6. előadás Környezetfüggetlen nyelvtanok/1.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "6. előadás Környezetfüggetlen nyelvtanok/1."

Átírás

1 6. előadás Környezetfüggetlen nyelvtanok/1. Dr. Kallós Gábor Tartalom Bevezetés CF nyelv példák Nyelvek és nyelvtanok egy- és többértelműsége Bal- és jobboldali levezetések Levezetési fák A fák magassága és határa A derivációk és a levezetési fák kapcsolata Felépítés, konfigurációk és átmenetek Szavak felismerése, felismert nyelv Az elfogadó állapottal és az üres veremmel felismerő automaták ekvivalenciája Feladatok 2

2 Bevezetés, példa Eml.: környezetfüggetlen (CF) nyelvtan: 2-típusú, csak A α alakú levezetési szabályai lehetnek A helyettesítési szabály a környezettől függetlenül bárhol alkalmazható Itt nagyobb a szabadság a helyettesítési szabályoknál, mint a reguláris nyelveket generáló nyelvtanoknál Ez viszont több olyan problémát is felvet, amivel eddig még nem találkoztunk Példa Legyen G ar = (N, T, P, S), ahol N = {E, T, F} T = {+, *, (, ), a} S = E P = {E E + T T, T T *F F, F (E) a} Megj.: Itt megszegtük a korábbi konvenciót a nemterminális és terminális jelek használatáról, de ez szándékos, a szimbólumoknak itt fontos szerepük van, ezek kellenek (E expression, T term, F factor; az a pedig egy azonosító) A nyelvtan egy additív és egy multiplikatív operátort tartalmazó, és a zárójelezést megengedő aritmetikai kifejezéseket generálja (van precedencia) Be lehetne vezetni hasonlóan a, / és ^ műveleteket, ill. előjeleket is, egy igazi számítástechnikai nyelv aritmetikai kifejezéseket generáló CF nyelvtana tartalmazza ezeket is (de a mi céljainkra most ez kissé szegényes nyelv is elég) 3 CF nyelv példa Példa (folyt.) (Eml.: P = {E E + T T, T T *F F, F (E) a}) A nyelvnek eleme az a + a*a jelsorozat, hiszen egy levezetése E E+ T T+ T F+ T a + T a + T*F a + F*F a + a*f a + a*a De a kifejezést másként is le lehet vezetni E E+ T E + T*F E + T*a E + F*a E + a*a T + a*a F + a*a a + a*a Okoz-e a több levezetés megléte zavart? A levezetéseket egy rendezett, irányított gráffal (fával) ábrázoljuk A fa gyökere a mondatszimbólum Minden csomópontból annyi él (olyan sorrendben) fut ki, amennyi a szabály jobboldalán található szimbólumok száma, és a kifutó élek végén a jobboldal megfelelő szimbólumai találhatók Az egy csomópontból kiinduló élek sorrendje kötött, nem változtatható meg Minden levezetésnek egy levezetési fa felel meg, de egy levezetési fához több levezetés is tartozhat (!) Ha egy kifejezéshez pontosan egy levezetési fa tartozik, akkor a nyelvtant egyértelműnek mondjuk Nevezetes levezetések: mindig a legbaloldalibb nemterminális szimbólumot helyettesítjük (bal (oldali) levezetés); hasonlóan jobb (oldali) levezetés (lásd fent) 4

3 CF nyelv példa, elemzés Megjegyzések Vigyázat, a levezetési fa nem a nyelvtanhoz tartozik egyértelműen, hanem a levezetéshez! (Egy nyelvtannak sok levezetési fája van/lehet) Az egyes csomópontokhoz tartozó részfákat (a leveleket is) szintaktikai egységeknek nevezzük Példa (folyt.) (Eml.: P = {E E + T T, T T *F F, F (E) a}) Most módosítjuk a nyelvtant, legyen P = {E E + E E *E (E) a} Ez a nyelvtan (G ar2 ) ugyanazt a nyelvet generálja, mint fenti párja Két különböző levezetés az a + a*a jelsorozatra E E+ E E + E*E a + E*E a + a*e a + a*a E E*E E*a E + E*a E + a*a a + a*a Itt azonban két különböző levezetési fa adható meg! A két levezetés tehát lényegesen eltérő 5 Egy- és többértelműség A természetes nyelvekre nagyon jellemző a többértelműség/többalakúság Például: Láttam Zsókát egy távcsővel, lehet Zsóka vitt egy távcsövet, és én láttam Én néztem Zsókát távcsővel messziről Itt a szövegkörnyezet vagy a beszédhelyzet segít eldönteni a helyes jelentést A fordítóprogramoktól ilyet nem nagyon várhatunk Egyszerű példák, amikor a Word helyesírás-ellenőrzője nem jelez: Be nem fejezet, fejezett Jelenjen megy, meg Nem sok szó eset, esett Feladatok Mutassuk meg, hogy a G 2 = ({S}, {2, +, *}, {S S + S, S S*S, S 2}, S) nyelvtanban a 2 + 2*2 szónak két lényegesen különböző levezetése és két levezetési fája van! Milyen eredményt ad a kifejezésre ezekben az esetekben a fordító? A csellengő else probléma (nem egyértelmű, hogy az else melyik feltételehez tartozik): if a then if b then do else print Milyen megoldásokat kínálnak erre a problémára az általunk használt programozási nyelvek? 6

4 Egy- és többértelműség Ha pusztán csak azt vizsgálnánk, hogy generálható-e valamely jelsorozat egy adott nyelvtannal, akkor az eredeti és a módosított nyelvtan egyenértékű (lenne) De a számítástechnikai nyelvészet szempontjából nem közömbös, hogy milyen szintaktikai egységeken keresztül jutottunk el a levezetés során a mondathoz (!) Utolsó példáinkban (G ar2 és G 2 ) nagyon fontos lenne tudni, hogy melyik műveletet kell előbb elvégezni, az összeadást vagy a szorzást! A számítástechnikai nyelvészetben (automatizált működés) a nem egyértelmű nyelvtanok lényegében használhatatlanok G ar2 -nél az egy- és többértelműséget nyelvtanhoz, és nem a nyelvhez kapcsoltuk Vajon mindig ez a helyzet, vagy lehet a többértelműség nyelvi tulajdonság? Vá.: Léteznek olyan nyelvek, amelyekről bizonyítható, hogy nem lehet egyértelmű nyelvtannal generálni Ekkor a többértelműség nyelvi tulajdonság (azaz: nincs minden CF nyelvnek egyértelmű nyelvtana) Tehát: az egy- és többértelműség tartozhat nyelvhez és nyelvtanhoz is Példa (nem egyértelmű nyelv; csak a helyettesítési szabályokat soroljuk): S aabx YbCc A aab ab C bcc bc X cx c Y ay a Ez a nyelvtan az L = a i b i c j a j b i c i nyelvet generálja Ezzel a nyelvtannal az a i b i c i alakú kifejezések két lényegesen különböző levezetéssel állíthatók elő Igazolható, hogy nincs olyan egyértelmű CF nyelvtan, ami ezt a nyelvet generálja 7 Egy- és többértelműség Az egyértelműség eldöntése: Sajnos nincs olyan módszer, amelynek segítségével általánosan, minden esetre alkalmazhatóan meg lehetne mondani, hogy egy CF nyelvtan vagy nyelv egyértelmű-e Persze ettől még sok konkrét esetben a probléma megoldható (egyedi tulajdonságok vagy szerencsés ötletek felhasználásával) Például a G ar nyelvtan egyértelműsége igazolható Visszatekintés: Felmerül-e egyáltalán az egyértelműség/többértelműség kérdése a reguláris nyelveknél? Itt a levezetési fa nagyon egyszerű, csupán egy szárból áll, amelynek jobb- ill. baloldalán vannak levelek attól függően, hogy bal- vagy jobbreguláris nyelvtanról van-e szó Egy levezetési fához itt csak egy levezetés tartozik, ami abból nyilvánvaló, hogy minden mondatszerű formában csak egyetlen nemterminális szimbólum szerepel (Nemdeterminisztikus automaták mintájára lehet: nemdet. nyelvtan, ekkor egy kifejezésnek több, lényegesen eltérő levezetése van; de: minden reguláris, nemdet. nyelvtanhoz szerkeszthető vele egyenértékű, determinisztikus nyelvtan automatákkal) Tehát: Minden reguláris nyelv egyértelmű, és szerkeszthető hozzá egyértelmű nyelvtan 8

