A FÖLD PRECESSZIÓS MOZGÁSÁNAK FIZIKAI ALAPJAI. Völgyesi Lajos *
|
|
- Lilla Kelemenné
- 8 évvel ezelőtt
- Látták:
Átírás
1 A FÖLD PRECESSZIÓS MOZGÁSÁNAK FIZIKAI ALAPJAI Völgyesi Lajos * Physical backgrounds of the Earth s precession. Rotation of the Earth is a quite involved process. Deep knowledge of certain areas of physics is indispensable for its understanding and research. It is necessary to clarify the physical elements of rotation of rigid bodies because the usage of elements connecting to precession and nutation by experts are generally not suitable, and are confused. After the discussion some important aspects of rotational mechanics, certain elements of precession of the Earth (lunisolar precession, planetary precession, disturbed precession) will be defined and discussed. A new terminology is proposed, e.g. disturbed precession instead of the widely spreaded deceptive expression astronomical nutation. A Föld meglehetősen bonyolult forgási jelenségeinek megismeréséhez és kutatásához pontos fizikai alapismeretek szükségesek. A szakemberek által a precesszióval kapcsolatosan használt bizonyos fogalmak nem egységes - időnként hibás - használata, a preceszszió és a nutáció jelenségének keveredése szükségessé teszi a fizikai alapfogalmak tisztázását. A tanulmányban a szimmetrikus súlyos pörgettyűk precessziós és a nutációs mozgásának áttekintését követően a Föld precessziós mozgásának részletes ismertetésével foglalkozunk. Az alapfogalmak tisztázását követően javasoljuk a szaknyelvben széleskörűen elterje hibás elnevezések helyett újak, pl. a csillagászati nutáció helyett a precessziózavar fogalmának bevezetését és használatát. Kulcsszavak: a Föld forgása, precesszió, nutáció, luniszoláris precesszió, planetáris precesszió, csillagászati nutáció, normálprecesszió, precessziózavar Szimmetrikus súlyos pörgettyű precessziós mozgása Minden merev test forgása során a forgási tehetetlensége miatt igyekszik megtartani forgási állapotát, más szóval az impulzusnyomaték megmaradási törvénye értelmében bármely zárt rendszer N impulzusnyomatéka állandó, tehát időbeli változása: dn =. (1) Ha a forgó merev testre külső erők is hatnak, akkor az impulzusnyomaték megváltozása a külső erők M forgatónyomatékával egyenlő: dn = M. () A forgatónyomaték vektora az F erő és az r erőkar vektoriális szorzata: M = F r (3) * Budapesti Műszaki és Gazdaságtudományi Egyetem, H-151 Budapest volgyesi@sci.fgt.bme.hu
2 A FÖLD PRECESSZIÓS MOZGÁSÁNAK FIZIKAI ALAPJAI 75 az impulzusnyomaték pedig a mechanikából ismert összefüggés szerint: N (4) = I r ahol I a merev test tehetetlenségi nyomaték tenzora, r pedig a forgási szögsebesség vektora. Behelyettesítve a (3) és a (4) összefüggést a ( )-be: d I r = F r. (5) Mivel adott merev test esetén I = áll., ezért az I kiemelhető a differenciálási jel elé, tehát (5) az d I = F r formában is írható. Ebből viszont már közvetlenül látható, hogy külső forgatónyomaték hatására a nehézségi erőtérben megfelelően gyorsan forgó merev testek (az ún. súlyos pörgettyűk) r szögsebesség vektorának térbeli iránya folyamatosan változik; az r vektor mindenkor az F és az r irányára merőleges irányban mozdul el. Ennek megfelelően az 1. ábrán látható ferde tengelyű gyorsan forgó pörgettyű (pl. a mindenki által jól ismert játék: a búgócsiga) nem dől el, hanem a forgástengelye függőleges tengelyű körkúp palástja mentén állandó pr << precessziós szögsebességgel lassan körbevándorol. A r r pörgettyű forgástengelyének ezt a mozgását precessziós mozgásnak nevezzük. (6) 1. ábra. A súlyos pörgettyű precessziós mozgása. Ettől teljesen független az erőmentes (forgatónyomaték nélküli, súlypontjában alátámasztott) szimmetrikus pörgettyűk nutációs mozgása. A precesszióval ellentétben a nutáció során a test forgástengelye a szimmetriatengely körüli kúppalást mentén vándorol egyen-
3 76 VÖLGYESI L letes sebességgel körbe, amennyiben forgástengely és a szimmetriatengely nem esik egybe (VÖLGYESI, ). Szimmetrikus súlyos pörgettyű mozgásának analitikus tárgyalása A szimmetrikus súlyos pörgettyű mozgásáról az eddigieknél pontosabb képet nyerhetünk az analitikus tárgyalás során. Vizsgáljuk meg a súlyos pörgettyű mozgását abban az esetben, amikor mind a rögzített O pontja, mind az S súlypontja a szimmetriatengelyen van, és jelölje s az OS távolságot. A térben rögzített K ( x, y, z) koordinátarendszer z tengelye mutasson a. ábrán látható módon függőlegesen felfelé, a testhez rögzített K '( x', y', ) rendszer tengelyei pedig mutassanak rendre az A, A, C fő tehetetlenségi nyomatékok irányába. Legyenek a K rendszerben az r forgási szögsebesség-vektor összetevői x', y', és jellemezzük a K rendszer helyzetét a K -ban a. ábrán látható módon a ϑ, ψ, ϕ Euler-féle szögekkel. A feladatunk ezek után a szimmetrikus súlyos pörgettyű mozgásának leírása a K rendszerben.. ábra. A súlyos pörgettyű mozgásának leírásához használt koordináták. A feladat megoldásához induljunk ki az energia megmaradásának törvényéből. Eszerint a súlyos pörgettyűre a forgási és a. ábra szerinti mgs cosϑ potenciális energia összege állandó:
4 A FÖLD PRECESSZIÓS MOZGÁSÁNAK FIZIKAI ALAPJAI 77 ( A + A + C ) + mgs cosϑ áll. 1 x ' y' = (7) Emellett - amint a. ábrán is látható - a nehézségi erő M forgatónyomaték vektora a z és a z ' tengelyre is merőleges, ezért az M -nek e két tengelyre vonatkozó összetevője zérus: M z = (8) és M z ' =. (9) Ebből további fontos összefüggés következik az d A d B d C x y z + ( C B) + ( A C) + ( B A) y x x z z y = M = M = M Euler-féle pörgettyű egyenletek harmadik tagjának felhasználásával. Figyelembe véve a (9)-et, illetve a szimmetria miatti A = B egyenlőséget: amiből a C miatt: z ' d C = x y z = áll. (1) z ' = Ugyanakkor a (8) összefüggésből az impulzusnyomaték megmaradására vonatkozó () összefüggés alapján: N z = áll. K ' koordináta- amiből további fontos megállapítások tehetők, ha ezt a. ábra alapján a irányok szerinti összetevőkre felbontva átírjuk: N z = N x' cos( x', z) + N y' cos( y', z) + N cos(, z) = áll. Ebből az N x' = Ax', N y' = A y' és N = C figyelembe vételével: N = A cos( x', z) + A cos( y', z) + C cos(, z) áll. (11) z x' y' = Fejezzük ki a (11)-ben szereplő iránykoszinuszokat az Euler-féle szögekkel. Megfelelő gömbháromszögtani összefüggések felhasználásával (BUDÓ, 1964) szerint az egyes
