Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak

Hasonló dokumentumok
Mechanikai hullámok. Hullámhegyek és hullámvölgyek alakulnak ki.

Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak

Rezgőmozgás, lengőmozgás, hullámmozgás

Rezgőmozgás, lengőmozgás

Rezgőmozgás, lengőmozgás, hullámmozgás

Rezgőmozgás, lengőmozgás, hullámmozgás

Rezgőmozgás, lengőmozgás, hullámmozgás

Hullámok, hanghullámok

Rezgések és hullámok

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete

11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

Tömegvonzás, bolygómozgás

Képlet levezetése :F=m a = m Δv/Δt = ΔI/Δt

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz?

Hullámok tesztek. 3. Melyik állítás nem igaz a mechanikai hullámok körében?

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői

Periódikus mozgás, körmozgás, bolygók mozgása, Newton törvények

Erők (rug., grav., súrl., közegell., centripet.,), és körmozgás, bolygómozgás Rugalmas erő:

1. A hang, mint akusztikus jel

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

Mit nevezünk nehézségi erőnek?

FIZIKA I. RÉSZLETES VIZSGAKÖVETELMÉNYEK

Zaj- és rezgés. Törvényszerűségek

a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)

Mechanikai hullámok (Vázlat)

Szent István Egyetem Fizika és folyamatirányítási Tanszék FIZIKA. rezgések egydimenziós hullám hangok fizikája. Dr. Seres István

Mechanika. Kinematika

Munka, energia, teljesítmény

Mechanikai rezgések = 1 (1)

Az Ampère-Maxwell-féle gerjesztési törvény

11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához?

A hullámok terjedése során a közegrészecskék egyensúlyi helyzetük körül rezegnek, azaz átlagos elmozdulásuk zérus.

Erők (rug., grav., súly, súrl., közegell., centripet.,), forgatónyomaték, egyensúly Rugalmas erő:

A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.

Hely, idő, haladó mozgások (sebesség, gyorsulás)

2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések

Összefoglaló kérdések fizikából I. Mechanika

Munka, energia, teljesítmény

A hang mint mechanikai hullám

ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Komplex természettudományi tagozat. Fizika 11. osztály

FIZIKA ZÁRÓVIZSGA 2015

Mechanika, dinamika. p = m = F t vagy. m t

Pálya : Az a vonal, amelyen a mozgó tárgy, test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

Fizika összefoglaló kérdések (11. évfolyam)

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk

GYIK mechanikából. (sűrűségmérés: - tömeg+térfogatmérés (akár Arkhimédész-törvény segítségével 5)

A hullám frekvenciája egyenlő a hullámforrás frekvenciájával, azzal a kikötéssel, hogy a hullámforrás és megfigyelő nyugalomban van.

Hangintenzitás, hangnyomás

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika

Bevezetés a modern fizika fejezeteibe. 1. (b) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék

Mechanika I-II. Példatár

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

Optika fejezet felosztása

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ

PÉLDÁK ERŐTÖRVÉNYEKRE

Munka, energia Munkatétel, a mechanikai energia megmaradása

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Tartalom. Fizika 1,

Értékelési útmutató az emelt szint írásbeli feladatsorhoz

W = F s A munka származtatott, előjeles skalármennyiség.

1. Feladatok merev testek fizikájának tárgyköréből

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Fizika 11. osztály. ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Humán tagozat. I. rész: Mechanikai rezgések és hullámok

Fizika alapok. Az előadás témája

Newton törvények és a gravitációs kölcsönhatás (Vázlat)

Fizika III. Irányított tanulás munkafüzet Kísérleti távoktatási anyag Móra Ferenc Gimnázium Kiskunfélegyháza

Hullámtan. A hullám fogalma. A hullámok osztályozása.

Fizika alapok vegyészeknek Mechanika II.: periodikus mozgások november 10.

