11. A FÖLD FORGÁSA, AZ ÁLTALÁNOS PRECESSZIÓ

Hasonló dokumentumok
6. A FÖLD TENGELYKÖRÜLI FORGÁSA.

A FÖLD PRECESSZIÓS MOZGÁSA

A FÖLD PRECESSZIÓS MOZGÁSÁNAK FIZIKAI ALAPJAI. Völgyesi Lajos *

A csillagképek története és látnivalói február 14. Bevezetés: Az alapvető égi mozgások

A FÖLD PRECESSZIÓS MOZGÁSA

A Hamilton-Jacobi-egyenlet

Mechanika. Kinematika

Az éggömb. Csillagászat

Mit nevezünk nehézségi erőnek?

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

MateFIZIKA: Pörgés, forgás, csavarodás (Vektorok és axiálvektorok a fizikában)

IMPULZUS MOMENTUM. Impulzusnyomaték, perdület, jele: N

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ

2. előadás: A Föld és mozgásai

7. GRAVITÁCIÓS ALAPFOGALMAK

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Tömegvonzás, bolygómozgás

Kozmikus geodézia MSc

1. Feladatok a dinamika tárgyköréből

ÉGITESTEK MOZGÁSA, ÉGI KOORDINÁTA- RENDSZEREK NAVIGÁCIÓS ÖSSZEFÜGGÉSEI BEVEZETÉS ÉGITESTEK NAVIGÁCIÓS TRANSZFORMÁCIÓI

Képlet levezetése :F=m a = m Δv/Δt = ΔI/Δt

Bevezetés az elméleti zikába

A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN

A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN

Egyszerű számítási módszer bolygók és kisbolygók oályáj ának meghatározására

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)

W = F s A munka származtatott, előjeles skalármennyiség.

EGY ABLAK - GEOMETRIAI PROBLÉMA

A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN

Egy pont földfelszíni helyzetét meghatározzák: a pont alapfelületi földrajzi koordinátái a pont tengerszint feletti magassága

Gnädig Péter: Golyók, labdák, korongok és pörgettyűk csalafinta mozgása április 16. Pörgettyűk különböző méretekben az atomoktól a csillagokig

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

A II. kategória Fizika OKTV mérési feladatainak megoldása

Tömegpontok mozgása egyenes mentén, hajítások

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk

Elektromágnesség tesztek

A bifiláris felfüggesztésű rúd mozgásáról

Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika

Merev testek kinematikája

3. tétel Térelemek távolsága és szöge. Nevezetes ponthalmazok a síkon és a térben.

Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása.

Kerék gördüléséről. A feladat

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika

Chasles tételéről. Előkészítés

GLOBÁLIS HELYMEGHATÁROZÁS

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)

Naprendszer mozgásai

Kifejtendő kérdések december 11. Gyakorló feladatok

Amikor leszáll az éj.

EGYSZERŰ GÉPEK. Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét.

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra

Mérések és Megfigyelések Csillagászat. Süli Áron ELTE TTK FFI Csill. Tsz. adjunktus

Munka, energia Munkatétel, a mechanikai energia megmaradása

Hidrosztatika. Folyadékok fizikai tulajdonságai

Geodéziai alapmunkálatok BSc

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

Mérések állítható hajlásszögű lejtőn

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.

A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS-

1 2. Az anyagi pont kinematikája

Ábragyűjtemény levelező hallgatók számára

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

Q 1 D Q 2 (D x) 2 (1.1)

Mûszertan

Pálya : Az a vonal, amelyen a mozgó tárgy, test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

20. tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek.

ÉGI MECHANIKA HOROSZKÓP KISZÁMOLÁSHOZ

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel

1. ábra. 24B-19 feladat

Newton törvények és a gravitációs kölcsönhatás (Vázlat)

A lengőfűrészelésről

KOVÁCS BÉLA, MATEMATIKA I.

