Hasonló dokumentumok
LOGIKA. A logika feladata tehát a premisszák és a konklúzió

LOGIKA. A logika feladata tehát a premisszák és a konklúzió

Matematikai logika. Nagy Károly 2009

A matematika alapjai. Nagy Károly 2014

Az informatika logikai alapjai

Az informatika logikai alapjai

Logikai alapok a programozáshoz

Logikai alapok a programozáshoz. Nagy Károly 2014

Az informatika logikai alapjai

Megoldások augusztus 8.

Elsőrendű logika szintaktikája és szemantikája. Logika (3. gyakorlat) 0-adrendű szemantika 2009/10 II. félév 1 / 1

Logika es sz am ıt aselm elet I. r esz Logika Harmadik el oad as 1/33

Logika feladatgyűjtemény

Logika es sz am ıt aselm elet I. r esz Logika Hatodik el oad as 1/33

Az informatika logikai alapjai

Az informatika logikai alapjai előadások

Logika és informatikai alkalmazásai

Logika és informatikai alkalmazásai

Matematikai logika. 3. fejezet. Logikai m veletek, kvantorok 3-1

Logika es sz am ıt aselm elet I. r esz Logika Negyedik el oad as 1/26

Halmazelmélet és logika

Logika és számításelmélet. 2011/11 11

Diszkrét matematika I.

Logika és informatikai alkalmazásai

Logika és informatikai alkalmazásai

Automatikus tételbizonyítás

Predikátumkalkulus. 1. Bevezet. 2. Predikátumkalkulus, formalizálás. Predikátumkalkulus alapfogalmai, formalizálás, tagadás, logikailag igaz formulák.

Ítéletkalkulus. 1. Bevezet. 2. Ítéletkalkulus

Diszkrét matematika 1. középszint

Predikátumkalkulus. Predikátumkalkulus alapfogalmai, formalizálás, tagadás, logikailag igaz formulák. Vizsgáljuk meg a következ két kijelentést.

Az informatika logikai alapjai

ÍTÉLETKALKULUS (NULLADRENDŰ LOGIKA)

Logika kiskáté. Mihálydeák Tamás és Aszalós László

Matematikai logika és halmazelmélet

Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI. Pécsi Tudományegyetem, Bevezetés

Diszkrét matematika I.

1. Tétel - Az ítéletkalkulus alapfogalmai

1. Az elsőrendű logika szintaxisa

Logika es sz am ıt aselm elet I. r esz Logika 1/36

Elsőrendű logika. Mesterséges intelligencia március 28.

Logika és informatikai alkalmazásai

Logika és informatikai alkalmazásai kiskérdések február Mikor mondjuk, hogy az F formula a G-nek részformulája?

Logika kiskáté. Mihálydeák Tamás és Aszalós László

Dr. Jelasity Márk. Mesterséges Intelligencia I. Előadás Jegyzet (2008. október 6) Készítette: Filkus Dominik Martin

A matematika nyelvér l bevezetés

A matematika alapjai 1 A MATEMATIKA ALAPJAI. Pécsi Tudományegyetem, 2006

Az informatika logikai alapjai 1

Ítéletkalkulus. 1. Bevezet. 2. Ítéletkalkulus

Alapfogalmak-szemantika

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

A matematika nyelvéről bevezetés

1. A matematikai logika alapfogalmai. 2. A matematikai logika műveletei

Memo: Az alábbi, "természetes", Gentzen típusú dedukciós rendszer szerint készítjük el a levezetéseket.

1.1. Alapfogalmak. Vektor: R 2 beli elemek vektorok. Pl.: (2, 3) egy olyan vektor aminek a kezdo pontja a (0, 0) pont és a végpontja a

A matematikai logika alapjai

5. A kiterjesztési elv, nyelvi változók

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Logika

A logikai következmény

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

2. Ítéletkalkulus szintaxisa

2014. szeptember 24. és 26. Dr. Vincze Szilvia

Logika és informatikai alkalmazásai

Logika és informatikai alkalmazásai

Logika és informatikai alkalmazásai

A TANTÁRGY ADATLAPJA

Logika és informatikai alkalmazásai

Logika és informatikai alkalmazásai

Logika és informatikai alkalmazásai

AZ INFORMATIKA LOGIKAI ALAPJAI

Logika és informatikai alkalmazásai. Wednesday 17 th February, 2016, 09:03

Magyarok: Bereczki Ilona, Kalmár László, Neumann, Péter Rózsa, Pásztorné Varga Katalin, Urbán János, Lovász László

LOGIKA. Magyarok: Bereczki Ilona, Kalmár László, Neumann, Péter Rózsa, Pásztorné Varga Katalin, Urbán János, Lovász László.

LOGIKA ÉS ÉRVELÉSTECHNIKA

Logika es sz am ıt aselm elet I. r esz Logika M asodik el oad as 1/26

1. Logikailag ekvivalens

Logika gyakorlat 08. Nincs olyan változó, amely szabadon és kötötten is előfordul.

Logikai ágensek. Mesterséges intelligencia március 21.

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

2. Logika gyakorlat Függvények és a teljes indukció

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai

1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata.

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.

Logikai alapok a programozáshoz

Matematikai logika Arisztotelész Organon logika feladata Leibniz Boole De Morgan Frege dedukció indukció kijelentésnek

Mit tanultunk eddig? Mit tanultunk eddig? Mit tanultunk eddig? Mit tanultunk eddig? 4/14/2014. propozicionális logikát

Ésik Zoltán (SZTE Informatikai Tanszékcsoport) Logika a számtastudományban Logika és informatikai alkalmazásai Varterész Magdolna, Uni-Deb

A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a

LOGIKA ÉS ÉRVELÉSTECHNIKA

DISZKRÉT MATEMATIKA. Elsőrendű Logika. Minden madár gerinces.