5 78 VÖLGYESI L iránykoszinuszok az Euler-féle szögekkel az 1. táblázatban összefoglalt módon fejezhetők ki. (A táblázat alapján pl. cos( x ', z) = sin ϕsin ϑ.) 1. táblázat. Iránykoszinuszok kifejezése az Euler-féle szögekkel. x y z x y z cos ϕ cos ψ sin ϕsin ψ cos ϑ sin ϕcos ψ cosϕsin ψ cos ϑ sin ψ sin ϑ cos ϕsin ψ + sin ϕcos ψ cos ϑ sin ϕsin ψ + cos ϕcos ψ cos ϑ cos ψ sin ϑ sin ϕsin ϑ cos ϕsin ϑ cos ϑ Beírva a (11) összefüggésbe az 1. táblázatból a megfelelő iránykoszinuszokat: N z = A( x' sin ϕsin ϑ + y' cosϕsin ϑ) + C cosϑ = áll. (1) Mivel a testtel együtt forgó K ' koordinátarendszerben az r szögsebesség-vektor összetevői az Euler-féle szögekkel (LANDAU-LIFSIC, 1974; illetve BUDÓ, 1964) szerint az x' y' dϑ = sin ϑsin ϕ + cosϕ dϑ = sin ϑcosϕ sin ϕ dϕ = cosϑ + összefüggésekkel fejezhetők ki, ezért lehetőségünk van a (7), (1) és a (1) összefüggésekben az x', y', szögsebesség összetevőket az Euler-szögek felhasználásával átírni. Így a (7), (1) és a (1) összefüggések: dϑ A sin ϑ + + mgs cosϑ = áll. dϕ cosϑ + = = áll. A sin ϑ + C cosϑ =. áll ahol az első egyenlet áll. értékében már benne szerepel a C z ' is. Ez három egymástól független elsőrendű differenciálegyenlet, amelyekből a három ismereten ϑ ( t), ψ( t), ϕ( t) numerikus integrálással meghatározható, vagyis a súlyos szimmetrikus pörgettyű mozgása a térben rögzített K rendszerben megadható. (13) (14)
6 A FÖLD PRECESSZIÓS MOZGÁSÁNAK FIZIKAI ALAPJAI 79 A (14) differenciálegyenlet rendszer megoldásához először megfelelő kezdeti feltételeket kell választanunk. Kezdeti feltételként válasszuk azt az esetet, amikor a súlyos pörgettyű szimmetriatengelye ϑ szöget zár be a függőleges irányú z tengellyel, és ekkor a pörgettyűnek csak a szimmetriatengelye körül legyen forgási szögsebessége. Vagyis a dϑ dϕ t = idődőpontban : ϑ = ϑ, =, =, =. Beírva a (14)-be a kezdeti feltételeknek megfelelő állandók (sorrendben: mgs cos ϑ, és C cosϑ ) értékét, átrendezés után: dϑ A sin ϑ + = mgs(cosϑ dϕ cosϑ + = A sin ϑ = C (cosϑ cosϑ) -t kifejezve és beírva (15) első egyenletébe, ki- A (15) harmadik egyenletéből a sebb átrendezés után: d ψ / cosϑ). (15) ( cosϑ cosϑ) dϑ cos ϑ cosϑ C = mgs. A A sin ϑ Ennek egy jól közelítő megoldása a megfelelően gyorsan forgó pörgettyűk esetére (BUDÓ, 1964): A mgs sin ϑ C ϑ = ϑ + 1 cos t. (16) C A Bevezetve az pr mgs = C (átlagos precessziós szögsebesség) és az ( = M ) N sin ϑ C nu = (18) A (nutációs szögsebesség) jelöléseket: z (17)
7 8 VÖLGYESI L Ennek felhasználásával: ϑ = ϑ ( cos t) pr + ϑ 1 nu nu = sin. (19) ( 1 t) cos, () pr nu majd integrálással a t = -ra a ψ = ψ kezdeti feltétellel: ψ = ψ + pr sin t Végül a (15) második egyenletéből () helyettesítésével: nu nu t (1) sin nu t ϕ = ϑ t pr cos t () nu Összefoglalva az eddigi eredményeket, a (19), (1) és a () összefüggések a t = időpontban az r szögsebességgel megpörgetett és a ϑ = ϑ, ϕ =, ψ =, d ψ / = Euler-szögeknek megfelelő kezdeti helyzetű súlyos szimmetrikus pörgettyű mozgását írják le a térhez rögzített K inerciarendszerben. A (1) összefüggés azt mutatja, hogy a szimmetriatengely vízszintes vetülete folyamatosan egy irányban mozog a z tengely körül a () szerint pr átlagos precessziós szögsebességgel. Ehhez a (19) szerint hozzájárul egy másik mozgás, ugyanis a szimmetriatengelynek a függőlegessel bezárt ϑ hajlásszöge periodikusan ingadozik a kezdeti ϑ és ettől kissé eltérő érték között. Ennek az ingadozásnak, vagy nutációnak az amplitúdója ( pr / nu ) sin ϑ, szögsebessége pedig nu. A megoldásból világosan látszik, hogy a precesszió annál lassúbb, a nutáció viszont annál gyorsabb és annál kisebb amplitúdójú, minél nagyobb az kezdeti forgási szögsebesség értéke. Mivel (17) szerint a precesszió szögsebessége értékével-, a nutáció amplitúdója viszont (16) szerint értékének négyzetével fordítva arányos, ezért megfelelően nagy forgási szögsebesség esetén a nutáció már alig figyelhető meg, a precesszió látszólag szabályos (pszeudoreguláris precesszió). Fontos megjegyezni, hogy alkalmas kezdőfeltételek mellett szigorúan szabályos precesszió is lehetséges (BUDÓ, 1964). Jól lehet szemléltetni a szimmetrikus súlyos pörgettyű mozgását, ha a pörgettyű alátámasztási pontja köré egységsugarú gömböt képzelünk el, amelynek felületére a pörgettyű szimmetriatengelye felrajzolja a mozgásának megfelelő görbét. Ilyen görbék a (14) differenciálegyenlet-rendszer különböző
8 A FÖLD PRECESSZIÓS MOZGÁSÁNAK FIZIKAI ALAPJAI 81 A, C, mgs, ϑ x', y',, ψ, ϕ, értékű kezdeti feltételek melletti numerikus integrálásával állíthatók elő. Számításainkat a Mathematica szoftver alkalmazásával (BELLOMO, PREZIOSI, ROMANO ) számítógépen végeztük el. A megoldások szerint a pörgettyű szimmetriatengelye minden esetben ciklois-szerű görbéket rajzol az elképzelt gömb felületére, a görbék alakja a kezdeti feltételektől függően hurkolt ciklois, ciklois vagy elnyújtott ciklois lehet. Tisztán szinuszos jellegű görbét a megoldások között nem találunk aminek azért van jelentősége, mert a későbbiekben tárgyalásra kerülő csillagászati nutáció szinuszos változás, ami szintén arra utal, hogy a csillagászati nutáció az elnevezésével ellentétben nem nutáció, hanem precessziós mozgás. A 3. ábrán feltüntetve a ψ, a ϕ és a ϑ Euler-féle szögek időbeli változását is, az egyes oszlopokban a (14) differenciálegyenlet-rendszer megoldásainak három legfontosabb alapesetét szemléltettük. ψ ϕ ϑ ψ ϕ ϑ ψ ϕ ϑ 3. ábra. Szimmetrikus súlyos pörgettyű mozgásának fontosabb alapesetei.
