AGV rendszer fejlesztése

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "AGV rendszer fejlesztése"

Átírás

1 Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Irányítástechnika és Informatika Tanszék Szabó Lőrinc E8I9IC Szabó Oszkár Albert - UBHPZC AGV rendszer fejlesztése Önálló Laboratórium beszámoló KONZULENS Kovács Gábor Budapest, 2014

2 Tartalom 1. Összefoglaló Bevezetés AGV-k navigációs módszerei Mágneses elvű nyomkövetés A Hall jelenség fizikai magyarázata A mágneses vezetősáv paraméterének számítása Következtetések, egyéb megoldási lehetőségek Indukciós elvű nyomkövetés Fizikai elv és számítások Továbbfejlesztési lehetőségek Értékelés További fejlesztési lehetőségek Felhasznált irodalomjegyzék

3 1. Összefoglaló Közös feladatunk egy AGV (autonóm jármű, mely előre definiált pályát követ) rendszer érzékelőinek kiválasztása, prototípusának megépítése volt. Először is megismerkedtünk az alapvető fogalmakkal, melyek e témakörben felmerülhetnek, majd ezek után a vezetési útvonalak lehetséges megvalósítását mértük fel. Itt már párhuzamosan folytattuk a munkát, mert különböző megoldási lehetőségeket vizsgáltunk. Egyikünk a mágneses, míg másikunk az indukciós vezetési elvű útvonalat járta körül. Az alapvető elképzelésünk az volt, hogy valamilyen módon megpróbálunk egy adott anyagú vezetősávot érzékelni. Az elkészült jelet érzékelő hardvert a későbbiekben egy differenciális meghajtású roboton helyezzük majd el, és egy mikrokontroller segítségével a motorok sebességét úgy szabályozzuk, hogy a jármű minél pontosabban kövesse a pályát. Ennek megoldásához két szenzor szükséges, melyeket a jármű aljának két oldalán helyezünk el. A vezetősáv közepétől való távolság függvényében a szenzorok más-más jelet szolgáltatnak, így ezek összehasonlításával meghatározható, hogy a jármű a vezetősávhoz képes milyen helyzetben van.. Az analóg jelek érzékelése nem bizonyult egyszerű feladatnak, azonban mindkettőnknek sikerült értékelhető eredményeket produkálni. Ezek felhasználhatóságáról, a folytatási lehetőségekről, illetve az eredmények értékeléséről a következő fejezetekben írunk. A következőkben körbejárjuk az AGV fogalmát, alaptípusait és ezeknek jellemzőit. Erre azért helyezünk nagy hangsúlyt, hiszen ez volt a feladat, illetve a fejlődő ipar is gyakran használja ezen eszközöket, komoly jövő van a fejlesztésükben. Ezek után következik mindkettőnk által megalkotott mintakonfiguráció, a kiválasztott eszközök jellemzése, kiválasztásuk okának indoklása számításokkal, majd az eredmények értékelése. Legvégül írunk arról, hogy milyen jövőbeli megoldásokkal, milyen új eszközök alkalmasával lehet pontosabb eredményeket kapni, illetve a jövőbeli fejlesztéseket, lehetőségeket fejtjük ki. 3

4 2. Bevezetés A mai világban a modern ipar számára egyre fontosabbá válik az automatizált eszközök alkalmazása. A termelés és gyári kiszolgálás minden területén törekednek a folyamatos munkavégzésre, ami hosszú távon hatékonyan automatizálással oldható meg. Nem véletlen, hogy az utóbbi 50 évben ezért meglehetősen megnőtt a kereslet az automatizált szállítóeszközök, köztük az AGV-k iránt. Az AGV (Automated Guided Vehicle) automatikus irányítású járművet takar. Az AGV fogalma a platform felépítményét nem, csupán annak navigációs módját határozza meg, így autonóm jármű alatt érhetünk akár raktári felrakó targoncát, illetve vontatótargoncát is. Alkalmazásuknak ott van elsődlegesen értelme, ahol rendszeres az állandó, előre kiépített pontok közötti áruszállítás, ami azonban futószalagok segítségével nem lenne gazdaságosan megoldható. Egy komplett rendszer kiépítése, beüzemelése túlságosan költséges lehet csak egy-egy ilyen útvonal miatt, azonban több eszköz beszerelése már költséghatékony. Érdekesség, hogy 1973-ban a Volvo svéd gyárában 280 AGV-ből álló számítógép által vezérelt rendszert fejlesztett ki. [1] 1. ábra Emelővillás AGV az Egemin automatizálási cég gyárában. [1] 4

5 3. AGV-k navigációs módszerei Az útvonalkövetés több módszer segítségével is megoldható, de alapvetően háromféle megoldás terjedt el a gyakorlatban. Az első lehetőség a virtuális vezetővonal alkalmazása. Itt nincs semmilyen folytonos vezetőnyom, amelyet a gép állandóan követne. A vezérlőegység a robot pozícióját egyéb módokon kalkulálja: referenciapontok lézeres bemérése, megtett út mérése, ultrahangos illetve lézeres akadály felismerés és optikai tájékozódás (ismert formák a padlóban, mennyezeten stb.). Előny az ilyen jellegű megoldásnál, hogy változtatható az útvonal a feladatnak megfelelően, azonban nagy számítási kapacitású fedélzeti vezérlő eszköz alkalmazása szükséges, továbbá különösen drága szenzortechnológiát és összetett központi irányítást igényel. Ezen okokból a rendszer megvalósítására más megoldást kerestünk. Másik megoldás a passzív útvonal alkalmazása. Optikai vezetősín esetén a padlózat színétől eltérő szalagot helyezünk el útvonal gyanánt, és egy sor reflexiós optocsatolóból álló szenzorfejjel érzékeljük a fény visszaverődését. A padlózat építése olcsó, viszont az eszközök drágák, illetve egyes üzemekben a padlózat is képes a fény visszaverésére, ami hibát okoz. Továbbá könnyen koszolódik a padló, és egy idő után az érzékelés nem lesz folyamatos. Fontos passzív vezetési megoldás a mágnesezhető szalag lefektetése. A járművön elhelyezett szenzorok az előre kialakított állandó mágneses teret érzékelik. Ehhez jó megoldás például Hall-szenzor. Előnye, hogy nem szükséges állandó táplálás a vezetősáv számára. A mágneses vezetősávot általában a padlóburkolat alá helyezik annak érdekében, hogy ne sérülhessen meg. Lineáris kimenetű szenzor alkalmazása a legcélszerűbb ezen esetben. A harmadik megoldás az aktív vezetővonal. Ez esetben a pályában lévő vágatba helyezünk egy fémvezetéket, melyet adott feszültséggel táplálunk. A benne folyó váltakozó áram körkörös mágneses teret hoz létre a vezetősáv körül. A szenzorok jelen esetben tekercsek, melyeket szimmetrikusan helyezünk el a vezetékre nézve. Bennük feszültség indukálódik az indukciós törvény értelmében, amely könnyen mérhető. Előny, hogy az áram erőssége megváltoztatható, így hangolható a rendszer, hátrány viszont, hogy a konfiguráció könnyebben vesz fel zajt, illetve folytonos tápellátást igényel. 5

6 2. ábra Mágneses elvű AGV targonca [1] A félév során a feladatunk a mágneses és indukciós elvű navigációs szenzorok vizsgálata, prototípusainak elkészítése és az eredmények összevetése volt. A következő két fejezetben ezekkel kapcsolatos tapasztalatokat, eredményeket fejtjük ki. 6

7 4. Mágneses elvű nyomkövetés Gyakran alkalmazott megoldás AGV-k esetén, tulajdonságai a következők: Előnyök: passzív elméleti zajérzékenysége alacsony északi-déli pólust is érzékelhetjük (csökkenő, illetve növekvő kimenet) Hátrányok: pálya kialakítása költséges a mágnes erőssége adott, míg az indukciós jelleg esetén változtatható a gerjesztés 4.1. A Hall jelenség fizikai magyarázata 3. ábra Hall effektus szemléltetése [7] Amennyiben a mágneses fluxus érzékelését akarjuk megoldani, jó módszer a Hall szenzor. A Hall szenzor működése a felfedezőjéről (Edwin Hall) elnevezett fizikai elven alapul. A mágneses térbe áramjárta vezetőlapkát helyezve arra erő fog hatni, melynek neve Lorentz-erő. Ennek nagysága: F=B*Iv*sinα. Ez az erő a mágneses kölcsönhatásból származik, így közvetlenül a mozgó töltésekre hat, töltésmegoszlást létesít az anyagon belül. Az ábrán látható módon az erő felfelé kényszeríti a töltéseket, így az áramra és mágneses térre is merőleges irányban feszültség mérhető. Ezt nevezzük Hall feszültségnek, értéke elérheti az 1,5 voltot. Ennek nagysága: Uh=Rh*B*I. A képletben Rh a Hall állandó, mely magában foglalja a geometriai és vezetői paramétereket. A vezetők Hall állandója kicsi, ezért a Hall elemek alapanyaga félvezető. A harmadik ábrán látható a Hall effektus, jól látszanak az 7

8 elektronok, melyek elkülönülnek a lapka alján és tetején, és ezáltal jön létre feszültség. A folyamat gerjesztői az északi és déli pólusú mágnesek. A tér érzékelésével kapcsolatos fogalmak, eszközök megismerése után számításokat végeztem annak vizsgálatára, hogy a mágneses térerősség hogyan viselkedik a távolság függvényében. Ez fontos, mivel tudnom kell, hogy milyen messziről tudom még érzékelni az adott vezetősávot, illetve a szabályozás is a szenzorok vezetősávtól való távolságán alapul A mágneses vezetősáv paraméterének számítása A 4. ábrán a vezetősáv keresztmetszeti képét vázoltam fel. A pálya szélességét d,. míg a szenzor pálya feletti magasságát h jelöli. Ezen két paraméter ismeretében kiszámítottam, hogy mennyit csökken a mágneses térerősség értéke az 1 (a vezetősáv közepe), illetve 2 (a vezetősáv széle) pontokban. A magasságot 3 cm-nek választom meg, a vezetősáv szélességét pedig szintén 3 cm-nek. A mágnes sáv erősségének értékét (h = 0-ban) Hmax-al jelölöm. 4. ábra Mágneses vezetősáv keresztmetszeti vázlata h = 3 cm = m d = 3 cm = m 8