4. Előadás: Kapcsoló és tájékozó mérések, számítások

Egy kinematikai feladat

Mérések és Megfigyelések. Csillagászat

Fizika alapok. Az előadás témája

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

Szeretném felhívni figyelmüket a feltett korábbi vizsgapéldák és az azokhoz tartozó megoldások felhasználásával kapcsolatban néhány dologra.

Mechanika. I. előadás február 25. Mechanika I. előadás február / 31

Összeállította: dr. Leitold Adrien egyetemi docens

Mechanika, dinamika. p = m = F t vagy. m t

Egybevágósági transzformációk. A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá.

3. Vertikális napóra szerkesztése (2009. September 11., Friday) - Szerzõ: Ponori Thewrewk Aurél

DINAMIKA ALAPJAI. Tömeg és az erő

3. Az alábbi adatsor egy rugó hosszát ábrázolja a rá ható húzóerő függvényében:

A mechanika alapjai. A pontszerű testek dinamikája

FIZIKA II. Dr. Rácz Ervin. egyetemi docens

Rezgések és hullámok

KOVÁCS BÉLA, MATEMATIKA I.

Periódikus mozgás, körmozgás, bolygók mozgása, Newton törvények

Az elliptikus hengerre írt csavarvonalról

28. Nagy László Fizikaverseny Szalézi Szent Ferenc Gimnázium, Kazincbarcika február 28. március osztály

Hogyan lehet meghatározni az égitestek távolságát?

Koordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira:

Átírás:

11. A FÖLD FORGÁSA, AZ ÁLTALÁNOS PRECESSZIÓ A Föld saját tengelye körüli forgását az ω r forgási szögsebesség-vektora jellemzi, ezért a Föld forgásának leírásához ismernünk kell a szögsebesség-vektor térbeli irányát és nagyságát, valamint a forgástengely és a Föld tömegének relatív helyzetét, mint az idő függvényét. A tengelykörüli forgás során a szögsebesség-vektor térbeli iránya és nagysága állandóan változik. A változásokat az 1. ábrán láthatjuk összefoglalva. Az ω r szögsebességvektor abszolút értékének (illetve a napok hosszának) változásaival korábban foglalkoztunk. Az ω r szögsebesség-vektor térbeli irányának változásait két csoportra oszthatjuk: a precessziós és a nutációs mozgás által okozott változásokra. Az alábbiakban a fizikai alapfogalmak tisztázását követően a Föld precessziós mozgásával foglalkozunk. 1. ábra. A Föld forgási szögsebesség-vektorának tér- és időbeli változása. A pörgettyűk Pörgettyűnek nevezzük minden olyan tetszőleges alakú és tömegeloszlású merev testet, amely egyetlen rögzített pontja körül szabadon foroghat, vagy általánosabban pörgettyűnek nevezzük a rögzített pont nélküli testet akkor is, ha a tömegközéppontja körüli forgása a tömegközéppont mozgásától függetlenül tárgyalható. Két alapvetően fontos fajtája a 2. ábrán látható ún. súlyos és az erőmentes pörgettyű. A súlyos pörgettyű a súlypontjára ható forgatónyomaték hatására megfelelő ω r forgási szögsebesség esetén precessziós mozgást végez, azaz a forgástengely a testtel együtt egy kúppalást mentén ω r << ω r pr szögsebességgel körbevándorol. Az erőmentes pörgettyű ettől abban különbözik, hogy a külső erőknek a súlypontjára vonatkozó forgatónyomatéka zérus (ilyen pl. a súlypontjában alátámasztott pörgettyű). Az erőmentes pörgettyű nutációs mozgást végez, amennyiben a forgástengelye és a szimmetriatengelye nem esik egybe. Ekkor a test forgástengelye folyamatosan változ- 1