9 8 VÖLGYESI L A luniszoláris precesszió Alkalmazzuk az eddigi elméleti megfontolásainkat a Föld esetére! Földünk forgástengelye a külső erők hatására a fentiekben tárgyalt súlyos pörgettyű mozgásához teljesen hasonló mozgást végez, a különbség mindössze annyi, hogy a Föld esetében az r vektor iránya (a forgástengely körbevándorlásának iránya) ellentétes. Ennek oka az, hogy az 1. ábrán látható pörgettyűre olyan irányú forgatónyomaték hat, ami a forgástengelyét fekvő helyzetbe igyekszik hozni; a Föld esetében viszont a Napnak és a Holdnak az egyenlítői tömegtöbbletre gyakorolt vonzása olyan erőpárt hoz létre, amely a Föld forgástengelyének irányát az ekliptika síkjának normálisa irányába felállítani igyekszik. Ezek után vizsgáljuk meg kissé részletesebben a Föld precessziós mozgását és ennek okát. A Föld jó közelítéssel forgási ellipszoid alakú, melynek az egyenlítői sugara (fél nagytengelyének hossza) mintegy 1 km-rel nagyobb a sarkok felé mérhető távolságnál (a fél kistengelyének hosszánál). Ugyanakkor a Föld egyenlítői síkja mintegy 3.5 fokkal hajlik a Föld pályasíkjához (azaz az ekliptika síkjához), amelyben a Nap, és amelynek közelében a Hold és valamennyi bolygó található. A Föld tömegeloszlásának a gömbszimmetrikus tömegeloszláshoz viszonyított eltérése miatt főleg a Hold és a Nap olyan forgatónyomatékot fejt ki a Föld egyenlítői tömegtöbbletére, amely ezt az ekliptika síkjába igyekszik beforgatni, azaz a forgástengelyt az ekliptika normálisának irányába igyekszik állítani. Ha a Föld nem forogna, akkor ez be is következne - pontosabban már régen bekövetkezett volna. A Föld azonban saját tengelye körül kellőképpen gyorsan forog, ezért a forgatónyomaték hatására a bemutatott ún. súlyos pörgettyű mozgásához hasonló precessziós mozgást végez. Egyelőre az egyszerűség kedvéért vizsgáljuk meg csupán a Nap tömegvonzásából adódó forgatónyomaték hatását. A Föld lényegében a Nap tömegvonzási erőterében kering és dinamikus egyensúlyban van; azaz a Napnak a Föld tömegközéppontjára ható F tömegvonzásával a Föld Nap körüli keringéséből származó - az F erővel egyenlő nagyságú, de a Nappal ellentétes irányú FK keringési centrifugális erő tart egyensúlyt. Az F K keringési centrifugális erő a Nap-Föld közös tömegközéppontja körüli excenter mozgás következtében a Föld minden pontjában azonos irányú és egyenlő nagyságú (VÖLGYESI, 1999). A gömbszimmetrikus tömegeloszlástól tapasztalható eltérés miatt osszuk a Földet a 4. ábrán látható belső gömbszimmetrikus tömegtartományra és az egyenlítő menti gyűrűszerű részre; majd ezt a gyűrűt vágjuk a forgástengelyen átmenő és a rajz síkjára merőleges síkkal két további tömegrészre. A Naphoz közelebb eső gyűrűrész tömegközéppontja legyen P 1, a távolabbi részé pedig P. A Napnak a Föld gömbszimmetrikus tömegtartományára ható tömegvonzását úgy értelmezhetjük, mintha ez csak a gömb O tömegközéppontjában lépne fel. A gyűrűrészekre ható vonzóerőt viszont a P 1 és a P tömegközéppontban ható vonzóerőkkel helyettesíthetjük. A Newton-féle tömegvonzási törvénynek megfelelően a P1 -ben nagyobb, a P -ben pedig kisebb vonzóerő hat, mint az O tömegközéppontban. Mivel azonban a keringési centrifugális erő mindhárom pontban
10 A FÖLD PRECESSZIÓS MOZGÁSÁNAK FIZIKAI ALAPJAI 83 ugyanakkora, ezért a P1 -ben és a P -ben a kétfajta erő nincs egymással egyensúlyban; a P1 -ben a vonzóerő, a P -ben a keringési centrifugális erő nagyobb. A két erő eredője a P 1 pontban: F = F 1 FK, a P pontban pedig F = F K F. Ez a két egyenlő nagyságú, de ellentétes irányú erő a 4. ábra síkjából merőlegesen kifelé mutató M forgatónyomaték-vektort eredményez. 4. ábra. A Föld forgástengelyének precessziós mozgása (luniszoláris precesszió).
11 84 VÖLGYESI L A Naphoz hasonlóan a Hold is forgatónyomatékot fejt ki a Földre, sőt a Hold által keltett forgatónyomaték a Hold közelsége miatt jóval nagyobb. Az ily módon keletkező forgatónyomatékok együttes hatásának eredménye a Földnek a 4. ábrán bemutatott precessziós mozgása: az ún. luniszoláris precesszió. A luniszoláris precesszió a csillagászati megfigyelések szerint elsősorban abban nyilvánul meg, hogy az égi pólus (a Föld forgástengelyének és az éggömbnek a metszéspontja) az ekliptika pólusa körül lassan körbevándorol. Mivel az égi egyenlítő síkja merőleges a Föld forgástengelyére, ezért a forgástengely irányának elmozdulása az égi egyenlítő síkjának elfordulásával is jár. Ennek megfelelően az 5. ábrán látható módon az ekliptika és az égi egyenlítő síkjának metszésvonalában levő tavaszpont és őszpont is elmozdul az ekliptika mentén, mégpedig a Nap járásával ellentétes irányban. A tavaszpont eltolódása a luniszoláris precesszió hatására, nyugati irányban mintegy 5.37"/év. 5. ábra. A tavaszpont precessziós vándorlása. Összefoglalva az eddigieket: a luniszoláris precesszió során a Föld forgástengelye, az ekliptika és az égi egyenlítő síkja 3.5 o -os hajlásszögének megfelelően, 3.5 o = 47 o - os nyílásszögű kúp palástja mentén mozog úgy, hogy egy teljes körüljárást közel 5 73 év alatt végez. Ez az 5. ábra tanúsága szerint azt jelenti, hogy a Föld forgástengelyének északi iránya kb. 5 évvel ezelőtt az α Draconis csillag közelébe mutatott, az égi pólus jelenleg az α Ursae Minoris (Polaris) közelében van és kb. 5 év múlva az α Cephei közelében lesz. Így a jelenleg élő generációknak az éjszakai tájékozódás szempontjából csupán véletlen szerencséje, hogy az égi északi pólus helyéhez közel viszonylag fényes csillag, a Sarkcsillag található. A planetáris precesszió Mivel a csillagászati koordinátarendszereinkben a tavaszpont helyzete alapvető szerepet játszik, a precesszió következtében fellépő helyváltozásainak ismerete rendkívül fontos. Az előző pontban megállapítottuk, hogy a luniszoláris precesszió hatására a tavaszpont helyzete az ekliptika mentén folyamatosan, évente mintegy 5.37" értékkel nyugati irányban eltolódik.