9 h=0 esetén H = H max 2 A mágneses térerősség a vezetősáv középvonalában: H = α α H max 2 cosφ dφ = H max cosφ dφ = H max sinα H 1 = H max sinα, ahol α = arctg( d 2h ) α = arctg ( 3 ) = arctg(0,5) = 26,565 6 H 1 = H max sinα = H max sin26,565 = H max 0,4472 A mágneses térerősség a vezetősáv széle felett: H = H max cosφ dφ = 2 0 β H max 2 [sin φ] β 0 = H max 2 sin β H 2 = H max sinβ 2, ahol β = arctg(d h ) β = 45 H 2 = H max 0,3535 A fentiek alapján elmondható, hogy a mágneses térerősség a vezetővonaltól 3 cm-es magasságban középen kb. 0,44-szeresére csökken, a széleken pedig kb.0,35-szörösére. Várható volt, hogy a szélen kisebb értékű lesz, mérnöki szempontból ez az érték jó közelítéssel tekinthető a maximális térerősség harmadának. Ezen információ ismeretében kerestem mágneses fóliát, illetve szenzort. A még megfelelő erősségű és árban is egyaránt elfogadható mágnes fólia keresése nehéz feladat volt, mivel kevés cég foglalkozik ilyesmikkel. Fontos szempont volt a könnyű megmunkálhatóság is, az útvonal kialakítása miatt. A választásom egy katalógus szerint 230 mt-ás premium mágnes fóliára esett, mely anizotróp mágnes, gyártója a Selos cég. A fóliát cég szlovákiai telephelyéről rendeltem meg. A választás azért a fóliára és nem a mágnesszalagra esett, mert így könnyebben alakítható az útvonal a feladat számára. Ezek a fóliák stroncium-ferrit porból és hőre lágyuló műanyag keverékből készülnek. 9

10 5. ábra A mágnes fólia [2] 6. ábra A fólia paraméterei [2] A rugalmas mágnesek legújabb generációja neodym (NdFeB) porból készül, ami növeli a fólia rögzítő erejét és bővíti felhasználási területét. A fólia felmágnesezése multipolárisan történt. [2] 7. ábra A mágnesfólia multipoláris felmágnesezése [2] Már ismert a mágnes térerősség, így ezzel a tudással szenzort kerestem. A mágneses teret alapvetően a következő eszközökkel lehet érzékelni: Hall-szenzorok Magnetorezisztív szenzorok Magnetodióda és -tranzisztor Reed csöves kapcsolók Telített magos szondák 10

11 A reed kapcsolókat, illetve egyéb binárisan működő szenzorokat kizártam a választásból, hiszen fontos volt, hogy analóg eszköz legyen a választás tárgya szabályozás folytonossága miatt. Végül egy lineáris kimenetű hall szenzort alkalmaztam, az Allegro cég A1302-es típusú analóg Hall szenzorát. A választásnál a legfontosabb paraméter segített, a szenzor érzékenysége. Ez 5 V-os táplálás esetén 1,3 mv/g értékű, ami megfelelő erősségű feszültséget fog indukálni. Mivel a 230 mt kb. harmadára csökken, ez kb. 76 mt, azaz a vezetősáv szélén mérhető feszültség U emelkedés = 76 mt 1,3 mv/g = 76 mt 13 mv/mt = 988 mv ~ 1 V A szenzor alapesetben a kimenetén a tápfeszültség felét adja ki, így a szenzor kimeneti feszültsége 2,5V + 1 V = 3.5V. Mivel a szenzor kimenetén maximálisan 4,7 V körüli értéket tud kiadni, így nem fogunk kilépni a 0-5 V jelszintből sem. 8. ábra A szenzor méretei, illetve fényképe [4] 11

12 A szenzor fontosabb paramétereit az 1. táblázat foglalja össze Tápfeszültség igény (Vcc) Kimeneti feszültség (B=0 esetén) Kimeneti feszültség: Mágneses érzékenyég Tápellátás max. áramigénye Üzemi hőmérséklet C 1. táblázat Az Allegro A1302-es szenzor főbb jellemzői [4] 4,5-6V 2,25-3V (Vcc fele) 0,2-4,7V (Vcc felétől csökken illetve nő adott mágneses polaritás esetén) 1-1,6 mv/g 11 ma A mágnes fólia paramétereinek katalógus-adatoktól való eltérése, illetve a szenzor érzékenységi hibájának kompenzálására egy erősítőkapcsolást is terveztem. A kipróbálás során a szenzor nem érzékelte megfelelően a jelet, így szükség is volt erre a kapcsolásnak. Erősítőnek a Texas Instruments NE5532A típusú műveleti erősítőjét alkalmaztam. Az IC két darab erősítőt tartalmaz egy tokban, így mindkét szenzor jelét rá tudom kötni, és a közös tokozás miatt a tranzisztorok paraméterei nagyon hasonlóak lesznek, amivel nagyobb pontosság érhető el. 9.ábra A választott erősítő [5] Az erősítő fontosabb paramétereit a 2. táblázat foglalja össze. Tápfeszültség igény (Vcc) Bias áram bemeneti offset feszültség ±5-±15 V na tipikusan 0,5 mv, max 5mV 2. táblázat Az NE5532 erősítő fontosabb adatai [5] 12

13 10. ábra Az erősítő méretei [5] Mivel alapesetben a szenzor kimenetén 2,5 V mérhető, és én nem akartam kilépni a TTL szintből, azért különbségképző erősítő kapcsolást alkalmaztam. A szenzor kimenetéből kivontam a Vcc tápfeszültség felét, és a kapott eredményt erősítettem. 11. ábra Az alkalmazott kapcsolás. [3] A fenti kapcsolás volt az elvi alap, ezen egy kicsit módosítottam. U1-re kötöttem Vcc felét, melyet egyszerű feszültségosztással oldottam meg két R3=1kOhm-os ellenállással. U2-re a szenzor kimenetét kötöttem, de terheltem még két db 1kOhm-os ellenállás párhuzamos kapcsolásával, hogy az erősítő mindkét bemenetén azonosak legyenek az impedancia viszonyok. A kapcsolást méreteztem, oszcilloszkóppal vizsgáltam a szenzor kimenő jelét, ez alapján kiszámoltam az ellenállások értékeit. A kimeneti feszültség így módosult a következőre: 13

14 U ki = R 2 R 1 + R 3 2 (U 2 U 1 ) Ezért R2 értékét 470 kohm-nak, R1 értékét pedig 2 kohm-nak választottam, így az erősítés kb. 188-szoros lett. A kimenet nulla mágneses térerősség esetén nem nulla lesz, mert a feszültségosztóban található két 1 kohm-os ellenállás 1% tűrésű, így a keletkező feszültségkülönbség legrosszabb esetben 50 mv. Ezt erősítve már V nagyságrendű lesz a hiba okozta eltérés. Kézi multiméterrel megmértem a két láb feszültségét, a különbségük U = 2,526 V 2,516 V = 10 mv, ami megmagyarázza az oszcilloszkóppal mért1,92v-os eltérést (lásd 17. ábra), mert 188 0,01 = 1,88 V, amiben az erősítés is eltérhet, illetve a multiméternek is van hibája. Az elkészült konfigurációt megvizsgáltam, felvettem a távolság-feszültség karakterisztikákat mind egy dipólus-mágnes, mind pedig a mágnes fólia használatával. A két típusú mágnesre kapott karakterisztikákat az 12. és 13. illetve a ábrák mutatják be. Matlab segítségével szimuláltam a mágneses térerősség fentebb kiszámolt elméleti csökkenését a távolság növekedésével, jellegre hasonló ábrát kell hogy kapjak, hiszen a szenzor a H változásával egyenesen arányos feszültséggel válaszol. A 230 mt-ás fóliára végeztem el a számításokat, majd ebből visszaszámoltam a szenzor érzékenysége segítségével a kimeneti feszültséget. Érzékenyégként az 5 V tápfeszültség esetén jellemző 1,3 mv/gauss értékkel számoltam. A 12. ábrán, a feszültségerősítő kapcsolás kimenetén megjelenő feszültségjel, míg a 13. ábrán a szimulációs eredmény látható. Mivel a szimuláció során használt és a valós paraméterek eltérnek egymástól, ezért a görbék különbözőek, azonban jellegük megegyezik. 14

15 12. ábra A dipólus mágnessel felvett karakterisztika (a szenzor kimeneti feszültsége a távolság [cm] függvényében), csak az egyik pólushoz tartozó ábrát tettem be Feszültség [V] Távolság [cm] 13. ábra Matlab szimuláció A két ábra jellegre hasonló, tehát a számításaim helytállóak voltak, illetve a szenzor megfelelően működik. A fólia karakterisztikája pontatlan lett, mert a mágnes fólia kis térerőssége miatt csak kisebb távolságban mérve kaptam megfelelő értékeket, a távolságmérés hibáját pedig ez jelentősen megnövelte. Amint a 14. illetve a 15. ábrán is látható, a kimeneti feszültség a 15

