Intergrált Intenzív Matematika Érettségi

Hasonló dokumentumok
3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1

FELVÉTELI VIZSGA, július 17.

Kongruenciák. Waldhauser Tamás

Tartalomjegyzék 1. Műveletek valós számokkal Függvények Elsőfokú egyenletek és egyenlőtlenségek

Diszkrét matematika II. feladatok

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok

MATEK-INFO UBB verseny április 6.

1. zárthelyi,

1.1. Gyökök és hatványozás Hatványozás Gyökök Azonosságok Egyenlőtlenségek... 3

Nagy Gábor compalg.inf.elte.hu/ nagy

Vektorterek. =a gyakorlatokon megoldásra ajánlott

MA1143v A. csoport Név: december 4. Gyak.vez:. Gyak. kódja: Neptun kód:.

Algoritmuselmélet gyakorlat (MMN111G)

Egy általános iskolai feladat egyetemi megvilágításban

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I márc.11. A csoport

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!

KOVÁCS BÉLA, MATEMATIKA I.

Oeconomicus Napocensis Verseny Március 24 és május IV. szekció Tantárgy: MATEMATIKA I

Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)

Nagy András. Feladatok a logaritmus témaköréhez 11. osztály 2010.

MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga

Egyenletek, egyenlőtlenségek VII.

Nemzeti versenyek évfolyam

Polinomok (előadásvázlat, október 21.) Maróti Miklós

Tartalomjegyzék. 3. Elsőfokú egyenletek és egyenlőtlenségek Elsőfokú egyenletek Valós szám abszolút értéke...

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre

Abszolútértékes és gyökös kifejezések Megoldások

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész

1. Mátrixösszeadás és skalárral szorzás

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )

Lineáris algebra Gyakorló feladatok

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18

Vektorok, mátrixok, lineáris egyenletrendszerek

Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

a) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0.

FELADATOK A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY III. FÉLÉVÉHEZ. ÖSSZEÁLLÍTOTTA: LÁNG CSABÁNÉ ELTE IK Budapest

Másodfokú egyenletek, egyenlőtlenségek

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések

: s s t 2 s t. m m m. e f e f. a a ab a b c. a c b ac. 5. Végezzük el a kijelölt m veleteket a változók lehetséges értékei mellett!

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria

KOVÁCS BÉLA, MATEMATIKA I.

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja

MTN714: BEVEZETÉS AZ ABSZTRAKT ALGEBRÁBA. 1. Csoportelméleti alapfogalmak

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.

Másodfokú egyenletek, egyenlőtlenségek

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.

Magasabbfokú egyenletek

Klasszikus algebra előadás. Waldhauser Tamás április 14.

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / május a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Koordináta-geometria feladatok (középszint)

Hiányos másodfokú egyenletek. x 8x 0 4. A másodfokú egyenlet megoldóképlete

7. gyakorlat megoldásai

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter

Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint

Mátrixok 2017 Mátrixok

1. Egész együtthatós polinomok

Polinomok (el adásvázlat, április 15.) Maróti Miklós

Zárthelyi feladatok megoldásai tanulságokkal Csikvári Péter 1. a) Számítsuk ki a 2i + 3j + 6k kvaternió inverzét.

Természetes számok: a legegyszerűbb halmazok elemeinek. halmazokat alkothatunk, ezek elemszámai természetes 3+2=5

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

NULLADIK MATEMATIKA ZÁRTHELYI

Az egyenes és a sík analitikus geometriája

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.

FELVÉTELI VIZSGA, szeptember 12.

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Szendrői Balázs: Algebrai síkgörbék, szerkesztette: Ádám Liliána, Ódor Gergő, Lajos Mátyás

Vektorok és koordinátageometria

9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel;

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM)

Függvények Megoldások

Gyakorló feladatok I.

3. Lineáris differenciálegyenletek

Függvény fogalma, jelölések 15

1. A polinom fogalma. Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1. = x egyenletet.

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont

Diszkrét matematika. Gyakorlati feladatsor. 1. Bevezetés: halmazok és függvények. Adjuk meg (és ábrázoljuk Venn-diagrammon) az alábbi halmazokat!

5.10. Exponenciális egyenletek A logaritmus függvény Logaritmusos egyenletek A szinusz függvény

Határozatlan integrál

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Lineáris Algebra gyakorlatok

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11

Valasek Gábor

LÁNG CSABÁNÉ POLINOMOK ALAPJAI. Példák és megoldások

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

illetve a n 3 illetve a 2n 5

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam

Lineáris Algebra. Tartalomjegyzék. Pejó Balázs. 1. Peano-axiomák

Átírás:

. Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,. a) Számítsd ki a d determinánst, ha a, b és b c a c. b) Igazold, hogy d ( a b c ) ( a b ) ( b c ) ( c a ), bármely abc,, esetén! c) Oldd meg a valós számok halmazán a 8 7 5 (5) 0 egyenletet!. Adott a determináns, ahol,, d ki:. b) Számítsd ki: az 0 egyenlet megoldásai. a) Számítsd. c) Számítsd ki a d determináns értékét! 4. Az M ( ) halmazban tekintsük az 0 4 6 I, A 0 és X ( a) I aa mátriokat, a. a) Számítsd ki az A mátriot! b) Igazold, hogy X ( a) X ( b) X ( a b ab), bármely ab, esetén! c) Számítsd ki az X () X () X ()... X (009) összeget! 5. Adott az A, 6 6 8 mátri. a) Határozd meg az értékét, ha det A 0. b) Igazold az A A I egyenlőséget! c) Határozd meg az azon értékét, amelyre A A. 4 6. Adottak az A, B és 0 I 0 mátriok. a) Számítsd ki a B mátriot! b) Igazold, 4 hogy A. c) Igazold, hogy 4 4 C 6 I, ahol C B A. t t 7. Adottak az X, Y mátriok. Legyen A X Y és B( a) aa I, ahol a és Y az Y mátri transzponáltja. a) Igazold, hogy A 4 6. b) Számítsd ki az A mátri determinánsát! c) 6 9 Igazold, hogy a Ba ( ) mátri invertálható, bármely a \ 4 esetén! a b 8. Az M halmazban adottak az A c d mátri. a) Számítsd ki az a, b, c, d egész számokat, ha t t AI O. b) Számítsd ki a B A A mátri determinánsát! c) Igazold, hogy ha A A I, akkor az t A A mátri determinánsa egy 4-gyel osztható szám. 6 9. Adott az A M ( ) mátri. a) Számítsd ki az A. mátri determinánsát! b) Igazold, hogy A A O. c) Számítsd ki az 0 A A 0 A összeget!

0. Adottak az U 0 0, X y X V U, akkor és v 9 V v mátriok, ahol v,, y. a) Igazold, hogy ha ( v 9) 0. b) Határozd meg a v valós szám azon értékeit, amelyekre a V mátri determinánsa zérótól különböző! c) Határozd meg a megoldását!. Adottak az Számítsd ki az. Adott a A 0, I 0 0 A 0 0 0 0 és 0 0 B összeget! c) Határozd meg az y 0 9y 0 0 B 0 0 0 0 0 A mátri inverzét! egyenletrendszer három különböző mátriok. a) Igazold, hogy A I B. b) Da ( ) 9 determináns, ahol a valós szám. a) Számítsd ki a D (9) determinánst! b) Oldd meg a valós számok halmazán a ( ) 0 a a Da egyenletet! c) Oldd meg a valós számok halmazán a D egyenletet!. Adott az A 5 0 M ( ) mátri. a) Számítsd ki az A A mátriot! b) Oldd meg a 0 n n n n 5 0 det A 5 5 egyenletet, ha ismert, hogy A, n, n. c) Határozd meg a 0 009 B A A... A mátri transzponáltját! 4. Az M ( ) halmazban adottak az A 4, 4 B 4 4 0 mátriok. a) Igazold, hogy AB BA. b) Számítsd ki az A B mátriot! c) Bizonyítsd be, hogy C 5 I, ahol C A B. a) Határozd meg az A A egyenes egyenletét! a b b 0 5. Adott a G A a, b, a halmaz. a) Vizsgáld meg, hogy az I és az b a b 0 0 0 O 0 0 mátriok elemei-e a G halmaznak! b) Határozd meg a BM ( ) mátriot, ha a b b ai bb, bármely a, b esetén! c) Igazold, hogy a G halmaz bármely mátriának az b a b inverze is a G halmaz eleme! rang, rendszer

m y z m 6. Adott az 5 y z egyenletrendszer, ahol m valós paraméter. a) Határozd meg az m ( m ) y z értékét, ha m 5. b) Határozd meg az m értékét, ha (,, ) megoldása az m egyenletrendszernek. c) Oldd meg az egyenletrendszert m esetén! 7. Adott az y z y z 4 m y 4z egyenletrendszer, ahol m. amelyre a (,, ) megoldása az egyenletrendszernek! b) Oldd meg az ahol m. c) Oldd meg az egyenletrendszert, ha m 5. a) Határozd meg az m azon értékét, m 4 m m egyenletet, 8. Adott az y z y az egyenletrendszer, valamint az A( a) a M ( ) mátri. a) 4y a z 4 a Számítsd ki a det( A (4)) determinánst! b) Határozd meg az a azon értékeit, melyekre az Aa ( ) mátri invertálható! c) Ha a \{,}, oldd meg az egyenletrendszert! 9. Adott az b és ay a z a by b z b cy c z c egyenletrendszer, ahol abc,, páronként különböző számok. a) Ha a 0, c, oldd meg az egyenletrendszert! b) Igazold, hogy det( A) a bb cc a, ahol A az egyenletrendszer mátria! c) Igazold, hogy az egyenletrendszer megoldása nem függ az ab, és c valós számoktól! y z b 0. Adott az y az 5 egyenletrendszer, ahol a,b y 4z 4. a) Számítsd ki az egyenletrendszer mátriának determinánsát! b) Ha a és b, oldd meg az egyenletrendszert! c) Határozd meg a b valós számot, ha 0 0 0, y,z az egyenletrendszer megoldása és 0 y0 z0 4. 4y 4z 5. Adott az a 4 y 5z egyenletrendszer, ahol ar. a) Ha a számítsd ki a rendszer y a z 6 mátriának a determinánsát! b) Igazold, hogy a 7,, számhármas nem lehet a rendszer megoldása, bármely a esetén! c) Határozd meg az egyenletrendszer azon,, y z megoldását, amelyre y0 z0. 0 0 0