tatja a testhez viszonyított helyzetét, a forgástengely a test szimmetriatengelye körül kúppalást mentén körbevándorol. A pörgettyűk dinamikai viselkedését a tömegeloszlásuk, azaz a tehetetlenségi nyomaték tenzoruk főátlójában lévő A, B és C fő tehetetlenségi nyomatékok szabják meg. Az A = B = C (pl. homogén gömb, vagy kocka) esetén gömbi pörgettyűről-, az A = B C (pl. homogén forgásszimmetrikus testek) esetén szimmetrikus pörgettyűről- az általános esetben A B C esetén pedig asszimetrikus pörgettyűről beszélünk. 2. ábra. A súlyos és az erőmentes pörgettyű. Szimmetrikus súlyos pörgettyű precessziós mozgása Minden merev test forgása során a forgási tehetetlensége miatt igyekszik megtartani forgási állapotát, más szóval az impulzusnyomaték megmaradási törvénye értelmében bármely zárt rendszer N impulzusnyomatéka állandó, tehát időbeli változása: d N = 0. (1) dt Ha a forgó merev testre külső erők is hatnak, akkor az impulzusnyomaték megváltozása a külső erők M forgatónyomatékával egyenlő: dn = M. (2) dt A forgatónyomaték vektora az F erő és az r erőkar vektoriális szorzata: M = F r (3) az impulzusnyomaték pedig a mechanikából ismert összefüggés szerint: N = I ω r (4) ahol I a merev test tehetetlenségi nyomaték tenzora, ω r pedig a forgási szögsebesség vektora. Behelyettesítve a (3) és a (4) összefüggést a (2 )-be: 2

d dt I ω r = F r Mivel adott merev test esetén I = áll., ezért az I kiemelhető a differenciálási jel elé, tehát (5) az dω I = F r dt formában is írható. Ebből viszont már közvetlenül látható, hogy külső forgatónyomaték hatására a nehézségi erőtérben megfelelően gyorsan forgó merev testek (az ún. súlyos pörgettyűk) ω r szögsebesség vektorának térbeli iránya folyamatosan változik; az ω r vektor mindenkor az F és az r irányára merőleges irányban mozdul el. Ennek megfelelően a 3. ábrán látható ferde tengelyű gyorsan forgó pörgettyű (pl. a mindenki által jól ismert játék: a búgócsiga) nem dől el, hanem a forgástengelye függőleges tengelyű körkúp palástja mentén állandó ω pr << ω precessziós szögsebességgel lassan körbevándorol. A r r pörgettyű forgástengelyének ezt a mozgását precessziós mozgásnak nevezzük. (5) (6) 3. ábra. A súlyos pörgettyű precessziós mozgása. A luniszoláris precesszió Alkalmazzuk az eddigi megfontolásainkat a Föld esetére! Földünk forgástengelye a külső erők hatására a fentiekben tárgyalt súlyos pörgettyű mozgásához teljesen hasonló mozgást végez, a különbség mindössze annyi, hogy a Föld esetében az ω r vektor iránya (a forgástengely körbevándorlásának iránya) ellentétes. Ennek oka az, hogy a 3. ábrán látható pörgettyűre olyan irányú forgatónyomaték hat, ami a forgástengelyét fekvő helyzetbe igyekszik hozni; a Föld esetében viszont a Napnak és a Holdnak az egyenlítői tömegtöbbletre gyakorolt vonzása olyan erőpárt hoz létre, amely a Föld forgástengelyének irányát az ekliptika síkjának normálisa irányába felállítani igyekszik. 3