Felmentések. Logika (1. gyakorlat) 0-adrendű szintaktika 2009/10 II. félév 1 / 21

Logika és informatikai alkalmazásai

Matematikai logika NULLADRENDŰ LOGIKA

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Deníciók és tételek a beugró vizsgára

DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes

Programok értelmezése

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált

Intelligens Rendszerek I. Tudásábrázolás formális logikával

1. Algebrai alapok: Melyek műveletek az alábbiak közül?

Itt és a továbbiakban a számhalmazokra az alábbi jelöléseket használjuk:

Átírás:

LOGIKA hetkoznapi jelentese: a rendszeresseg, kovetkezetesseg szinonimaja { Ez logikus beszed volt. { Nincs benne logika. { Mas logika szerint gondolkodik. tudomanyszak elnevezese, melynek feladata a helyes kovetkeztetes { fogalmanak szabatos meghatarozasa, { torvenyeinek feltarasa. Kovetkeztetes gondolati eljaras adott ismeretek =) uj ismeret # nyelvi # megnyilvanulas kijelent}o mondatok kijelent}o mondat premisszak konkluzio

Helyes a kovetkeztetes (koznapi ertelemben!), ha a premisszak igaz volta eseten a konkluzio is igaz. Pelda. (premissza:) Imrenek tud}ogyulladasa van. (konkluzio:) Imrenek antibiotikumot kell szednie. A logika nem tartalmaz egyetlen mas szaktudomanyt sem, gy nem ismerheti ezek eredmenyeit!! potpremissza: Ha valakinek tud}ogyulladasa van, antibiotikumot kell szednie. Pelda. (1. premissza:) Erika Sandornak a felesege. (2. premissza:) Katalin Sandornak az edesanyja. (konkluzio:) Katalin Erikanak az anyosa. A logika nem vizsgalja a (magyar) nyelv szavainak jelenteset!! potpremissza: Ha x y-nak a felesege, es z y-nak az edesanyja, akkor z x-nek az anyosa.

Egy kovetkeztetes logikai vizsgalata soran mit hasznalunk fel a mondatokbol? logikai szavakat: nem : negacio es ^ konjunkcio vagy _ diszjunkcio ha :::akkor implikacio minden 8 univerzalis kvantor van 9 egzisztencialis kvantor a mondatreszek, szavak jelentese kozombos, helyettuk { termek { atomi formulak + LOGIKAI NYELV Miert van szuksege a logikanak sajat nyelvre? a logika nem tartozhat egyetlen nemzeti nyelvhez sem; a termeszetes nyelvek nyelvtani rendszerei kulonboz}oek es bonyolultak; a logika sajat nyelveben minden (abc, nyelvtani szabalyok, kategoriak) a logika feladatanak ellatasat szolgalhatja.

Logikai nyelv szintaktika! szemantika Alltas: olyan kijelent}o mondat, melyr}ol modunkban all egyertelm}uen eldonteni, hogy igaz vagy hamis. Pelda. alltas nem alltas 5 < 3 x < 3 XV. Lajos parokat viselt. A most uralkodo francia kiraly parokat visel. Peter hazudik. Most epp hazudok. A Fold a Nap korul kering. Nincs elet a Foldon kvul. Klasszikus szemantika: (Arisztotelesz) az ellentmondastalansag elve: Egyetlen alltas sem lehet igaz is es hamis is. a kizart harmadik elve: Nincs olyan alltas, amely sem nem igaz, sem nem hamis. modern logika - szimbolikus logika - mat. logika

Logikai szavak A negacio: Alfred diak. Alfred nem diak. DE: A javaslatot az ellenzek buktatta meg. A javaslatot nem az ellenzek buktatta meg. Nem igaz, hogy a javaslatot az ellenzek buktatta meg. A konjunkcio: Amalia es Bella kerteszek. "Lement a nap. De csillagok nem jottenek." (Pet}o) Juli is, Mari is tancol. Kevesre vitte, noha becsuletesen dolgozott. DE: Amalia es Bella testverek. A diszjunkcio: Esik az es}o, vagy fuj a szel. Vagy busszal jott, vagy taxival.

Az implikacio: Ha megtanulom a lecket, akkor otosre felelek. Csak akkor felelek otosre, ha megtanulom a lecket. Gyakran az egyszer}u alltasok szerkezetet is fel kell tarnunk. Dezs}o postas. Amalia es Bella testverek. Az Erzsebet hd osszekoti Budat Pesttel. predikatum + objektumnevek Az univerzalis kvantor: Amalia mindegyik testvere lany. Az egzisztencialis kvantor: Amalianak van testvere.

Az els}orend}u logikai nyelv Allando szimbolumok logikai jelek: : ^ _ 8 9 elvalaszto jelek: ( ) ; Denialando szimbolumok (negy halmazba sorolva) =< Srt; Cnst; F n; P r > Srt, elemei a tpusok. Minden 2 Srt tpushoz tartoznak valtozok: x 1;x 2;::: Cnst konstansok halmaza. Minden c 2 Cnst valamely 2 Srt tpushoz tartozik. Fn fuggvenyszimbolumok halmaza. Minden f 2 Fn fuggvenyszimbolumot a ( 1 ; 2 ;:::; k!) un. alakja jellemez. (k 1) Pr 6= ; predikatumszimbolumok halmaza. Minden P 2 Pr predikatumszimbolumhoz egy ( 1 ; 2 ;:::; k ) alakot rendelunk. (k 0)

Peldak logikai nyelvekre 1. A Geom nyelv Srt = fpt (ponttpus);et (egyenestpus);st (sktpus)g pt tpusu valtozok: A; B; C;::: et tpusu valtozok: e;f;g;::: st tpusu valtozok: a, b, c,::: Cnst = ; Fn = ; Pr = fp (pt;pt) ;Q (pt;et) ;R (pt;st) g Megjegyzes: a geometriaban a P; Q; R szimbolumok helyett rendre az =; 2; 2 jeleket szokas inkabb hasznalni. 2. Az Ar nyelv Srt = fszt (szamtpus)g szt tpusu valtozok: x; y; z; : : : Cnst = fnullag Fn = ff (szt!szt) ;g (szt;szt!szt) ;h (szt;szt!szt) g Pr = fp (szt;szt) g Megjegyzes: az aritmetikaban a g es h szimbolumok helyett a + es jeleket, P helyett pedig az = jelet szokas hasznalni. 3. nulladrend}u nyelvek =< ;; ;; ;;Pr >, ahol minden P 2 Pr alakja (), azaz P propozcionalis bet}u.

tpusu termek c, ha c 2 Cnst; x, ha x valtozo; logikai kifejezesek f(t 1 ;t 2 ;:::;t k ), ha f ( 1; 2 ;:::; k!) 2 Fn es t 1 1 ;t 2 2 ;:::;t k k termek; minden term { vagy a nyelv konstansa, vagy valtozoja, { vagy az indukcios lepes veges sokszori alkalmazasaval bel}oluk nyerhet}o. formulak P (t 1 ;t 2 ;:::;t k ) atomi formula, ha P ( 1; 2 ;:::; ) k 2 Pr es t 1 1 ;t 2 2 ;:::;t k k termek; (A ^ B); (A _ B); (A B) es :A; ha A es B formulak; 8xA es 9xA; ha A formula es x tetsz}oleges valtozo; minden formula { vagy atomi formula, { vagy az indukcios lepesek veges sokszori alkalmazasaval atomi formulakbol megkaphato.