5 Bal- és jobboldali levezetések Legyen G = (N, T, P, S) egy tetszőleges környezetfüggetlen nyelvtan Definíciók Az α 0 α 1 α 2 α n alakú kifejezéseket levezetéseknek (derivációknak) hívjuk Ha a deriváció során minden i = 1, 2,, n esetén α i -t úgy kapjuk, hogy α i 1 -ben a bal oldalról nézve legelső nemterminálist helyettesítjük egy rá vonatkozó szabály jobb oldalával, akkor a derivációt bal (oldali) derivációnak hívjuk, és rá az α 0 l α 1 l α 2 l l α n jelölést használjuk. Ha egy deriváció minden lépésében a jobbról nézve legelső nemterminálist helyettesítjük, akkor jobb (oldali) derivációról beszélünk, ennek jelölése α 0 r α 1 r α 2 r r α n. Továbbá, ha α olyan, hogy S * α, akkor α-t mondatformának nevezzük Hasonlóan, ha S l * α (ill. S r * α) áll fent, akkor α-t bal (ill. jobb) mondatformának nevezzük Megj.: Minden mondatforma egy speciális (N T)*-beli szó (lásd még: 1. slidesor.) Feladat: Nézzük meg az előző fóliákon, hogy melyik levezetés milyen típusú, ill. milyen mondatformát állít elő! Vigyázzunk arra, hogy a bal oldalról első, második, szabály következetes alkalmazása általában nem eredményez bal (oldali) levezetést A CF nyelvek (nyelvtanok) fontos tulajdonsága, hogy a levezetések fa alakban ábrázolhatók Ez népszerűségükben is központi szerepet játszik 9 Levezetési fák Definíció Legyen X (N T). Az X gyökerű derivációs fák halmazán címkézett, rendezett fák legszűkebb olyan D X halmazát értjük, amelyre teljesülnek az alábbi feltételek: Az a fa, amelynek egyetlen szögpontja (csak gyökere) van, és annak címkéje X, eleme D X - nek (ezt a fát X-szel jelöljük) Ha X λ P, akkor az a fa, amelynek gyökere X-szel van címkézve, és gyökerének egyetlen leszármazottja van, aminek címkéje λ, eleme D X -nek (ezt a fát X[λ]-val jelöljük) Ha X X 1 X 2 X n P és t 1 D X1, t 2 D X2,, t n D Xn (gyermek fák), akkor az a fa, amelynek gyökere X-szel van címkézve, és a gyökérből n él indul rendre a t 1, t 2,, t n fák gyökeréhez, eleme D X -nek (ezt a fát X[t 1, t 2,, t n ]-nel jelöljük) Ha X T, akkor a 2. és 3. feltételek soha nem teljesülnek, ekkor tehát D X = {X} Megjegyzések A derivációs fa levélelemeihez terminális vagy nemterminális szimbólumokat, közbülső csúcsaihoz pedig nemterminális jeleket rendelünk Ha minden levélelem terminális, akkor befejezett levezetésről beszélünk A levezetési fákat szintaxisfának is nevezzük (szintaktikai elemzés) Feladatok Rajzoljuk le a definícióban szereplő levezetési fákat! Rajzoljuk le a következő módon adott levezetési fákat (a G ar nyelvtanhoz): t 1 = E[T[T[F], *, F[(, E, )]]] t 2 = F[(, E[E[T[F[a]]], +, T[F[a]]], )] Rajzoljuk le ugyanezen nyelvtanhoz az a*(a + a) + a levélelemeket tartalmazó levezetési fát! (Cs. Z. 32. old.) 10

6 Levezetési fák Definíció Legyen t egy X gyökerű levezetési fa. A t fa magasságát h(t)-vel, határát pedig fr(t)-vel jelöljük és az alábbi módon definiáljuk: Ha t = X, akkor h(t) = 0 és fr(t) = X Ha t = X[λ], akkor h(t) = 1 és fr(t) = λ Ha t = X[t 1, t 2,, t n ], akkor h(t) = 1 + max{ h(t i ) 1 i n} és fr(t) = fr(t 1 ) fr(t 2 ) fr(t n ). Azaz: Egy t levezetési fa esetén h(t) a t-ben levő olyan utak hosszának a maximuma, amelyek t gyökerétől annak valamely leveléig vezetnek, fr(t) pedig az az (N T)*- beli szó, amelyet t leveleinek balról jobbra történő leolvasásával kapunk Megj.: h(t)-t a levezetési gráf mélységének is nevezzük Példa Az előző feladatban szereplő t 1 és t 2 fákra h(t 1 ) = 3, fr(t 1 ) = F*(E), h(t 2 ) = 5 és fr(t 2 ) = (a + a) Feladatok Határozzuk meg az előző oldalakon szereplő további levezetési fák határát és magasságát! Térjünk vissza az 1. slidesor levezetési fáira (41. old.), és ott is végezzük el ugyanezt a feladatot (2-es, 2.5-es, 3-as típusú nyelvtanok) Adjunk meg az előző példák alapján 0, 1 és 2 magasságú levezetési fákat! A levezetések és a levezetési fák közötti szoros kapcsolatot mutatja a következő tétel 11 Levezetési fák Tétel: Tetszőleges X (N T) és α (N T)* esetén X * α akkor és csak akkor áll fent, ha van olyan t D X levezetési fa, amelyre fr(t) = α Bizonyítás a) A feltétel szerint ekkor X n α teljesül valamely n 0-ra. A jobb oldal igazolása: n szerinti indukcióval. Az n = 0 esetben X = α. Itt az egyetlen szögpontú t = X fa megfelelő, mert erre t D X és fr(t) = X (= α). Legyen most n 1, és tfh. az állítás minden n-nél nem nagyobb számra teljesül. Tegyük fel továbbá, hogy X n + 1 α. Ekkor X X 1 X 2 X k n α 1 α 2 α k = α, ahol teljesülnek a következők: X X 1 X 2 X k egy P-beli szabály, és minden 1 i k esetén X i n i α i, ahol n i n (ezen felül n = n 1 + n n k is teljesül). Mivel n i n, az indukciós feltevés miatt minden 1 i k-ra van olyan t i D X, hogy fr(t i ) = α i. Legyen t = X[t 1, t 2,, t k ]. A levezetési fa definíciója miatt t D X, a magasság és a határ definíciója miatt pedig fr(t) = fr(t 1 ) fr(t 2 ) fr(t k ) = α 1 α 2 α k = α. b) Tfh. az X gyökerű t derivációs fára teljesül, hogy fr(t) = α. A bal oldal igazolása: t magassága szerinti indukcióval. Legyen h(t) = 0. Ekkor t = X, tehát fr(t) = α = X. Így X * α (= X) teljesül. Legyen most h(t) = n + 1, és tfh. az állítás minden n-nél nem magasabb derivációs fára teljesül. A magasság és a határ definíciója miatt ekkor t = X[t 1, t 2,, t n ], valamilyen k 1-re és t 1 D X1, t 2 D X2,, t n D Xn levezetési fák esetén, és a derivációs fa definíciója miatt X X 1 X 2 X k P is teljesül. Vezessük be az α i = fr(t i ) jelölést minden 1 i k-ra. Ekkor egyrészt α = α 1 α 2 α k, másrészt az indukciós feltevés szerint minden 1 i k-ra X i * α i. Így X X 1 X 2 X k * α 1 α 2 α k = α. 12