12 A FÖLD PRECESSZIÓS MOZGÁSÁNAK FIZIKAI ALAPJAI 85 A tavaszpont helyzete azonban nemcsak az égi egyenlítő síkjának elfordulása miatt, hanem az ekliptika síkjának mozgása következtében is változik. A Naprendszer bolygóinak hatására ugyanis a Föld keringési síkja állandóan lassú ingadozásban van a bolygók közepes pályasíkjához képest, tehát ennek következtében lassan változik az ekliptika pólusának helyzete is. Ha az égi pólus mozgását az ekliptika pólusához viszonyítjuk, akkor ennek mozgását is a forgástengely precessziós mozgásaként észleljük. Ezt a jelenséget planetáris precessziónak nevezzük. A planetáris precesszió hatására a tavaszpont direkt irányban - azaz a luniszoláris precesszió hatására bekövetkező elmozdulással ellentétes irányban - évente mintegy -.11" értékkel tolódik el. A planetáris precessziót tehát az ekliptika síkjának elmozdulása okozza. A planetáris precesszió során az egyenlítő és az ekliptika síkjának hajlásszöge közel 4 éves periódussal kb. o és 4.5 o között ingadozik. Hatása a 6. ábra segítségével kétféleképpen is megérthető. Egyrészt mivel a precessziós kúp tengelye az ekliptika normálisa, nyilvánvalóan az ekliptika síkjának billegésével az ekliptika normálisa kb..5 fokos nyílásszögű körkúp palástja mentén közel 4 éves periódussal körbevándorol. Ez a precesszió szemszögéből úgy mutatkozik, mintha az a koordináta irány változtatná folyamatosan a helyzetét, amelyhez a precessziós mozgást viszonyítjuk, vagyis a precessziós kúp tengelyének ezzel a mozgásával 4 éves periódussal hol kissé szétnyílik, hol kissé összezáródik a precessziós kúp palástja, ily módon a luniszoláris precessziós kúp nyílásszöge nem stabilan 47 fokos, hanem közel 4 éves periódussal kb. 44 és 49 fok között változik. 6. ábra. A planetáris precesszió Valójában az történik, hogy az ekliptika síkjának mozgása miatt 4 éves periódussal folyamatosan más-más irányban látható a Földről a Nap és a Hold, és ezzel a 6. ábra ta-
13 86 VÖLGYESI L núsága szerint folyamatosan változik a P 1 és a P rész-tömegközéppontok távolsága az ekliptika síkjától. Ezzel pedig folyamatosan változik (ingadozik) a precessziós mozgást előidéző forgatónyomaték, mivel folyamatosan változik az erő karja. A luniszoláris és a planetáris precessziós mozgás eredője az általános precesszió, más néven a normálprecesszió. A normálprecessziós mozgás során az ekliptika pólusának billegése miatt az égi pólus nem pontosan az 5. ábra felső részén látható körpálya mentén mozdul el, hanem az állócsillagokhoz viszonyítva a körpályát jól közelítő, de valójában önmagában nem záródó görbe mentén vándorol. A normálprecesszió hatására a tavaszpont az ekliptika mentén évente mintegy 5.6" értékkel nyugati irányban tolódik el; ennek megfelelően egy teljes körüljárás ideje kb év, azaz közel 6 év. A precessziózavar A Hold, a Nap és a bolygók Földhöz viszonyított relatív helyzetváltozásai következtében a Földre időben változó forgatónyomaték hat, ezért a normálprecessziós mozgás különböző rövidebb periódusú ingadozásokat mutat. A forgástengely precessziós mozgásának ezen rövidperiódusú változásait sokan helytelenül csillagászati nutációnak nevezik. A továbbiakban ezt a jelenséget inkább precessziózavarnak tekintjük. A precessziózavar több különböző periódusú és amplitúdójú mozgásból tevődik össze és rakódik rá a hosszúperiódusú (szekuláris) precessziós mozgásra. A Nap és a Föld egymáshoz viszonyított helyzetváltozásai miatt két fontosabb periódusa van. A Nap által a Föld egyenlítői tömegtöbbletére kifejtett forgatónyomaték nagysága a Nap deklinációjának szögétől (a Föld egyenlítő síkja feletti magasságától) o függ. A 4. ábra pl. a téli napforduló helyzetében ábrázolja a Földet, amikor δ = 3.5. o Ekkor és a nyári napforduló napján (amikor δ = +3.5 ) a Nap maximális forgatónyomatékot fejt ki a Földre. A két helyzet között csökken, illetve növekszik a forgatónyomaték. A tavaszi és az őszi napéjegyenlőség pillanatában a Föld két egyenlítő tömegtöbbletének. ábrán értelmezett P 1 és P súlypontja azonos távolságra van a Naptól, ekkor tehát a precessziót okozó forgatónyomaték nulla. Ennek megfelelően, a Nap deklinációjának változása miatt, féléves periódussal változik a Föld precessziós mozgása. Ehhez egyéves periódusú precessziós változás is járul, ami annak a következménye, hogy a Föld ellipszis alakú pályán kering a Nap körül és ezáltal egyéves periódussal változik a Naptól mért távolsága, illetve ennek megfelelően a forgatónyomaték. Többek között teljesen hasonló jellegű, de rövidebb periódusú és nagyobb amplitúdójú változásokat okoz a Hold a Föld körüli keringése során. A Hold a Föld körüli pályáját közel 8 nap alatt futja be, ezért a Hold deklinációjának változása miatt adódó precessziós periódus kb. 14 napos, az ellipszis pályán történő keringés miatti változó Föld- Hold távolságból származó periódus pedig 8 napos. Van azonban a Hold mozgásának az eddigieknél jóval fontosabb hatása is. Ez annak a következménye, hogy a Hold nem ugyanabban a síkban kering a Föld körül, mint amelyben a Föld kering a Nap körül. Így a Hold pályasíkja közel 5 o 9' szöget zár be az ekliptika síkjával és a Hold pályasíkjának az ekliptika síkjával alkotott metszésvonala (a holdpálya csomóvonala) az ekliptika síkjában 18.6 éves periódussal hátráló irányban körbevándorol. Ennek következménye a precesszió szempontjából jól látható a 7. ábrán. A hatás kísértetiesen hasonlít a planetáris precesszió 6. ábrán bemutatott hatásához. Valójában itt is az történik, hogy a holdpálya síkjának mozgása miatt 18.6 éves peri-