16 mágneses tér polaritásától függően változik pozitív illetve negatív irányba a 0 térerősséghez tartozó 0.5*Vcc értéktől. A Matlab szimulációt ezen esetben is 230 mt-ás erősségű mágnesre végeztem el, a szenzor 1,3 mv/gauss érzékenységével. A 14. és 15. ábrán látható a mért karakterisztika, míg a Matlab szimuláció a 16.-on. 14. ábra A mágnes fólia kimenete a távolság [cm] függvényében, a mágnes pólusának megfelelően nő a kimenet (déli polaritás) 15. ábra A mágnes fólia kimenete a távolság [cm] függvényében a mágnes pólusának megfelelően csökken a kimenet, látható, hogy a szenzor bővebb északi polaritást érzékel 16

17 Feszültség [V] Távolság [cm] 16. ábra Fólia esetében a csökkenés szimulálása, a mért és szimulált görbék jellege hasonló A 17. ábra a szenzor feszültségkimenetének oszcilloszkópon mért jelalakját mutatja be (DC csatolás, 16-os átlagolás mellett) ábra Oszcilloszkóp kép a szenzor kimenetéről az erősítés után 0 mágneses térerősség esetén. 17

18 4.3. Következtetések, egyéb megoldási lehetőségek A mágnes fólia gyenge érzékelésének egyik oka lehet, hogy felmágnesezése multipolárisan történt. A dipólus-jelleget az axiális mágnesezés közelíti jobban, azonban az csak neofol típusú mágnes fóliák esetén érhető el, melyek ára jelentősen magasabb. A multipoláris megoldásnál csak a fólia egyik felét mágnesezzük fel, és a másikon egymás mellett északi és déli pólussávokat alakítunk ki. Ezzel szemben az axiális esetén a fólia egyik felét északi másik felét déli pólusnak választjuk meg. [6] 18. ábra Axiális felmágnesezés [6] Az érzékelés hibájának csökkentését a meglévő eszközök használatával, a kapcsolás módosításával is lehetségesnek látom. Ennek módja lehet a 2.5V-os jelszint precíziós ellenállásokkal való előállítása, illetve egy azonos típusú, árnyékolt szenzor használata jelforrásként (amennyiben ugyanis a szenzor nem érzékel mágneses teret, a tápfeszültség felét jeleníti meg a kimenetén). 18

19 5. Indukciós elvű nyomkövetés Az induktív vezetési technika egyike az első nyomkövetési módszereknek az AGV-k körében. Egyszerű fizikai működése a rendszer tervezését, megépítését jelentősen megkönnyíti, valamint gazdasági szempontból is kedvező lehetőségeket kínál. A rendszer azonban rendelkezik olyan hátrányokkal, amelyek egyes alkalmazásokban kirázhatják egy ilyen elven működő AGV rendszer kiépítését. A módszer előnyei: Egyszerű működés Relatív költséghatékony (a többi hasonló rendszerhez képest) Vezetékben futó áram megfelelő modulálásával információ is közvetíthető a gép felé Az egyes pályaszakaszok energiaellátásának ki- és bekapcsolásával a járművek útvonalválasztása dinamikusan befolyásolható Akár a jármű energiaellátását is megoldható ezen vezeték nélküli módszerrel (a padlóban lévő vezeték egy transzformátor primer, míg a járművön lévő tekercs annak szekunder tekercsét alkotja, és lehetővé teszi az energiaátvitelt ) Hátrányok: A vezetőpálya folyamatos tápellátást igényel Esetleges vezetékszakadás, illetve áramszünet esetén megbénulhat az egész rendszer Állandó pályával rendelkezik A pálya kiépítése nehézkes Olyan helyen, ahol rendszeres a gyártócellák áthelyezése, megváltoztatása, ott komoly költségekkel kell számolni a rendszer használata esetén 19

20 5.1. Fizikai elv és számítások Ha egy hosszú egyenes vezetőben, időben szinuszosan változó áramot folyatunk, akkor ezen vezető körül elektromágneses tér indukálódik, ami mágneses fluxus-változást hoz létre. A mágneses fluxus változását az elektromágneses tér vonalaira merőlegesen elhelyezett radiális tekercsekkel érzékelhetjük. A fluxus-változás hatására a tekercsekben feszültség indukálódik, amely könnyen mérhető. A navigáláshoz két tekercset használunk fel, ez a két tekercs a vezetősáv két oldalán helyezkedik el, tehát ha a vezeték éppen középen van, akkor a két tekercsben indukálódó feszültség megegyezik. A vezérlőjelünket a két tekercsben indukálódó feszültség különbségeként képezzük: amennyiben ez nulla, nem kell irányt változtatni. A pozitív illetve negatív eredmények fogják jelenteni a két irányunkat, az érték pedig az irányváltás mértékét határozza meg. Számítások Hosszú áramjárta vezetőtől r távolságban kialakuló elektromágneses indukció: Az Ampère féle gerjesztési törvényt felhasználva: H dl L = (J + D t ) ds A Az elektromos eltolás-vektor időbeli változása zérus, az áramsűrűség-vektor merőleges az A körlapra, így a felületintegrál eredménye az A körlapon átfolyó áramerősség: 2rπ H (r) = I = I cos(ωt) H (r) = I cos(ωt) 2rπ e φ B (r) = μh (r) = μi cos(ωt) 2rπ e φ 20

21 Tekercsben indukálódó feszültég: Mágneses fluxus-változás hatására a tekercsben feszültség indukálódik, a létrejövő feszültség nagysága: ahol N a tekercs menetszáma U i = N dφ dt, Az előzőek alapján az indukált feszültség U i = N d dt B ds A A továbbiakban tekercs egy menetét nem kör alakúnak, hanem négyzetnek tekintjük, mivel ez jelentősen megkönnyíti a számítást, az eltérő geometriából adódó hiba pedig kis átmérőjű tekercsek esetén elfogadható mértékű. Ezek alapján a következő integrált írhatjuk fel: d+a d+a Na d dt B(r)dr = Na d dt μi cos (ω t) dr = 2rπ d d d+a = N aμ 2π d d dt ( I cos(ωt)) 1 r dr = N aμωi sin (ωt) d + a ln 2π d Ezt az egyenletet egyszerűsítve, a maximális indukált felszültségre az alábbi adódik U imax = NaμfI ln d+a d, ahol a: kört közelítő négyzet oldala d: a vezetéktől vett távolság N: tekercs menetszáma 21

22 f: szinuszos áram frekvenciája I : áram csúcsértéke 19. ábra Radiális tekercs A további számításokhoz szükségünk van a szenzor (tekercs) egyes paramétereire: a menetszámra, illetve bizonyos méreteire. A tekercs megválasztásakor figyelni kellett annak kialakítására, mivel ahhoz, hogy az indukcióvonalak megfelelő irányban metsszék a tekercset, radiális irányúra van szükségünk. A piacon lévő tekercsek vizsgálata alapján az igényeknek látszólag megfelelő szenzorok mind nagyjából azonos méretek között mozogtak. Mivel a tekercsek menetszámára nem található még csak közelítő adat sem ezért a számítások során méretekből adódó erős közelítésekkel kellett élni ábra Választott tekercs [8] méretei A tekercs kiválasztásához ismernünk kell annak induktivitását, az induktivitást a méretekből és a menetszám ismeretéből számolhatjuk légmagos tekercs esetén. (A tekercs menetszámát becsültem, és 1000-nek tekintettem a könnyebb számolások érdekében, ami a későbbi számítások alapján kissé kevésnek bizonyult, de elfogadható eredményekre jutottam.) 22

23 Az induktivitás számítása Az alábbi számításhoz a keresztmetszeti képen lévő adatokat vettem figyelembe, valamint a menetszámot 1000-el becsültem a könnyebb számolás érdekében, illetve légmagosnak tekintettem a tekercset. L = μ 0μ r AN 2 l L = 8,042 mh A sok közelítés miatt egy 10mH-s tekercsre esett a választás, aminek ismeretek voltak a méretei, így a további számolásoknál ezeket használtam fel. Maximális feszültség az alábbi adatok ismeretében kifejezve: a = 8mm, N:=1000, µ = 4π*10-7 U imax = d fi ln d A vezetékben folyó szinuszos áram frekvenciáját úgy kell megválasztanunk, hogy az indukálódó tér érzékelhető legyen kis tekercsekkel is, viszont ne okozzon semmilyen interferenciát, és adott esetben a jel generálásához szükséges áramkör is megépíthető legyen. Az áram értékét érdemes minél kisebbre megválasztani, jelent esetben 0.5A-rel számoltam. Az így kapott egyenlet már csak a távolság függvényében változik d U imax = 0.25 ln d A d távolság két részből áll, a magasságból és a vízszintes távolságból. jelöljük a magasságot x-el a távolságot pedig y-al. Mivel a szenzorunk függőleges irányban nem fog mozogni, ezért azt rögzíthetjük egy adott távolsággal, legyen x = 3cm. Csak vízszintes pozíciótól függő egyenlet U imax = 0.25 ln y y

24 Tehát kaptunk egy olyan egyenletet a maximális indukált feszültségre, ami csak a vízszintes pozíciótól függ. Ezt a függvényt, azaz az indukált feszültséget a vezetősávtól való távolság függvényében már könnyen ábrázolhatjuk a MATLAB program segítségével. 21. ábra Indukált feszültség a távolság függvényében Az ábráról leolvasható, hogy a közelítő számítások szerint az indukált feszültségünk mv feszültség közé esik. Ahhoz, hogy ezt megfelelő képen mérni tudjuk egy mikrokontrolleres rendszerrel, fel kell erősítenünk 1-5V közé eső tartományba. Az erősítést egy egyszerű műveleti erősítős, nem invertáló alapkapcsolással valósítottam meg, az alábbiak szerint. 22. ábra Indukált feszültség a távolság függvényében 24