y z. Adott az y z egyenletrendszer, ahol a. a) Számítsd ki az egyenletrendszer mátriának y z a determinánsát! b) Ha a 0, oldd meg az egyenletrendszert! c) Határozd meg az a számot úgy, hogy az egyenletrendszer megoldása teljesítse az y z összefüggést! y z. Adott az y z 4 egyenletrendszer, ahol m egy valós paraméter. a) Igazold, hogy bármely m m y 4z valós szám esetén a 0;; számhármas megoldása az egyenletrendszernek! b) Határozd meg az m valós paramétert úgy, hogy az egyenletrendszernek egyetlen megoldása legyen! c) Oldd meg az egyenletrendszert, ha m. 5y 4z 0 4. Adott a y z, a egyenletrendszer, és jelölje A az egyenletrendszer mátriát. a) z a Számítsd ki az A mátri determinánsát! b) Oldd meg az egyenletrendszert a esetén! c) Határozd meg azt a legkisebb a természetes számot, amelyre az egyenletrendszer megoldása egy természetes számokból álló számhármas! y z 0 5. Adott az y mz 0 egyenletrendszer, ahol m valós paraméter és A az egyenletrendszer mátria. a) 4 y 5z 0 Számítsd ki az A mátri determinánsát, ha m. b) Határozd meg az m valós paramétert, ha az egyenletrendszer mátriának determinánsa nulla! c) Oldd meg az egyenletrendszert, ha m. 6. Adott az a y 0, a 4 y 0 egyenletrendszer, a A az egyenletrendszer mátria, valamint az 4 0 0 O 0 0 és az 0 I 0 mátri. Jelölje A A A. a) Oldd meg az egyenletrendszert a esetén! b) Igazold az 8 teljesíti az 7. Adott a A A a A a I O egyenlőséget! c) Határozd meg az a értékét, ha az A mátri 9I egyenlőséget! y 4z 5 y z 0 5 4y 7z 4 5 B 0 5 4 7 meg az. Jelölje, egyenletrendszer, ahol,, A az egyenletrendszer mátria, valamint S a B mátri elemeinek összegét. a) Számítsd ki: S 0,0. b) Határozd és valós számokat, ha az A mátri determinánsa nulla és S,. c) Ha 0 és 0, oldd meg az egyenletrendszert! 4

ay z 0 a 8. Adott az 4y z 6 egyenletrendszer, ahol a és A = 4 az egyenletrendszer y z 6 mátria. a) Határozd meg azokat az a valós számokat, amelyekre az A mátri invertálható! b) Számítsd ki az A mátriot, ahol A 9. Adott az A A. c) Oldd meg az egyenletrendszert, ha a. ay z a y z egyenletrendszer, ahol a és ay a z a A a az a a egyenletrendszer mátria. a) Igazold, hogy det A a 6a 5. b) Oldd meg a det A 0 egyenletet! c) Oldd meg a valós számok halmazán az egyenletrendszert a 0 esetén! 0. Adott a ay z 0 y z 0 y z 0 egyenleterendszer, ahol a valós szám, és a A a rendszer mátria. a) Számítsd ki a 0 esetén az A mátriot, ahol A A A. b) Határozd meg azokat az a valós számokat, amelyekre az A mátri invertálható! c) Oldd meg az egyenletrenszert a valós számok halmazán, ha a \ 4.. Adott az y z 0 a y 4z 0 egyenletrendszer, ahol a a 4y 6z 0, és A a 4 a rendszer mátria. a) a 4 6 Számítsd ki az A mátri determinánsát a esetén! b) Határozd meg azon a valós számok halmazát, amelyekre det 0 a \,4. A. c) Oldd meg az egyenletrendszert, ha fura feladatok. Az Oy derékszögű koordináta rendszerben adottak az O (0,0) és An ( n, ) pontok, n. a) Igazold, hogy az O, A, A pontok kollineárisak! b) Hány egyenes megy át legalább két ponton az O, A0, A, A pontok közül? c) Számítsd ki az An, An, An pontok által meghatározott háromszög területét, n.. Az Oy derékszögű koordináta-rendszerben adottak az O (0,0) és An ( n,n ) pontok, ahol n. b) Számítsd ki az OA A háromszög területét! c) Bizonyítsd be, hogy az An ( n,n ), n pontok kollineárisak! n n 4. Az Oy derékszögű koordináta rendszerben tekintsük az A n log, log9 és B (, ), n n n n pontokat. a) Határozd meg a B és B pontokon átmenő egyenes egyenletét! b) Igazold, hogy An Bn, bármely n esetén! c) Bizonyítsd be, hogy az A n pont rajta van az AA egyenesen bármely n esetén! 5. Az Oy derékszögű koordináta-rendszerben adottak az O (0,0) és az An ( n,n ) pontok, n. a) Határozd meg az A és A pontokon átmenő egyenes egyenletét! b) Számítsd ki az OA0A háromszög területét! c) Bizonyítsd be, hogy az A, A és A n pontok kollineárisak bármely n, n esetén! n XII-es algebra 5