Ezek után vizsgáljuk meg kissé részletesebben a Föld precessziós mozgását és ennek okát. A Föld jó közelítéssel forgási ellipszoid alakú, melynek az egyenlítői sugara (fél nagytengelyének hossza) mintegy 21 km-rel nagyobb a sarkok felé mérhető távolságnál (a fél kistengelyének hosszánál). Ugyanakkor a Föld egyenlítői síkja mintegy 23.5 fokkal hajlik a Föld pályasíkjához (azaz az ekliptika síkjához), amelyben a Nap, és amelynek közelében a Hold és valamennyi bolygó található. A Föld tömegeloszlásának a gömbszimmetrikus tömegeloszláshoz viszonyított eltérése miatt főleg a Hold és a Nap olyan forgatónyomatékot fejt ki a Föld egyenlítői tömegtöbbletére, amely ezt az ekliptika síkjába igyekszik beforgatni, azaz a forgástengelyt az ekliptika normálisának irányába igyekszik állítani. Ha a Föld nem forogna, akkor ez be is következne - pontosabban már régen bekövetkezett volna. A Föld azonban saját tengelye körül kellőképpen gyorsan forog, ezért a forgatónyomaték hatására a bemutatott ún. súlyos pörgettyű mozgásához hasonló precessziós mozgást végez. Egyelőre az egyszerűség kedvéért vizsgáljuk meg csupán a Nap tömegvonzásából adódó forgatónyomaték hatását. A Föld lényegében a Nap tömegvonzási erőterében végzi a keringését és dinamikus egyensúlyban van; azaz a Napnak a Föld tömegközéppontjára ható F 0 tömegvonzásával a Föld Nap körüli keringéséből származó az F 0 erővel egyenlő nagyságú, de ellentétes irányú FK keringési centrifugális erő tart egyensúlyt. Az F K keringési centrifugális erő a Nap-Föld közös tömegközéppontja körüli excenter mozgás következtében a Föld minden pontjában azonos irányú és egyenlő nagyságú (VÖLGYESI, 1999). A gömbszimmetrikus tömegeloszlástól tapasztalható eltérés miatt osszuk a Földet a 4. ábrán látható belső gömbszimmetrikus tömegtartományra és az egyenlítő menti gyűrűszerű részre; majd ezt a gyűrűt vágjuk a forgástengelyen átmenő és a rajz síkjára merőleges síkkal két további tömegrészre. A Naphoz közelebb eső gyűrűrész tömegközéppontja legyen P 1, a távolabbi részé pedig P 2. A Napnak a Föld gömbszimmetrikus tömegtartományára ható tömegvonzását úgy értelmezhetjük, mintha ez csak a gömb O tömegközéppontjában lépne fel. A gyűrűrészekre ható vonzóerőt viszont a P 1 és a P 2 tömegközéppontban ható vonzóerőkkel helyettesíthetjük. A Newton-féle tömegvonzási törvénynek megfelelően a P1 -ben nagyobb, a P2 -ben pedig kisebb vonzóerő hat, mint az O tömegközéppontban. Mivel azonban a keringési centrifugális erő mindhárom pontban ugyanakkora, ezért a P1 -ben és a P 2 -ben a kétfajta erő nincs egymással egyensúlyban; a P1 -ben a vonzóerő, a P 2 -ben a keringési centrifugális erő nagyobb. A két erő eredője a P 1 pontban: F = F 1 FK, a P 2 pontban pedig F = F K F2. Ez a két egyenlő nagyságú, de ellentétes irányú erő a 4. ábra síkjából merőlegesen kifelé mutató M forgatónyomatékvektort eredményez. A Naphoz hasonlóan a Hold is forgatónyomatékot fejt ki a Földre, sőt a Hold által keltett forgatónyomaték a Hold közelsége miatt jóval nagyobb. Az ily módon keletkező forgatónyomatékok együttes hatásának eredménye a Földnek a 4. ábrán bemutatott precessziós mozgása: az ún. luniszoláris precesszió. 4

4. ábra. A Föld forgástengelyének precessziós mozgása (luniszoláris precesszió). A luniszoláris precesszió a csillagászati megfigyelések szerint elsősorban abban nyilvánul meg, hogy az égi pólus (a Föld forgástengelyének és az éggömbnek a metszéspontja) az ekliptika pólusa körül lassan körbevándorol. Mivel az égi egyenlítő síkja merőleges a Föld forgástengelyére, ezért a forgástengely irányának elmozdulása az égi egyenlítő síkjának elfordulásával is jár. Ennek megfelelően az 5. ábrán látható módon az ekliptika és az égi egyenlítő síkjának metszésvonalában levő tavaszpont és őszpont is elmozdul az ekliptika mentén, mégpedig a Nap járásával ellentétes irányban. A tavaszpont eltolódása a luniszoláris precesszió hatására, nyugati irányban mintegy 50.37"/év. 5