14 A FÖLD PRECESSZIÓS MOZGÁSÁNAK FIZIKAI ALAPJAI 87 ódussal folyamatosan más-más irányban látható a Földről a Hold, és ezzel a 7. ábra tanúsága szerint folyamatosan változik a P 1 és a P rész-tömegközéppontok távolsága a holdpálya síkjától. Ezzel pedig folyamatosan változik (ingadozik) a precessziós mozgást előidéző forgatónyomaték, mivel folyamatosan változik az erő karja. 7. ábra. A precessziózavar lunáris főtagjának hatása. A precessziózavarnak a holdpálya csomóvonalának mozgásából származó tagja sokszorosan nagyobb, mint a precessziót alkotó összes többi ingadozás együttesen, ezért ezt a precessziózavar lunáris főtagjának nevezzük. A Föld forgási szögsebesség-vektora tehát az ekliptika síkjának a Föld tömegközéppontján átmenő normálisa körül jelenleg kb. 47 o -os közepes csúcsszöggel a 7. illetve a 8. ábrán látható hullámos kúppalást mentén közel 6 éves periódussal vándorol körbe. Ennek megfelelően az égi pólusok (az északi és a déli pólus) az ekliptika pólusaitól 3.5 o közepes pólustávolságban hullámos körpálya mentén mozognak. A hullámok közül kiemelkedően legnagyobb a precessziózavar főtagjának 18.6 éves periódusú hulláma. Az ekliptika pólusa körül az égi pólusok által leírt precessziós körön a precessziózavar lunáris főtagjának mintegy 6/ hulláma van. Ezeknek a hullámoknak kb. 9" az amplitúdója (ennyi a forgástengely hajlásának ingadozása: az ún. ferdeségi tag), a hullámhossza pedig közel 15.6'. A precessziós mozgást a precessziózavar főtagjával együttesen szokás a 9. ábrán látható ún. precessziós ellipszissel is szemléltetni. (Megjegyezzük, hogy nem tartjuk szerencsésnek a gyakorlatban eddig elterje nutációs ellipszis elnevezést, hiszen ennek a nutációhoz semmi köze nincs.) Eszerint az ekliptika pólusa körül 3.5 o pólustávolságban a precessziós ellipszis középpontja vándorol egyenletes sebességgel és tesz meg egy teljes kört 6 év alatt, miközben a valódi a (pillanatnyi) égi pólus a precessziós ellipszis
15 88 VÖLGYESI L mentén mozog 18.6 éves periódussal. A precessziós ellipszis 9" távolságú fél nagytengelye mindig az ekliptika pólusa irányába mutat, a 7" távolságú fél kistengelye pedig erre merőleges. 8. ábra. A valódi és a közepes forgástengely. 9. ábra. A precessziós ellipszis. A fenti megfontolásokból, illetve a pólusmozgás fizikai alapjainak tisztázása után (VÖLGYESI, ) világosan látható, hogy a Hold, a Nap és a bolygók Földhöz viszonyított relatív helyzetváltozásai miatt az időben változó forgatónyomaték következtében kialakuló rövidebb periódusú ingadozások nem nevezhetők fizikai értelemben nutációnak. Az érintett égitestek bonyolult mozgása miatt ugyanis a precessziót előidéző forgatónyomaték változik, ami következtében a Föld tömege a hozzá képest rögzített helyzetű forgástengelyével együtt végzi a változó precessziós mozgását. Ezzel szemben a nutációs mozgás során a Föld forgástengelye nem együtt mozog a Föld tömegével, hanem mindenféle forgatónyomaték hatásától függetlenül, a Föld tömege illetve a szimmetriatengelye különválva a forgástengelytől végzi a bonyolult sajátmozgását (ami pusztán abból adódik, hogy a forgás nem a szimmetriatengely körül történik). Egyszerűbben fogalmazva a pre-
16 A FÖLD PRECESSZIÓS MOZGÁSÁNAK FIZIKAI ALAPJAI 89 cessziós mozgás felelősei a Földön kívüli tömegek, a nutációs mozgásért viszont kizárólag a Föld saját tömege (tömegeloszlása) a felelős. Ennélfogva indokoltnak tűnik a félrevezető csillagászati (asztronómiai) nutáció helyett a továbbiakban a precessziózavar fogalmát használni. A precesszió csillagászati és geodéziai hatása A Föld precessziós mozgása a csillagászati megfigyelések szempontjából abban nyilvánul meg, hogy az égi pólus (a Föld forgástengelyének és az éggömbnek a metszéspontja) az ekliptika pólusa körül lassan körbevándorol. Mivel az égi egyenlítő síkja merőleges a Föld forgástengelyére, ezért a forgástengely irányának elmozdulása az égi egyenlítő síkjának elfordulásával is jár. Ennek megfelelően a 5. ábrán látható módon az ekliptika és az égi egyenlítő síkjának metszésvonalában levő tavaszpont is elmozdul az ekliptika mentén, ami viszont a csillagászatban használatos ekvatoriális (égi egyenlítői) koordinátarendszer kiinduló iránya. Így a normálprecesszió és a precessziózavar az égitestek égi egyenlítői koordinátáinak ( α rektaszcenziójának és δ deklinációjának) folyamatos változását okozzák. Mivel a Föld tömege a forgástengelyével együtt végzi a leírt precessziós mozgásokat, a földfelszíni pontoknak a forgástengelyhez viszonyított földrajzi koordinátái a precessziós mozgástól függetlenek. Így a szintfelületi földrajzi szélesség és hosszúság értékek a normálprecesszió és a precessziózavar hatására nem változnak (BIRÓ, 1971). Megjegyzés A Föld forgásával kapcsolatos kutatásaink az MTA Fizikai Geodézia és Geodinamika Kutatócsoport, valamint a T-3813 és a T-3799 sz. OTKA anyagi támogatásával folynak. A támogatást ezúton is köszönjük. Hivatkozások Bellomo N, Preziosi L, Romano A (): Mechanics and Dynamical Systems with Mathematica. Birkhauser, Boston. Biró P (1971): A felszínmozgások vizsgálata és a Föld geodinamikai folyamatai. Geodézia és Kartográfia, Budó Á (1964): Mechanika. Tankönyvkiadó, Budapest. Landau LD, Lifsic EM (1974): Elméleti Fizika I. Tankönyvkiadó, Budapest. Völgyesi L (1999): Geofizika. Műegyetemi Kiadó, Budapest. Völgyesi L (): A pólusmozgás fizikai alapjai. Geomatikai Közlemények V., Sopron. * * * Völgyesi L. (3) A Föld precessziós mozgásának fizikai alapjai. Geomatikai Közlemények V, pp Dr. Lajos VÖLGYESI, Department of Geodesy and Surveying, Budapest University of Technology and Economics, H-151 Budapest, Hungary, Műegyetem rkp. 3. Web: volgyesi@eik.bme.hu
11. A FÖLD FORGÁSA, AZ ÁLTALÁNOS PRECESSZIÓ
11. A FÖLD FORGÁSA, AZ ÁLTALÁNOS PRECESSZIÓ A Föld saját tengelye körüli forgását az ω r forgási szögsebesség-vektora jellemzi, ezért a Föld forgásának leírásához ismernünk kell a szögsebesség-vektor térbeli