6. A valós számok halmazán értelmezzük az y y 4 4y műveletet. a) Igazold, hogy y ( 4)( y 4) 4, bármely y, esetén! b) Számítsd ki az valós szám esetén az ( 4) értékét! c) Számítsd ki a ( 009) ( 008) 008 009 értékét, ha a művelet asszociatív! 7. A valós számok halmazán értelmezzük az y y 6 6y műveletet. a) Igazold, hogy y ( )( y ), bármely y, esetén! b) Oldd meg a valós számok halmazán az egyenletet! c) Számítsd ki az 009 értékét, ha a művelet asszociatív! 8. Tekintsük a 6,, egyenletet! b) Számítsd ki a Z6 Z 0,,,, 4, 5. a) Oldd meg a Z6 halmazon a ˆ 5ˆ ˆ Z gyűrűt, ahol ˆ ˆ ˆ ˆ ˆ ˆ 6 halmazban az ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ determinánst! c) Oldd meg a Z6 halmazon a ˆ y 4ˆ ˆ y 5ˆ egyenletrendszert! 9. A valós számok halmazán értelmezzük az y y y 6 műveletet. a) Igazold, hogy y y, bármely, y esetén! b) Igazold, hogy, Számítsd ki az E 009 008 0 009 kifejezés értékét, ha a művelet asszociatív! bármely esetén! c) 0 0 40. Tekintsük a G A R halmazt, ahol A 0 0, R a) Igazold, hogy A Ay A y, ahol 0 y,. b) A G halmaz a mátriok szorzásával csoportot alkot. Határozd meg a G, csoport semleges elemét! c) Igazold, hogy az f : R G, f ( ) A függvény csoportmorfizmus a R, és G, csoportok között! 4. A valós számok halmazán értelmezzük az y y 4 4 4 műveletet. a) Határozd meg a művelet semleges elemét! b) Oldd meg a valós számok halmazán az egyenletet! c) Adj példát olyan ab, \ számokra, amelyek esetén a b. 4. A valós számok halmazán értelmezzük az műveletet. a) Igazold, hogy y y, bármely valós szám esetén. b) Igazold, hogy a művelet asszociatív! c) Számítsd ki: 4... 4. 4. A valós számok halmazán értelmezzük az y y 7( y) 4 műveletet. a) Számítsd ki: ( ). b) Igazold, hogy y ( 7)( y 7) 7, bármely y, esetén! c) Oldd meg a valós számok halmazán az egyenletet, ha a ismert, hogy a művelet asszociatív. 44. Adott az M [ k, ) R, k R halmaz és értelmezzük az y y k( y) k k műveletet, bármely y, esetén. a) Határozd meg a k értékét úgy, hogy. b) k esetén oldd meg az M halmazon az 6 egyenletet! c) Igazold, hogy y M, bármely, y M esetén! 6

45. Adott az a 0 a M A( a) 0 0 0 ar a 0 a halmaz. a) Igazold, hogy A( a) A( b) A( ab), bármely a és b valós szám esetén! b) Igazold, hogy az A semleges elem a mátriok szorzására nézve az M halmazon! c) Számítsd ki az A() M elem inverzét a mátriok M halmazon tekintett szorzására nézve! 46. Az egész számok halmazán értelmezzük az y y és y y ( ) műveleteket. a) Oldd meg az egész számok halmazán az egyenletet! b) Határozd meg az a egész számot úgy, hogy teljesüljön az egyenletrendszert, ahol y,. ( y) 4 a egyenlőség bármely egész szám esetén! c) Oldd meg az ( y) 5 47. A valós számok halmazán értelmezzük az y y y y 5 y 5 5 5 0 műveletet. a) Bizonyítsd be, hogy, bármely,y esetén! b) Határozd meg a semleges elemet a műveletre nézve! c) Oldd meg a valós számok halmazán az egyenletet, ha ismert, hogy a művelet asszociatív! 48. A valós számok halmazán értelmezzük az y y műveletet. a) Oldd meg az egyenletet, ahol. b) Igazold, hogy a művelet asszociatív! c) Határozd meg a semleges elemet a műveletre nézve! 49. A valós számok halmazán értelmezzük a y y m műveletet, ahol m valós szám. a) Igazold, hogy a művelet asszociatív! b) Határozd meg az m számot úgy, hogy az e 6 semleges elem legyen a műveletre nézve! c) Határozd meg az m számot úgy, hogy teljesüljön a egyenlőség! m 50. A valós számok halmazán értelmezzük az y y y műveletet. a) Igazold hogy a művelet asszociatív! b) Igazold, hogy bármely,y, esetén ha teljesül az a a egyenlőség bármely esetén! y,. c) Határozd meg az a számot, 5. Az R halmazon értelmezzük az y y y műveletet. a) Bizonyítsd be, hogy y y y számok halmazán az, bármely,y. b) Igazold, hogy a művelet asszociatív! c) Oldd meg a valós 0 egyenletet! 5. A valós számok halmazán értelmezzük az y y y műveletet. a) Oldd meg a valós számok halmazán az 4 0 egyenletet! b) Határozd meg az a számot úgy, hogy teljesüljön az a a a 408 egyenlőség bármely esetén! c) Számítsd ki az értékét, ha tudjuk, hogy a 009 009 009 művelet asszociatív! 5. A Z halmazon értelmezzük az y y, y a by műveleteket, ahol abz,, valamint az f : Z Z, f függvényt. a) Igazold, hogy, bármely Z esetén! b) 7