25 U ki U be = (1 + R2 R1 ) A megfelelő erősítés eléréséhez az ellenállások értékei: R1=4.7kΩ, R2=230kΩ. 23. ábra Választott erősítő A választott műveleti erősítő MCP601, főbb jellegzetessége, hogy alacsony, V közötti tápfeszültség esetén is képes működni, ez számunkra a későbbiekben jelenthet előnyt, amikor egy mikrokontrolleres rendszerhez akarjuk majd illeszteni, ugyanis ezen esetekben nem áll rendelkezésünkre magas tápfeszültség. Erősítő fontosabb paraméterei: VDD-VSS Input offset Bias áram 25 7 [V] Typ:+0.7, PP:+2 [V] 1 pa 3. táblázat MCP601 es műveleti erősítő főbb adatai [9] Az elemek beszerzése után következett a kapcsolás megépítése. Első lépésként lemértem a szenzorként használni kívánt tekercsekben indukálódó feszültséget a fentiekben számolt szinuszos áramjelre, ami az előzetes elvárásoknak megfelelően az mV-os tartományba esett. Ezek után összeállítottam az erősítő áramkört a fentiek alapján. Kezdetekben nehézségekbe ütközve az ellenállások értékét, valamint az erősítő IC működését tekintve. Az ellenállások értékei helytelennek bizonyultak, ezért azokat a már fent említett értékűre, azaz 4.7kΩ és 230kΩ-ra módosítottam, majd az IC-t is cserélnem kellett mivel az eredetileg

26 használt IC tönkrement, a dokumentációban már a véglegesen használt elemek szerepelnek. A változtatások után már helyesen működött az erősítő áramkör. Ezt követően a tekercset az áramkör bemenetére kötöttem, és ismét vizsgáltam a kimeneti jelet. 24. ábra Mért karakterisztika A 24. ábrán látható a mért értékekből számított karakterisztika, ami jellegre megegyezik a szimulált karakterisztikánkkal. Ezek alapján megállapítható, hogy az erősítés nem pontosan egyezik meg az előzetesen specifikálttal, de így is az 1-4 V-os tartományba esik az erősített jelünk, amit már könnyen felhasználhatunk az AGV egységvezérlésére Továbbfejlesztési lehetőségek Az indukciós elvű rendszer esetén a hely alapú kommunikációhoz a járművön az eddigi tekercsekre merőlegesen elhelyezhetünk egy harmadik szenzort is. Amennyiben a vezető sáv mentél tetszőleges helyeken hurkokat hozunk létre, vagy a járművön lévő harmadik szenzorral párhuzamosan tekercseket helyezünk el, azok terét csak a harmadik szenzor fogja érzékelni. Ezen módszerrel megoldható, hogy a pálya mentén helyfüggően adjunk jelzéseket a járműnek, amit felhasználhatunk kanyarok előtti lassításra, illetve elágazásoknál az irány kijelölésére is. 26

27 6. Értékelés Az indukciós esetben komoly előny, hogy az áramjárta vezető esetében tudjuk változtatni a paramétereket, ellenben a rendszer állandó táplálást igényel. A mágnesnél ez nem változtatható, azonban nem szükséges külön energia bevitel. Hall szenzort alkalmazva a rendszer elméletileg elhanyagolható mértékű zajt vesz fel, viszont nehéz beszerezni a megfelelő paraméterű mágnest, olykor igen költséges megoldásnak bizonyul. A gyakorlatban a nagy erősítés miatt különböző zavarokat vett fel ezen megoldás esetén a rendszer, erősítés nélkül ez minimálisra csökkenthető lenne. Tekercs alkalmazása szenzorként olcsóbb, azonban több zajt vesz fel a rendszer (elméletileg és gyakorlatilag is). Ennek a hatása kiküszöbölhető valamilyen szűrő alkalmazásával, de ez újabb költség, bonyolódik az áramkör. 27

28 7. További fejlesztési lehetőségek Az elkészült hardverek segítségével tudjuk érzékelni az adott útvonalat. Vannak hibái még ennek a folyamatnak, de vannak elképzeléseink a javításukra, látunk lehetőségeket a téma folytatására. A fentiek figyelembe vételét követően a kapott jeleket erősítés, illetve jelformálás után egy 0-5 V-os AD átalakító segítségével digitális jellé konvertáljuk át, majd ezt a jelet egy mikrokontroller segítségével fel tudjuk dolgozni. A kontroller végzi az irányítást. A beavatkozó szerv két egyenáramú motor, amik a kis differenciális hajtású robot platform kerekeit hajtják meg. Folytatásként meg kell oldani a kapott jelek analóg szűrését, digitalizálását, feldolgozását, illetve a mikrokontrolleren implementálni kell a szabályozási algoritmust is. 25. ábra A kép csak illusztráció, hasonló robot platform irányítását oldanánk meg. [10] Ezen megoldások véghezvitele után a létrejött eszközön méréseket, illetve adatgyűjtést lehetne végezni. A kapott eredmények értékelése után újabb szempontok segítségével lehetne átfogóbb képet alkotni a kétféle érzékelési módról, és kifinomultabb rendszer kialakítását megtenni. Az elkészült konfiguráció alkalmazható lenne demonstrációs célokra is. 28

29 8. Felhasznált irodalomjegyzék [1] AGV képek, és szövegrészek: [2] mágnes fólia katalógus: [3] kapcsolási rajz: B3_.C3.A1ramk.C3.B6r [4] Hall szenzor katalógus: Datasheet.pdf [5] Ne 5532 adatlap: [6] mágnes fólia egyéb tulajdonságai: [7] Hall effektus: [8] Indukciós szenzor (tekercs): [9]MCP601 adatlap: [10] robot: 29

3. számú mérés Szélessávú transzformátor vizsgálata

3. számú mérés Szélessávú transzformátor vizsgálata 3. számú mérés Szélessávú transzformátor vizsgálata A mérésben a hallgatók megismerkedhetnek a szélessávú transzformátorok főbb jellemzőivel. A mérési utasítás első része a méréshez szükséges elméleti

Részletesebben

Elektrotechnika Feladattár

Elektrotechnika Feladattár Impresszum Szerző: Rauscher István Szakmai lektor: Érdi Péter Módszertani szerkesztő: Gáspár Katalin Technikai szerkesztő: Bánszki András Készült a TÁMOP-2.2.3-07/1-2F-2008-0004 azonosítószámú projekt

Részletesebben

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/ Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/. Coulomb törvény: a pontszerű töltések között ható erő (F) egyenesen arányos a töltések (Q,Q ) szorzatával és fordítottan arányos a

Részletesebben

Zárójelentés. Az autonóm mobil eszközök felhasználási területei, irányítási módszerek

Zárójelentés. Az autonóm mobil eszközök felhasználási területei, irányítási módszerek Zárójelentés Az autonóm mobil eszközök felhasználási területei, irányítási módszerek Az autonóm mobil robotok elterjedése növekedést mutat napjainkban az egész hétköznapi felhasználástól kezdve az ember

Részletesebben

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika 2. OPTIKA 2.1. Elmélet Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert fényt bocsátanak ki, vagy a rájuk eső fényt visszaverik, és ezt a fényt a szemünk érzékeli. A

Részletesebben

L Ph 1. Az Egyenlítő fölötti közelítőleg homogén földi mágneses térben a proton (a mágneses indukció

L Ph 1. Az Egyenlítő fölötti közelítőleg homogén földi mágneses térben a proton (a mágneses indukció A 2008-as bajor fizika érettségi feladatok (Leistungskurs) Munkaidő: 240 perc (A vizsgázónak két, a szakbizottság által kiválasztott feladatsort kell kidolgoznia) L Ph 1 1. Kozmikus részecskék mozgása

Részletesebben

= szinkronozó nyomatékkal egyenlő.

= szinkronozó nyomatékkal egyenlő. A 4.45. ábra jelöléseit használva, tételezzük fel, hogy gépünk túllendült és éppen a B pontban üzemel. Mivel a motor által szolgáltatott M 2 nyomaték nagyobb mint az M 1 terhelőnyomaték, a gép forgórészére

Részletesebben

A stabil üzemű berendezések tápfeszültségét a hálózati feszültségből a hálózati tápegység állítja elő (1.ábra).

A stabil üzemű berendezések tápfeszültségét a hálózati feszültségből a hálózati tápegység állítja elő (1.ábra). 3.10. Tápegységek Az elektronikus berendezések (így a rádiók) működtetéséhez egy vagy több stabil tápfeszültség szükséges. A stabil tápfeszültség időben nem változó egyenfeszültség, melynek értéke független

Részletesebben

23. ISMERKEDÉS A MŰVELETI ERŐSÍTŐKKEL

23. ISMERKEDÉS A MŰVELETI ERŐSÍTŐKKEL 23. ISMEKEDÉS A MŰVELETI EŐSÍTŐKKEL Céltűzés: A műveleti erősítők legfontosabb tlajdonságainak megismerése. I. Elméleti áttentés A műveleti erősítők (továbbiakban: ME) nagy feszültségerősítésű tranzisztorokból

Részletesebben

Magnetorezisztív jelenségek vizsgálata mágneses nanoszerkezetekben

Magnetorezisztív jelenségek vizsgálata mágneses nanoszerkezetekben Magnetorezisztív jelenségek vizsgálata mágneses nanoszerkezetekben Jól ismert, hogy az elektronok az elektromos töltés mellett spinnel is rendelkeznek, mely számos érdekes jelenséget, többek között bizonyos

Részletesebben

Elektronika I. Dr. Istók Róbert. II. előadás

Elektronika I. Dr. Istók Róbert. II. előadás Elektronika I Dr. Istók Róbert II. előadás Tranzisztor működése n-p-n tranzisztor feszültségmentes állapotban p-n átmeneteknél kiürített réteg jön létre Az emitter-bázis réteg között kialakult diódát emitterdiódának,

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2011. május 13. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 13. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

Elektromos zajcsökkentés vezetékelés és földelés szerepe. BME Fizika Tanszák Nanoszeminárium előadás 2012.11.29. Balogh Zoltán

Elektromos zajcsökkentés vezetékelés és földelés szerepe. BME Fizika Tanszák Nanoszeminárium előadás 2012.11.29. Balogh Zoltán Elektromos zajcsökkentés vezetékelés és földelés szerepe BME Fizika Tanszák Nanoszeminárium előadás 2012.11.29. Balogh Zoltán Egyszerű mérési elrendezés: Tápegység minta feszültséghez Csak a minimális

Részletesebben

Korszerű raktározási rendszerek. Szakdolgozat

Korszerű raktározási rendszerek. Szakdolgozat Gépészmérnöki és Informatikai Kar Mérnök Informatikus szak Logisztikai Rendszerek szakirány Korszerű raktározási rendszerek Szakdolgozat Készítette: Buczkó Balázs KOKIOC 3770 Sajószentpéter, Ady Endre

Részletesebben

Traszformátorok Házi dolgozat

Traszformátorok Házi dolgozat Traszformátorok Házi dolgozat Horváth Tibor lkvm7261 2008 június 1 Traszformátorok A traszformátor olyan statikus (mozgóalkatrészeket nem tartalmazó) elektromágneses átalakító, amely adott jellemzőkkel

Részletesebben

Csak felvételi vizsga: csak záróvizsga: közös vizsga: Villamosmérnöki szak BME Villamosmérnöki és Informatikai Kar. 2015. január 5.

