizikai Tanszék Részecske- és magfizikai szeminárium 2012. október 23. Csanád Máté, ELTE Atomfizikai Tanszék Részecske- és magfizikai

Részletesebben

1 A kvantummechanika posztulátumai

1 A kvantummechanika posztulátumai A kvantummechanika posztulátumai October 29, 2006 A kvantummechanika posztulátumai Célunk felépíteni a kvantummechanikát posztulátumok segítségével úgy ahogy az elemi hullámmechanika során eljártunk. Arra

Részletesebben

Axion sötét anyag. Katz Sándor. ELTE Elméleti Fizikai Tanszék

Axion sötét anyag. Katz Sándor. ELTE Elméleti Fizikai Tanszék Az axion mint sötét anyag ELTE Elméleti Fizikai Tanszék Borsányi Sz., Fodor Z., J. Günther, K-H. Kampert, T. Kawanai, Kovács T., S.W. Mages, Pásztor A., Pittler F., J. Redondo, A. Ringwald, Szabó K. Nature

Részletesebben

2015/16/1 Kvantummechanika B 2.ZH

2015/16/1 Kvantummechanika B 2.ZH 2015/16/1 Kvantummechanika B 2.ZH 2015. december 10. Információk 0. A ZH ideje minimum 90 perc, maximum 180 perc. 1. Az összesen elérhet pontszám 270 pont. 2. A jeles érdemjegy eléréséhez nem szükséges

Részletesebben

Differenciálegyenlet rendszerek

Differenciálegyenlet rendszerek Differenciálegyenlet rendszerek (A kezdeti érték probléma. Lineáris differenciálegyenlet rendszerek, magasabb rendű lineáris egyenletek.) Szili László: Modellek és algoritmusok ea+gyak jegyzet alapján

Részletesebben

Az Univerzum felforrósodása

Az Univerzum felforrósodása Az Univerzum felforrósodása Patkós András Eötvös Egyetem, Fizikai Intézet Vázlat Az inflációs korszak vége (gyors áttekintés) Az inflaton elbomlásának két hatásos módja: TACHYONIKUS INSTABILITÁS vs. PARAMETRIKUS

Részletesebben

Az eddigiekben olyan rendszerekkel foglalkoztunk, melyek részecskéi egymástól

Az eddigiekben olyan rendszerekkel foglalkoztunk, melyek részecskéi egymástól V. Kölcsönható rendszerek Az eddigiekben olyan rendszerekkel foglalkoztunk, melyek részecskéi egymástól függetlenek voltak, s ez annak volt a következménye, hogy a köztük lévő kölcsönhatás elhanyagolhatóan

Részletesebben

Kvantummechanika gyakorlo feladatok 1 - Megoldások. 1. feladat: Az eltolás operátorának megtalálásával teljesen analóg módon fejtsük Taylor-sorba

Kvantummechanika gyakorlo feladatok 1 - Megoldások. 1. feladat: Az eltolás operátorának megtalálásával teljesen analóg módon fejtsük Taylor-sorba Kvatummechaika gyakorlo felaatok - Megolások felaat: z eltolás operátoráak megtalálásával teljese aalóg móo fejtsük Taylor-sorba a hullámfüggvéyt a változójába: ψr θ ϕ + ϕ ψr θ ϕ + ψr θ ϕ ϕ + ψr θ ϕ ϕ

Részletesebben

Geometriai fázisok és spin dinamika. Zaránd Gergely Budapesti Műszaki és Gazdaságtudományi Egyetem

Geometriai fázisok és spin dinamika. Zaránd Gergely Budapesti Műszaki és Gazdaságtudományi Egyetem Geometriai fázisok és spin dinamika Zaránd Gergely Budapesti Műszaki és Gazdaságtudományi Egyetem Vázlat Hogyan manipulálnak egyetlen spint? Mitől relaxál egy spin? Magspinek (hiperfinom kölcsönhatás)

Részletesebben

MODELLEZÉS - SZIMULÁCIÓ

MODELLEZÉS - SZIMULÁCIÓ Mechatronika = Mechanikai elemek+ elektromechanikai átalakítók+ villamos rendszerek+ számítógép elemek integrációja Eszközök, rendszerek, gépek és szerkezetek felügyeletére, vezérlésére (manapság miniatürizált)

Részletesebben

r tr r r t s t s② t t ① t r ② tr s r

r tr r r t s t s② t t ① t r ② tr s r r tr r r t s t s② t t ① t r ② tr s r r ás③ r s r r r á s r ② s ss rt t s s tt r t r t r P s ② Pá③ á ② Pét r t rs t② t② r t ② s s ás t r s ② st s t t r t t r s t s t t t t s s s str t r r t r t ① r t r

Részletesebben

FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK

FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK Légköri nyomanyagok forrásai: bioszféra hiroszféra litoszféra világűr emberi tevékenység AMI BELÉP, ANNAK TÁVOZNIA IS KELL! Légköri nyomanyagok nyelői: száraz

Részletesebben

GROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15.

GROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15. ELTE, MSc II. 2011.dec.15. Áttekintés Feladat Algoritmus Kvantum keresési algoritmus áttekintése Input: N = 2 n elemű tömb, Ψ 1 = 0 1 kezdőállapot, f x0 (x) orákulum függvény. Output: x 0 keresett elem

Részletesebben

Saj at ert ek-probl em ak febru ar 26.

Saj at ert ek-probl em ak febru ar 26. Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre

Részletesebben

Fizikai kémia 2. Előzmények. A Lewis-féle kötéselmélet A VB- és az MO-elmélet, a H 2+ molekulaion

Fizikai kémia 2. Előzmények. A Lewis-féle kötéselmélet A VB- és az MO-elmélet, a H 2+ molekulaion 06.07.5. Fizikai kémia. 4. A VB- és az -elmélet, a H + molekulaion Dr. Berkesi ttó ZTE Fizikai Kémiai és Anyagtudományi Tanszéke 05 Előzmények Az atomok szerkezetének kvantummehanikai leírása 90-30-as

Részletesebben

Markov-láncok stacionárius eloszlása

Markov-láncok stacionárius eloszlása Markov-láncok stacionárius eloszlása Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Kiss Tamás 2013. április 11. Tartalom Markov láncok definíciója, jellemzése Visszatérési idők Stacionárius

Részletesebben

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1) 3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)

Részletesebben

3. előadás Stabilitás

3. előadás Stabilitás Stabilitás 3. előadás 2011. 09. 19. Alapfogalmak Tekintsük dx dt = f (t, x), x(t 0) = x 0 t (, ), (1) Jelölje t x(t; t 0, x 0 ) vagy x(.; t 0, x 0 ) a KÉF megoldását. Kívánalom: kezdeti állapot kis megváltozása

Részletesebben

Ψ - 1/v 2 2 Ψ/ t 2 = 0

Ψ - 1/v 2 2 Ψ/ t 2 = 0 ELTE II. Fizikus 005/006 I. félév KISÉRLETI FIZIKA Optika 7. (X. 4) Interferencia I. Ψ (r,t) = Φ (r,t)e iωt = A(r) e ikl(r) e iωt hullámfüggvény (E, B, E, B,...) Ψ - /v Ψ/ t = 0 ω /v = k ; ω /c = k o ;

Részletesebben

Kvantumszimmetriák. Böhm Gabriella. Szeged. Wigner Fizikai Kutatóközpont, Budapest november 16.

Kvantumszimmetriák. Böhm Gabriella. Szeged. Wigner Fizikai Kutatóközpont, Budapest november 16. Kvantumszimmetriák Böhm Gabriella Wigner Fizikai Kutatóközpont, Budapest Szeged 2017. november 16. Kvantumszimmetriák I. A kvantumtérelmélet axiomatikus megközelítése II. A DHR-kategória III. Szimmetria

Részletesebben

2, = 5221 K (7.2)

2, = 5221 K (7.2) 7. Gyakorlat 4A-7 Az emberi szem kb. 555 nm hullámhossznál a Iegnagyobb érzékenységű. Adjuk meg annak a fekete testnek a hőmérsékletét, amely sugárzásának a spektrális teljesitménye ezen a hullámhosszon

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Fourier transzformáció

Fourier transzformáció a Matematika mérnököknek II. című tárgyhoz Fourier transzformáció Fourier transzformáció, heurisztika Tekintsük egy 2L szerint periodikus függvény Fourier sorát: f (x) = a 0 2 + ( ( nπ ) ( nπ )) a n cos

Részletesebben

5. előadás - Regressziószámítás

5. előadás - Regressziószámítás 5. előadás - Regressziószámítás 2016. október 3. 5. előadás 1 / 18 Kétváltozós eset A modell: Y i = α + βx i + u i, i = 1,..., T, ahol X i független u i -től minden i esetén, (u i ) pedig i.i.d. sorozat

Részletesebben

Munkabeszámoló. Sinkovicz Péter. Témavezető: Szirmai Gergely. Kvantumoptikai és Kvantuminformatikai Osztály. Lendület program

Munkabeszámoló. Sinkovicz Péter. Témavezető: Szirmai Gergely. Kvantumoptikai és Kvantuminformatikai Osztály. Lendület program Munkabeszámoló Sinkovicz Péter PTE Fizika Doktori Iskola (III. éves doktorandusz) Témavezető: Szirmai Gergely 2014.10.02 Lendület program Kvantumoptikai és Kvantuminformatikai Osztály Téma Projektek címe