Határozd meg az abz, számokat úgy, hogy a művelet asszociatív legyen! c) Ha ab igazold, hogy az f függvény morfizmus a, csoportok között!, és 54. Adott a G a b a,b R, a b halmaz. a) Igazold, hogy G. b) Igazold, hogy y G, bármely, y G esetén! c) Igazold, hogy a G halmaz bármely elemének van inverze a G halmazban a valós számok szorzására nézve! 55. A valós számok halmazán értelmezzük az y y meg az halmazban az műveletet. a) Számítsd ki: 009 009 64 egyenletet! c) Igazold, hogy ha y z z, akkor y.. b) Oldd 56. A R halmazon értelmezzük az művelet asszociatív! c) Igazold, hogy ha 0 57. A valós számok halmazán értelmezzük az y y Igazold, hogy y y y y műveletet. a) Számítsd ki: 0. b) Igazold, hogy a R és n 0 n, bármely n N esetén, akkor R. és y y y műveleteket. a) bármely y, esetén! b) A valós számok halmazán oldd meg az ( ) ( ) egyenletet! c) Oldd meg az egyenletrendszert! y 0 y y, y, 58. A valós számok halmazán értelmezzük az y y y műveletet. a) Igazold, hogy y ( y ), bármely, y esetén! b) Határozd meg azokat a valós számokat, amelyekre 5. c) Számítsd ki: ( 009) ( 008)... ( ) 0... 008 009, ha a művelet asszociatív! 59. Adott a G a b a, b, a b halmaz! a) Igazold, hogy G. b) Igazold, hogy a valós számok szorzására nézve a G halmaz minden elemének van inverze a G ben! c) Igazold, hogy y G, bármely, y G esetén! 60. A valós számok halmazán értelmezzük az y y 8 8y 6 műveletet. a) Igazold, hogy y 4 y 4 4, bármely, y. esetén! b) Oldd meg a valós számok halmazán az 6 egyenletet! c) Számítsd ki... 009, ha a művelet asszociatív. 6. Az egész számok halmazán értelmezzük az y y és y y y műveleteket. a) Igazold, hogy y y műveletre nézve!, bármely y, esetén! b) Számítsd ki az elem inverzét a c) Oldd meg az y y 7 6 egyenletrendszert, ahol y,. 6. A valós számok halmazán értelmezzük az y y y műveletet. a) Igazold, hogy y y, bármely y, esetén! b) Határozd meg az valós számot úgy, hogy teljesüljön az 5 6 egyenlőség! c) Adj példát két olyan ab, \ számra, amelyekre a b. 8

6. A G, halmazon értelmezzük az y y y y y,, y G y G 6 műveletet. a) Igazold, hogy. b) Igazold, hogy,, y G. c) Igazold, hogy a G halmaz minden eleme invertálható a műveletre nézve! 64. A G 0, \ halmazon értelmezzük az ln y, y, y G műveletet. a) Határozd meg az e 8 egyenlet valós megoldásainak halmazát, ahol e a természetes logaritmus alapja! b) Igazold, hogy y G,, y G. c) Igazold, hogy a művelet asszociatív a G halmazon! 65. A valós számok halmazán értelmezzük az y y 6 6y műveletet. a) Igazold, hogy y y bármely y, esetén! b) Oldd meg az 5 5 egyenletet a valós számok halmazán! c) Határozd meg az invertálható elemeket a műveletre nézve! 67. Adott a G a b a, b, a b halmaznak! halmaz. a) Vizsgáld meg, hogy 0 és eleme-e a G b) Igazold, hogy y G, bármely, y G esetén! c) Igazold, hogy ha G, akkor G. 68. A halmazon értelmezzük a y y asszociatív műveletet. a) Számítsd ki a 008 009 értékét! b) Oldd meg az halmazon az 0 n n n egyenlőtlenséget! c) Adott az A n n és C C C n 6 halmaz. Határozd meg az A halmaz elemeinek számát! 69. A G, halmazon értelmezzük az egyenletet! b) Igazold, hogy y bármely, y G esetén y G. y y y műveletet. a) Oldd meg G halmazban az 4 5 y y y y bármely, y G esetén! c) Igazold, hogy 70. A valós számok halmazán értelmezzük az y y y 6 műveletet. a) Igazold, hogy y y, bármely y, esetén! b) Határozd meg a semleges elemet a műveletre nézve! c) Határozd meg az n, n számot, ha n n C C. 8,, a maradékosztályok gyűrűje modulo 8. a) Számítsd ki a 8 gyűrűben az S ˆ ˆ ˆ 4ˆ 5ˆ 6ˆ 7ˆ összeget! b) Számítsd ki a 8 gyűrű invertálható elemeinek a szorzatát! c) Oldd 7. Legyen ˆ ˆ meg a 8 gyűrűben a 5ˆ y egyenletrendszert! ˆ ˆy 5ˆ 9

7. Az egész számok halmazán értelmezzük az y y Oldd meg az egész számok halmazán az Oldd meg az y y 4 0 és az y y y egyenletet! b) Igazold, hogy. c) egyenletrendszert, ahol y,. műveleteket. a) 7. Az egész számok halmazán értelmezzük az y y műveletet. a) Igazold, hogy a művelet asszociatív! c) Igazold, hogy, kommutatív csoport! b) Oldd meg az... = egyenletet az egész számok halmazán! 6szor 74. A valós számok halmazán értelmezzük az y y y 6 y y,, y. b) Igazold, hogy, bármely E 009 008 0 008 009 kifejezést, ha a művelet asszociatív. 75. A G, halmazon értelmezzük az f :, 0,, f Igazold, hogy a művelet asszociatív! műveletet. a) Igazold, hogy y y műveletet. a) Számítsd ki: y esetén! c) Számítsd ki az függvény. Igazold, hogy f y f f y, bármely, 76. A valós számok halmazán értelmezzük az y y y y y y műveleteket. a) Igazold, hogy,.. b) Adott az 6 és y G esetén! c) b) Ha e a semleges elem a műveletre nézve e pedig a a semleges elem a műveletre nézve, számítsd ki az e e e e összeget! c) Adott az f :, f a y, esetén! függvény. Határozd meg az a számot, ha f y f f y 77. A valós számok halmazán értelmezzük az y y 4,, bármely műveletet. a) Igazold, hogy bármely ˇ esetén! b) Igazold, hogy e 4 semleges elem a műveletre nézve! c) Határozd meg az halmaz invertálható elemeit a műveletre nézve! 78. Az egész számok halmazán értelmezzük az y y, y a y műveleteket, ahol a, valamint az függvényt. a) Számítsd ki: 0 f :, f 6. b) Határozd meg azt az a egész számot, amelyre a művelet asszociatív! c) Igazold, hogy a esetén az f függvény morfizmus a, és, csoportok között! 79. A valós számok halmazán értelmezzük az y y ay b, a, b műveletet. a) Határozd meg a számot úgy, hogy a művelet kommutatív legyen! b) Igazold, hogy a és b 6 esetén a műveletre nézve van semleges elem! c) Határozd meg az a és b számokat, ha ( ), bármely esetén! 0