5. ábra. A tavaszpont precessziós vándorlása. Összefoglalva az eddigieket: a luniszoláris precesszió során a Föld forgástengelye, az ekliptika és az égi egyenlítő síkja 23.5 o -os hajlásszögének megfelelően, 2 23.5 o = 47 o -os nyílásszögű kúp palástja mentén mozog úgy, hogy egy teljes körüljárást közel 25 730 év alatt végez. Ez az 5. ábra tanúsága szerint azt jelenti, hogy a Föld forgástengelyének északi iránya kb. 5000 évvel ezelőtt az α Draconis csillag közelébe mutatott, az égi pólus jelenleg az α Ursae Minoris (Polaris) közelében van és kb. 5000 év múlva az α Cephei közelében lesz. Így a jelenleg élő generációknak csupán véletlen szerencséje az, hogy az égi északi pólus helyéhez közel viszonylag fényes csillag, a Sarkcsillag található. A planetáris precesszió Mivel a csillagászati koordinátarendszereinkben a tavaszpont helyzete alapvető szerepet játszik, a precesszió következtében fellépő helyváltozásainak ismerete rendkívül fontos. Az előző pontban megállapítottuk, hogy a luniszoláris precesszió hatására a tavaszpont helyzete az ekliptika mentén folyamatosan, évente mintegy 50.37" értékkel nyugati irányban eltolódik. A tavaszpont helyzete azonban nemcsak az égi egyenlítő síkjának elfordulása miatt, hanem az ekliptika síkjának mozgása következtében is változik. A Naprendszer bolygóinak hatására ugyanis a Föld keringési síkja állandóan lassú ingadozásban van a bolygók közepes pályasíkjához képest, tehát ennek következtében lassan változik az ekliptika pólusának helyzete is. Ha az égi pólus mozgását az ekliptika pólusához viszonyítjuk, akkor ennek mozgását is a forgástengely precessziós mozgásaként észleljük. Ezt a jelenséget planetáris precessziónak nevezzük. A planetáris precesszió hatására a tavaszpont direkt irányban - azaz a luniszoláris precesszió hatására bekövetkező elmozdulással ellentétes irányban - évente mintegy -0.11" értékkel tolódik el. 6

A planetáris precessziót tehát az ekliptika síkjának elmozdulása okozza. A planetáris precesszió során az egyenlítő és az ekliptika síkjának hajlásszöge közel 40000 éves periódussal kb. 22 o és 24.5 o között ingadozik. Hatása a 6. ábra segítségével kétféleképpen is megérthető. Egyrészt mivel a precessziós kúp tengelye az ekliptika normálisa, nyilvánvalóan az ekliptika síkjának billegésével az ekliptika normálisa kb. 2.5 fokos nyílásszögű körkúp palástja mentén közel 40000 éves periódussal körbevándorol. Ez a precesszió szemszögéből úgy mutatkozik, mintha az a koordináta irány változtatná folyamatosan a helyzetét, amelyhez a precessziós mozgást viszonyítjuk, vagyis a precessziós kúp tengelyének ezzel a mozgásával 40000 éves periódussal hol kissé szétnyílik, hol kissé összezáródik a precessziós kúp palástja, ily módon a luniszoláris precessziós kúp nyílásszöge nem stabilan 47 fokos, hanem közel 40000 éves periódussal kb. 44 és 49 fok között változik. 6. ábra. A planetáris precesszió. Valójában az történik, hogy az ekliptika síkjának mozgása miatt 40000 éves periódussal folyamatosan más-más irányban látható a Földről a Nap és a Hold, és ezzel a 6. ábra tanúsága szerint folyamatosan változik a P 1 és a P 2 rész-tömegközéppontok távolsága az ekliptika síkjától. Ezzel pedig folyamatosan változik (ingadozik) a precessziós mozgást előidéző forgatónyomaték, mivel folyamatosan változik az erő karja. A luniszoláris és a planetáris precessziós mozgás eredője az általános precesszió, más néven a normálprecesszió. A normálprecessziós mozgás során az ekliptika pólusának billegése miatt az égi pólus nem pontosan az 5. ábra felső részén látható körpálya mentén mozdul el, hanem az állócsillagokhoz viszonyítva a körpályát jól közelítő, de valójában önmagában nem záródó görbe mentén vándorol. A normálprecesszió hatására a tavaszpont az ekliptika mentén évente mintegy 50.26" értékkel nyugati irányban tolódik el; ennek megfelelően egy teljes körüljárás ideje kb. 25786 év, azaz közel 26000 év. 7