Zaj,- rezgés és sugárzásvédelem NGB_KM015_ tanév tavasz 1. előadás. Bedő Anett egyetemi tanársegéd SZE, AHJK Környezetmérnöki tanszék

Diagnosztika Rezgéstani alapok. A szinusz függvény. 3π 2

Hely, idő, haladó mozgások (sebesség, gyorsulás)

Newton törvények, lendület, sűrűség

1. Az ultrahangos diagnosztika fizikai alapjai

FIZIKA MUNKAFÜZET 11. ÉVFOLYAM I. KÖTET

Tömegpontok mozgása egyenes mentén, hajítások

Osztályozó vizsga anyagok. Fizika

Rezgőmozgások. Horváth András SZE, Fizika és Kémia Tsz szeptember 29.

Fizika tantárgy 12. évfolyam

Munka, energia, teljesítmény

Gépészmérnöki alapszak Mérnöki fizika ZH NÉV: október 18. Neptun kód:...

A nagyobb tömegű Peti 1,5 m-re ült a forgástengelytől. Összesen: 9p

Harmonikus rezgőmozgás

1. Feladatok a dinamika tárgyköréből

2. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések

Newton törvények, erők

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel

A test tömegének és sebességének szorzatát nevezzük impulzusnak, lendületnek, mozgásmennyiségnek.

Komplex természettudomány 3.

1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa

Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása.

Definíció (hullám, hullámmozgás):

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése

MECHANIKA. Mechanika összefoglaló BalaTom 1

Nehézségi gyorsulás mérése megfordítható ingával

Hangfrekvenciás mechanikai rezgések vizsgálata

Átírás:

Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak nevezzük. Pl. ingaóra ingája, rugó rezgőmozgása, Föld forgása, körhinta, óra mutatója, stb... Körmozgás Egy anyagi pontnak tekintett tárgy körpályán való mozgása a körmozgás. Egyenletes a körmozgás, ha a kört a tárgy, test mindig ugyanannyi idő alatt teszi meg, sebességének nagysága állandó.

Egyenletes körmozgásra jellemző adatok és összefüggések Periódusidő: Az az időtartam, amennyi idő alatt a tárgy, test 1 teljes kört megtesz. Jele: T, mértékegysége: s (secundum) Frekvencia: 1 s alatt megtett körök száma. Jele: f mért.e.: 1/s Kerületi sebesség: A tárgy sebessége (a körpálya kerületén), amely a kör érintőjének irányába mutat, és iránya folyamatosan változik. Jele: v mértékegysége: m/s Szögsebesség: 1 s alatti elfordulás szöge radiánban. Jele: ω (omega, görög betű) mértékegysége: 1/s Centripetális gyorsulás: a sebesség iránya változik, ezért van gyorsulása a körmozgásnak, ami a kör középpontja felé mutat. Jele: acp, mértékegysége: m/s2 Összefüggések: ω=2 π f acp = v ω = v2 / r

Centripetális erő Ahhoz, hogy egy test, tárgy körpályán mozogjon olyan erőnek kell rá hatnia, amelyik a kör középpontjába mutat. Ez az erő a körmozgás centripetális gyorsulásával egyenesen arányos. Ez az erő: centripetális erő jele: Fcp Newton II. törvénye értelmében: (v a körpályán mozgó tárgy sebessége, r a kör sugara) Ha egy bolygó körül kering egy műhold vagy űrhajó vagy hold, akkor a körpályához szükséges centripetális erőt a gravitációs erő biztosítja. Ez a bolygó felszínén, vagy a felszínéhez közel: Fg = m g (g a bolygón a gravitációs gyorsulás, a Földön 9,81 m/s2, kerekítve 10 m/s2) Tehát ez esetben: Fg = Fcp és g = acp (Más bolygókon más a gravitációs gyorsulás, a gravitációs erő, és így a bolygó körül körpályán mozgó műhold sebessége is más.) Jármű kanyarodásánál a centripetális erőt a súrlódási erő biztosítja. Ha ez kicsi (jégen), akkor nem tud kanyarodni.