Csak felvételi vizsga: csak záróvizsga: közös vizsga: Villamosmérnöki szak BME Villamosmérnöki és Informatikai Kar. 2015. január 5. Név, felvételi azonosító, Neptun-kód: VI pont(45) : Csak felvételi vizsga: csak záróvizsga: közös vizsga: Közös alapképzéses záróvizsga mesterképzés felvételi vizsga Villamosmérnöki szak BME Villamosmérnöki

Részletesebben

E G Y F Á Z I S Ú T R A N S Z F O R M Á T O R

E G Y F Á Z I S Ú T R A N S Z F O R M Á T O R VILLANYSZERELŐ KÉPZÉS 0 5 E G Y F Á Z I S Ú T R A N S Z F O R M Á T O R ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR - - Tartalomjegyzék Villamos gépek fogalma, felosztása...3 Egyfázisú transzformátor felépítése...4

Részletesebben

TUDOMÁNYOS DIÁKKÖRI DOLGOZAT

TUDOMÁNYOS DIÁKKÖRI DOLGOZAT MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR TUDOMÁNYOS DIÁKKÖRI DOLGOZAT Villamos ív előállító berendezés tervezése és szimulációja Beleon Krisztián BSc villamosmérnök szakos hallgató Eckl Bence

Részletesebben

Tanulmányozza az 5. pontnál ismertetett MATLAB-modell felépítést és működését a leírás alapján.

Tanulmányozza az 5. pontnál ismertetett MATLAB-modell felépítést és működését a leírás alapján. Tevékenység: Rajzolja le a koordinaátarendszerek közti transzformációk blokkvázlatait, az önvezérelt szinkronmotor sebességszabályozási körének néhány megjelölt részletét, a rezolver felépítését és kimenőjeleit,

Részletesebben

8.B 8.B. 8.B Félvezetı áramköri elemek Unipoláris tranzisztorok

8.B 8.B. 8.B Félvezetı áramköri elemek Unipoláris tranzisztorok 8.B Félvezetı áramköri elemek Unipoláris tranzisztorok Értelmezze az unipoláris tranzisztorok felépítését, mőködését, feszültség- és áramviszonyait, s emelje ki a térvezérlés szerepét! Rajzolja fel a legfontosabb

Részletesebben

A projekt eredetileg kért időtartama: 2002 február 1. 2004. december 31. Az időtartam meghosszabbításra került 2005. december 31-ig.

A projekt eredetileg kért időtartama: 2002 február 1. 2004. december 31. Az időtartam meghosszabbításra került 2005. december 31-ig. Szakmai zárójelentés az Ultrarövid infravörös és távoli infravörös (THz-es) fényimpulzusok előállítása és alkalmazása című, T 38372 számú OTKA projekthez A projekt eredetileg kért időtartama: 22 február

Részletesebben

mágnes mágnesesség irányt Föld északi déli pólus mágneses megosztás influencia mágneses töltés

mágnes mágnesesség irányt Föld északi déli pólus mágneses megosztás influencia mágneses töltés MÁGNESESSÉG A mágneses sajátságok, az elektromossághoz hasonlóan, régóta megfigyelt tapasztalatok voltak, a két jelenségkör szoros kapcsolatának felismerése azonban csak mintegy két évszázaddal ezelőtt

Részletesebben

Háromfázisú hálózat.

Háromfázisú hálózat. Háromfázisú hálózat. U végpontok U V W U 1 t R S T T U 3 t 1 X Y Z kezdőpontok A tekercsek, kezdő és végpontjaik jelölése Ha egymással 10 -ot bezáró R-S-T tekercsek között két pólusú állandó mágnest, vagy

Részletesebben

A 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. I.

A 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. I. Oktatási Hivatal A 11/1. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható.

Részletesebben

5 Egyéb alkalmazások. 5.1 Akkumulátorok töltése és kivizsgálása. 5.1.1 Akkumulátor típusok

5 Egyéb alkalmazások. 5.1 Akkumulátorok töltése és kivizsgálása. 5.1.1 Akkumulátor típusok 5 Egyéb alkalmazások A teljesítményelektronikai berendezések két fõ csoportját a tápegységek és a motorhajtások alkotják. Ezekkel azonban nem merülnek ki az alkalmazási lehetõségek. A továbbiakban a fennmaradt

Részletesebben

EÖTVÖS LABOR EÖTVÖS JÓZSEF GIMNÁZIUM TATA FELADATLAPOK FIZIKA. 11. évfolyam. Gálik András. A Tatai Eötvös József Gimnázium Öveges Programja

EÖTVÖS LABOR EÖTVÖS JÓZSEF GIMNÁZIUM TATA FELADATLAPOK FIZIKA. 11. évfolyam. Gálik András. A Tatai Eötvös József Gimnázium Öveges Programja FELADATLAPOK FIZIKA 11. évfolyam Gálik András ajánlott korosztály: 11. évfolyam 1. REZGÉSIDŐ MÉRÉSE fizika-11-01 1/3! BALESETVÉDELEM, BETARTANDÓ SZABÁLYOK, AJÁNLÁSOK A mérés során használt eszközökkel

Részletesebben

4** A LINA 1 jelzésű félkész áramkör felépítése és alkalmazása DR. BALOGH BÉLÁNÉ-GERGELY ISTVÁN MÉHN MÁRTON MEV. 1. Bevezetés

4** A LINA 1 jelzésű félkész áramkör felépítése és alkalmazása DR. BALOGH BÉLÁNÉ-GERGELY ISTVÁN MÉHN MÁRTON MEV. 1. Bevezetés A LINA 1 jelzésű félkész áramkör felépítése és alkalmazása DR. BALOGH BÉLÁNÉ-GERGELY ISTVÁN MÉHN MÁRTON MEV ÖSSZEFOGLALÁS A LINA 1 félkész áramkör közepes bonyolultságú analóg áramkörök integrált formában

Részletesebben

Tevékenység: Olvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDEO (A ragasztás ereje)

Tevékenység: Olvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDEO (A ragasztás ereje) lvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDE (A ragasztás ereje) A ragasztás egyre gyakrabban alkalmazott kötéstechnológia az ipari gyakorlatban. Ennek oka,

Részletesebben

(1. és 2. kérdéshez van vet-en egy 20 oldalas pdf a Transzformátorokról, ide azt írtam le, amit én kiválasztanék belőle a zh-kérdéshez.

(1. és 2. kérdéshez van vet-en egy 20 oldalas pdf a Transzformátorokról, ide azt írtam le, amit én kiválasztanék belőle a zh-kérdéshez. 1. A transzformátor működési elve, felépítése, helyettesítő kapcsolása (működési elv, indukált feszültség, áttétel, felépítés, vasmag, tekercsek, helyettesítő kapcsolás és származtatása) (1. és 2. kérdéshez

Részletesebben

Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Irányítástechnika és Informatika Tanszék DARU IRÁNYÍTÁSA

Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Irányítástechnika és Informatika Tanszék DARU IRÁNYÍTÁSA Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Irányítástechnika és Informatika Tanszék DARU IRÁNYÍTÁSA Önálló laboratórium beszámoló Készítette: Menyhárt Balázs BDVUD4

Részletesebben

Elektromágnesesség tanulói kísérletek Önindukció bekapcsolásnál

Elektromágnesesség tanulói kísérletek Önindukció bekapcsolásnál Elektromágnesesség tanulói kísérletek Önindukció bekapcsolásnál P1356200 Ha egy egyenáramú áramkörben tekercs található, az áramkör zárásakor felépül a tekercs mágneses tere, és önindukciós feszültséget

Részletesebben

Prizmás impulzuskompresszorok hômérsékleti stabilitásának modellezése

Prizmás impulzuskompresszorok hômérsékleti stabilitásának modellezése Prizmás impulzuskompresszorok hômérsékleti stabilitásának modellezése Tudományos diákköri dolgozat Írta: DOMBI PÉTER Témavezetô: DR. OSVAY KÁROLY JATE Optikai és Kvantumelektronikai Tanszék Szeged 1998.