Peldak logikai kifejezesekre 1. A Geom nyelv kifejezesei: termek: A; f; b atomi formulak: a geometriaban szokasosan P (A; B) (A = B) Q(B;e) (B 2e) R(A;a) (A2 a) formula: 9A(Q(A;e)^Q(A;f)) 9A((A 2 e)^(a 2 f)) 2. Az Ar nyelv kifejezesei: termek: az arimetikaban szokasosan nulla; x; f(nulla) g(x; f(nulla)) (x + f(nulla)) h(f(f(x));x) (f(f(x)) x) atomi formula: P (g(x; f(nulla)); nulla) formula: ((x+f(nulla)) = nulla) 9uP (g(x; u);y) 9u((x + u) = y)

kozvetlen reszterm valtozonak es konstansnak nincs kozvetlen resztermje; az f(t 1 ;t 2 ;:::;t k ) term kozvetlen resztermjei a t 1 ;t 2 ;:::;t k termek. Jeloles: 4 Q ^ _ 8 9 kozvetlen reszformula atomi formulanak nincs kozvetlen reszformulaja; a :A kozvetlen reszformulaja az A formula; az (A4B) formula kozvetlen reszformulai az A es a B formulak; a QxA formula kozvetlen reszformulaja az A formula. reszkifejezes maga a kifejezes; a kozvetlen reszkifejezesek; reszkifejezesek reszkifejezesei.

funkcionalis osszetettseg (jele: ~ l(t)) ha t = c 2 Cnst; vagy t = x, akkor ~ l(t) *) 0; ~ l(f(t 1 ;t 2 ;:::;t k )) *) P k i=1 ~ l(t i ) + 1: logikai osszetettseg (jele: l(a)) ha A atom, l(a) *) 0; l(:a) *) l(a) + 1; l(a4b) *) l(a) + l(b) + 1; l(qxa) *) l(a) + 1: A formulak lerasakor szokasos rovidtesek: formula-kombinaciok helyett specialis jelolesek; Pelda. (A B) *) ((A B) ^ (B A)) kuls}o zarojelek elhagyasa; logikai jelek prioritasa csokken}o sorrendben: 8 9 : _^ azonos prioritas eseten a jobbra allo az er}osebb; jobbrol allo pont jeloli a zarojelen beluli leggyengebb logikai jelet.

Qx A " " kvantoros el}otag a kvantor hataskore Egy valtozo valamely el}ofordulasa a formulaban kotott: Egy atomi formula egyetlen valtozoja sem kotott. A :A-ban x egy adott el}ofordulasa kotott, ha A-ban x-nek ez az el}ofordulasa kotott. Az A4B-ben x egy adott el}ofordulasa kotott, ha ez az el}ofordulas vagy A-ban van, es ott kotott, vagy B-ben van, es ott kotott. A QxA-ban x minden el}ofordulasa kotott, es az x-t}ol kulonboz}o y egy adott el}ofordulasa kotott, ha ez az el}ofordulas A-ban kotott. Egy valtozo valamely el}ofordulasa a formulaban szabad, ha nem kotott. Ha egy valtozonak egy formulaban van szabad el}ofordulasa, akkor ez a valtozo a formula parametere. Jelolesek: Fv(A): az A formula parametereinek a halmaza. A(x 1 ;x 2 ;:::;x n ): formula, melyben legfeljebb az x 1 ;x 2 ;:::;x n valtozok lehetnek parameterek.

A kotott valtozok atnevezese A QxA-ban x-nek a Q kvantor altal kotott minden el}ofordulasat az x-szel azonos tpusu y valtozora cserelve kapunk egy QyA x y formulat. Milyen formulat eredmenyez ez az atalaktas? Az Ar nyelven a termeszetes szamok halmazaban a 9x(u + x = v); 9y(u + y = v); 9z(u + z = v) formulak mindegyike a (u v) relaciot fejezi ki. Vigyazat!! A 9u(u + u = v) formula viszont v parossagat alltja. A jelentesvaltozas oka a valtozoutkozes. Pelda: 8x(P (x; z) 9yR(x; y)) Az x y-ra atnevezesevel a formulat kapjuk!! 8y(P (y; z) 9yR(y; y))

A kotott valtozok szabalyosan vegrehajtott atnevezese Ha a QxA formulaban az y nem parameter, es az x valtozo egyetlen Q altal kotott el}ofordulasa sem tartozik egyetlen y-t kot}o kvantor hataskorebe sem, akkor a QxA-bol a QyA x y formulat az x kotott valtozo szabalyosan vegrehajtott atnevezesevel kaptuk. Az A es A 0 kongruens formulak, ha egymastol csak kotott valtozok szabalyosan vegrehajtott atnevezeseben kulonboznek. Jelolese: A A 0 A kongruencia egy nyelv formulai halmazaban reexv, szimmetrikus es tranzitv relacio. Osztalyozast general: az egy kongruenciaosztalyba tartozo formulak kozott a logikaban nem teszunk kulonbseget.

Hogyan donthetjuk el, hogy ket formula kongruense? a formula osszetettsege szerinti indukcioval: { Egy atomi formula egyetlen mas formulaval sem kongruens, csak onmagaval. { :A :A 0, ha A A 0. { A 4 B A 0 4 B 0, ha A A 0 es B B 0. { QxA QyA 0, ha minden z-re, mely kulonbozik QxA es QyA 0 (kotott es szabad) valtozoitol, A x z A 0 y z. a formula vazaval { rajzoljuk be a formulaban a kotesi viszonyokat; { hagyjuk el az osszekotott valtozokat. Ket formula pontosan akkor lesz egymassal kongruens, ha megegyez}o a vazuk.

Egy formula valtozo-tiszta, ha benne a kotott valtozok nevei kulonboznek a szabad valtozok neveit}ol; barmely ket kvantor kulonboz}o nev}u valtozokat kot meg. Lemma. Legyen A egy formula es S valtozoknak egy veges halmaza. Ekkor konstrualhato olyan valtozo-tiszta A 0 formula, hogy A A 0, es A 0 egyetlen kotott valtozojanak neve sem eleme S-nek.