6. A FÖLD TENGELYKÖRÜLI FORGÁSA.
6. A FÖLD TENGELYKÖRÜLI FORGÁSA. A Föld saját tengelye körüli forgását az w r forgási szögsebességvektor jellemzi, ezért a Föld forgásának leírásához ismernünk kell a szögsebességvektor térbeli irányát
A FÖLD PRECESSZIÓS MOZGÁSA
A FÖLD PRECESSZIÓS MOZGÁSA Völgyesi Lajos BME Általános- és Felsőgeodézia Tanszék A Föld bonyolult forgási jelenségeinek megismeréséhez pontos fizikai alapismeretek szükségesek. A fogalmak nem egységes
A csillagképek története és látnivalói február 14. Bevezetés: Az alapvető égi mozgások
A csillagképek története és látnivalói 2018. február 14. Bevezetés: Az alapvető égi mozgások A csillagok látszólagos mozgása A Föld kb. 24 óra alatt megfordul a tengelye körül a földi megfigyelő számára
A FÖLD PRECESSZIÓS MOZGÁSA
A ÖLD PRECEZIÓ MOZGÁA Völgyesi Lajos BME Általános- és elsőgeodézia Tanszék A öld bonyolult fogási jelenségeinek megismeéséhez pontos fizikai alapismeetek szükségesek. A fogalmak nem egységes és hibás
Kozmikus geodézia MSc
Kozmikus geodézia MSc 1-4 előadás: Tóth Gy. 5-13 előadás: Ádám J. 2 ZH: 6/7. és 12/13. héten (max. 30 pont) alapismeretek, csillagkatalógusok, koordináta- és időrendszerek, függővonal iránymeghatározása
A Hamilton-Jacobi-egyenlet
A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS
Mit nevezünk nehézségi erőnek?
Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt
Az éggömb. Csillagászat
Az éggömb A csillagászati koordináta-rendszerek típusai topocentrikus geocentrikus heliocentrikus baricentrikus galaktocentrikus alapsík, kiindulási pont, körüljárási irány (ábra forrása: Marik Miklós:
1. Feladatok a dinamika tárgyköréből
1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű
Mechanika. Kinematika
Mechanika Kinematika Alapfogalmak Anyagi pont Vonatkoztatási és koordináta rendszer Pálya, út, elmozdulás, Vektormennyiségek: elmozdulásvektor Helyvektor fogalma Sebesség Mozgások csoportosítása A mozgásokat
MateFIZIKA: Pörgés, forgás, csavarodás (Vektorok és axiálvektorok a fizikában)
MateFIZIKA: Pörgés, forgás, csavarodás (Vektorok és axiálvektorok a fizikában) Tasnádi Tamás 1 2015. április 17. 1 BME, Mat. Int., Analízis Tsz. Tartalom Vektorok és axiálvektorok Forgómozgás, pörgettyűk
EGY ABLAK - GEOMETRIAI PROBLÉMA
EGY ABLAK - GEOMETRIAI PROBLÉMA Írta: Hajdu Endre A számítógépemhez tartozó két hangfal egy-egy négyzet keresztmetszetű hasáb hely - szűke miatt az ablakpárkányon van elhelyezve (. ábra).. ábra Hogy az
Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ
Írásbeli vizsgarész ELSŐ RÉSZ 1. Egy téglalap alakú háztömb egyik sarkából elindulva 80 m, 150 m, 80 m utat tettünk meg az egyes házoldalak mentén, míg a szomszédos sarokig értünk. Mekkora az elmozdulásunk?
Egyszerű számítási módszer bolygók és kisbolygók oályáj ának meghatározására
Egyszerű számítási módszer bolygók és kisbolygók oályáj ának meghatározására A bolygók és kisbolygók pályájának analitikus meghatározása rendszerint több éves egyetemi előtanulmányokat igényel. Ennek oka
IMPULZUS MOMENTUM. Impulzusnyomaték, perdület, jele: N
IPULZUS OENTU Impulzusnyomaték, perdület, jele: N Definíció: Az (I) impulzussal rendelkező test impulzusmomentuma egy tetszőleges O pontra vonatkoztatva: O I r m Az impulzus momentum vektormennyiség: két
Bevezetés az elméleti zikába
Bevezetés az elméleti zikába egyetemi jegyzet Merev test mozgása Lázár Zsolt, Lázár József Babe³Bolyai Tudományegyetem Fizika Kar 011 TARTALOMJEGYZÉK 0.1. Alapfogalmak,jelölések............................
7. GRAVITÁCIÓS ALAPFOGALMAK
7. GRAVITÁCIÓS ALAPFOGALMAK A földi nehézségi erőtérnek alapvetően fontos szerepe van a geodéziában és a geofizikában. A geofizikában a Föld szerkezetének tanulmányozásában és különféle ásványi nyersanyagok
Q 1 D Q 2 (D x) 2 (1.1)
. Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol
1. ábra. 24B-19 feladat
. gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,
Tömegpontok mozgása egyenes mentén, hajítások
2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel
Ellipszissel kapcsolatos képletekről
1 Ellipszissel kapcsolatos képletekről Előző dolgozatunkban melynek címe: A Lenz - vektorról viszonylag sokat kellett ellipszissel kapcsolatos képletekkel dolgozni. Ennek során is adódott pár észrevételünk,
1 2. Az anyagi pont kinematikája
1. Az anyagi pont kinematikája 1. Ha egy P anyagi pont egyenes vonalú mozgását az x = 1t +t) egyenlet írja le x a megtett út hossza m-ben), határozzuk meg a pont sebességét és gyorsulását az indulás utáni
Egy mozgástani feladat
1 Egy mozgástani feladat Előző dolgozatunk melynek jele és címe: ED ~ Ismét az ellipszis egyenleteiről folytatásának tekinthető ez az írás. Leválasztottuk róla, mert bár szorosan kapcsolódnak, más a céljuk.
Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben
Feladat: A háromtest probléma speciális megoldásai Arra vagyunk kiváncsiak, hogy a bolygó mozgásnak milyen egyszerű egyensúlyi megoldásai vannak három bolygó esetén. Az így felmerülő három-test probléma
Tömegvonzás, bolygómozgás
Tömegvonzás, bolygómozgás Gravitációs erő tömegvonzás A gravitációs kölcsönhatásban csak vonzóerő van, taszító erő nincs. Bármely két test között van gravitációs vonzás. Ez az erő nagyobb, ha a két test
A II. kategória Fizika OKTV mérési feladatainak megoldása
Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett
A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra
. Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától
A bifiláris felfüggesztésű rúd mozgásáról
1 A bifiláris felfüggesztésű rúd mozgásáról A végein fonállal felfüggesztett egyenes rúd részleges erőtani vizsgálatát mutattuk be egy korábbi dolgozatunkban, melynek címe: Forgatónyomaték mérése - I.