Részletesebben

Elektrotechnika "A" tételek

Elektrotechnika A tételek Elektrotechnika "A" tételek A1. Sorolja fel az energiaforrások fajtáit! Jellemezze üzemállapotaikat! Ismertesse kapcsolási lehetőségeiket! Ismertesse a Thevenin- és a Norton helyettesítő képek kölcsönös

Részletesebben

MÉRÉSI JEGYZŐKÖNYV. A szinuszos oszcillátorok főbb jellemzőinek mérése, az oszcillációs feltételek felismerésének

MÉRÉSI JEGYZŐKÖNYV. A szinuszos oszcillátorok főbb jellemzőinek mérése, az oszcillációs feltételek felismerésének MÉRÉSI JEGYZŐKÖNYV A mérések célja: A szinuszos oszcillátorok főbb jellemzőinek mérése, az oszcillációs feltételek felismerésének gyakorlása A mérések tárgya: A mérést végezte: A mérések helye: A mérések

Részletesebben

NEUTRON-DETEKTOROK VIZSGÁLATA. Mérési útmutató BME NTI 1997

NEUTRON-DETEKTOROK VIZSGÁLATA. Mérési útmutató BME NTI 1997 NEUTRON-DETEKTOROK VIZSGÁLATA Mérési útmutató Gyurkócza Csaba, Balázs László BME NTI 1997 Tartalomjegyzék 1. Bevezetés 3. 2. Elméleti összefoglalás 3. 2.1. A neutrondetektoroknál alkalmazható legfontosabb

Részletesebben

AutoN cr. Automatikus Kihajlási Hossz számítás AxisVM-ben. elméleti háttér és szemléltető példák. 2016. február

AutoN cr. Automatikus Kihajlási Hossz számítás AxisVM-ben. elméleti háttér és szemléltető példák. 2016. február AutoN cr Automatikus Kihajlási Hossz számítás AxisVM-ben elméleti háttér és szemléltető példák 2016. február Tartalomjegyzék 1 Bevezető... 3 2 Célkitűzések és alkalmazási korlátok... 4 3 Módszertan...

Részletesebben

1. Adja meg az áram egységének mértékrendszerünkben (m, kg, s, A) érvényes definícióját!

1. Adja meg az áram egységének mértékrendszerünkben (m, kg, s, A) érvényes definícióját! 1. Adja meg az áram egységének mértékrendszerünkben (m, kg, s, A) érvényes definícióját! A villamos áram a villamos töltések rendezett mozgása. A villamos áramerősség egységét az áramot vivő vezetők közti

Részletesebben

Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Mikroelektronikai és Technológia Intézet. Mikro- és nanotechnika (KMENT14TNC)

Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Mikroelektronikai és Technológia Intézet. Mikro- és nanotechnika (KMENT14TNC) Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Mikroelektronikai és Technológia Intézet Mikro- és nanotechnika (KMENT14TNC) Laboratóriumi gyakorlatok Mérési útmutató 3. Hall-szondák alkalmazásai a. Félvezető

Részletesebben

Következõ: Lineáris rendszerek jellemzõi és vizsgálatuk. Jelfeldolgozás. Lineáris rendszerek jellemzõi és vizsgálatuk

Következõ: Lineáris rendszerek jellemzõi és vizsgálatuk. Jelfeldolgozás. Lineáris rendszerek jellemzõi és vizsgálatuk 1 1 Következõ: Lineáris rendszerek jellemzõi és vizsgálatuk Jelfeldolgozás 1 Lineáris rendszerek jellemzõi és vizsgálatuk 2 Bevezetés 5 Kérdések, feladatok 6 Fourier sorok, Fourier transzformáció 7 Jelek

Részletesebben

Tanulói munkafüzet. FIZIKA 11. évfolyam emelt szintű tananyag 2015. egyetemi docens

Tanulói munkafüzet. FIZIKA 11. évfolyam emelt szintű tananyag 2015. egyetemi docens Tanulói munkafüzet FIZIKA 11. évfolyam emelt szintű tananyag 2015. Összeállította: Scitovszky Szilvia Lektorálta: Dr. Kornis János egyetemi docens Tartalomjegyzék 1. Egyenes vonalú mozgások..... 3 2. Periodikus

Részletesebben

Az elektroncsövek, alap, erősítő kapcsolása. - A földelt katódú erősítő. Bozó Balázs

Az elektroncsövek, alap, erősítő kapcsolása. - A földelt katódú erősítő. Bozó Balázs Az elektroncsövek, alap, erősítő kapcsolása. - A földelt katódú erősítő. Bozó Balázs Az elektroncsöveket alapvetően erősítő feladatok ellátására használhatjuk, azért mert már a működésénél láthattuk, hogy

Részletesebben

Jelalakvizsgálat oszcilloszkóppal

Jelalakvizsgálat oszcilloszkóppal 12. fejezet Jelalakvizsgálat oszcilloszkóppal Fűrészjel és impulzusjel megjelenítése oszcilloszkóppal Az oszcilloszkópok feszültség vagy bármilyen feszültséggé átalakítható mennyiség időbeli változásának

Részletesebben

Az oszcillátor olyan áramkör, amely periodikus (az analóg elektronikában általában szinuszos) jelet állít elő.

Az oszcillátor olyan áramkör, amely periodikus (az analóg elektronikában általában szinuszos) jelet állít elő. 3.8. Szinuszos jelek előállítása 3.8.1. Oszcillátorok Az oszcillátor olyan áramkör, amely periodikus (az analóg elektronikában általában szinuszos) jelet állít elő. Az oszcillátor elvi elépítését (tömbvázlatát)

Részletesebben

Állandó permeabilitás esetén a gerjesztési törvény más alakban is felírható:

Állandó permeabilitás esetén a gerjesztési törvény más alakban is felírható: 1. Értelmezze az áramokkal kifejezett erőtörvényt. Az erő iránya a vezetők között azonos áramirány mellett vonzó, ellenkező irányú áramok esetén taszító. Az I 2 áramot vivő vezetőre ható F 2 erő fellépését

Részletesebben

REZGÉSDIAGNOSZTIKA ALAPJAI

REZGÉSDIAGNOSZTIKA ALAPJAI TÁMOP-4.1.1.F-14/1/KONV-2015-0006 SZTE Mérnöki Kar Műszaki Intézet, Duális és moduláris képzésfejlesztés alprogram (1a) A rezgésdiagnosztika gyakorlati alkalmazása REZGÉSDIAGNOSZTIKA ALAPJAI Forgács Endre

Részletesebben

Harmonikus zavarok, mint a villamosítás ellensége

Harmonikus zavarok, mint a villamosítás ellensége Túróczi József (1954) Okl. Erősáramú Villamos Mérnök Túróczi és Társa Erősáramú Mérnöki Iroda KFT Tulajdonos Túróczi Péter (1979) GAMF Üzemmérnök Túróczi és Társa Erősáramú Mérnöki Iroda KFT Ügyvezető

Részletesebben

Gépjármű Diagnosztika. Szabó József Zoltán Főiskolai adjunktus BMF Mechatronika és Autótechnika Intézet

Gépjármű Diagnosztika. Szabó József Zoltán Főiskolai adjunktus BMF Mechatronika és Autótechnika Intézet Gépjármű Diagnosztika Szabó József Zoltán Főiskolai adjunktus BMF Mechatronika és Autótechnika Intézet 14. Előadás Gépjármű kerekek kiegyensúlyozása Kiegyensúlyozatlannak nevezzük azt a járműkereket, illetve

Részletesebben

19. Az elektron fajlagos töltése

19. Az elektron fajlagos töltése 19. Az elektron fajlagos töltése Hegyi Ádám 2015. február Tartalomjegyzék 1. Bevezetés 2 2. Mérési összeállítás 4 2.1. Helmholtz-tekercsek.............................. 5 2.2. Hall-szonda..................................

Részletesebben

MEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PRÓBAÉRETTSÉGI FELADATSORHOZ 11. ÉVFOLYAM

MEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PRÓBAÉRETTSÉGI FELADATSORHOZ 11. ÉVFOLYAM AZ OSZÁG VEZETŐ EGYETEMI-FŐISKOLAI ELŐKÉSZÍTŐ SZEVEZETE MEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PÓBAÉETTSÉGI FELADATSOHOZ. ÉVFOLYAM I. ÉSZ (ÖSSZESEN 3 PONT) 3 4 5 6 7 8 9 3 4 5 D D C D C D D D B

Részletesebben

FIATAL MŰSZAKIAK TUDOMÁNYOS ÜLÉSSZAKA

FIATAL MŰSZAKIAK TUDOMÁNYOS ÜLÉSSZAKA FIATAL MŰSZAKIAK TUDOMÁNYOS ÜLÉSSZAKA Kolozsvár, 2002. március 22-23. SZUPRAVEZETŐS KÍSÉRLETEK IPARI ALKALMAZÁSI LEHETŐSÉGGEL Experiments with superconductors and possible industrial applications Kósa

Részletesebben

DT13xx Gyújtószikramentes NAMUR / kontaktus leválasztók

DT13xx Gyújtószikramentes NAMUR / kontaktus leválasztók DOC N : DT1361-1393-62 DT13xx Gyújtószikramentes NAMUR / kontaktus leválasztók Felhasználói leírás DT1361, DT1362, DT1363, DT1364, DT1371, DT1372, DT1373, DT1381, DT1382, DT1384, DT1393 típusokhoz Gyártó:

Részletesebben

FÉNYT KIBOCSÁTÓ DIÓDÁK ALKALMAZÁSA A KÖZÉPISKOLAI FIZIKAOKTATÁSBAN

FÉNYT KIBOCSÁTÓ DIÓDÁK ALKALMAZÁSA A KÖZÉPISKOLAI FIZIKAOKTATÁSBAN Kísérlet a Lenz-ágyúval. A verseny elôkészületei során többször jártam a Csodák Palotájában és azt tapasztaltam, hogy sokan egy óriási játszótérnek tekintik a kiállítást. Nyílván ez célja is a szervezôknek,

Részletesebben

MŰANYAGOK ALKALMAZÁSA

MŰANYAGOK ALKALMAZÁSA MŰANYAGOK ALKALMAZÁSA Korszerű fóliák elektronikai alkalmazásokra A nyomtatott elektronika segítségével a műanyag fóliák és vezető szerkezetek kombinációjával számos új kapcsolási funkció alakítható ki.