7 Levezetési fák Megjegyzések Az előző tételben szereplő X * α levezetéshez általában nem csak egy olyan X gyökerű levezetési fa létezik, amelynek határa α. Példa: Legyenek az A ab Ab A a B b szabályok egy CF nyelvtan szabályai. Ekkor A * ab. Ugyanakkor a t 1 = A[a, B[b]] és t 2 = A[A[a], b] fákra fr(t 1 ) = ab és fr(t 2 ) = ab. Feladat: Rajzoljuk le ezeket a fákat! A tételben szereplő t fából az persze következik, hogy X * α fennáll, de az nem, hogy a levezetés lépései egyértelműen meghatározottak Példa: A t 1 = E[T[T[F], *, F[(, E, )]]] fa határa F*(E); ez kétféle módon is megkapható E T T*F F*F F*(E) E T T*F T*(E) F*(E) Egy derivációs fa által reprezentált levezetések egy ekvivalencia-osztályt alkotnak Mindegyikben ugyanaz a mondatforma (szó) van levezetve Az ugyanott megjelenő ugyanolyan nemterminálisra ugyanazt a szabályt alkalmazzák Ez a példákban jól látható A szabályalkalmazások sorrendje lehet különböző 13 Levezetési fák Célunk a továbbiakban: minden ekvivalencia-osztályból kiemelni egy reprezentánst, legyen ez például a legbaloldalibb levezetés (ez jó, és mindig létezik) Készen vagyunk? Ha X l * α, akkor X * α is fennáll, mivel minden bal (oldali) levezetés egyúttal levezetés is Ugyanaz érvényes a jobb (oldali) levezetésekre is De fordítva ez már nem igaz, X * α-ból nem következik, hogy X l * α is fenáll Egy legbaloldalibb levezetés persze mindig kijelölhető a fában Gond: A legbaloldalibb levezetés nem biztos, hogy tényleg bal (oldali) levezetés! (És ugyanaz persze a legjobboldalibbra is érvényes) Példa: A G ar nyelvtan esetén E * E + F + T teljesül, de E l * E + F + T és E r * E + F + T nem áll fent Feladat: Ellenőrizzük a példát! Ha csak terminális szavakat engedünk meg a levezetési fa leveleiben, akkor a kijelentés már megfordítható Azaz: teljes, befejezett fa kell! 14

8 Levezetési fák Állítás: Tetszőleges X (N T) és w T* esetén a következő három állítás ekvivalens: X * w X l * w X r * w Bizonyítás A bal és a jobb (oldali) levezetések között fennálló szimmetria miatt elegendő az első és a második állítás ekvivalenciáját igazolni. (Tudjuk: Ha X l * w, akkor X * w is fennáll, mivel minden bal (oldali) levezetés egyúttal levezetés is.) Fordítva, tfh. X * w. Ekkor X n w teljesül valamely n 0-ra. A másik oldal igazolása: n szerinti indukcióval. Az n = 0 esetben X = w, ami csak úgy lehet, hogy X T. Így nyilvánvaló, hogy X l * w. Tegyük fel most, hogy a következtetés teljesül minden n-nél nem nagyobb számra, és legyen X n + 1 w. Ekkor ez a deriváció felírható X X 1 X 2 X k n w 1 w 2 w k = w alakban, ahol k 1, X X 1 X 2 X k P és minden 1 i k-ra teljesül X i n i w i, ahol n i n. Így az indukciós feltevés miatt X i n l i w i is fennáll. Ekkor viszont X l X 1 X 2 X 3 X k l w 1 X 2 X 3 X k l w 1 w 2 X 3 X k l l l w 1 w 2 w 3 w k = w. A G nyelvtan által generált nyelv fogalma a jelen részben definiált fogalmak segítségével is megadható L(G) = {w T* S * w} = {w T* S l * w} = {w T* S r * w} L(G) = {fr(t) t D S, fr(t) T*} 15 Célunk a CF nyelveket felismerő automaták bevezetése Ha a véges automata definíciójában elhagyjuk az állapothalmaz végességére vonatkozó feltételt, akkor a (véges ábécéjű) végtelen automata fogalmához jutunk Így ez túl általános, ezért speciális fajtájú végtelen automatákat vezettek be Verem használata az automatáknál Veremautomata eredetileg: aritmetikai kifejezések számítógéppel történő kiértékelése (1960-as évek) (Az implementáló szoftvert levédték szabadalommal, ez volt az első védett szoftvertermék az USA-ban) Máshol is használjuk: verem, mint programozási adatszerkezet Tipikusan rekurzív programozási feladatoknál Példa: Hanoi tornyai (C-szerű pszeudokód) A forráspálcáról (source) a célpálcára (target) kell pakolni Megoldás: Segédpálcát (help) vetünk be Az egyes rudakhoz mint veremhez tudunk hozzáférni A rekurzív hívások szintén egy verem segítségével hajtódnak végre 16

9 Logikai felépítés Veremmemória: pozíciókra felosztott, egyirányban végtelen szalag Minden pozícióba egy-egy jel írható A kiolvasás (amely egyúttal törlés is) a bevitelhez képest fordított sorrendben történik (LIFO: Last In First Out) A belső tartalomhoz közvetlenül nem férünk hozzá, mindig csak a verem tetején levő elemet tudjuk kiolvasni Szintén a verem tetejére helyezhetünk el újabb elemet A verem alján kezdetben csak egy speciális szimbólum van (kezdőszimbólum) A vermet legtöbbször függőleges elrendezésűnek képzeljük Vízszintes elrendezésnél a legelső betű a legfelső, a szalag egyik irányba végtelen Input szalag: ezen kapja meg az automata a véges bemenő szót Ezt betűnként tudja leolvasni Az input szalag lehet üres is (λ szó) Véges, iniciális nemdeterminisztikus (kimenő jel nélküli) automata Ez a veremautomata véges vezérlője Diszkrét időskála mentén haladva történik a működés 17 A működés kezdetén A veremben csak a kezdő veremszimbólum van Az input szalag olvasófeje a szalag első betűjére mutat Ha a szalagon csak az üres szó van, akkor ezt érzékeli A (veremautomatához tartozó) véges automata a kezdő állapotában van A mozgás során Új állapotba kerülünk (ez a régivel megegyező is lehet), Az olvasófej egy szimbólummal továbblép (kivéve λ szó), A verem tetejére új jelsorozat íródik be A verem tetején eddig levő szimbólum megsemmisül (ha meg akarjuk tartani: vissza kell írni a verembe) Ha a véges automata a teljes input elolvasásával eljut egy végállapotba, akkor a veremautomata megáll Ekkor a veremautomata az input szót elfogadta (ugyanez az üresszóra is lehet) (Lehetséges elfogadás üres veremmel is, lásd később) A veremautomata akkor is megáll, ha a véges automata olyan állapotban van, amelyhez nem tartozik egyetlen alkalmas átmenet sem Nincs lehetséges átmenet a verem tetején levő jel figyelembe vételével és az input olvasásával a véges automatában 18