Rezgőmozgás, lengőmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus mozgást végez. Egy teljes periódust teljes rezgésnek nevezünk. Példák rezgőmozgásra: dugattyú a motorban, ugródeszka vége, lengéscsillapító, varrógép-tű, jojó, földrengés, trambulin, bungee jumping gumikötele, dobhártya, egyes hangszerek rezgő részei (pl. a gitárhúrnak vagy cintányérnak vagy dob tetejének minden pontja)

A rezgőmozgás jellemző adatai: - Az egyensúlyi helyzettől mért pillanatnyi (előjeles) távolságot kitérésnek nevezzük. Jele: x vagy y, mértékegysége: méter (m) - A legnagyobb kitérést amplitúdónak nevezzük. Jele: A, mértékegysége: méter (m) - Egy teljes rezgés idejét rezgésidőnek (periódusidőnek) nevezzük. Jele: T, mértékegysége: secundum (s) - Egy másodperc alatt megtett rezgések számát frekvenciának vagy rezgésszámnak nevezzük. Jele: f, mértékegysége: 1/s 1 f = -----T - körfrekvencia: ω=2 π f A harmonikus (egyenletes, nem csökkenő) rezgőmozgás kitérés idő függvénye szinuszgörbe.

- A rezgőmozgás sebessége a szélső helyzetekben 0, az egyensúlyi helyzeten való áthaladáskor a maximális, vmax. - A harmonikus (egyenletes és nem csökkenő) rezgőmozgás az egyenletes körmozgás vetülete. Ezért a képletei, jellemzői hasonlóak, vagy azonosak: körmozgásban: rezgőmozgásban: periódusidő (T) rezgésidő (T) fordulatszám (f) rezgésszám (f) sugár (r) amplitúdó (A) szögsebesség körfrekvencia (ω) sebesség (v) max. sebesség (vmax.) Összefüggések: ω=2 π f vmax.= A ω f=1/t

A rezgőmozgás kitérés idő függvénye: x = A sin(ω t) Maximális kitérés: A (a rezgés szélső helyzetében) A rezgőmozgás sebesség idő függvénye: v = A ω cos(ω t) Maximális sebesség: vmax=a ω A rezgés sebessége a szélső helyzetekben 0, az egyensúlyi helyzeten való áthaladáskor (középen) a maximális. A rezgőmozgás gyorsulás idő függvénye: a = A ω2 sin(ω t) Maximális gyorsulás: amax = A ω2 A harmonikus rezgőmozgást létrehozó erő nagysága egyenesen arányos a kitéréssel és iránya ellentétes azzal. Ez a harmonikus rezgőmozgás dinamikai feltétele. Képletben: F = m a = - m ω2 x

A rezgőmozgás mechanikai energiája Mozgási energia Mivel van sebessége, van mozgási energiája, ami ott a legnagyobb a mozgása során, ahol a sebessége, vagyis középen, és a szélső helyzetekben 0. Rugalmas energia Ha munkavégzéssel megfeszítünk egy rugót, energiája lesz, elengedve munkát képes végezni, ez a rugalmas energia. Ott a legnagyobb, ahol a rugó a legjobban kifeszül, vagy összenyomódik, tehát a szélső helyzetekben, az egyensúlyi helyzeten való áthaladáskor pedig 0. Helyzeti energia Ha a rezgő rendszer, rugó függőlegesen mozog, akkor változik a rendszer helyzeti energiája (ami a magasságtól függ (h)). A rezgőmozgást végző rendszer mechanikai energiája; a mozgási energia, a rugalmas energia és a helyzeti energia összege állandó. (Az energia megmaradás törvénye érvényes a rezgőmozgásra is.) Eösszes = Emozg. + Erug. + Ehely. = állandó

Saját rezgés, szabad rezgés Ha egy rezgésre képes rendszert egy lökésszerű erőhatással hozunk mozgásba és magára hagyjuk, akkor a rendszerre jellemző rezgésidővel szabad rezgést, más néven saját rezgést végez. Rezgésideje és frekvenciája nem függ a kitérésétől csak a rugó erősségétől, rugalmasságától (rugóállandótól, D) és a rezgő test tömegétől (m). Periódusideje: Képletben: T = 2 π m D Inga Az inga, ha kilendítjük szintén szabad lengést végez. Lengésideje nem függ a kitérésétől, és a lengő test tömegétől sem. Csak a kötél hosszától (l) és a gravitációs erőtől, gravitációs gyorsulástól (g) függ. Periódusideje: Képletben: T = 2 π l g