A szabad valtozok helyettestese termekkel Az Ar nyelvben a termeszetes szamok halmazaban szeretnenk kifejezni az (x z z) relaciot. Ha az (x y)-t kifejez}o 9u(x + u = y) formulaban y helyere zz-t helyettestunk, a kvant formula megkaphato. Vigyazat! 9u(x + u = z z) Ha az (x z u) relaciot akarjuk kifejezni hasonlo modon eljarva, nem a kvant formulat, hanem az 9u(x + u = z u) kapjuk. A problema oka a valtozoutkozes. Megoldas: Nevezzuk at a kotott valtozot peldaul w-re, es csak utana hajtsuk vegre a termhelyettestest: 9w(x + w = z u)

A formalis helyettestes Egy x valtozonak es egy vele megegyez}o tpusu t termnek a parosat bindingnek nevezzuk. Jelolese: x=t. A formalis helyettestes bindingek egy = fx 1 =t 1 ;x 2 =t 2 ;:::;x k =t k g halmaza, ahol x i 6= x j ; ha i 6= j (i; j = 1; 2;:::;k; k 0): A helyettestest megadhatjuk meg tablazattal: = 0 B x 1 x 2 ::: x k @ t 2 ::: t k t 1 1 C A; amit egy sorba is rhatunk: = (x 1 ;x 2 ;:::;x k jjt 1 ;t 2 ;:::;t k ): A helyettestes ertelmezesi tartomanya: dom = fx 1 ;x 2 ;:::;x k g ertekkeszlete: rng = ft 1 ;t 2 ;:::;t k g

Egy kifejezesbe valo formalis helyettestes eredmenye Legyen K logikai kifejezes, = fx 1 =t 1 ;x 2 =t 2 ;:::;x k =t k g formalis helyettestes. Az x i valtozok osszes K-beli szabad el}ofordulasat helyettestsuk egyidej}uleg K- ban a t i termekkel. Az gy kapott kifejezes a K- ba valo formalis helyettestesenek eredmenye. Jelolese: K; vagy K x 1;:::;x k t 1 ;:::;t k Egy kifejezesbe valo formalis helyettestes eredmenyenek meghatarozasa: x = 8 >< >: x ha x 62 dom (x) ha x 2 dom f(t 1 ;t 2 ;:::;t k ) = f(t 1 ;t 2 ;:::;t k ) P (t 1 ;t 2 ;:::;t k ) = P (t 1 ;t 2 ;:::;t k ) (:A) = :(A) (A4B) = A4B (QxA) = Qx(A(, x)), ahol, x azt a helyettestest jeloli, melyre dom (, x) = (dom ) n fxg; es (, x)(z) = (z) minden z 2 dom (, x)-re.

Egy kifejezes szamara megengedett helyettestes megengedett a K kifejezes szamara, ha egyetlen x i 2 dom -nak egyetlen K-beli szabad el}ofordulasa sem esik a (x i ) term valamely valtozoja szerinti kvantor hataskorebe. Pelda. A 9u(x + u = y) formula szamara fy=z zg megengedett, de fy=z ug nem. Annak meghatarozasa, hogy egy helyettestes megengedett-e egy kifejezes szamara: Termek es atomi formulak szamara minden megengedett. :A szamara megengedett, ha megengedett A szamara. A4B szamara megengedett, ha megengedett mind A, mind B szamara. QxA szamara megengedett, ha {, x megengedett A szamara, es { egyetlen z 2 Fv(QxA) \ dom eseten sem szerepel x a (z) termben.

A szabalyos helyettestes Legyen K egy kifejezes, es egy helyettestes. Keressunk K-val kongruens olyan K 0 kifejezest, mely szamara a helyettestes megengedett. Ekkor a K 0 kifejezes a szabalyos helyettestesenek eredmenye K-ba. Jelolese: [K]. A szabalyos helyettestes eredmenyenek meghatarozasa: Ha K term vagy atomi formula, akkor [K] = K. [(:A)] = :[A] [(A4B)] = [A]4[B] { Ha egyetlen z 2 Fv(QxA) \ dom eseten sem szerepel x a (z) termben, akkor [(QxA)] = Qx[A(, x)]. { Ha van olyan z 2 Fv(QxA) \ dom, hogy x parameter (z)-ben, akkor valasszunk egy uj valtozot, peldaul u-t, mely nem szerepel sem QxA-ban, sem -ban, es [(QxA)] = Qu[(A x u )(, x)].

A logikai nyelv klasszikus szemantikaja Az =< Srt; Cnst; F n; P r > els}orend}u logikai nyelv I interpretacioja (modellje, algebrai strukturaja) egy olyan I =< Srt; d d Cnst; Fn; d Pr d > fuggvenynegyes, melyben dom Srt d = Srt; es Srt d : 7! D, ahol a D objektumtartomany a tpusu objektumok nemures halmaza; dom Cnst d d = Cnst; es a Cnst : c 7! ~c fuggveny olyan, hogy ha a c tpusu konstans, akkor ~c 2 D ; dom Fn d = Fn; es az Fn d : f 7! f ~ fuggveny minden f ( 1; 2 ;:::; k!) fuggvenyszimbolumhoz olyan ~f fuggvenyt rendel, melyben dom f ~ = D 1 D 2 :::D k, es rng f ~ = D, azaz ~f : D 1 D 2 :::D k!d ; dom d Pr = Pr; es a d Pr : P 7! ~ P fuggveny olyan, hogy a P ( 1; 2 ;:::; k ) (k 1) predikatumszimbolum eseten, ~P : D 1 D 2 :::D k!f0;1g, ha pedig P propozcionalis bet}u, akkor ~ P vagy 0, vagy 1.

Legyen az nyelv I interpretaciojaban D *) [ 2Srt d D n f~cj Cnst(c) = ~c; c 2 Cnstg: B}ovtsuk ki a nyelvet az objektumtartomanyok objektumait jelol}o uj konstansokkal: ahol (D) =< Srt; Cnst(D); F n; P r >; Cnst(D) *) Cnst[faja az a 2 D-hoz rendelt uj szimbolumg: Az (D) nyelv zart logika kifejezeseit I-beli ertekelhet}o kifejezeseinek nevezzuk. Az (D) nyelv formalis helyettesteset I-beli ertekel}o helyettestesenek nevezzuk, ha Fv(rng ) = ;: Egy ertekel}o helyettestes minden K kifejezes szamara megengedett. Ha a ertekel}o helyettestes es a K kifejezes olyanok, hogy F v(k) dom ; akkor K ertekelhet}o kifejezese -nak, es -at K I-beli ertekelesenek nevezzuk.