10 A nemdeterminisztikus veremautomata egy input szót elfogad, ha van olyan futása, hogy a bemenő szót elfogadja (emellett lehet persze olyan is, amellyel nem) Egy veremautomata kétféleképpen ismerhet fel egy nyelvet: végállapotokkal vagy üres veremmel Elfogadó állapotok kellenek ill. nem kellenek (lásd később) Veremautomata belső állapota: egy pár, ami a verem tartalmát és a véges automata belső állapotát tartalmazza (a veremautomata végtelen) Az elvileg végtelen (pontosan: véges, de nem korlátos) befogadóképességű veremmemória összes lehetséges tartalma eredményez végtelen sok állapotot CF nyelvet nem lehet korlátos befogadóképességű veremmemóriával elemezni (a mondat első fele nagyon hosszú lehet, lásd példák lent) A veremautomata kifejező ereje nagyobb a véges automatákénál Megj.: A veremautomatának több definíciója is ismert Push-down automaton: az új infót a régi tetejére írjuk, a régi lenyomódik, csak a legfelső adatot lehet kiolvasni ekkor ki is vesszük (Ezt az automatát tanuljuk) Stack automaton: az új infót itt is a régi tetejére írjuk, de kivétel nélkül lehet olvasni belőle, és nemcsak a verem tetejéről (Nem ezt az automatát tanuljuk; ennek jelentősége kisebb) De: a stack memory a veremmemória angol neve 19 Definíció: Veremautomatának (push-down automatának) nevezzük a P = (Q, Ʃ, Γ, δ, q 0, Z 0, F) rendszert, ahol Q egy nem üres, véges halmaz, az állapotok halmaza, Ʃ az input ábécé (szalag ábécé), Γ a veremábécé, q 0 Q a kezdőállapot, Z 0 Γ a verem kezdőszimbólum (kezdőjel), F Q a végállapotok halmaza, δ : Q (Ʃ {λ}) Γ P(Q Γ*) az átmenetfüggvény (mozgási szabályok halmaza) Megjegyzések Valamennyi fenti halmaz véges, hiszen egyébként nem lehetne véges módon leírni a nyelvet Ʃ helyett T, Γ helyett Z, δ helyett d jelölés is használatos; a P = (Q, T, Z, q 0, Z 0, δ, F) megadás is szokásos A végállapot halmaz az üres vermes felismerő automatánál kiesik (!) A P név a push-down automatából rövidült A δ : definíciójában szereplő P szimbólum a hatványhalmaz jelölése; (Q Γ*) részhalmazaiba képezünk A veremautomata alapvetően (további korlátozások nélkül) nemdeterminisztikus Az átmenet folyamata (a δ függvény működése) Tetszőleges q Q állapot, a (Ʃ {λ}) input és a verem tetején lévő Z Γ szimbólum esetén legyen δ (q, a, Z) = {(q 1, α 1 ), (q 2, α 2 ),, (q n, α n )}, valamilyen n 0-ra, q 1, q 2,, q n Q állapotokkal és α 1, α 2,, α n Γ* veremszimbólumokkal. (n = 0 eset: a képhalmaz üres.) Az automata a q állapotból az a input hatására (ez lehet λ is) átmegy valamelyik q i állapotba, a verem tetején levő Z-t törli, és beírja a verembe α i -t (ha ez λ, akkor nem ír be semmit, ekkor a veremben eggyel kevesebb szimbólum marad). 20

11 Definíció: A C = Q Ʃ* Γ* halmazt a P konfigurációi halmazának nevezzük Megj.: Ʃ* Q Γ* megadás is használatos Egy (q, w, γ) C konfiguráció jelentése az, hogy P a q állapotban van, a w Ʃ* input szót kapja (még nem fel nem dolgozott input rész), és vermének tartalma γ Az input szó feldolgozása: egy lépésben egy betűt, vagy λ-t olvas be (ekkor nincs az input szóban továbblépés) Ha γ = Z 1 Z 2 Z n, akkor a veremnek n cellája van (mindegyik cellában csak egy szimbólum lehet), és Z 1 áll a verem tetején A konfigurációnál a következő input szimbólum és a verem tetején álló szimbólum is feltüntethető, ekkor (q, aw, Zγ) írandó Átmeneti reláció: a konfigurációk közti átmenetet írja le Ezek Descartes-szorzatán értelmezett Egy konfigurációból az automata a δ függvény definíciója szerint egy vagy több másik konfigurációba léphet tovább Definíció: A 1 P C C átmeneti relációt a következőképpen definiáljuk tetszőleges p, q Q, a (Ʃ {λ}), w Ʃ*, Z Γ és α, γ Γ*-ra (q, aw, Zγ) 1 P (p, w, αγ) akkor és csak akkor áll fent, ha (p, α) δ (q, a, Z) Az a = λ esetben az inputban nincs előrehaladás, ekkor az automata λ-mozgást végez (Ábrák: F. Z. 44.) Megjegyzések Ha nem akarjuk kihangsúlyozni az automata nevét, akkor 1 is használható A 1 operátor (reláció) helyett használható a w jelölés is 21 Konfigurációk sorozata Mint korábban: bevezetjük 1*-ot Értelmezhető 1 n is: k 0 1 k 1 1 k k n Példa (determinisztikus veremautomata; végállapottal fogad el, B. I. 106.) (Eml.: δ : Q (Ʃ {λ}) Γ P(Q Γ*) az átmenetfüggvény C = Q Ʃ* Γ* a konfigurációs halmaz) Leírása és működése δ(q 0, a, Z 0 ) = (q 1, az 0 ) δ(q 0, b, Z 0 ) = (q 1, bz 0 ) δ(q 1, a, a) = (q 1, aa) δ(q 1, b, a) = (q 1, ba) δ(q 1, a, b) = (q 1, ab) δ(q 1, b, b) = (q 1, bb) δ(q 1, c, a) = (q 2, a) δ(q 1, c, b) = (q 2, b) δ(q 2, a, a) = (q 2,λ) δ(q 2, b, b) = (q 2,λ) δ(q 2, λ, Z 0 ) = (q 3, Z 0 ) F = {q 3 } Elemzendő mondat: aabacabaa Induló konfiguráció: (q 0, aabacabaa, Z 0 ) A konfigurációk sorozata: (q 0, aabacabaa, Z 0 ) 1 (q, abacabaa, az 0 ) 1 (q, bacabaa, aaz 0 ) 1 1 (q 1, acabaa, baaz 0 ) 1 (q 1, cabaa, abaaz 0 ) 1 (q 2, abaa, abaaz 0 ) 1 1 (q 2, baa, baaz 0 ) 1 (q 2, aa, aaz 0 ) 1 (q 2, a, az 0 ) 1 (q 2, λ, Z 0 ) 1 1 (q 3, λ, Z 0 ) Így az automata a jelsorozatot elfogadta, hiszen minden input szimbólumot feldolgozott, és elfogadó állapotba került Megj: Az automata a wcw 1 alakú szavakat fogadja el 22