80. A valós számok halmazán értelmezzük az y y 4 4y műveletet. a) Igazold, hogy ( y z) ( y) z, bármely, y, z esetén! b) Bizonyítsd be, hogy ( 4) y 4, bármely y, esetén! c) Számítsd ki: ( ) ( 4) 5 ( 6). 8. Adottak az Igazold, hogy I A 009 0 0 0 0 0 0 0 G, ahol I 0 0. 0 0 Igazold, hogy G A,, mátriok, valamint a G A ( ) a mátriok szorzásával csoportot alkot! M halmaz. a) b) Igazold, hogy A Ay A y bármely y, esetén! c) 8. Az egész számok halmazán értelmezzük az y y 7 7y 4 műveletet. a) Határozd meg a semleges elemet a műveletre nézve! b) Oldd meg az egész számok halmazán az egyenlőtlenséget! c) Igazold, hogy a művelet asszociatív! 8. A pq, számok esetén értelmezzük az egész számok halmazán y p y és y y műveleteket, valamint az : f, f q függvényt. a) Határozd meg a p egész számot úgy, hogy a művelet kommutatív legyen! b) Oldd meg az egész számok halmazán az egyenletet, ha p. c) Határozd meg a q között, ha p. egész számot úgy, hogy az f függvény morfizmus legyen a, és, csoportok 84. A valós számok halmazán értelmezzük a y y y hogy y y 009 009 009 műveletet. a) Igazold, 009 009 009, bármely y, esetén! b) Határozd meg a semleges elemet műveletre nézve! c) Számítsd ki: 009 008... 0... 008 009, ha a művelet asszociatív. 85. A valós számok halmazán értelmezett az y y 6 6y 4 asszociatív művelet. a) Igazold, hogy y 6 y 6 6, bármely, y esetén! b) Oldd meg a valós számok halmazán az egyenletet! c) Számítsd ki:... 009. 86. A valós számok halmazán értelmezzük az y y y műveletet. a) Igazold, hogy y y, bármely y, esetén! b) Igazold, hogy a művelet asszociatív! c) Számítsd ki: 009. 87. Adott a 6,, egyenletet! b) Számítsd ki a gyűrű, ahol 6 0, ˆ, ˆ, ˆ, ˆ 4, ˆ 5ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ. a) Oldd meg a 6 gyűrűben az ˆ 5ˆ ˆ ˆ ˆ determinánst 6 -ban! c) Oldd meg a y 4 egyenletrendszert, ˆ y 5ˆ

ahol y, 6. 88. Adottak az 4 f X ax 8X bx 96, Polinomok g X X 4 és h ( X X 4)( X 4) valós együtthatójú polinomok. a) Határozd meg a h polinom algebrai alakját! b) Határozd meg az ab, értékeket úgy, hogy az f és h polinomok egyenlők legyenek! c) Oldd meg en a 6 8 8 4 8 96 0 egyenletet! 89. Adottak az f X ax X és g X polinomok a Z 5 [ X] gyűrűben. a) Határozd meg az a 5 értékét úgy, hogy az f polinom osztható legyen g polinommal! b) Igazold, hogy a esetén f ( X )( X ). c) Oldd meg a ( Z 5,, ) gyűrűben az f( ) 0 egyenletet, ha a. 90. Adottak az f, g 5[ X ], f (a b) X X a b és g X X a b polinomok. a) Határozd meg az ab, 5 értékét úgy, hogy a két polinom egyenlő legyen! b) Számítsd ki az f (0) f () f () f () f (4) összeget, ha ab. c) Oldd meg a 5 ha ab. 9. Adottak az f, g [ X ], 0 0 f ( X ) ( X ) és halmazban az f ( ) 0 egyenletet, g X X polinomok. a) Bontsd fel a g polinomot irreducibilis tényezők szorzatára az X halmazon! b) Igazold, hogy az f polinom nem osztható a g polinommal! c) Határozd meg az f polinomnak a g polinommal való osztási maradékát! 4 9. Adott az f X mx n polinom, mn,. A polinom gyökei,,, 4. a) Határozd meg mn, értékeket, ha 0 és az f polinom gyökei! b) Határozd meg az m értékét úgy, hogy a polinom gyökeire teljesüljön az 4 összefüggés! c) Bontsd fel az f polinomot irreducibilis tényezők szorzatára az X halmazon, ha m és n. 9. Adottak az 4 f X ax bx 5X 6 és g X X racionális együtthatójú polinomok. a) Határozd meg ab, értékét úgy, hogy az f polinom osztható legyen a g polinommal! b) Bontsd fel az f polinomot irreducibilis tényezők szorzatára a [ X ] halmazon, ha a és b. c) Oldd meg a valós számok halmazán a 94. Az 5 6 0 egyenletet! f X 9X X 9 polinom gyökei,,. a) Határozd meg az f polinomnak az X polinommal való osztási maradékát és hányadosát! b) Igazold, hogy Oldd meg a valós számok halmazán az f ( ) 0 egyenletet! 95. Adott az 9( ) 8. c) n n n f X ax 5X 4 racionális együtthatójú polinom és az Sn összeg, ahol n és,, az f polinom gyökei. a) Határozd meg az a racionális számot úgy, hogy az f