Pelda. 1. Az Ar nyelv termeszetes interpretacioja d Srt(szt) = N d Cnst(nulla) = 0 d Fn(f) = ~ f; ahol ~ f : N! N ; es ~f(n) = n + 1; ( ha n 2 N ) d Fn(g) = ~g; ahol ~g : N N! N ; es ~g(n; m) = n + m; ( ha n; m 2 N ) d Fn(h) = ~ h; ahol ~ h : N N! N ; es ~h(n; m) = n m; ( ha n; m 2 N ) d Pr(P) = P; ~ ahol P ~ : N N! f0; 1g; es (ha n; m 2 N ); ~P (n; m) = 8 >< >: 1 ha n = m 0 egyebkent 2. A Subset nyelv Srt = frh (egy alaphalmaz reszhalmazai) g rh tpusu valtozok: x; y; z ::: Cnst = ; Fn = ; Pr = fp (rh;rh) g A Subset nyelv egy interpretacioja d Srt(rh) = f a fpiros, kek, zoldg alaphalmaz reszhalmazai g d Pr(P) = ~ P;ahol, ha S; Z az alaphalmaz ket reszhalmaza ~P (S; Z) = 8 >< >: 1 ha S Z 0 egyebkent

Legyen I egy interpretacioja. Az tpusu, ertekelhet}o termenek erteke I- ben egy D -beli objektum. Jelolese: jtj I { Ha d Cnst(c) = ~c, akkor jcj I *) ~c. { Ha a 2 Cnst(D) az a 2 D objektumhoz rendelt uj a szimbolum, akkor jaj I *) a. { Ha f(t 1 ;t 2 ;:::;t k ) ertekelhet}o term, ahol a t 1 ;t 2 ;:::;t k termek ertekei I-ben rendre jt 1 j I ; jt 2 j I ;:::;jt k j I, es ~ f = d Fn(f), akkor jf(t 1 ;t 2 ;:::;t k )j I *) ~ f(jt 1 j I ;jt 2 j I ;:::;jt k j I ). Az ertekelhet}o formulajanak erteke I-ben vagy 0, vagy 1. Jelolese: jjcjj I { Ha P (t 1 ;t 2 ;:::;t k )ertekelhet}o atomi formula, ahol a t 1 ;t 2 ;:::;t k termek ertekei I-ben rendre jt 1 j I ; jt 2 j I ;:::;jt k j I, es ~ P = d Pr(P), akkor jjp (t 1 ;t 2 ;:::;t k )jj I *) ~ P (jt 1 j I ; jt 2 j I ;:::;jt k j I ).

{ Ha :A ertekelhet}o formula, ahol az A formula erteke jjajj I, akkor jj:ajj I *) 1, jjajj I : { Ha A4B ertekelhet}o formula, ahol az A es B formulak ertekei rendre jjajj I ; jjbjj I, akkor jja ^ Bjj I jja _ Bjj I jja Bjj I *) minfjjajj I ; jjbjj I g *) maxfjjajj I ; jjbjj I g *) maxf1, jjajj I ; jjbjj I g { Ha 8xA ertekelhet}o formula, ahol x tpusu valtozo, akkor 8 >< 1; ha minden a 2 D jj8xajj I *) eseten jja x ajj I = 1; >: 0 egyebkent. { Ha 9xA ertekelhet}o formula, ahol x tpusu valtozo, akkor 8 >< 1; ha van olyan a 2 D jj9xajj I *) hogy jja x ajj I = 1; >: 0 egyebkent. Legyen I egy interpretacioja es A ertekelhet}o formula. Az A formula igaz I-ben (jelolese: I j= A), amikor jjajj I = 1, egyebkent hamis I-ben.

Pelda. 1. Az Ar nyelv termeszetes interpretaciojaban jnullaj = 0 jf(nulla)j = ~ f(jnullaj) = 1 j(f(1) + 3)j = ~g (jf(1)j; j3j) = ~g ~ f(j1j); 3! = = ~g ~ f(1); 3! = ~g(2; 3) = 5 jj ((f(nulla) 3) = (f (f(nulla)) + 1)) jj = ~P (jf(nulla) 3j; jf (f(nulla)) + 1j) = ~P ~ h (jf(nulla)j; j3j) ; ~g (jf (f(nulla)) j; j1j)! = ~P ~ h(1; 3); ~g ~ f(jf(nulla)j); 1!! = ~ P 3; ~g( ~ f(1); 1)! = ~P (3; ~g(2; 1)) = ~ P (3; 3) = 1 jj9u ((3 + u) = 4) jj = 1; mert az 1 2 N olyan, hogy jj ((3 + u) = 4) u 1 jj = jj (3 + 1 = 4) jj = ~ P (j3 + 1j; j4j) = ~P (~g(j3j;j1j) ; 4) = ~ P (~g(3; 1); 4) = ~ P (4; 4) = 1

2. A Subset nyelv el}obbi interpretaciojaban jjp (fpiros,zoldg; fpiros,kekg)jj = ~P (jfpiros,zoldgj; jfpiros,kekgj) = ~P (fpiros,zoldg; fpiros,kekg) = 0 jj8yp(y; fpiros,kek,zoldg)jj = 1; mert minden S reszhalmazra jjp (S; fpiros,kek,zoldg)jj = ~ P (jsj; jfpiros,kek,zoldgj) = ~P (S; fpiros,kek,zoldg) = 1 jj8yp(y; fpiros,kekg)jj = 0; mert peldaul az fzoldg reszhalmazra jjp (fzoldg; fpiros,kekg)jj = ~ P (jfzoldgj; jfpiros,kekgj) = ~P (fzoldg; fpiros,kekg) = 0 3. A Subset nyelv egy olyan interpretaciojaban, ahol d Srt(rh) = ffpiros, kek, zold, sargag reszhalmazai g jj8yp(y; fpiros,kek,zoldg)jj = 0; mert peldaul a fsargag reszhalmazra jjp (fsargag; fpiros,kek,zoldg)jj = ~P (jfsargagj; jfpiros,kek,zoldgj) = ~P (fsargag; fpiros,kek,zoldg) = 0