Ha a kötél hosszabb, a lengés lassabb, a lengésidő hosszabb lesz. Ha a lengő testre ható gravitációs erő, és gyorsulás kisebb (pl. a Holdon), akkor a lengés ideje hosszabb lesz. Mivel a lengőmozgás lengésideje a Föld gravitációs terében csak az inga hosszától függ, időmérésre lehet használni. (Ingaóra) Csillapított (csillapodó) rezgés, lengés A rezgésekre, lengésekre ható fékező erők (súrlódás, légellenállás) miatt a rezgő, lengő rendszerek csillapodó rezgést, lengést végeznek. Ekkor a rezgésidejük, lengésidejük nem változik csak a kitérésük. Csatolt rezgés Az olyan jelenséget, amelynél két rezgő (vagy lengő) rendszer kölcsönösen befolyásolja egymás rezgését, csatolt rezgésnek nevezzük. Csatolt rezgésnél a két rezgő rendszer amplitúdója és így energiája is periodikusan úgy változik, mintha kicserélődne.

Kényszerrezgés és rezonancia Amikor a rezgő rendszer egy külső gerjesztő hatásnak megfelelően kénytelen rezegni, kényszerrezgést végez. Ekkor nem a saját rezgésének frekvenciájával rezeg. Ha a kényszerrezgés frekvenciája közel azonos a saját szabad rezgésének frekvenciájával (sajátfrekvencia), akkor rezgésének kitérése, amplitúdója nagyon megnő. Ez a rezonancia jelensége. Ilyenkor az amplitúdó olyan nagymértékben megnőhet, hogy a rezgő rendszer tönkremegy. Ez a jelenség a rezonancia-katasztrófa. Példák rezgőmozgásra, rugó felhasználására: - Járművek kerekeinek ütődéseit rugók csillapítják. (lengéscsillapító) - Hangszerek: gitárhúr, dob felülete, cintányér,...stb rezgőmozgást végeznek, a kiadott hang magassága függ a rezgés frekvenciájától. - felhúzós rugós órák Példa ingamozgásra: - Ingaórák, hinta, boxzsák, lengőteke, falbontó golyó Példák rezonanciára: - Széllökések hatására berezonálhatnak az ablaküvegek. - Ha az autóban kilazult egy csavar, bizonyos motorfordulatszámnál (frekvenciánál) berezonál a motor, vagy az autó egy alkatrésze. - Hidakon nem szabad katonáknak egyszerre lépve menni.

Mechanikai hullámok Mechanikai hullámnak nevezzük, ha egy anyagban az anyag részecskéinek rezgésállapota továbbterjed. A mechanikai hullám terjedéséhez tehát szükség van valamilyen anyagra (légüres térben nem terjed). Két fajta terjedési módot különböztetünk meg: 1. Az anyag részecskéinek rezgése merőleges a hullám terjedésének irányára (transzverzális hullám). Hullámhegyek és hullámvölgyek alakulnak ki. 2. Az anyag részecskéinek rezgése párhuzamos a hullám terjedési irányával (longitudinális hullám). Sűrűsödések és ritkulások alakulnak ki az anyagban.

A haladó hullámra jellemző mennyiségek: Amplitúdó: a legnagyobb, maximális kitérés nagysága jele: A, SI mértékegysége: m (egyéb mértékegységek: dm, cm, mm, ) Hullámhossz: két azonos rezgési fázisban levő pont távolsága jele: (lambda) SI mértékegysége: m Periódusidő: az az időtartam, amely alatt az anyagban terjedő hullám egy hullámhossznyi utat tesz meg. jele: T SI mértékegysége: s (sec) Frekvencia: Az anyag egy pontján 1 s alatt áthaladt hullámok száma, amely egyenlő az anyag részecskéinek az 1 s alatti rezgéseinek számával jele: f SI mértékegysége: 1/s (Hz, Hertz) Terjedési sebesség: a hullám által 1 s alatt megtett út jele: c vagy v SI mértékegysége: m/s A hullám terjedési sebessége különböző anyagokban különbözik.

Összefüggések a mennyiségek között A víz felületén kialakuló hullám egy speciális hullám felületi hullám, a víz felületén merőlegesen kialakuló hullámhegyek és hullámvölgyek követik egymást, de a víz belsejében nem.