Az elliptikus hengerre írt csavarvonalról
1 Az elliptikus hengerre írt csavarvonalról Erről viszonylag ritkán olvashatunk, ezért most erről lesz szó. Az [ 1 ] munkában találtuk az alábbi részt 1. ábra. 1. ábra Itt a ( c ) feladat és annak megoldása
2. előadás: A Föld és mozgásai
2. előadás: A Föld és mozgásai 2. előadás: A Föld és mozgásai A Föld a Naprendszer kis bolygója, melynek egy saját holdja van. Egyenlítői félátmérője a=6 378 l37 m, lapultsága f=1/298,257..., a vele egyenlő
azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra
4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra
Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.
Mágneses mező tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához
2014/2015. tavaszi félév
Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés
Kifejtendő kérdések december 11. Gyakorló feladatok
Kifejtendő kérdések 2016. december 11. Gyakorló feladatok 1. Adja meg és a pályagörbe felrajzolásával értelmezze egy tömegpont általános síkbeli mozgását jellemző kinematikai mennyiségeket (1p)! Vezesse
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő
Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)
2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,
Egy pont földfelszíni helyzetét meghatározzák: a pont alapfelületi földrajzi koordinátái a pont tengerszint feletti magassága
Földrajzi koordináták Egy pont földfelszíni helyzetét meghatározzák: a pont alapfelületi földrajzi koordinátái a pont tengerszint feletti magassága Topo-Karto-2 1 Földrajzi koordináták pólus egyenlítő
Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.
Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő, a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő
Chasles tételéről. Előkészítés
1 Chasles tételéről A minap megint találtunk valami érdekeset az interneten. Az [ 1 ] tankönyvet, illetve an - nak fejezetenként felrakott egyetemi internetes változatát. Utóbbi 20. fejezetében volt az,
A Lenz - vektorról. Ha jól emlékszem, először [ 1 ] - ben találkoztam a címbeli fogalommal 1. ábra.
1 A Lenz - vektorról Ha jól emlékszem, először [ 1 ] - ben találkoztam a címbeli fogalommal 1. ábra. 1. ábra forrása: [ 1 ] Ez nem régen történt. Meglepett, hogy eddig ez kimaradt. Annál is inkább, mert
W = F s A munka származtatott, előjeles skalármennyiség.
Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem
Matematikai geodéziai számítások 1.
Matematikai geodéziai számítások 1 Ellipszoidi számítások, ellipszoid, geoid és terep metszete Dr Bácsatyai, László Created by XMLmind XSL-FO Converter Matematikai geodéziai számítások 1: Ellipszoidi számítások,
Képlet levezetése :F=m a = m Δv/Δt = ΔI/Δt
Lendület, lendületmegmaradás Ugyanakkora sebességgel mozgó test, tárgy nagyobb erőhatást fejt ki ütközéskor, és csak nagyobb erővel fékezhető, ha nagyobb a tömege. A tömeg és a sebesség együtt jellemezheti
Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program
Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z
További adalékok a merőleges axonometriához
1 További adalékok a merőleges axonometriához Egy szép összefoglaló munkát [ 1 ] találtunk az interneten, melynek előző dolgoza - tunkhoz csatlakozó részeit itt dolgozzuk fel. Előző dolgozatunk címe: Kiegészítés
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő, a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő
Az egyenes ellipszishenger ferde síkmetszeteiről
1 Az egyenes ellipszishenger ferde síkmetszeteiről Vegyünk egy a és b féltengelyekkel bíró ellipszist a vezérgörbét, majd az ellipszis O centrumában állítsunk merőlegest az ellipszis síkjára. Ez a merőleges
A lengőfűrészelésről
A lengőfűrészelésről Az [ 1 ] tankönyvben ezt írják a lengőfűrészről, működéséről, használatáról: A lengőfűrész árkolásra, csaprések készítésére alkalmazott, 150 00 mm átmérőjű, 3 4 mm vastag, sűrű fogazású
Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető
Optika gyakorlat. Geometriai optika: planparalel lemez, prizma, hullámvezető. példa: Fényterjedés planparalel lemezen keresztül A plánparalel lemezen történő fényterjedés hatására a fénysugár újta távolsággal
Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)
3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)
rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika
Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó
Mérnöki alapok 2. előadás
Mérnöki alapok. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 19 XIX A HATÁROZOTT INTEGRÁL ALkALmAZÁSAI 1 TERÜLET ÉS ÍVHOSSZ SZÁmÍTÁSA Területszámítás Ha f az [a,b] intervallumon nemnegatív, folytonos függvény, akkor az görbe, az x tengely,
ÉGITESTEK MOZGÁSA, ÉGI KOORDINÁTA- RENDSZEREK NAVIGÁCIÓS ÖSSZEFÜGGÉSEI BEVEZETÉS ÉGITESTEK NAVIGÁCIÓS TRANSZFORMÁCIÓI
Urbán István ÉGITESTEK MOZGÁSA, ÉGI KOORDINÁTA- RENDSZEREK NAVIGÁCIÓS ÖSSZEFÜGGÉSEI BEVEZETÉS Napjaink navigációs módszerei és eljárásai között ha érdemtelenül is de mindinkább visszaszorulni látszik a
Munka, energia Munkatétel, a mechanikai energia megmaradása
Munka, energia Munkatétel, a mechanikai energia megmaradása Munkavégzés történik ha: felemelek egy könyvet kihúzom az expandert A munka Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő
A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a
a Matematika mérnököknek I. című tárgyhoz Függvények. Függvények A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a szabadon eső test sebessége az idő függvénye. Konstans hőmérsékleten
Fizika alapok. Az előadás témája
Az előadás témája Körmozgás jellemzőinek értelmezése Általános megoldási módszer egyenletes körmozgásnál egy feladaton keresztül Testek mozgásának vizsgálata nem inerciarendszerhez képest Centripetális
Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)
1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú
Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó
Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:
Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
3. tétel Térelemek távolsága és szöge. Nevezetes ponthalmazok a síkon és a térben.
3. tétel Térelemek távolsága és szöge. Nevezetes ponthalmazok a síkon és a térben. TÁVOLSÁG Általános definíció: két alakzat távolsága a két alakzat pontjai között húzható legrövidebb szakasz hosszaa távolság
20. tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek.
. tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek. Először megadom a síkbeli definíciójukat, mert ez alapján vezetjük le az egyenletüket. Alakzat
1. Feladatok merev testek fizikájának tárgyköréből
1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 14 XIV NEVEZETES GÖRbÉk 1 AZ EGYEnES EGYEnLETE A és pontokon átmenő egyenes egyenlete: (1), Az hányados neve iránytényező (iránytangens, meredekség) A ponton átmenő, m iránytangensű
Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör Szferikus csillagászat II. Megoldások
Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör 2015-16 6. Szferikus csillagászat II. Megoldások Dálya Gergely, Bécsy Bence 1. Bemelegítő feladatok B1. feladat Meg van adva két oldal és a
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember
a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.