12 Példa (nemdeterminisztikus veremautomata; végállapottal fogad el) Leírása és működése δ(q 0, a, Z 0 ) = (q 1, az 0 ) δ(q 0, b, Z 0 ) = (q 1, bz 0 ) δ(q 1, a, a) = (q 1, aa) (q 2,λ) δ(q 1, b, a) = (q 1, ba) δ(q 1, a, b) = (q 1, ab) δ(q 1, b, b) = (q 1, bb) (q 2,λ) δ(q 2, a, a) = (q 2,λ) δ(q 2, b, b) = (q 2,λ) δ(q 2, λ, Z 0 ) = (q 3, Z 0 ) F = {q 3 } Eltérés az előző automatától: a c szimbólum kiesik (nem látjuk, hol a szó közepe) Elemzendő mondat: abbaabba A konfigurációk sorozata (első kör): (q 0, abbaabba, Z 0 ) 1 (q 1, bbaabba, az 0 ) 1 (q 1, baabba, baz 0 ) 1 (? két választási leh.) A (q 2,λ) ágon megyünk tovább: (q 1, baabba, baz 0 ) 1 (q 2, aabba, az 0 ) 1 (q 2, abba, Z 0 ) 1 (? nincs tovább) Lehetőségek: vagy nem a nyelv mondatával dolgozunk, vagy rossz irányba indultunk el Visszatérés, és a (q, bb) ágon megyünk tovább: (q 1, baabba, baz 0 ) 1 (q 1, aabba, bbaz 0 ) 1 (q 1, abba, abbaz 0 ) 1 (? két választási leh.) A (q 1,λ) ágon megyünk tovább: (q, abba, abbaz 0 ) 1 (q 2, bba, bbaz 0 ) 1 (q 2, ba, baz 0 ) 1 (q 2, a, az 0 ) 1 1 (q 2, λ, Z 0 ) 1 (q 3, λ, Z 0 ) Az automata a jelsorozatot elfogadta, tehát ez a szó az automata nyelvének egy mondata Nemdeterminisztikus automatánál (a döntéshez) minden lehetséges mozgássorozatot meg kell nézni Megj: Az automata a ww 1 alakú szavakat fogadja el 23 Definíció: A P veremautomata által végállapotokkal felismert nyelven az L f (P) = {w Ʃ* (q 0, w, Z 0 ) 1* (q, λ, γ), ahol q F és γ Γ*} nyelvet értjük Tehát: végállapotokkal P azon w input szavakat ismeri fel, amelyek hatására a q 0 kezdőállapotból a verem kezdeti Z 0 tartalma mellett az automata valamely q végállapotba kerül. A veremben végül maradhat valamilyen γ tartalom. Másként (B. I.): Azok a w jelsorozatok a nyelv mondatai, amelyek a kezdőállapottal és a verem kezdeti tartalmával olyan konfigurációt alkotnak, amelyből tetsz. számú lépésben elérhető egy olyan konfiguráció, ahol már nincs olvasásra váró jelsorozat (ez az üres jelsorozat), és az állapot elfogadó. A verem tartalma érdektelen. Az elfogadás feltételét köthetjük a verem üres voltához is Definíció: A P veremautomata által üres veremmel felismert nyelven az L e (P) = {w Ʃ* (q 0, w, Z 0 ) 1* (q, λ, λ), ahol q Q} nyelvet értjük Tehát: üres veremmel P azon w input szavakat ismeri fel, amelyek hatására a q 0 kezdőállapotból a verem kezdeti Z 0 tartalma mellett P verme kiürül. F-nek ilyenkor nincs szerepe közömbös, hogy a folyamat végén elfogadó állapotban vagyunk-e F akár a definiáló rendezett hetesből is elhagyható De: az üres veremmel elfogadó automatának is végig kell olvasnia a jelsorozatot! (Ábrák: F. Z ) Egy konkrét veremautomata esetén a végállapottal, ill. az üres veremmel elfogadott nyelvek (nagyon) különbözhetnek egymástól fontos rögzíteni, hogy milyen módon akarjuk használni az automatát (!) 24

13 Az automata működésének rajzos bemutatása Ábrázolnunk kell az állapotokat (átmenetekkel); az inputot, ill. a verem tartalmát Lehetőségek Mint a véges elfogadó automatáknál, csak az állapotok mellett feltüntetjük az inputot és a verem tartalmát; valamilyen időrend vagy több ábra kell Az egyes állapotokat kiragadva ábrázoljuk, mellettük bemutatva az inputot és a verem tartalmát Lásd még: D. P Példa (determinisztikus veremautomata; végállapottal fogad el) Leírása és működése P = (Q, Ʃ, Γ, δ, q 0, Z 0, F), ahol Q = {q 0, q 1, q 2 }, Ʃ = (a, b), Γ = (a, Z 0 ), F = {q 0 } δ(q 0, a, Z 0 ) = (q 1, az 0 ) (első a) δ(q 1, a, a) = (q 1, aa) (többi a) δ(q 1, b, a) = (q 2,λ) (első b) δ(q 2, b, a) = (q 2,λ) (többi b) δ(q 2, λ, Z 0 ) = (q 0,λ) (vége) (Az automata parciálisan definiált; rajz: D. P. 170.) Elemzendő mondat: aabb A konfigurációk sorozata (a működés egyszerűen követhető): (q 0, aabb, Z 0 ) 1 (q 1, abb, az 0 ) 1 (q 1, bb, aaz 0 ) 1 (q 2, b, az 0 ) 1 1(q 2, λ, Z 0 ) 1 (q 0, λ, λ) Elemzendő mondat: abb Feladat: Mutassuk meg, hogy abb L f (P) A (q 0, b, λ) konfigurációból nem lehet továbbmenni (Konstruáljunk hasonló kis feladatokat az előző oldalakon szereplő automatákhoz is) Igazolható az is (pl. indukcióval), hogy L f (P) = {a n b n n 0} Itt: L f (P) L e (P), hiszen L e (P) = {a n b n n 1}, azaz L e (P) = L f (P) {λ} Ennek ellenére a két nyelvosztály közötti kapcsolat általánosan is nagyon szoros Tétel: A veremautomatákkal végállapotokkal felismerhető nyelvek osztálya megegyezik a veremautomatákkal üres veremmel felismerhető nyelvek osztályával 26

Automaták és formális nyelvek

Automaták és formális nyelvek Automaták és formális nyelvek Bevezetés a számítástudomány alapjaiba 1. Formális nyelvek 2006.11.13. 1 Automaták és formális nyelvek - bevezetés Automaták elmélete: információs gépek általános absztrakt

Részletesebben

Emlékeztető: LR(0) elemzés. LR elemzések (SLR(1) és LR(1) elemzések)

Emlékeztető: LR(0) elemzés. LR elemzések (SLR(1) és LR(1) elemzések) Emlékeztető Emlékeztető: LR(0) elemzés A lexikális által előállított szimbólumsorozatot balról jobbra olvassuk, a szimbólumokat az vermébe tesszük. LR elemzések (SLR() és LR() elemzések) Fordítóprogramok

Részletesebben

Formális nyelvek és automaták előadások

Formális nyelvek és automaták előadások VÁRTERÉSZ MAGDA Formális nyelvek és automaták előadások 2005/06-os tanév 1. félév Tartalomjegyzék 1. Előzetes tudnivalók 4 2. Bevezetés 15 3. Ábécé, szó, formális nyelv 17 4. Műveletek nyelvekkel 24 4.1.