A hullámok fajtái alakjuk szerint: Körhullám (térben gömbhullám): a hullámhegyek és a hullámvölgyek körök (térben gömbök) Egyenes hullám (térben síkhullám): a hullámhegyek és a hullámvölgyek egyenesek (térben síkok)

Hullámok visszaverődése, törése Ha a hullám két anyag határához ér, akkor ott egy része visszaverődik, egy másik része behatolhat az új anyagba. Visszaverődéskor a hullám sebessége, hullámhossza nem változik, a beesési szög megegyezik a visszaverődési szöggel. Ha a hullám behatol a másik anyagba, pl. hanghullám levegőből vízbe, akkor a két anyag felületén megtörik. Ekkor megváltozik a hullám iránya, sebessége és hullámhossza.

Hullámok találkozása, interferenciája, állóhullám, elhajlás Hullámok találkozásakor a kitérések összeadódnak, így a hullámhegyek erősítik egymást, a hullámhegyek hullámvölgyekkel találkozva gyengítik, kiolthatják egymást. Ez az interferencia jelensége. Szemben haladó azonos hullámhosszú hullámok találkozásakor, interferenciájakor állóhullámok jöhetnek létre, ahol kialakulnak olyan pontok, amelyek nem mozognak: csomópontok. Keskeny résen áthaladó hullám nemcsak a rés mögött, hanem a rés melletti fal mögött is kialakulva halad tovább. Ez az elhajlás jelensége.

Hanghullámok A hanghullám forrása is egy rezgő tárgy. Bizonyos frekvenciájú mechanikai hullámokat az ember hangérzetként észlel. Ez a frekvenciasáv: kb. 20 Hz 16000 Hz (egyénenként változó) Az alacsony frekvenciájú hangokat mélynek, a nagy frekvenciájú hangokat magas hangnak érzékeljük. Idős korban a magas hangok észlelési sávja lecsökken (16000-ről 8-10000-re.) 20 Hz alatti nem hallható hang: infrahang, 20000 Hz feletti nem hallható hang: ultrahang (Az ultrahangot néhány állat hallja.) Hang kiadására szolgáló elektronikus eszközök szokásos sávszélessége: 20 Hz 20000 Hz A hanghullám is visszaverődik (visszhang), megtörik (vízben gyorsabban halad), elhajlik (ajtó melletti fal mögött is hallható) és interferál (erősíthetik, gyengíthetik egymást). A hanghullám jellemzői: Hangsebesség: A levegőben 340 m/s, vízben 1500, vasban 5000 m/s Hangerősség: a hangrezgés amplitúdójától, energiájától függ Hangmagasság: a hanghullám frekvenciája adja meg Pl. a normál A hang frekvenciája 440 Hz. Oktáv: kétszeres vagy feles frekvencia (pl. alsó A hang 220 Hz) Hangszín: Egy hang megszólalásakor több felhang is megszólalhat, így több tiszta hang összessége adja a hang hangszínét.

Doppler jelenség Ha a hangforrás mozog a megfigyelőhöz képest, akkor a közeledő hangforrás előtt a hullámok hossza kisebb, mint mögötte. Így pl. közeledő szirénázó jármű hangját magasabbnak halljuk, mint amikor távolodik. A hatás megfigyelhető vízhullámnál is, pl. egy vízben mozgó állatnál.

Hangszerek, hangsáv A hallható hang sávszélessége: kb. 20 Hz 16000 Hz A 20 Hz-nél kisebb frekvenciájú hangok az infrahangok, a 16000 Hz-nél magasabb frekvenciájú hangok az ultrahangok. Néhány állat érzékeli az ultrahangot is. Az ultrahangot használják a gyógyászatban (a belső szervekről való visszaverődés alapján fényképezhető a belső szervezet), és használják más távolságmérésekre is (pl. tenger mélység mérés). A hangszerekben keltett rezgések (hangforrások) állóhullámokat alakítanak ki és így keletkeznek a levegőben továbbhaladó hanghullámok. Pl. hangforrás: gitár, zongora, hárfa, stb. rezgő húrjai, fúvós hangszerek belsejében, a levegőben kialakuló állóhullámok, dob tetejének rezgése, stb. A hangforrások alá, mögé helyezett hangdobozok felerősítik a hangforrás hangját. Pl. Hangfal, dob, zongora, hegedű,...