polinomnak az egyik gyöke legyen! b) Oldd meg az f( ) 0 egyenletet, ha a 4. c) Igazold az S 4 4S 5S egyenlőséget, ha a 4. 96. Az [ X ] halmazban adottak az 4 f X X X X és g X X polinomok. a) Határozd meg az f polinomnak a g polinommal való osztási hányadosát és maradékát! b) Igazold, hogy ha y gyöke a g polinomnak, akkor szám! 97. Adottak az y y. c) Igazold, hogy ha y gyöke a g polinomnak, akkor f( y ) nem racionális 5 f X X X 4 [ X ] és 5 g X X X [ X ] polinomok. a) Számítsd ki az f(0) f() összeget! b) Oldd meg a 5 halmazban az f( ) 0 egyenletet! c) Határozd meg az f polinomnak a g polinommal való osztási hányadosát! 98. Adott az 7, f X f mx X X m polinom. a) Határozd meg az m értékét úgy, hogy az f polinom osztható legyen a g X polinommal! b) Határozd meg az m értékét úgy, hogy f legyen! c) Számítsd ki az f polinom gyökeinek négyzetösszegét, ha m 9. 99. Az 4 ( ) 6 4, f X f X ax a X X polinom gyökei,,, 4. a) Határozd meg az a értékét úgy, hogy 4 legyen! b) Határozd meg az a értékét úgy, hogy a polinom osztható legyen az X polinommal! c) a esetén bontsd fel az f polinomot irreducibilis tényezők szorzatára az X halmazon! 00. Adott az ( ), f X f X m X X polinom. a) Határozd meg az m értékét úgy, hogy a polinom gyökeinek összege legyen! b) Határozd meg az m értékét úgy, hogy az gyöke legyen a polinomnak! c) Ha m 0 bontsd fel az f polinomot irreducibilis tényezők szorzatára a [ X ] halmazon! 0. Adott az 4, f X f X ax ax polinom. a) Határozd meg az a számot úgy, hogy legyen, ahol,, az f polinom valós gyökei! b) Határozd meg az a számot úgy, hogy az f polinom osztható legyen az f polinomnak legyen egy pozitív racionális gyöke! 0. Adott az polinomnak! b) Ha \. 4 X polinommal! c) Határozd meg az a számot úgy, hogy az f X ax X polinom, ahol a. a) Határozd meg az a számot, ha gyöke az f 0. Adottak az f, g X a, határozd meg az f polinom valós gyökeit! c) Igazold, hogy f 0, f X és g X polinomok, valamint a H a bx cx a, b, c halmaz. a) Igazold, hogy g 5, bármely f. b) Határozd meg az f g polinomnak az f polinommal való osztási maradékát és hányadosát! c) Határozd meg a H halmaz elemeinek számát!

04. Adott a X f Z, h X X Z polinomgyűrű. a) Ha g Z X, g X X, számítsd ki g ˆ0 f X X, igazold, hogy 0 harmadfokú polinomot, amelyekre h ˆ h ˆ h ˆ 4 05. Adott az értékét! b) Ha f, bármely esetén! c) Határozd meg az összes olyan 0 0. f 4X 4mX m 7 X 4mX 4 polinom, ahol m. a) Határozd meg az m számot, ha gyöke a polinomnak! b) Határozd meg az m számot, ha a polinom gyökeinek összege 0. c) Ha m 5, oldd meg a valós számok halmazán az f 0 egyenletet! 06. Adott az f X X a polinom, ahol a. a) Ha 0 b) Igazold, hogy f X X a X X a az f polinom minden gyöke valós! a, oldd meg az f 0 egyenletet!. c) Határozd meg azon a számokat, amelyekre 4 07. Adott az a a 0 egyenlet, melynek megoldásai,,, 4, ahol a. a) Határozd meg az a számot, ha 4 5. b) Ha a, határozd meg az egyenlet valós megoldásait! c) Határozd meg az a egész szám azon értékeit, amelyekre az egyenletnek legalább egy megoldása egész szám! 08. Adott az f X 4 X 5, f X polinom. a) Bizonyítsd be, hogy f X 6. b) Igazold, hogy a polinomnak nincsenek egész gyökei! c) Bontsd fel a polinomot irreducibilis tényezők szorzatára az R X halmazon! 09. Adottak az 5 és 009 f X X 009 008 009 008... 0 g a X a X a X a, ahol 0,,..., 009 g X 6 X 6 polinomok. A g polinom algebrai alakja a a a. a) Számítsd ki az f 5 g5 összeget! b) Igazold, hogy az a0 a... a009 szám negatív! c) Számítsd ki a g polinomnak az f polinommal való osztási maradékát! 0. Adott az f X, f X X ax 8 polinom. a) Határozd meg az a valós számot úgy, hogy az f polinom egyik gyöke legyen! b) Ha a 4, számítsd ki az f polinomnak a osztási hányadosát és maradékát! c) Igazold, hogy ha a, valós!. Adott az az f polinomnak az g X X 4 polinommal való, akkor az f polinom nem minden gyöke 4 f X X ax bx c polinom, ahol abc,,. a) Ha ac és b határozd meg számokat, ha az f polinomnak az X gyel való osztási maradéka. c) Igazold, hogy ha valós! polinommal való osztási maradékát és hányadosát! b) Határozd meg az a, b, c. Adott az f X 4 X ax bx c X X -gyel való osztási maradéka X, valamint az f polinomnak X - a,, akkor az f polinomnak nem minden gyöke polinom, amelynek gyökei,,, 4. a) Számítsd ki az 4 összeget! b) Ha a, b és c 0, számítsd ki az f polinom gyökeit! c) Ha az f polinom gyökei számtani haladványt alkotnak, igazold, hogy ba. 4