A precessziózavar A Hold, a Nap és a bolygók Földhöz viszonyított relatív helyzetváltozásai következtében a Földre időben változó forgatónyomaték hat, ezért a normálprecessziós mozgás különböző rövidebb periódusú ingadozásokat mutat. A forgástengely precessziós mozgásának ezen rövidperiódusú változásait sokan helytelenül csillagászati nutációnak nevezik. A továbbiakban ezt a jelenséget precessziózavarnak tekintjük. A precessziózavar több különböző periódusú és amplitúdójú mozgásból tevődik össze és rakódik rá a hosszúperiódusú (szekuláris) precessziós mozgásra. A Nap és a Föld egymáshoz viszonyított helyzetváltozásai miatt két fontosabb periódusa van. A Nap által a Föld egyenlítői tömegtöbbletére kifejtett forgatónyomaték nagysága a Nap deklinációjának szögétől (a Föld egyenlítő síkja feletti magasságától) o függ. A 4. ábra pl. a téli napforduló helyzetében ábrázolja a Földet, amikor δ = 23.5. o Ekkor és a nyári napforduló napján (amikor δ = +23.5 ) a Nap maximális forgatónyomatékot fejt ki a Földre. A két helyzet között csökken, illetve növekszik a forgatónyomaték. A tavaszi és az őszi napéjegyenlőség pillanatában a Föld két egyenlítő tömegtöbbletének 2. ábrán értelmezett P 1 és P 2 súlypontja azonos távolságra van a Naptól, ekkor tehát a precessziót okozó forgatónyomaték nulla. Ennek megfelelően, a Nap deklinációjának változása miatt, féléves periódussal változik a Föld precessziós mozgása. Ehhez egyéves periódusú precessziós változás is járul, ami annak a következménye, hogy a Föld ellipszis alakú pályán kering a Nap körül és ezáltal egyéves periódussal változik a Naptól mért távolsága, illetve ennek megfelelően a forgatónyomaték. Többek között teljesen hasonló jellegű, de rövidebb periódusú és nagyobb amplitúdójú változásokat okoz a Hold a Föld körüli keringése során. A Hold a Föld körüli pályáját közel 28 nap alatt futja be, ezért a Hold deklinációjának változása miatt adódó precessziós periódus kb. 14 napos, az ellipszis pályán történő keringés miatti változó Föld- Hold távolságból származó periódus pedig 28 napos. Van azonban a Hold mozgásának az eddigieknél jóval fontosabb hatása is. Ez annak a következménye, hogy a Hold nem ugyanabban a síkban kering a Föld körül, mint amelyben a Föld kering a Nap körül. Így a Hold pályasíkja közel 5 o 09' szöget zár be az ekliptika síkjával és a Hold pályasíkjának az ekliptika síkjával alkotott metszésvonala (a holdpálya csomóvonala) az ekliptika síkjában 18.6 éves periódussal hátráló irányban körbevándorol. Ennek következménye a precesszió szempontjából jól látható a 7. ábrán. A hatás kísértetiesen hasonlít a planetáris precesszió 6. ábrán bemutatott hatásához. Valójában itt is az történik, hogy a holdpálya síkjának mozgása miatt 18.6 éves periódussal folyamatosan más-más irányban látható a Földről a Hold, és ezzel a 7. ábra tanúsága szerint folyamatosan változik a P 1 és a P 2 rész-tömegközéppontok távolsága a holdpálya síkjától. Ezzel pedig folyamatosan változik (ingadozik) a precessziós mozgást előidéző forgatónyomaték, mivel folyamatosan változik az erő karja. 8