Lemma. Legyen I az nyelv egy interpretacioja es r egy olyan term, melyben legfeljebb egy parameter, a tpusu x szerepel. Legyen a t tpusu ertekelhet}o term erteke jtj I. Ekkor jrfx=tgj I = jrfx=jtj I gj I ; azaz egy ertekelhet}o term erteke csak resztermjei ertekeit}ol fugg. Lemma. Legyen I az nyelv egy interpretacioja es A egy olyan formula, melyben legfeljebb egy parameter, a tpusu x szerepel. Legyen a t tpusu ertekelhet}o term erteke jtj I. Ekkor I j= [Afx=tg] akkor es csak akkor, ha I j= Afx=jtj I g:

Logikai torveny, logikai ellentmondas Az nyelv egy A formulaja logikai torveny, ha barmely I interpretaciojaban es A barmely I-beli ertekelese eseten I j= A. Jelolese: j= A. Az nyelv egy A formulaja logikai ellentmondas, ha barmely I interpretaciojaban es A barmely I- beli ertekelese eseten A hamis. Jelolese: =j A. Lemma. =j A akkor es csak akkor, ha j= :A. Az nyelv egy A formulaja kielegthet}o, ha van -nak olyan I interpretacioja es ertekelese, amelyre I j= A. Lemma. Az A formula pontosan akkor kielegthet}o, ha nem igaz, hogy j= :A. Az A es B formulak logikailag ekvivalensek, ha j= A B: Jelolese: A B.

A Boole-kombinacio Legyenek A 1 ;A 2 ;:::;A n ; n 1 az nyelv formulai. A 1 ;A 2 ;:::;A n Boole-kombinacioja A i barmelyik 1 i n-re; :B, ha B A 1 ;A 2 ;:::;A n Boole-kombinacioja; Boole- B4C, ha ha B es C is A 1 ;A 2 ;:::;A n kombinacioi. Pelda. 8xP (x) _ 9yQ(x; y) a 8xP (x) es a 9yQ(x; y) Boole-kombinacioja. A Quine-tablazat Legyen B az A 1 ;A 2 ;:::;A n Boole-kombinacioja. Kesztsuk el a kovetkez}o, 2 n kulonboz}o sort tartalmazo tablazatot: A 1 A 2 :::::: A n,2 A n,1 A n B 0 0 :::::: 0 0 0 0 0 :::::: 0 0 1 0 0 :::::: 0 1 0 0 0 :::::: 0 1 1.. ::::::... 1 1 :::::: 1 1 1

Megjegyzes: A sorok az A 1 ;A 2 ;:::;A n formulak osszes kulonboz}o lehetseges ertekeit tartalmazzak, fuggetlenul attol, hogy van-e olyan interpretacio es kozos ertekeles, melyre ilyen ertekek adodnanak. Olyan interpretacio es kozos ertekeles viszont nincs, ahol a formulak ertekei rendre ne lennenek megtalalhatok valamely sorban. Toltsuk ki a B alatti f}ooszlopot: minden sorban szamoljuk ki B erteket a kombinalotenyez}ok sorbeli ertekeinek fuggvenyeben. A Boole-kombinacio propozcionalis tautologia, ha a Quine-tablaja f}ooszlopaban csupa 1 ertek van. Lemma. Ha egy Boole-kombinacio propozcionalis tautologia, akkor logikai torveny. Lemma. Ha a Boole-kombinalo tenyez}ok propozcionalis bet}uk, es a Boole-kombinacio logikai torveny, akkor propozcionalis tautologia.

Pelda. 1. Vizsgaljuk az (A B) :(A ^ :B) formulat, mint az A es B formulak Boole-kombinaciojat. (A B) : (A ^ : B) 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1 (A B) : (A ^ : B) 0 1 0 1 1 0 0 1 0 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 1 1 1 1 1 1 0 0 1 A Boole-kombinacio propozcionalis tautologia, tehat a formula logikai torveny. 2. Dontsuk el, hogy A^:A logikai ellentmondas-e? : (A ^ : A) 0 0 1 1 : (A ^ : A) 1 0 0 1 0 1 1 0 0 1 :(A^:A) propozcionalis tautologia, azaz logikai torveny, tehat A ^ :A logikai ellentmondas.

3. Vizsgaljuk a 9x(A(x)^B(x)) 9xA(x)^9xB(x) formulat, mint a 9x(A(x) ^ B(x)); 9xA(x) es a 9xB(x) formulak Boole-kombinaciojat. 9x(A(x) ^ B(x)) 9xA(x) ^ 9xB(x) 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 9x(A(x) ^ B(x)) 9xA(x) ^ 9xB(x) 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 1 1 1 1 A Boole-kombinacio nem propozcionalis tautologia, pedig logikai torveny.

4. Lassuk be, hogy j= 9x(A(x) ^ B(x)) 9xA(x) ^ 9xB(x): Bizonytas: Tekintsunk egy tetsz}oleges I interpretaciot es ertekelest. Vizsgalnunk kell a jj (9x(A(x) ^ B(x)) 9xA(x) ^ 9xB(x)) jj I = jj (9x(A(x) ^ B(x))) (9xA(x))^(9xB(x))jj I = jj (9x(A(x)(, x) ^ B(x)(, x)) 9x(A(x)(, x)) ^ 9x(B(x)(, x))jj I = jj9x(a 0 (x) ^ B 0 (x)) 9xA 0 (x) ^ 9xB 0 (x)jj I erteket. Ha jj9x(a 0 (x) ^ B 0 (x))jj I = 0; akkor az implikacio erteke 1; Ha jj9x(a 0 (x) ^ B 0 (x))jj I = 1; akkor van olyan a 2 D x ; hogy jj (A 0 (x) ^ B 0 (x)) x a jj I = jja 0 (x) x a ^ B 0 (x) x ajj I = 1: Ekkor viszont jja 0 (x) x ajj I = 1 es jjb 0 (x) x ajj I = 1; azaz jj9xa 0 (x)jj I = 1 es jj9xb 0 (x)jj I = 1; gy jj9xa 0 (x) ^ 9xB 0 (x)jj I = 1: Mivel az implikacio utotagja 1 ertek}u, az implikacio erteke most is 1.