2. Gyakorlat 25A-0 Tekintsünk egy l0 cm sugarú üreges fémgömböt, amelyen +0 µc töltés van. Legyen a gömb középpontja a koordinátarendszer origójában. A gömb belsejében az x = 5 cm pontban legyen egy 3
2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések
. REZGÉSEK.1. Harmonikus rezgések: Harmonikus erő: F = D x D m ẍ= D x (ezt a mechanikai rendszert lineáris harmonikus oszcillátornak nevezik) (Oszcillátor körfrekvenciája) ẍ x= Másodrendű konstansegyütthatós
Bolygómozgás. Számítógépes szimulációk fn1n4i11/1. Csabai István, Stéger József
Bolygómozgás Számítógépes szimulációk fn1n4i11/1 Csabai István, Stéger József ELTE Komplex Rendszerek Fizikája Tanszék Email: csabai@complex.elte.hu, steger@complex.elte.hu Bevezetés Egy Nap körül kering
A hordófelület síkmetszeteiről
1 A hordófelület síkmetszeteiről Előző dolgozatunkban melynek címe: Ismét egy érdekes mechanizmusról azon hiányérzetünknek adtunk hangot, hogy a hordószerű test görbe felülete nem kapott nevet. Itt elneveztük
Naprendszer mozgásai
Bevezetés a csillagászatba 2. Muraközy Judit Debreceni Egyetem, TTK 2017. 09. 28. Bevezetés a csillagászatba- Naprendszer mozgásai 2017. szeptember 28. 1 / 33 Kitekintés Miről lesz szó a mai órán? Naprendszer
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen
Az éjszakai rovarok repüléséről
Erről ezt olvashatjuk [ ] - ben: Az éjszakai rovarok repüléséről Az a kijelentés, miszerint a repülés pályája logaritmikus spirális, a következőképpen igazolható [ 2 ].. ábra Az állandó v nagyságú sebességgel
1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel
1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora
Robotika. Kinematika. Magyar Attila
Robotika Kinematika Magyar Attila amagyar@almos.vein.hu Miről lesz szó? Bevezetés Merev test pozíciója és orientációja Rotáció Euler szögek Homogén transzformációk Direkt kinematika Nyílt kinematikai lánc
Mérések állítható hajlásszögű lejtőn
A mérés célkitűzései: A lejtőn lévő testek egyensúlyának vizsgálata, erők komponensekre bontása. Eszközszükséglet: állítható hajlásszögű lejtő különböző fahasábok kiskocsi erőmérő 20 g-os súlyok 1. ábra
FIZIKA II. Dr. Rácz Ervin. egyetemi docens
FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés
EGYSZERŰ GÉPEK. Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét.
EGYSZERŰ GÉPEK Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét. Az egyszerű gépekkel munkát nem takaríthatunk meg, de ugyanazt a munkát kisebb
A kör és ellipszis csavarmozgása során keletkező felületekről
1 A kör és ellipszis csavarmozgása során keletkező felületekről Előző dolgozatunkban melynek címe: Megint a két csavarfelületről levezettük a cím - beli körös felület - család paraméteres egyenletrendszerét,
8. előadás. Kúpszeletek
8. előadás Kúpszeletek Kör A k kört egyértelműen meghatározza C(a,b) középpontja és r sugara. A P pont pontosan akkor van k-n, ha CP=r. Vektoregyenlet: p-c = r. Koordinátás egyenlet: (X-a)2 + (Y-b)2 =
Geodéziai alapmunkálatok BSc
Geodéziai alapmunkálatok BSc előadások: Ádám J., Rózsa Sz., Tóth Gy., Völgyesi L., Ambrus B. gyakorlatok: Rózsa Sz., Tuchband T. alapismeretek, vonatkoztatási rendszerek és időrendszerek, függővonal iránymeghatározása,
Merev testek kinematikája
Merev testek kinematikája Egy pontrendszert merev testnek tekintünk, ha bármely két pontjának távolsága állandó. (f=6, Euler) A merev test tetszőleges mozgása leírható elemi transzlációk és elemi rotációk
Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához
1 Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához Előző dolgozatunkkal melynek címe: A ferde körkúp palástfelszínének meghatározásához már mintegy megágyaztunk a jelen írásnak. Több mindent
Függvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
KERESZTMETSZETI JELLEMZŐK
web-lap : www.hild.gor.hu DEME FERENC okl. építőmérnök, mérnöktanár e-mail : deme.ferenc1@gmail.com STATIKA 50. KERESZTMETSZETI JELLEMZŐK A TARTÓK MÉRETEZÉSE SORÁN SZÁMOS ESETBEN SZÜKSÉGÜNK VAN OLYAN ADATOKRA,
Nehézségi gyorsulás mérése megfordítható ingával
Nehézségi gyorsulás mérése megfordítható ingával (Mérési jegyzőkönyv) Hagymási Imre 2007. április 21. (hétfő délelőtti csoport) 1. A mérés elmélete A nehézségi gyorsulás mérésének egy klasszikus módja
Vektorok és koordinátageometria
Vektorok és koordinátageometria Vektorral kapcsolatos alapfogalmak http://zanza.tv/matematika/geometria/vektorok-bevezetese Definíció: Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon,
A mechanika alapjai. A pontszerű testek dinamikája
A mechanika alapjai A pontszerű testek dinamikája Horváth András SZE, Fizika Tsz. v 0.6 1 / 26 alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. alapi 2 / 26 Bevezetés alapi Bevezetés Newton
Összeállította: dr. Leitold Adrien egyetemi docens
Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális
MECHANIKA I. /Statika/ 1. előadás SZIE-YMM 1. Bevezetés épületek, építmények fizikai hatások, köztük erőhatások részleges vagy teljes tönkremenetel használhatatlanná válás anyagi kár, emberáldozat 1 Cél:
Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13.
Fizika Nyitray Gergely (PhD) PTE PMMIK 017. február 13. A lejtő mint kényszer A lejtő egy ún. egyszerű gép. A következő problémában először a lejtőt rögzítjük, és egy m tömegű test súrlódás nélkül lecsúszik
9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel;
Síkok és egyenesek FELADATLAP Írjuk fel annak az egyenesnek az egyenletét, amely átmegy az M 0(,, ) ponton és a) az M(,, 0) ponton; b) párhuzamos a d(,, 5) vektorral; c) merőleges a x y + z 0 = 0 síkra;
GLOBÁLIS HELYMEGHATÁROZÁS
Budapesti Műszaki és Gazdaságtudományi Egyetem ÁLTALÁNOS ÉS FELSŐGEODÉZIA TANSZÉK GLOBÁLIS HELYMEGHATÁROZÁS Oktatási segédlet Budapest, 2007 TARTALOM BEVEZETÉS 1. CSILLAGÁSZATI ALAPISMERETEK 1.1. A világmindenség
Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1.
1 Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. Feladat Egy G gépkocsi állandó v 0 nagyságú sebességgel egyenes úton
Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010.
Nagy András Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 010. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 1) Döntsd el, hogy a P pont illeszkedik-e az e egyenesre