7. ábra. A precessziózavar lunáris főtagjának hatása. A precessziózavarnak a holdpálya csomóvonalának mozgásából származó tagja sokszorosan nagyobb, mint a precessziót alkotó összes többi ingadozás együttesen, ezért ezt a precessziózavar lunáris főtagjának nevezzük. 8. ábra. A valódi és a közepes forgástengely. A Föld forgási szögsebesség-vektora tehát az ekliptika síkjának a Föld tömegközéppontján átmenő normálisa körül jelenleg kb. 47 o -os közepes csúcsszöggel a 7. illetve a 8. ábrán látható hullámos kúppalást mentén közel 26000 éves periódussal vándorol körbe. Ennek megfelelően az égi pólusok (az északi és a déli pólus) az ekliptika pólusaitól 23.5 o közepes pólustávolságban hullámos körpálya mentén mozognak. A hullámok közül kiemelkedően legnagyobb a precessziózavar főtagjának 18.6 éves periódusú hulláma. Az ekliptika pólusa körül az égi pólusok által leírt precessziós körön a precessziózavar lunáris főtagjának mintegy 26000/18.6 1400 hulláma van. Ezeknek a hullámoknak kb. 9

9" az amplitúdója (ennyi a forgástengely hajlásának ingadozása: az ún. ferdeségi tag), a hullámhossza pedig közel 15.6'. A precessziós mozgást a precessziózavar főtagjával együttesen szokás a 9. ábrán látható ún. precessziós ellipszissel is szemléltetni. (Megjegyezzük, hogy nem tartjuk szerencsésnek a gyakorlatban eddig elterjedt nutációs ellipszis elnevezést, hiszen ennek a nutációhoz semmi köze nincs.) Eszerint az ekliptika pólusa körül 23.5 o pólustávolságban a precessziós ellipszis középpontja vándorol egyenletes sebességgel és tesz meg egy teljes kört 26000 év alatt, miközben a valódi a (pillanatnyi) égi pólus a precessziós ellipszis mentén mozog 18.6 éves periódussal. A precessziós ellipszis 9" távolságú fél nagytengelye mindig az ekliptika pólusa irányába mutat, a 7" távolságú fél kistengelye pedig erre merőleges. 9. ábra. A precessziós ellipszis. A precesszió csillagászati és geodéziai hatása A Föld precessziós mozgása a csillagászati megfigyelések szempontjából abban nyilvánul meg, hogy az égi pólus (a Föld forgástengelyének és az éggömbnek a metszéspontja) az ekliptika pólusa körül lassan körbevándorol. Mivel az égi egyenlítő síkja merőleges a Föld forgástengelyére, ezért a forgástengely irányának elmozdulása az égi egyenlítő síkjának elfordulásával is jár. Ennek megfelelően az 5. ábrán látható módon az ekliptika és az égi egyenlítő síkjának metszésvonalában levő tavaszpont is elmozdul az ekliptika mentén, ami viszont a csillagászatban használatos ekvatoriális (égi egyenlítői) koordinátarendszer kiinduló iránya. Így a normálprecesszió és a precessziózavar az égitestek égi egyenlítői koordinátáinak ( α rektaszcenziójának és δ deklinációjának) folyamatos változását okozzák. Mivel a Föld tömege a forgástengelyével együtt végzi a leírt precessziós mozgásokat, a földfelszíni pontoknak a forgástengelyhez viszonyított földrajzi koordinátái a precessziós mozgástól függetlenek. Így a szintfelületi földrajzi szélesség és hosszúság értékek a normálprecesszió és a precessziózavar hatására nem változnak. 10