Részletesebben

Fizika 1 Elektrodinamika beugró/kis kérdések

Fizika 1 Elektrodinamika beugró/kis kérdések Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos

Részletesebben

Szilárdtest-fizika gyakorlat, házi feladatok, ősz

Szilárdtest-fizika gyakorlat, házi feladatok, ősz Szilárdtest-fizika gyakorlat, házi feladatok, 2017. ősz A HF-ek után zárójelben az szerepel, hogy hány hallgatónak szánjuk kiadni, utána pedig a hallgatókat azonosító sorszám (1-21), így: (hallgató/feladat,

Részletesebben

1. feladatsor Komplex számok

1. feladatsor Komplex számok . feladatsor Komplex számok.. Feladat. Kanonikus alakban számolva határozzuk meg az alábbi műveletek eredményét. (a) i 0 ; i 8 ; (b) + 4i; 3 i (c) ( + 5i)( 6i); (d) i 3+i ; (e) 3i ; (f) ( +3i)(8+i) ( 4

Részletesebben

α részecske = 2p + 2n = bozon, 3 He = 2p+n+2e = fermion, H 2 molekula= 2(p+e ) = bozon, pozitron = e + = fermion,

α részecske = 2p + 2n = bozon, 3 He = 2p+n+2e = fermion, H 2 molekula= 2(p+e ) = bozon, pozitron = e + = fermion, Osztályozzuk a következő részecskéket a Fermi Dirac- és a Bose Einsteinstatisztika alapján: α-részecske, 3 He, H 2 molekula, pozitron, 6 Li + ion és 7 Li + ion A proton p), a neutron n), az elektron e

Részletesebben

Kvantumszimulátorok. Szirmai Gergely MTA SZFKI. Graphics: Harald Ritsch / Rainer Blatt, IQOQI

Kvantumszimulátorok. Szirmai Gergely MTA SZFKI. Graphics: Harald Ritsch / Rainer Blatt, IQOQI Kvantumszimulátorok Szirmai Gergely MTA SZFKI Graphics: Harald Ritsch / Rainer Blatt, IQOQI A kvantummechanika körülvesz tranzisztor számítógép, mobiltelefon A kvantummechanika körülvesz tranzisztor számítógép,

Részletesebben

A mikroskálájú modellek turbulencia peremfeltételeiről

A mikroskálájú modellek turbulencia peremfeltételeiről A mikroskálájú modellek turbulencia peremfeltételeiről Adjunktus Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Áramlástan Tanszék 27..23. 27..23. / 7 Általános célú CFD megoldók alkalmazása

Részletesebben

Pauli-Schrödinger egyenlet

Pauli-Schrödinger egyenlet Paul-Schrödnger egyenlet Hamlton operátor Paul-Schrödnger egyenlet valószínűségsűrűség H = p m + V L r + µ B B + g S g = t ψ r, t = Hψ r, t 3 ψ ψ+ r, t r, t = ψ 4 r, t ρ r, t = ψ + r, t ψ r, t = ψ + r,

Részletesebben

alapvető tulajdonságai

alapvető tulajdonságai A z a to m m a g o k alapvető tulajdonságai Mérhető mennyiségek Az atommagok mérete, tömege, töltése, spinje, mágneses momentuma, elektromos kvadrupól momentuma Az atommag töltés- és nukleon-eloszlása

Részletesebben

Fizikai mennyiségek, állapotok

Fizikai mennyiségek, állapotok Fizikai mennyiségek, állapotok Atomok és molekulák zikai mennyiségeihez rendelt operátorok A kvantummechanika mint matematikai modell alapvet épít elemei a rendszer leírására szolgáló zikai mennyiségekhez

Részletesebben

Átmenetifém-komplexek mágneses momentuma

Átmenetifém-komplexek mágneses momentuma Átmenetifém-komplexek mágneses momentuma Csakspin-momentum μ g e S(S 1) μ B μ n(n 2) μ B A komplexek mágneses momentuma többnyire közel van ahhoz a csakspin-momentum értékhez, ami az adott elektronkonfigurációjú

Részletesebben

Differenciaegyenletek

Differenciaegyenletek Differenciaegyenletek Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2009/10 tanév, I. félév Losonczi László (DE) Differenciaegyenletek 2009/10 tanév, I. félév 1 / 11

Részletesebben

Mátrix-exponens, Laplace transzformáció

Mátrix-exponens, Laplace transzformáció 2016. április 4. 2016. április 11. LINEÁRIS DIFFERENCIÁLEGYENLET RENDSZEREK ÉS A MÁTRIX-EXPONENS KAPCSOLATA Feladat - ismétlés Tegyük fel, hogy A(t) = (a ik (t)), i, k = 1,..., n és b(t) folytonos mátrix-függvények

Részletesebben