5. Lassuk be, hogy 6j= 9xA(x) ^ 9xB(x) 9x(A(x) ^ B(x)): Bizonytas: Tekintsunk egy olyan I interpretaciot, melyben d Srt( x ) = f;; fpirosgg d Pr(P) = P; ~ ahol, ha S; Z 2 f;; fpirosgg ~P (S; Z) = A(x) *) 8uP (x; u) B(x) *) 8uP (u; x) 8 >< >: 1 ha S Z 0 egyebkent Ebben az interpretacioban jj9xa(x)jj I = 1 es jj9xb(x)jj I = 1; mert peldaul jja(;)jj I = 1 es jjb(fpirosg)jj I = 1: Ugyanakkor jj9x(a(x) ^ B(x))jj I = 0; mert jja(;) ^ B(;)jj I = 0 es jja(fpirosg) ^ B(fpirosg)jj I = 0:

6. A 9xA(x) ^9xB(x) 9x(A(x) ^ B(x)) formula kielegthet}o. Bizonytas: Legyen most az interpretacionk az el}oz}ohoz hasonlo, csak A(x) *) 8u (P (u; x) (8zP(u; z) _ (P (u; x) ^ P (x; u)))) : Ebben az interpretacioban jj9xa(x)jj I = 1; mert jja(fpirosg)jj I = 1, es jj9x(a(x) ^ B(x))jj I = 1; mert jja(fpirosg) ^ B(fpirosg)jj I = 1:

Nehany fontos logikai torveny asszociativitas A ^ (B ^ C) (A ^ B) ^ C A _ (B _ C) (A _ B) _ C kommutativitas A ^ B B ^ A disztributivitas A _ B B _ A A ^ (B _ C) (A ^ B) _ (A ^ C) A _ (B ^ C) (A _ B) ^ (A _ C) idempotencia A ^ A A A _ A A eliminacio A ^ (B _ A) A A _ (B ^ A) A De Morgan torvenyei :(A ^ B) :A _ :B :(A _ B) :A ^ :B

negacio az implikacioban :(A B) A ^ :B A :A :A :A A A j= :(A :A) logikai jelek kozotti osszefuggesek kontrapozcio ketszeres tagadas A ^ B :(:A _ :B) A ^ B :(A :B) A _ B :(:A ^ :B) A _ B :A B A B :(A ^ :B) A B :A _ B A B :B :A ::A A implikacios el}otagok felcserelese A (B C) B (A C) implikacio konjunktv el}otaggal A ^ B C A (B C)

kiszamtasi torvenyek (> *) C _:C;? *) C ^:C) A^> A A^?? A_> > A_? A A > > A? :A > A A? A > az azonossag torvenye b}ovtes el}otaggal j= A A j= A (B A) az implikacio ondisztributivitasa esetelemzes tranzitivitas A (B C) (A B) (A C) A _ B C (A C) ^ (B C) j= (A B) ^ (B C) (A C) reductio ad absurdum j= (A B) ^ (A :B) :A az ellentmondasbol barmi kovetkezik j= A (:A B)

a kizart harmadik torvenye j= A _ :A az ellentmondas torvenye Pierce-torveny ktv kvantorok Ha x 62 Fv(A), akkor j= :(A ^ :A) j= ((A B) A) A 8xA A 9xA A az egyforma kvantorok helycsereje 8x8yA(x; y) 8y8xA(x; y) 9x9yA(x; y) 9y9xA(x; y) kvantor-csere implikacioban j= 8xA(x) 9xA(x) j= 9y8xA(x; y) 8x9yA(x; y) De Morgan kvantoros torvenyei :9xA(x) 8x:A(x) :8xA(x) 9x:A(x)

kvantor-felcsereles 9xA(x) :8x:A(x) 8xA(x) :9x:A(x) kvantorok egyoldali kiemelese Ha x 62 Fv(A), akkor A ^ 8xB(x) 8x(A ^ B(x)) A ^ 9xB(x) 9x(A ^ B(x)) A _ 8xB(x) 8x(A _ B(x)) A _ 9xB(x) 9x(A _ B(x)) A 8xB(x) 8x(A B(x)) A 9xB(x) 9x(A B(x)) 8xB(x) A 9x(B(x) A) 9xB(x) A 8x(B(x) A) kvantorok ketoldali kiemelese 8xA(x) ^ 8xB(x) 8x(A(x) ^ B(x)) 9xA(x) _ 9xB(x) 9x(A(x) _ B(x)) j= 8xA(x) _ 8xB(x) 8x(A(x) _ B(x)) j= 9x(A(x) ^ B(x)) 9xA(x) ^ 9xB(x) kongruens formulak ekvivalenciaja Ha A B; akkor A B:

helyettesteskor fellep}o kvantorok kvantorhataskor-atjeloles Ha y 62 Fv(A), akkor j= 8xA [A x t ] j= [A x t ] 9xA 8xA 8y[A x y ] 9xA 9y[A x y ] kvantor-redukcio Ha x es y azonos tpusu valtozok, akkor j= 8x8yA 8x[A y x ] j= 9x[A y x ] 9x9yA helyettestes ekvivalens formulakba Ha A B; akkor [A x t ] [Bx t ]

A logikai kovetkezmeny Legyenek A 1 ;A 2 ;:::;A n (n 1) es B az nyelv tetsz}oleges formulai. A B formula logikai (szemantikai) kovetkezmenye az A 1 ;A 2 ;:::;A n formulaknak, ha minden olyan I interpretaciojaban es az A 1 ;A 2 ;:::;A n es B formulak tetsz}oleges olyan I-beli ertekelese eseten, amikor akkor I j= A 1 ;I j= A 2 ;:::;I j= A n ; I j= B: Jelolese: A 1 ;A 2 ;:::;A n j= B: Lemma. (a) A 1 ;A 2 ;:::;A n j= B akkor es csak akkor, ha j= A 1 ^ A 2 ^ :::^A n B. (b) A 1 ;A 2 ;:::;A n j= B akkor es csak akkor, ha =j A 1 ^ A 2 ^ :::^A n^:b. Lemma. A B pontosan akkor, ha A j= B es B j= A.