. Az X halmazban adott az ki f p f X px polinom, ahol p. Az f gyökei,,. a) Számítsd értékét! b) Határozd meg a p számot úgy, hogy az f polinom osztható legyen az X polinommal! c) Számítsd ki az 4 4 4 összeget a p függvényében! 4. Adottak az,, valós számok, amelyekre teljesülnek az ; ; és egyenlőségek. a) Számítsd ki az szorzatot! b) Határozd meg abc,, számokat úgy, hogy,, az a b c 0 egyenlet gyökei legyenek! c) Bontsd fel az 4 polinomot irreducibilis tényezők szorzatára az f X X X 5. Adott az Határozd meg, számát! halmaz. a) Számítsd ki M f X f X ax b ab értékét úgy, hogy f f 6. Az X gyűrűben adott az f X halmazban! f értékét, ha ab. b) 0. c) Határozd meg az M halmaz elemeinek f X X 5 polinom, amelynek gyökei,,. a) Számítsd ki az értéket! b) Számítsd ki azt az a számot, amelyre az f polinom X a polinommal való osztási maradéka 5. c) Számítsd ki az 7. Adott az f X X mx, f X n n n n determinánst! polinom, amelynek gyökei,,. Jelölje S, ahol n. a) Számítsd ki azt az m valós számot, amelyre. b) Igazold, hogy S S ms 0. f, g X, f X X X X és g X X X polinomok. a) Igazold, hogy 8. Adottak az 4 f X g. b) Számítsd ki a g polinom valós gyökeit! c) Számítsd ki az f a értékét, ha a a g polinom egyik gyöke! 9. Adott az, f f X f X px qx r polinom, amelynek gyökei,,. a) Számítsd ki az 0 f különbséget! b) Számítsd ki az Igazold, hogy a kifejezést pqr,, függvényében! c) g X X X polinomnak nem minden gyöke valós! f, g X, f ˆ X 4ˆ X ˆ X és g X ˆ X polinomok. a) Számítsd ki 0. Adottak az f ˆ ˆ 5 g 0. b) Igazold, hogy f (ˆ X ) ˆ g ˆ X ˆ. c) Határozd meg az f polinom 5 halmazban levő gyökeinek számát!. Adott az f X X X polinom, amelynek gyökei,,, és a g X X polinom, amelynek gyökei y, y. a) Számítsd ki az S S különbséget, ha S és S y y. b) 5

Határozd meg az f polinomnak a g polinommal való osztási maradékát és hányadosát! c) Számítsd ki az f y f y szorzatot!. Adott az osztható a 4 f X X polinom, amelynek gyökei,,, 4. a) Igazold, hogy az f polinom g X polinommal! b) Számítsd ki az S P szorzatot, ahol S 4 és P 4. c) Számítsd ki a. Legyen 4 4 4 4 4 T összeget! 8,, a maradékosztályok gyűrűje modulo 8. a) Számítsd ki a 8 gyűrűben az S ˆ ˆ ˆ 4ˆ 5ˆ 6ˆ 7ˆ összeget! b) Számítsd ki a 8 gyűrű invertálható elemeinek a szorzatát! c) Oldd meg a 8 gyűrűben a ˆ5 ˆ y ˆ ˆ ˆy 5ˆ 4. A polinomok X halmazában adott az Oldd meg a valós számok halmazán az egyenletrendszert! 6 és a f X mx nx hogy az f polinom osztható legyen a g polinommal. c) Számítsd ki a 0 008 009 P f f f f szorzatot, ha m 4 és n. g X X X polinom. a) 0 egyenletet. b) Határozd meg az mn, számokat úgy, 5. Adott a 6,, gyűrű. a) Számítsd ki az invertálható elemek számát a 6,, gyűrűben értelmezett szorzási műveletre nézve! b) Legyen S a ˆ ˆ 5ˆ egyenlet megoldásainak összege, és P az, 6 egyenlet megoldásainak szorzata. Számítsd ki az S P összeget! c) Számítsd ki annak a valószínűségét, hogy a 6,, gyűrű valamely eleme megoldása legyen az ˆ0 egyenletnek! 009 009 6. Adott az f X, f ( X ) X X polinom, amelynek algebrai alakja 009 008 009 008... 0 f a X a X a X a. a) Számítsd ki az a 0 értékét! b) Igazold, hogy f () + f ( ) páros egész szám! c) Határozd meg az f polinom valós gyökeinek számát! 7. Adottak az f, g X, f X X a és g( ) X X polinomok, ahol a. a) A valós számok halmazán oldd meg az f ( ) g( ) egyenletet a esetén! b) Számítsd ki az f polinom gyökeit, ha a polinomnak van egy kétszeres pozitív gyöke! c) Oldd meg az 8. Adott a 6,, egyenletet! b) Számítsd ki a ahol y, 6. gyűrű, ahol 6 0, ˆ, ˆ, ˆ, ˆ 4, ˆ 5ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ f ( ) 5 e g egyenletet, ha a.. a) Oldd meg a 6 gyűrűben az ˆ 5ˆ ˆ ˆ ˆ determinánst 6 -ban! c) Oldd meg a y 4 egyenletrendszert, ˆ y 5ˆ 6