Részletesebben

Alap fatranszformátorok I. Oyamaguchi [3], Dauchet és társai [1] és Engelfriet [2] bebizonyították hogy egy tetszőleges alap

Alap fatranszformátorok I. Oyamaguchi [3], Dauchet és társai [1] és Engelfriet [2] bebizonyították hogy egy tetszőleges alap Alap fatranszformátorok I Vágvölgyi Sándor Oyamaguchi [3], Dauchet és társai [1] és Engelfriet [2] bebizonyították hogy egy tetszőleges alap termátíró rendszerről eldönthető hogy összefolyó-e. Mindannyian

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Fogalomtár a Formális nyelvek és

Fogalomtár a Formális nyelvek és Fogalomtár a Formális nyelvek és automaták tárgyhoz (A törzsanyaghoz tartozó definíciókat és tételeket jelöli.) Definíciók Univerzális ábécé: Szimbólumok egy megszámlálhatóan végtelen halmazát univerzális

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

Formális Nyelvek és Automaták v1.9

Formális Nyelvek és Automaták v1.9 Formális Nyelvek és Automaták v1.9 Hernyák Zoltán E másolat nem használható fel szabadon, a készülő jegyzet egy munkapéldánya. A teljes jegyzetről, vagy annak bármely részéről bármely másolat készítéséhez

Részletesebben

Formális nyelvek Második, javított kiadás

Formális nyelvek Második, javított kiadás BACH IVÁN Formális nyelvek Második, javított kiadás Egyetemi tankönyv TYPOTEX Kiadó Budapest, 2002 A könyv az illetékes kuratórium döntése alapján az Oktatási Minisztérium támogatásával a Felsőoktatási

Részletesebben

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

NP-teljesség röviden

NP-teljesség röviden NP-teljesség röviden Bucsay Balázs earthquake[at]rycon[dot]hu http://rycon.hu 1 Turing gépek 1/3 Mi a turing gép? 1. Definíció. [Turing gép] Egy Turing-gép formálisan egy M = (K, Σ, δ, s) rendezett négyessel

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Programozási Módszertan definíciók, stb.

Programozási Módszertan definíciók, stb. Programozási Módszertan definíciók, stb. 1. Bevezetés Egy adat típusát az adat által felvehető lehetséges értékek halmaza (típusérték halmaz, TÉH), és az ezen értelmezett műveletek (típusműveletek) együttesen

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

Formális nyelvek és automaták

Formális nyelvek és automaták Formális nyelvek és automaták Király Roland 2012. november 16. 1 2 Tartalomjegyzék 1. Előszó 7 2. Bevezetés 9 2.1. Út a matematikai formulától az implementációig........ 9 2.2. Feladatok.............................

Részletesebben

5. A kiterjesztési elv, nyelvi változók

5. A kiterjesztési elv, nyelvi változók 5. A kiterjesztési elv, nyelvi változók Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 A kiterjesztési elv 2 Nyelvi változók A kiterjesztési elv 237 A KITERJESZTÉSI ELV A

Részletesebben

1/50. Teljes indukció 1. Back Close

1/50. Teljes indukció 1. Back Close 1/50 Teljes indukció 1 A teljes indukció talán a legfontosabb bizonyítási módszer a számítástudományban. Teljes indukció elve. Legyen P (n) egy állítás. Tegyük fel, hogy (1) P (0) igaz, (2) minden n N

Részletesebben

1. előadás Matematikai és nyelvi alapok, Szintaktikai vizsgálat

1. előadás Matematikai és nyelvi alapok, Szintaktikai vizsgálat 1. előadás Matematikai és nyelvi alapok, Dr. Kallós Gábor 2013 2014 1 Tartalom Matematikai alapfogalmak Halmazok Relációk Függvények Homomorfizmusok Nyelvi alapfogalmak Ábécé, szavak, nyelvek Műveletek

Részletesebben

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. 2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,

Részletesebben

Reguláris kifejezések 1.

Reguláris kifejezések 1. Reguláris kifejezések 1. A nyelvtechnológia eszközei és nyersanyagai 1. gyakorlat A beadandó feladatok be vannak keretezve! 1.1. Miért hívják reguláris kifejezésnek? (!) Az elméleti és a gyakorlati reguláris

Részletesebben

Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter

Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter Adatszerkezetek Tömb, sor, verem Dr. Iványi Péter 1 Adat Adat minden, amit a számítógépünkben tárolunk és a külvilágból jön Az adatnak két fontos tulajdonsága van: Értéke Típusa 2 Adat típusa Az adatot

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363 1/6 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 46/6 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció stratégiák Szemantikus hálók

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

Amortizációs költségelemzés

Amortizációs költségelemzés Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 007/008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció i stratégiák Szemantikus hálók / Keretrendszerek

Részletesebben

38. A gráfalgoritmusok alkalmazása

38. A gráfalgoritmusok alkalmazása 38. A gráfalgoritmusok alkalmazása Állapotok és átmenetek A gráf adattípus nagyon sokféle feladat megoldásánál alkalmazható. Rejtvények, játékok, közlekedési és szállítási problémák, stratégiai feladatok

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

DISZKRÉT MATEMATIKA RENDEZETT HALMAZOKKAL KAPCSOLATOS PÉLDÁK. Rendezett halmaz. (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3.

DISZKRÉT MATEMATIKA RENDEZETT HALMAZOKKAL KAPCSOLATOS PÉLDÁK. Rendezett halmaz. (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3. Rendezett halmaz R A x A rendezési reláció A-n, ha R Másképpen: (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3. Tranzitív arb for (a, b) R. 1. a A ara 2. a,b A (arb bra a = b 3. a,b,c A (arb brc arc

Részletesebben

Partíció probléma rekurzíómemorizálással

Partíció probléma rekurzíómemorizálással Partíció probléma rekurzíómemorizálással A partíciószám rekurzív algoritmusa Ω(2 n ) műveletet végez, pedig a megoldandó részfeladatatok száma sokkal kisebb O(n 2 ). A probléma, hogy bizonyos már megoldott

Részletesebben

Információ megjelenítés Alapok

Információ megjelenítés Alapok Információ megjelenítés Alapok Szavak és képek Duális kódolás elmélete (Paivio) Szerkezetek Vizuális Vizuális Rendszer Képi információ Imagens Nem-verbális válasz Szóbeli Halló Rendszer Információ beszédből

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

Diszkrét Matematika I.