Pelda. Bizonytsuk be, hogy helyesen kovetkeztettunk: P 1 Nehany republikanus kedvel minden demokratat. P 2 Nincs olyan republikanus, aki szeretne a szocialistakat. K Tehat egyik demokrata sem szocialista. Kesztsunk alkalmas logikai nyelvet. Legyenek x; y; z; : : : embereket jelol}o valtozok; R(x) jelentse, hogy x republikanus; D(x) jelentse, hogy x demokrata; S(x) jelentse, hogy x szocialista; K(x; y) jelentse, hogy x kedveli y-t. Ezen e nyelven formalizalva az alltasokat: P 1 9x(R(x) ^ 8y(D(y) K(x; y))) P 2 :9x(R(x) ^ 9z(S(z) ^ K(x; z))) K :9y(D(y) ^ S(y)) Rogztsunk tetsz}olegesen egy olyan I interpretaciot, melyben jjp 1 jj I = 1 es jjp 2 jj I = 1: Ekkor jjp 1 jj I = 1 miatt van olyan a 2 D; hogy jj(r(x) ^ 8y(D(y) K(x; y))) x ajj I = 1; azaz jjr(a)jj I = 1 es minden b 2 D-re jj(d(y) K(a;y)) y bjj I = 1:

jjp 2 jj I = 1 miatt viszont minden b 2 D-re, gy eppen a-ra is jj(r(x) ^ 9z(S(z) ^ K(x; z))) x ajj I = 0; azaz mivel jjr(a)jj I = 1; ezert jj9z(s(z) ^ K(a;z)))jj I = 0: Ez azt jelenti, hogy minden b 2 D-re jj(s(z) ^ K(a;z))) z bjj I = 0: Ez a konjunkcio vagy azert 0, mert b olyan, hogy jjs(b)jj I = 0; de ekkor jj(d(y) ^ S(y)) y bjj I = 0; vagy azert, mert b olyan, hogy jjk(a;b)jj I = 0: Ilyen b-re viszont, mivel jj(d(y) K(a;y)) y bjj I = 1; jjd(b)jj I = 0; tehat ilyenkor is jj(d(y) ^ S(y)) y bjj I = 0: Azaz minden b 2 D-re jj(d(y)^s(y)) y bjj I = 0; tehat jj9y(d(y) ^ S(y))jj I = 0; azaz jj:9y(d(y) ^ S(y))jj I = 1:

A logikai kalkulus Fel lehet epteni a logikat szemantikai fogalmakra hivatkozas nelkul is: szintaktika szemantika logikai nyelv interpretacio formula logikai ertek levezethet}oseg kovetkezmeny A levezethet}oseg fogalmat kalkulus megadasaval denialhatjuk. Egy kalkulus megadasakor felsoroljuk az alapsemait es a levezetesi szabalyait. Ekkor denialhato a, = fa 1 ;A 2 ;:::;A n g (n0) formulahalmazbol valo levezethet}oseg fogalma: ha B alapformula, vagy B 2,; akkor levezethet}o,-bol; jelolese:, ` B ha,-bol levezet}o B 1 ;B 2 ;:::; akkor a levezetesi szabalyok megmondjak, hogy mely tovabbi formulak lesznek meg levezethet}ok. Egy kalkulus helyes, ha, ` B; akkor, j= B: Egy kalkulus teljes, ha, j= B; akkor, ` B: Egy kalkulus adekvat, ha helyes is, teljes is.

Egy logikai rendszer megalkotasakor el}oszor egy szemantikai rendszert denialunk, majd megkserlunk ehhez legalabb helyes, de ha lehet, adekvat logikai kalkulust szerkeszteni. Alapsemak: 1. A (B A) A predikatumkalkulus 2. (A (B C)) ((A B) (A C)) 3. A (B A ^ B) 4. A ^ B A 5. A ^ B B 6. (A C) ((B C) (A _ B C)) 7. A A _ B 8. B A _ B 9. (A B) ((A :B) :A) 10. ::A A 11. 8xA(x) A(x) x t 12. 8x(C A(x)) (C 8xA(x)); x 62 Fv(C) 13. A(x) x t 9xA(x) 14. 8x(A(x) C) (9xA(x) C); x 62 Fv(C)

Levezetesi szabalyok: modus ponens A A B B altalanostasi szabaly A semakban es szabalyokban az A; B; C formulakkal; x valtozoval; t x-szel azonos tpusu termmel A 8xA helyettesthet}o be. Az alapsemakbol gy alapformulakat kapunk. Lemma. A predikatumkalkulus minden alapformulaja logikai torveny. Lemma. A; A B j= B Lemma. Ha, j= A(x) es x 62 Fv(,); akkor, j= 8xA(x):

A levezethet}oseg A predikatumkalkulusban a formula-fa es magassaganak induktv dencioja: minden A formula 1 magassagu formula-fa, melyben A also formula, es nincs nala feljebb lev}o formula; ha D 1 m 1 es D 2 m 2 magassagu olyan formulafak, melyben az also formulak A es A B alakuak, akkor a D 1 D 2 B alakzat is formula-fa, melyben B also formula, melynel D 1 es D 2 minden formulaja feljebb van, es a formula-fa magassaga max fm 1 ;m 2 g+1; ha D m magassagu olyan formula-fa, amelyben az also formula A, akkor a D 8xA alakzat is formula-fa, melyben 8xA also formula, melynel D minden formulaja feljebb van, es a formula-fa magassaga m + 1.

A formulafaban azon formulak, melyeknel nincs feljebb lev}o: alapformulak, hipotezisek, vagy nylt premisszak. Pelda. Q(x) P 8x(Q(x) P ) 8x(Q(x) P ) (9xQ(x) P ) 9xQ(x) P 3 magassagu formulafa also formula: 9xQ(x) P alapformula: 8x(Q(x) P ) (9xQ(x) P ) hipotezis: Q(x) P Levezetes-fa egy formula-fa, melyben ha A-bol az altalanostas szabalyaval akarjuk a 8xA-t nyerni, akkor x nem parameter egyetlen a 8xA-nal feljebb lev}o hipotezisben sem. A, veges formulahalmazbol a B formula levezethet}o, ha keszthet}o olyan levezetes-fa, melyben B also formula, es a hipotesisek mind elemei,-nak. Jelolese:, ` B (szekvencia) Tetel. A predikatumkalkulus adekvat logikai kalkulus.

A termeszetes levezetes Az azonossag torvenye,;a`a Strukturalis szabalyok b}ovtes, ` A,;B `A felcsereles,;b;c;`a,;c;b;`a sz}uktes,;b;b;`a,;b;`a vagas,`a ;A`B,;`B

Logikai szabalyok BEVEZET ES implikacio,;a`b,`ab konjunkcio, ` A, ` B, ` A ^ B diszjunkcio, ` A, ` A _ B ELT AVOL IT AS,`A,`AB,`B,;A;B `C,;A^B `C,;A`C,;B `C,;A_B `C,`B,`A_B negacio,;a`b,;a`:b,`:a ekvivalencia,;a`b,;b `A,`AB,`::A, ` A,`A,`AB,`B,`B,`AB,`A