Részletesebben

Elektronika I. laboratórium mérési útmutató

Elektronika I. laboratórium mérési útmutató Elektronika I. laboratórium mérési útmutató Összeállította: Mészáros András, Horváth Márk 2015.08.26. A laboratóriumi foglalkozásokkal kapcsolatos általános tudnivalók: E.1 A foglalkozások megkezdésének

Részletesebben

MFI mérés BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA

MFI mérés BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA B1 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK MFI mérés HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA A JEGYZET ÉRVÉNYESSÉGÉT A TANSZÉKI WEB OLDALON

Részletesebben

Gépalapok, szerkezetek vizsgálata mozgás megjelenítéssel

Gépalapok, szerkezetek vizsgálata mozgás megjelenítéssel www.aastadium.hu Gépalapok, szerkezetek vizsgálata mozgás megjelenítéssel A piaci verseny a gépek megbízhatóságának növelésére kényszeríti az ipart, ezáltal elősegíti a diagnosztikai módszerek körének

Részletesebben

Definíció (hullám, hullámmozgás):

Definíció (hullám, hullámmozgás): Hullámmozgás Példák: Követ dobva a vízbe a víz felszíne hullámzani kezd. Hajó úszik a vízen, akkor hullámokat kelt. Hullámokat egy kifeszített kötélen is kelthetünk. Ha a kötés egyik végét egy falhoz kötjük,

Részletesebben

TFBE1301 Elektronika 1. Passzív áramköri elemek

TFBE1301 Elektronika 1. Passzív áramköri elemek TFBE1301 Elektronika 1. Passzív áramköri elemek Passzív áramköri elemek: ELLENÁLLÁSOK (lineáris) passzív áramköri elemek: ellenállások, kondenzátorok, tekercsek Ellenállások - állandó értékű ellenállások

Részletesebben

Colin Hargis Elektromágneses összeférhetõség - útmutató erõsáramú mérnökök részére

Colin Hargis Elektromágneses összeférhetõség - útmutató erõsáramú mérnökök részére Colin Hargis Elektromágneses összeférhetõség - útmutató erõsáramú mérnökök részére A Control Techniques Plc, mint a hajtástechnika vezetõ világcége fontosnak tartja, hogy a legkorszerûbb technológia felhasználásával

Részletesebben

feszültségét U T =26mV tal megnöveljük. Az eddigi 100uA es kollektor áram új értéke: A: 101uA B:272uA C: 27uA D:126uA

feszültségét U T =26mV tal megnöveljük. Az eddigi 100uA es kollektor áram új értéke: A: 101uA B:272uA C: 27uA D:126uA 1.) Egy NPN bipoláris tranzisztor U BE feszültségét U T =26mV tal megnöveljük. Az eddigi 100uA es kollektor áram új értéke: A: 101uA B:272uA C: 27uA D:126uA 2.) 230V effektív értékű szinuszos feszültség

Részletesebben

Elektropneumatika. 3. előadás

Elektropneumatika. 3. előadás 3. előadás Tartalom: Az elektropneumatikus vezérlés Az elektropneumatikus a rendszer elemei: hálózati tápegység, elektromechanikus kapcsoló elemek: relék, szelepek, szenzorok. Automatizálástechnika EP

Részletesebben

választással azaz ha c 0 -t választjuk sebesség-egységnek: c 0 :=1, akkor a Topa-féle sebességkör teljes hossza 4 (sebesség-)egységnyi.

választással azaz ha c 0 -t választjuk sebesség-egységnek: c 0 :=1, akkor a Topa-féle sebességkör teljes hossza 4 (sebesség-)egységnyi. Egy kis számmisztika Az elmúlt másfél-két évben elért kutatási eredményeim szerint a fizikai téridő geometriai jellege szerint háromosztatú egységet alkot: egymáshoz (a lokális éterhez mért v sebesség

Részletesebben

Kiegészítés a Párbeszédes Informatikai Rendszerek tantárgyhoz

Kiegészítés a Párbeszédes Informatikai Rendszerek tantárgyhoz Kiegészítés a Párbeszédes Informatikai Rendszerek tantárgyhoz Fazekas István 2011 R1 Tartalomjegyzék 1. Hangtani alapok...5 1.1 Periodikus jelek...5 1.1.1 Időben periodikus jelek...5 1.1.2 Térben periodikus

Részletesebben

Ha vasalják a szinusz-görbét

Ha vasalják a szinusz-görbét A dolgozat szerzőjének neve: Szabó Szilárd, Lorenzovici Zsombor Intézmény megnevezése: Bolyai Farkas Elméleti Líceum Témavezető tanár neve: Szász Ágota Beosztása: Fizika Ha vasalják a szinusz-görbét Tartalomjegyzék

Részletesebben

i TE a bemenetére kapcsolt jelforrást és egyéb fogyasztókat (F) táplál. Az egyes eszközök

i TE a bemenetére kapcsolt jelforrást és egyéb fogyasztókat (F) táplál. Az egyes eszközök Elektronika 2. Feladatok a zaj témakörhöz Külső zajok 1. Sorolja fel milyen jellegű külső eredetű zavarok hatnak az elektronikus áramkörök (például az erősítők) bemenetére! Szemléltesse egy-egy ábrán az

Részletesebben

4.2. Villamos gyújtóberendezések (Második rész)

4.2. Villamos gyújtóberendezések (Második rész) .2. Villamos gyújtóberendezések (Második rész) Bár hagyományos megszakítós gyújtású járművet már kb. másfél évtizede nem gyártanak, még is ahhoz, hogy a korszerű rendszerek működését megérthessük, az alap

Részletesebben

Labor tápegység feszültségének és áramának mérése.

Labor tápegység feszültségének és áramának mérése. Labor tápegység feszültségének és áramának mérése. (Ezek Alkotó gondolatai. Nem tankönyvekbıl ollóztam össze, hanem leírtam ami eszembe jutott.) A teljességre való törekvés igénye nélkül, néhány praktikus

Részletesebben

MFI mérés BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA

MFI mérés BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA B2 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK MFI mérés HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA A JEGYZET ÉRVÉNYESSÉGÉT A TANSZÉKI WEB OLDALON

Részletesebben

4. modul Poliéderek felszíne, térfogata

4. modul Poliéderek felszíne, térfogata Matematika A 1. évfolyam 4. modul Poliéderek felszíne, térfogata Készítette: Vidra Gábor Matematika A 1. évfolyam 4. modul: POLIÉDEREK FELSZÍNE, TÉRFOGATA Tanári útmutató A modul célja Időkeret Ajánlott

Részletesebben

B E S Z E R E L É S I É S H A S Z N Á L A T I Ú T M U T A T Ó. Univerzális hangszórós tolatóradar 4 DB LÖKHÁRÍTÓBA SZERELHETŐ SZENZORRAL

B E S Z E R E L É S I É S H A S Z N Á L A T I Ú T M U T A T Ó. Univerzális hangszórós tolatóradar 4 DB LÖKHÁRÍTÓBA SZERELHETŐ SZENZORRAL B E S Z E R E L É S I É S H A S Z N Á L A T I Ú T M U T A T Ó Univerzális hangszórós tolatóradar 4 DB LÖKHÁRÍTÓBA SZERELHETŐ SZENZORRAL A DOBOZ TARTALMA 4 db ultrahangos szenzor, oldható kábeltoldással

Részletesebben

5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR

5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR 5 IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR A koábbiakban külön, egymástól függetlenül vizsgáltuk a nyugvó töltések elektomos teét és az időben állandó áam elektomos és mágneses teét Az elektomágneses té pontosabb

Részletesebben

A.11. Nyomott rudak. A.11.1. Bevezetés

A.11. Nyomott rudak. A.11.1. Bevezetés A.. Nyomott rudak A... Bevezetés A nyomott szerkezeti elem fogalmat általában olyan szerkezeti elemek jelölésére használjuk, amelyekre csak tengelyirányú nyomóerő hat. Ez lehet speciális terhelésű oszlop,

Részletesebben

Elektronika 2. TFBE1302

Elektronika 2. TFBE1302 Elektronika 2. FBE1302 áplálás FBE1302 Elektronika 2. Analóg elektronika Az analóg elektronikai alkalmazásoknál a részfeladatok többsége több alkalmazási területen is előforduló, közös feladat. Az ilyen

Részletesebben

Billenő áramkörök Jelterjedés hatása az átvitt jelre

Billenő áramkörök Jelterjedés hatása az átvitt jelre Billenő áramkörök Jelterjedés hatása az átvitt jelre Berta Miklós 1. Billenőkörök A billenőkörök pozitívan visszacsatolt digitális áramkörök. Kimeneti feszültségük nem folytonosan változik, hanem két meghatározott

Részletesebben

Mérôváltó bemenetek és általános beállítások

Mérôváltó bemenetek és általános beállítások Mérôváltó bemenetek és általános beállítások DE50583 Mérôváltó bemenetek A analóg bemenetekkel rendelkezik, amelyekre az alkalmazás által megkívánt mérôváltókat lehet csatlakoztatni. S80, S81, S82 T81,

Részletesebben

A szárazmegmunkálás folyamatjellemzőinek és a megmunkált felület minőségének vizsgálata keményesztergálásnál

A szárazmegmunkálás folyamatjellemzőinek és a megmunkált felület minőségének vizsgálata keményesztergálásnál 1 A szárazmegmunkálás folyamatjellemzőinek és a megmunkált felület minőségének vizsgálata keményesztergálásnál A keményesztergálás, amelynél a forgácsolás 55 HRC-nél keményebb acélon, néhány ezred vagy

Részletesebben

Szóbeli vizsgatantárgyak

Szóbeli vizsgatantárgyak Szóbeli vizsgatantárgyak 1. Villamosságtani és gépészeti alapismeretek A) Mechanika, gépelemek B) Műszaki ábrázolás, anyag- és gyártásismeret C) Műszaki villamosságtan 2. Szakmai ismeretek A) Szerkezettan

Részletesebben

V. FEJEZET MÓDOSÍTOTT MŰSZAKI LEÍRÁS

V. FEJEZET MÓDOSÍTOTT MŰSZAKI LEÍRÁS V. FEJEZET MÓDOSÍTOTT MŰSZAKI LEÍRÁS 1. RÉSZ: SZAGGATÓ BERENDEZÉS ÉS JÁRMŰVEZÉRLŐ EGYSÉG, VALAMINT HAJTÁSLÁNCHOZ KAPCSOLÓDÓ EGYÉB ELEKTROMOS ESZKÖZÖK BESZERZÉSE SORSZÁM AJÁNLATKÉRŐI KÓDSZÁM TERMÉK MEGNEVEZÉSE*

Részletesebben

Robotkocsi mikrovezérlővel

Robotkocsi mikrovezérlővel B é k é s c s a b a i K ö z p o n t i S z a k k é p z ő I s k o l a é s K o l l é g i u m Trefort Ágoston Műszaki Tagiskolája 5600 Békéscsaba, Puskin tér 1. Pf. 62 www.taszi.hu XVII. ORSZÁGOS ELEKTRONIKAI

Részletesebben

Versenyző kódja: 31 27/2012. (VIII. 27.) NGM rendelet 54 523 02-2015 MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny.

Versenyző kódja: 31 27/2012. (VIII. 27.) NGM rendelet 54 523 02-2015 MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny. 54 523 02-2015 MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő ÍRÁSBELI FELADAT Szakképesítés: 54 523 02 SZVK rendelet száma: 27/2012. (VIII. 27.) NGM rendelet : Számolási/áramköri/tervezési

Részletesebben

54 523 01 0000 00 00 Elektronikai technikus Elektronikai technikus

54 523 01 0000 00 00 Elektronikai technikus Elektronikai technikus A 10/07 (II. 27.) SzMM rendelettel módosított 1/06 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

MUNKAANYAG. Szabó László. Szilárdságtan. A követelménymodul megnevezése:

MUNKAANYAG. Szabó László. Szilárdságtan. A követelménymodul megnevezése: Szabó László Szilárdságtan A követelménymodul megnevezése: Kőolaj- és vegyipari géprendszer üzemeltetője és vegyipari technikus feladatok A követelménymodul száma: 047-06 A tartalomelem azonosító száma

Részletesebben

Dekonvolúció, Spike dekonvolúció. Konvolúciós föld model

Dekonvolúció, Spike dekonvolúció. Konvolúciós föld model Dekonvolúció, Spike dekonvolúció Konvolúciós föld model A szeizmikus hullám által átjárt teret szeretnénk modelezni A földet úgy képzeljük el, mint vízszintes rétegekből álló szűrő rendszert Bele engedünk

Részletesebben

Univerzális LED kijelzős tolatóradar

Univerzális LED kijelzős tolatóradar B E S Z E R E L É S I É S H A S Z N Á L A T I Ú T M U T A T Ó Univerzális LED kijelzős tolatóradar 4 DB LÖKHÁRÍTÓBA SZERELHETŐ SZENZORRA L, LED KIJELZŐVEL A DOBOZ TARTALMA 4 db ultrahangos szenzor, oldható

Részletesebben

Kapacitív áramokkal működtetett relés áramkörök 621.316.92S:621.318.B7:S21.3S2.$

Kapacitív áramokkal működtetett relés áramkörök 621.316.92S:621.318.B7:S21.3S2.$ DR. GÁL JÓZSEF Budapesti Műszaki Egyetem Kapacitív áramokkal működtetett relés áramkörök BTO 621.316.92S:621.318.B7:S21.3S2.$ A cikk cím szerinti témáját két, egymástól időben nagyon távoleső kapcsolási

Részletesebben

Mössbauer Spektroszkópia

Mössbauer Spektroszkópia Mössbauer Spektroszkópia Homa Gábor, Markó Gergely Mérés dátuma: 2008. 10. 15., 2008. 10. 22., 2008. 11. 05. Leadás dátuma: 2008. 11. 23. Figure 1: Rezonancia-abszorpció és szórás 1 Elméleti összefoglaló

Részletesebben

MÛSZAKI INFORMÁCIÓK. Érzékelési távolság

MÛSZAKI INFORMÁCIÓK. Érzékelési távolság OMR Adó-vevõs fotokapcsolók A mûködés aelve: 1. Az adó-vevõs érzékelõ két részbõl áll, egy adóból (fénykibocsátó), és egy vevõbõl (fényelnyelõ). Egy fénysugár kapcsolja össze a két eszközt egymással. vevõ

Részletesebben

3-215-703-11(1) Sztereóerõsítõ. Kezelési útmutató XM-ZR602. 2007 Sony Corporation Printed in Czech Republic (EU)

3-215-703-11(1) Sztereóerõsítõ. Kezelési útmutató XM-ZR602. 2007 Sony Corporation Printed in Czech Republic (EU) 3-215-703-11(1) Sztereóerõsítõ Kezelési útmutató XM-ZR602 2007 Sony Corporation Printed in Czech Republic (EU) Fõbb jellemzõk 110 W legnagyobb teljesítmény csatornánként (4 Ω-on). Ez a készülék mono erősítőként

Részletesebben

5. modul Térfogat és felszínszámítás 2

5. modul Térfogat és felszínszámítás 2 Matematika A 1. évfolyam 5. modul Térfogat és felszínszámítás Készítette: Vidra Gábor Matematika A 1. évfolyam 5. modul: TÉRFOGAT ÉS FELSZÍNSZÁMÍTÁS Tanári útmutató A modul célja Időkeret Ajánlott korosztály

Részletesebben

2. előadás: További gömbi fogalmak

2. előadás: További gömbi fogalmak 2 előadás: További gömbi fogalmak 2 előadás: További gömbi fogalmak Valamely gömbi főkör ívének α azimutja az ív egy tetszőleges pontjában az a szög, amit az ív és a meridián érintői zárnak be egymással

Részletesebben

Váltakozó áram. A váltakozó áram előállítása

Váltakozó áram. A váltakozó áram előállítása Váltakozó áram A váltakozó áram előállítása Mágneses térben vezető keretet fogatunk. A mágneses erővonalakat metsző vezetőpárban elektromos feszültség (illetve áram) indukálódik. Az indukált feszültség

Részletesebben

Vastagréteg hangfrekvenciás oszcillátorok

Vastagréteg hangfrekvenciás oszcillátorok Vastagréteg hangfrekvenciás oszcillátorok HORVÁTH LAJOS REMDC Összefoglalás A cikk egy konkrét vastagréteg áramköri típus kifejlesztése kapcsán bemutatja annak fontosságát, hogy már a kapcsolási elrendezés

Részletesebben

Fizika 2. Feladatsor

Fizika 2. Feladatsor Fizika 2. Felaatsor 1. Egy Q1 és egy Q2 =4Q1 töltésű részecske egymástól 1m-re van rögzítve. Hol vannak azok a pontok amelyekben a két töltéstől származó ereő térerősség nulla? ( Q 1 töltéstől 1/3 méterre

Részletesebben

5. Mérés Transzformátorok

5. Mérés Transzformátorok 5. Mérés Transzformátorok A transzformátor a váltakozó áramú villamos energia, feszültség, ill. áram értékeinek megváltoztatására (transzformálására) alkalmas villamos gép... Működési elv A villamos energia

Részletesebben

Gyakorló feladatok Tömegpont kinematikája

Gyakorló feladatok Tömegpont kinematikája Gyakorló feladatok Tömegpont kinematikája 2.3.1. Feladat Egy részecske helyzetének időfüggését az x ( t) = 3t 3 [m], t[s] pályagörbe írja le, amint a = indulva a pozitív x -tengely mentén mozog. Határozza

Részletesebben

ZAJCSILLAPÍTOTT SZÁMÍTÓGÉPHÁZ TERVEZÉSE

ZAJCSILLAPÍTOTT SZÁMÍTÓGÉPHÁZ TERVEZÉSE ZAJCSILLAPÍTOTT SZÁMÍTÓGÉPHÁZ TERVEZÉSE Kovács Gábor 2006. április 01. TARTALOMJEGYZÉK TARTALOMJEGYZÉK... 2 1. FELADAT MEGFOGALMAZÁSA... 3 2. LÉGCSATORNA ZAJCSILLAPÍTÁSA... 3 2.1 Négyzet keresztmetszet...

Részletesebben

Integrált áramkörök termikus szimulációja

Integrált áramkörök termikus szimulációja BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Villamosmérnöki és Informatikai Kar Elektronikus Eszközök Tanszéke Dr. Székely Vladimír Integrált áramkörök termikus szimulációja Segédlet a Mikroelektronika

Részletesebben

Használati útmutató. 1.0 verzió 2002. október

Használati útmutató. 1.0 verzió 2002. október Használati útmutató 1.0 verzió 2002. október TARTALOMJEGYZÉK 1. KEZELŐSZERVEK... 2 2. ALKALMAZÁSI PÉLDÁK... 4 2.1. BASSZUSGITÁR CSATLAKOZTATÁSA... 4 2.2. BILLENTYŰS HANGSZER, DJ-KEVERŐPULT STB. KIMENETI

Részletesebben

1. A Nap, mint energiaforrás:

1. A Nap, mint energiaforrás: A napelem egy olyan eszköz, amely a nap sugárzását elektromos árammá alakítja át a fényelektromos jelenség segítségével. A napelem teljesítménye függ annak típusától, méretétől, a sugárzás intenzitásától

Részletesebben

Elektronikus dobókocka

Elektronikus dobókocka Elektronikus dobókocka I. Feladat: egy olyan készülék elkészítése, amely a különféle játékokban használatos dobókockát helyettesíti. II. Gyakorlati megvalósítása: Az elektronikus dobókocka szerkezetileg

Részletesebben