Diszkrét Matematika I. Orosz Ágota Kaiser Zoltán Diszkrét Matematika I példatár mobidiák könyvtár Orosz Ágota Kaiser Zoltán Diszkrét Matematika I példatár mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István Orosz Ágota Kaiser

Részletesebben

Knoch László: Információelmélet LOGIKA

Knoch László: Információelmélet LOGIKA Mi az ítélet? Az ítélet olyan mondat, amely vagy igaz, vagy hamis. Azt, hogy az adott ítélet igaz vagy hamis, az ítélet logikai értékének nevezzük. Jelölése: i igaz h hamis A 2 páros és prím. Logikai értéke

Részletesebben

1. A komplex számok definíciója

1. A komplex számok definíciója 1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van

Részletesebben

Formális Nyelvek és Automaták. Dömösi, Pál Falucskai, János Horváth, Géza Mecsei, Zoltán Nagy, Benedek

Formális Nyelvek és Automaták. Dömösi, Pál Falucskai, János Horváth, Géza Mecsei, Zoltán Nagy, Benedek Formális Nyelvek és Automaták Dömösi, Pál Falucskai, János Horváth, Géza Mecsei, Zoltán Nagy, Benedek Formális Nyelvek és Automaták Dömösi, Pál Falucskai, János Horváth, Géza Mecsei, Zoltán Nagy, Benedek

Részletesebben

2009/2010/I. félév, Prof. Dr. Galántai Aurél BMF NIK IMRI Budapest. 2009. november 25.

2009/2010/I. félév, Prof. Dr. Galántai Aurél BMF NIK IMRI Budapest. 2009. november 25. SZÁMÍTÁSTUDOMÁNY 2009/2010/I. félév, (el½oadás vázlat) Prof. Dr. Galántai Aurél BMF NIK IMRI Budapest 2009. november 25. Tartalomjegyzék TARTALOMJEGYZÉK 3 1. Bevezetés 5 2. Matematikai alapfogalmak 9 2.1.

Részletesebben

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12.

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12. Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j. Fourier-sorok Bevezetés. Az alábbi anyag a vizsgára való felkészülés segítése céljából készült. Az alkalmazott jelölések vagy bizonyítás részletek néhány esetben eltérhetnek az előadáson alkalmazottaktól.

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus GRÁFELMÉLET 7. előadás Javító utak, javító utak keresése, Edmonds-algoritmus Definíció: egy P utat javító útnak nevezünk egy M párosításra nézve, ha az út páratlan hosszú, kezdő- és végpontjai nem párosítottak,

Részletesebben

Programozási tételek. Dr. Iványi Péter

Programozási tételek. Dr. Iványi Péter Programozási tételek Dr. Iványi Péter 1 Programozási tételek A programozási tételek olyan általános algoritmusok, melyekkel programozás során gyakran találkozunk. Az algoritmusok általában számsorozatokkal,

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0711 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

6. Közös változóval rendelkező párhuzamos program, Közös változó,

6. Közös változóval rendelkező párhuzamos program, Közös változó, 6. Közös változóval rendelkező párhuzamos program, Közös változó, Reynold kritérium. Atomi művelet, atomi utasítás. szintaxis, szemantika, tulajdonságok. Szinkronizációs párhuzamos program, szintaxis,

Részletesebben

1. Algebrai alapok: Melyek műveletek az alábbiak közül?

1. Algebrai alapok: Melyek műveletek az alábbiak közül? 1. Algebrai alapok: Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz egyértelműen hozzárendel egy

Részletesebben

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok Kiegészítő részelőadás. Algebrai és transzcendens számo, nevezetes onstanso Dr. Kallós Gábor 04 05 A valós számo ategorizálása Eml. (óori felismerés): nem minden szám írható fel törtszámént (racionálisént)

Részletesebben

Nyelvelemzés sajátkezűleg a magyar INTEX rendszer. Váradi Tamás varadi@nytud.hu

Nyelvelemzés sajátkezűleg a magyar INTEX rendszer. Váradi Tamás varadi@nytud.hu Nyelvelemzés sajátkezűleg a magyar INTEX rendszer Váradi Tamás varadi@nytud.hu Vázlat A történet eddig Az INTEX rendszer A magyar modul Az INTEX korlátai premier előtt: NooJ konklúziók, további teendők

Részletesebben

Ügyviteli rendszerek hatékony fejlesztése Magic Xpa-val mobilos funkciókkal kiegészítve. Oktatók: Fülöp József, Smohai Ferenc, Nagy Csaba

Ügyviteli rendszerek hatékony fejlesztése Magic Xpa-val mobilos funkciókkal kiegészítve. Oktatók: Fülöp József, Smohai Ferenc, Nagy Csaba Ügyviteli rendszerek hatékony fejlesztése Magic Xpa-val mobilos funkciókkal kiegészítve Oktatók: Fülöp József, Smohai Ferenc, Nagy Csaba Programozás alapjai Ha egy adott adattáblára Ctrl + G t nyomunk,

Részletesebben

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések 1 Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések A matematikában alapfogalmaknak tekintjük azokat a fogalmakat, amelyeket nem határozunk meg, nem definiálunk más fogalmak segítségével

Részletesebben

Zárthelyi dolgozat feladatainak megoldása 2003. õsz

Zárthelyi dolgozat feladatainak megoldása 2003. õsz Zárthelyi dolgozat feladatainak megoldása 2003. õsz 1. Feladat 1. Milyen egységeket rendelhetünk az egyedi információhoz? Mekkora az átváltás közöttük? Ha 10-es alapú logaritmussal számolunk, a mértékegység

Részletesebben

Kereső algoritmusok a diszkrét optimalizálás problémájához

Kereső algoritmusok a diszkrét optimalizálás problémájához Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások

Részletesebben

Matematika (alsó tagozat)

Matematika (alsó tagozat) Matematika (alsó tagozat) Az értékelés elvei és eszközei A tanév során az értékelés alapja a tanulók állandó megfigyelése. Folyamatos fejlesztő célzatú szóbeli értékelés visszajelzést ad a tanuló számára

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

Oktatási segédlet 2014

Oktatási segédlet 2014 Oktatási segédlet 2014 A kutatás a TÁMOP 4.2.4.A/2-11-1-2012- 0001 azonosító számú Nemzeti Kiválóság Program Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése

Részletesebben

2. Logika gyakorlat Függvények és a teljes indukció

2. Logika gyakorlat Függvények és a teljes indukció 2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció

Részletesebben

Szövegek C++ -ban, a string osztály

Szövegek C++ -ban, a string osztály Szövegek C++ -ban, a string osztály A string osztály a Szabványos C++ könyvtár (Standard Template Library) része és bár az objektum-orientált programozásról, az osztályokról, csak később esik szó, a string

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

Logaritmikus erősítő tanulmányozása

Logaritmikus erősítő tanulmányozása 13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti

Részletesebben

Ügyviteli rendszerek hatékony fejlesztése Magic Xpa-val mobilos funkciókkal kiegészítve. Oktatók: Fülöp József, Smohai Ferenc, Nagy Csaba

Ügyviteli rendszerek hatékony fejlesztése Magic Xpa-val mobilos funkciókkal kiegészítve. Oktatók: Fülöp József, Smohai Ferenc, Nagy Csaba Ügyviteli rendszerek hatékony fejlesztése Magic Xpa-val mobilos funkciókkal kiegészítve Oktatók: Fülöp József, Smohai Ferenc, Nagy Csaba Inheritance beállítás Ez egy olyan beállítás, amely a modell alapján

Részletesebben

Hálózati folyamok. Tétel: A maximális folyam értéke megegyezik a minimális vágás értékével.

Hálózati folyamok. Tétel: A maximális folyam értéke megegyezik a minimális vágás értékével. Hálózati folyamok Definíció: Legyen G = (V,E) egy irányított gráf, adott egy c: E R + {0} ún. kapacitásfüggvény, amely minden (u,v) ε E élhez hozzárendel egy nem negatív c(u,v) kapacitást. A gráfnak van

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

Halmazelmélet. 1. Jelenítsük meg Venn-diagrammon az alábbi halmazokat: a) b) c) 2. Milyen halmazokat határoznak meg az alábbi Venn-diagrammok?

Halmazelmélet. 1. Jelenítsük meg Venn-diagrammon az alábbi halmazokat: a) b) c) 2. Milyen halmazokat határoznak meg az alábbi Venn-diagrammok? Halmazelmélet Alapfogalmak Unió: ; metszet: ; különbség: ; komplementer: (itt U egy univerzum halmaz). Egyenlőség: két halmaz egyenlő, ha ugyanazok az elemeik. Ezzel ekvivalens, hogy. Tartalmazás: ; valódi

Részletesebben

találhatók. A memória-szervezési modell mondja meg azt, hogy miként

találhatók. A memória-szervezési modell mondja meg azt, hogy miként Memória címzési módok Egy program futása során (legyen szó a program vezérléséről vagy adatkezelésről) a program utasításai illetve egy utasítás argumentumai a memóriában találhatók. A memória-szervezési

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

FORDÍTÓPROGRAMOK. I. Előadás. Műszaki informatika szakos hallgatók számára Veszprémi Egyetem Számítástudomány Alkalmazása Tanszék 2002.

FORDÍTÓPROGRAMOK. I. Előadás. Műszaki informatika szakos hallgatók számára Veszprémi Egyetem Számítástudomány Alkalmazása Tanszék 2002. FORDÍTÓPROGRAMOK I. Előadás Műszaki informatika szakos hallgatók számára Veszprémi Egyetem Számítástudomány Alkalmazása Tanszék 2002. Ajánlott irodalom: Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman Compilers

Részletesebben

Informatikus informatikus 54 481 04 0010 54 07 Térinformatikus Informatikus É 1/9

Informatikus informatikus 54 481 04 0010 54 07 Térinformatikus Informatikus É 1/9 A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám rendje A rend fogalma A 1-nek két darab egész kitevőjű hatványa van: 1 és 1. Az i-nek 4 van: i, i 2 = 1, i 3 = i, i 4 = 1. Innentől kezdve ismétlődik: i 5 = i, i 6 = i 2 = 1, stb. Négyesével

Részletesebben

I. feladatsor. (t) z 1 z 3

I. feladatsor. (t) z 1 z 3 I. feladatsor () Töltse ki az alábbi táblázatot: Komple szám Valós rész Képzetes rész Konjugált Abszolútérték 4 + i 3 + 4i 5i 6i 3 5 3 i 7i () Adottak az alábbi komple számok: z = + 3i, z = i, z 3 = i.

Részletesebben

Mesterséges intelligencia 3. laborgyakorlat

Mesterséges intelligencia 3. laborgyakorlat Mesterséges intelligencia 3. laborgyakorlat Kétszemélyes játékok - Minimax A következő típusú játékok megoldásával foglalkozunk: (a) kétszemélyes, (b) determinisztikus, (c) zéróösszegű, (d) teljes információjú.

Részletesebben

Irodalom. Formális nyelvek I. Véges automaták és reguláris nyelvek. A formális nyelvek egy alkalmazása. Polygon, 2004.

Irodalom. Formális nyelvek I. Véges automaták és reguláris nyelvek. A formális nyelvek egy alkalmazása. Polygon, 2004. Irodlom Formális nyelvek I. Véges utomták és reguláris nyelvek Fülöp Zoltán SZTE TTK Informtiki Tnszékcsoport Számítástudomány Alpji Tnszék 6720 Szeged, Árpád tér 2. Fülöp Zoltán, Formális nyelvek és szintktikus

Részletesebben

OSZTÁLYOZÓ VIZSGA KÖVETELMÉNYEI 1 4. ÉVFOLYAM

OSZTÁLYOZÓ VIZSGA KÖVETELMÉNYEI 1 4. ÉVFOLYAM OSZTÁLYOZÓ VIZSGA KÖVETELMÉNYEI 1 4. ÉVFOLYAM MATEMATIKA - számfogalom húszas számkörben - nyitott mondatok, hiányos műveletek, relációk - egyszerű szöveges feladatok - összeadás, kivonás, bontás, pótlás

Részletesebben

file./script.sh > Bourne-Again shell script text executable << tartalmat néz >>

file./script.sh > Bourne-Again shell script text executable << tartalmat néz >> I. Alapok Interaktív shell-ben vagy shell-scriptben megadott karaktersorozat feldolgozásakor az első lépés a szavakra tördelés. A szavakra tördelés a következő metakarakterek mentén zajlik: & ; ( ) < >

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ P R Ó B A É R E T T S É G I 0 0 4. m á j u s MATEMATIKA KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a

Részletesebben

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban,

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, akkor a i (gyakorisága) = k i a i relatív gyakorisága: A jel információtartalma:

Részletesebben

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus.

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. 5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. Optimalis feszítőfák Egy összefüggő, irányítatlan

Részletesebben

Egyirányban láncolt lista

Egyirányban láncolt lista Egyirányban láncolt lista A tárhely (listaelem) az adatelem értékén kívül egy mutatót tartalmaz, amely a következő listaelem címét tartalmazza. A láncolt lista első elemének címét egy, a láncszerkezeten

Részletesebben

Közönséges differenciálegyenletek megoldása Mapleben

Közönséges differenciálegyenletek megoldása Mapleben Közönséges differenciálegyenletek megoldása Mapleben Differenciálegyenlet alatt egy olyan egyenletet értünk, amelyben a meghatározandó ismeretlen egy függvény, és az egyenlet tartalmazza az ismeretlen

Részletesebben

MECHANIKA I. /Statika/ 1. előadás SZIE-YMM 1. Bevezetés épületek, építmények fizikai hatások, köztük erőhatások részleges vagy teljes tönkremenetel használhatatlanná válás anyagi kár, emberáldozat 1 Cél:

Részletesebben

Funkcionális Nyelvek 2 (MSc)

Funkcionális Nyelvek 2 (MSc) Funkcionális Nyelvek 2 (MSc) Páli Gábor János pgj@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar Programozási Nyelvek és Fordítóprogramok Tanszék Tematika A (tervezett) tematika rövid összefoglalása

Részletesebben

Mrend X Extra 3.0 b. - menetrendszerkesztő program leírása -

Mrend X Extra 3.0 b. - menetrendszerkesztő program leírása - 01 Mrend X Extra 3.0 b - menetrendszerkesztő program leírása - A programmal mobiltelefonra, Java 2ME nyelven írt alkalmazásokat futtató készülékre szerkeszthető menetrend. http://mobilmenetrend.hu R-dei

Részletesebben

Analízis. 11 12. évfolyam. Szerkesztette: Surányi László. 2015. július 5.

Analízis. 11 12. évfolyam. Szerkesztette: Surányi László. 2015. július 5. Analízis 11 12. évfolyam Szerkesztette: Surányi László 2015. július 5. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás, tördelés...) Dénes Balázs, Grósz Dániel, Hraskó András, Kalló

Részletesebben

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek? Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.

Részletesebben

Sztringkezelő függvények. A string típusú változók kezelése, használata és szerepük a feldolgozás során

Sztringkezelő függvények. A string típusú változók kezelése, használata és szerepük a feldolgozás során Sztringkezelő függvények A string típusú változók kezelése, használata és szerepük a feldolgozás során Mi string? Röviden: karakterek tárolására alkalmas típus A karakterek betűk, számok, vagy tetszőleges,

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben