Metaanalízisek. Ferenci Tamás május 16. Ferenci Tamás Metaanalízisek május 16.

Hasonló dokumentumok
Metaanalízisek. Ferenci Tamás november 27.

Matematikai statisztika c. tárgy oktatásának célja és tematikája

KÖVETKEZTETŐ STATISZTIKA

A confounding problémája

A confounding problémája

A confounding problémája

y ij = µ + α i + e ij

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

(Independence, dependence, random variables)

A confounding megoldásai: megfigyelés és kísérlet

Tárgy- és névmutató. C Cox & Snell R négyzet 357 Cramer-V 139, , 151, 155, 159 csoportok közötti korrelációs mátrix 342 csúcsosság 93 95, 102

Feladatok: pontdiagram és dobozdiagram. Hogyan csináltuk?

Khi-négyzet eloszlás. Statisztika II., 3. alkalom

Tartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE

[Biomatematika 2] Orvosi biometria

A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András

Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév

Heckman modell. Szelekciós modellek alkalmazásai.

Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás

Többváltozós lineáris regressziós modell feltételeinek

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.

A klímamodellek eredményei mint a hatásvizsgálatok kiindulási adatai

Regressziós vizsgálatok

A maximum likelihood becslésről

Uniós források és hatásuk -- mennyiségek és mérési lehetőségek Major Klára. HÉTFA Kutatóintézet és Elemző Központ

Segítség az outputok értelmezéséhez

Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Többváltozós lineáris regressziós modell feltételeinek tesztelése I.

Megfigyeléses vizsgálatok

STATISZTIKA I. Mintavétel fogalmai. Mintavételi hiba. Statisztikai adatgyűjtés Nem véletlenen alapuló kiválasztás

A társadalomkutatás módszerei I. Outline. A mintaválasztás A mintaválasztás célja. Notes. Notes. Notes. 13. hét. Daróczi Gergely december 8.

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

6. Előadás. Vereb György, DE OEC BSI, október 12.

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

Többtényezős döntési problémák

2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!

Szomszédság alapú ajánló rendszerek

Kockázatalapú változó paraméterű szabályozó kártya kidolgozása a mérési bizonytalanság figyelembevételével

Kettőnél több csoport vizsgálata. Makara B. Gábor

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

GEOSTATISZTIKA. Földtudományi mérnöki MSc, geofizikus-mérnöki szakirány. 2018/2019 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ

Többváltozós Regresszió-számítás

Egyszempontos variancia analízis. Statisztika I., 5. alkalom

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet

Az empirikus orvosi kutatások alapgondolata és a kauzalitás

EPIDEMIOLÓGIA I. Alapfogalmak

Termelés- és szolgáltatásmenedzsment

A klinikai vizsgálatokról. Dr Kriván Gergely

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.

Módszertani dilemmák a statisztikában 40 éve alakult a Jövőkutatási Bizottság

Geokémia gyakorlat. 1. Geokémiai adatok értelmezése: egyszerű statisztikai módszerek. Geológus szakirány (BSc) Dr. Lukács Réka

Normális eloszlás tesztje

Az empirikus vizsgálatok alapfogalmai

Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet

Matematikai geodéziai számítások 6.

Faktoranalízis az SPSS-ben

Adatok statisztikai értékelésének főbb lehetőségei

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

Hipotézis vizsgálatok

STATISZTIKA. A Föld pályája a Nap körül. Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Matematikai geodéziai számítások 6.

Dr. Nagy Zita Barbara igazgatóhelyettes KÖVET Egyesület a Fenntartható Gazdaságért november 15.

Kettőnél több csoport vizsgálata. Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet

A valószínűségszámítás elemei

Kockázatok és mérési bizonytalanság kezelése a termelésmenedzsment területén

Reiczigel Jenő,

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Biometria az orvosi gyakorlatban. Regresszió Túlélésanalízis

p-érték, hipotézistesztelés, és ellentmondásaik

A társadalomkutatás módszerei I.

Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Faktoranalízis előadás. Kvantitatív statisztikai módszerek

III. Kvantitatív változók kapcsolata (korreláció, regresszió)

Kosztyán Zsolt Tibor Katona Attila Imre

Drogkutatások Magyarországon: helyzetértékelés és következtetések

Intézményi kompetenciahálók. Tudománytérképezés és kutatásértékelés

Kapcsolat vizsgálat : kontingencia táblák jelentősége és használata az epidemiológiában, diagnosztikában: RR, OR.

TANM PED 108/a, illetve PEDM 130/1 Kutatásmódszertan és PEDM 135/c1 Kutatásmódszertan, TANM PED 108/a1 Oktatásstatisztikai elemzések

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus

Okozati következtetések levonása megfigyeléses adatokból

STATISZTIKAI ALAPOK. Statisztikai alapok_eloszlások_becslések 1

Nagy méretű adathalmazok vizualizációja

Statisztikai alapok. Leíró statisztika Lineáris módszerek a statisztikában

A leíró statisztikák

Regression games and applications TDK prezentáció

Kutatásmódszertan. Kulturális szempont megjelenése. Modulok áttekintése. Történet Témák és megközelítések. 11. Társadalmi nézőpont

Ötlet vs. Evidencia. Szisztematikus irodalom-elemzés, metaanalízis. Dr. Mészáros Ágnes. Hipotézis

A Statisztika alapjai

Ökonometria. Dummy változók használata. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Hetedik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

CEBS Consultative Paper 10 (folytatás) Krekó Béla PSZÁF, szeptember 15.

Területi statisztikai elemzések

Több valószínűségi változó együttes eloszlása, korreláció

Anyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek

VIZSGADOLGOZAT. I. PÉLDÁK (60 pont)

Átírás:

Metaanalízisek Ferenci Tamás tamas.ferenci@medstat.hu 2018. május 16. Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 1 / 18

A metaanalízis fogalma Több, ugyanarra a kérdésre vonatkozó vizsgálat eredményeinek bizonyos módszer szerinti aggregálása (Itt természetesen kvantitatív eredményű, empirikus vizsgálatokról beszélünk) Akkor alkalmazzuk jellemzően, ha a páciens-szintű adatok nem elérhetőek (különben klasszikus módszerekkel is aggregálhatóak a eredmények) Tehát többször vizsgáljuk ugyanazt a kérdést: hát persze, a kutatások replikációja a tudományos munka egyik alappillére De hogyan kell ezt megtenni? Mi erre a korrekt (statisztikai) módszertan? Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 2 / 18

A metaanalízis fogalma Több, ugyanarra a kérdésre vonatkozó vizsgálat eredményeinek bizonyos módszer szerinti aggregálása (Itt természetesen kvantitatív eredményű, empirikus vizsgálatokról beszélünk) Akkor alkalmazzuk jellemzően, ha a páciens-szintű adatok nem elérhetőek (különben klasszikus módszerekkel is aggregálhatóak a eredmények) Tehát többször vizsgáljuk ugyanazt a kérdést: hát persze, a kutatások replikációja a tudományos munka egyik alappillére De hogyan kell ezt megtenni? Mi erre a korrekt (statisztikai) módszertan? Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 2 / 18

A metaanalízis fogalma Több, ugyanarra a kérdésre vonatkozó vizsgálat eredményeinek bizonyos módszer szerinti aggregálása (Itt természetesen kvantitatív eredményű, empirikus vizsgálatokról beszélünk) Akkor alkalmazzuk jellemzően, ha a páciens-szintű adatok nem elérhetőek (különben klasszikus módszerekkel is aggregálhatóak a eredmények) Tehát többször vizsgáljuk ugyanazt a kérdést: hát persze, a kutatások replikációja a tudományos munka egyik alappillére De hogyan kell ezt megtenni? Mi erre a korrekt (statisztikai) módszertan? Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 2 / 18

A metaanalízis fogalma Több, ugyanarra a kérdésre vonatkozó vizsgálat eredményeinek bizonyos módszer szerinti aggregálása (Itt természetesen kvantitatív eredményű, empirikus vizsgálatokról beszélünk) Akkor alkalmazzuk jellemzően, ha a páciens-szintű adatok nem elérhetőek (különben klasszikus módszerekkel is aggregálhatóak a eredmények) Tehát többször vizsgáljuk ugyanazt a kérdést: hát persze, a kutatások replikációja a tudományos munka egyik alappillére De hogyan kell ezt megtenni? Mi erre a korrekt (statisztikai) módszertan? Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 2 / 18

A metaanalízis fogalma Több, ugyanarra a kérdésre vonatkozó vizsgálat eredményeinek bizonyos módszer szerinti aggregálása (Itt természetesen kvantitatív eredményű, empirikus vizsgálatokról beszélünk) Akkor alkalmazzuk jellemzően, ha a páciens-szintű adatok nem elérhetőek (különben klasszikus módszerekkel is aggregálhatóak a eredmények) Tehát többször vizsgáljuk ugyanazt a kérdést: hát persze, a kutatások replikációja a tudományos munka egyik alappillére De hogyan kell ezt megtenni? Mi erre a korrekt (statisztikai) módszertan? Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 2 / 18

Metaanalízis végeredményének közlése Tipikus grafikus megoldás a forest plot: Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 3 / 18

A metaanalízis története Előzmények: 17., 18. században (George Biddell Airy) Karl Pearson és a tífusz elleni oltás (1904) Modern kezdetek: agrometriai eredmények kombinálása (már az 1930-as évektől), Ronald Fisher és Cochran, Yates 20. század közepe: elsősorban társadalomtudományi alkalmazások (szociológia, pszichológia) A kifejezést Gene Glass vezette be, 1976-ban ( analysis of analysis ) Egyik első emlékezetes orvosi alkalmazás: aszpirin és szívinfarktus (1974-1980) Elképesztő fejlődés azóta, alapvető eszközzé vált az orvostudományban (együtt a vizsgálatok számának robbanásszerű növekedésével) Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 4 / 18

A metaanalízis története Előzmények: 17., 18. században (George Biddell Airy) Karl Pearson és a tífusz elleni oltás (1904) Modern kezdetek: agrometriai eredmények kombinálása (már az 1930-as évektől), Ronald Fisher és Cochran, Yates 20. század közepe: elsősorban társadalomtudományi alkalmazások (szociológia, pszichológia) A kifejezést Gene Glass vezette be, 1976-ban ( analysis of analysis ) Egyik első emlékezetes orvosi alkalmazás: aszpirin és szívinfarktus (1974-1980) Elképesztő fejlődés azóta, alapvető eszközzé vált az orvostudományban (együtt a vizsgálatok számának robbanásszerű növekedésével) Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 4 / 18

A metaanalízis története Előzmények: 17., 18. században (George Biddell Airy) Karl Pearson és a tífusz elleni oltás (1904) Modern kezdetek: agrometriai eredmények kombinálása (már az 1930-as évektől), Ronald Fisher és Cochran, Yates 20. század közepe: elsősorban társadalomtudományi alkalmazások (szociológia, pszichológia) A kifejezést Gene Glass vezette be, 1976-ban ( analysis of analysis ) Egyik első emlékezetes orvosi alkalmazás: aszpirin és szívinfarktus (1974-1980) Elképesztő fejlődés azóta, alapvető eszközzé vált az orvostudományban (együtt a vizsgálatok számának robbanásszerű növekedésével) Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 4 / 18

A metaanalízis története Előzmények: 17., 18. században (George Biddell Airy) Karl Pearson és a tífusz elleni oltás (1904) Modern kezdetek: agrometriai eredmények kombinálása (már az 1930-as évektől), Ronald Fisher és Cochran, Yates 20. század közepe: elsősorban társadalomtudományi alkalmazások (szociológia, pszichológia) A kifejezést Gene Glass vezette be, 1976-ban ( analysis of analysis ) Egyik első emlékezetes orvosi alkalmazás: aszpirin és szívinfarktus (1974-1980) Elképesztő fejlődés azóta, alapvető eszközzé vált az orvostudományban (együtt a vizsgálatok számának robbanásszerű növekedésével) Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 4 / 18

A metaanalízis története Előzmények: 17., 18. században (George Biddell Airy) Karl Pearson és a tífusz elleni oltás (1904) Modern kezdetek: agrometriai eredmények kombinálása (már az 1930-as évektől), Ronald Fisher és Cochran, Yates 20. század közepe: elsősorban társadalomtudományi alkalmazások (szociológia, pszichológia) A kifejezést Gene Glass vezette be, 1976-ban ( analysis of analysis ) Egyik első emlékezetes orvosi alkalmazás: aszpirin és szívinfarktus (1974-1980) Elképesztő fejlődés azóta, alapvető eszközzé vált az orvostudományban (együtt a vizsgálatok számának robbanásszerű növekedésével) Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 4 / 18

A metaanalízis története Előzmények: 17., 18. században (George Biddell Airy) Karl Pearson és a tífusz elleni oltás (1904) Modern kezdetek: agrometriai eredmények kombinálása (már az 1930-as évektől), Ronald Fisher és Cochran, Yates 20. század közepe: elsősorban társadalomtudományi alkalmazások (szociológia, pszichológia) A kifejezést Gene Glass vezette be, 1976-ban ( analysis of analysis ) Egyik első emlékezetes orvosi alkalmazás: aszpirin és szívinfarktus (1974-1980) Elképesztő fejlődés azóta, alapvető eszközzé vált az orvostudományban (együtt a vizsgálatok számának robbanásszerű növekedésével) Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 4 / 18

A metaanalízis története Előzmények: 17., 18. században (George Biddell Airy) Karl Pearson és a tífusz elleni oltás (1904) Modern kezdetek: agrometriai eredmények kombinálása (már az 1930-as évektől), Ronald Fisher és Cochran, Yates 20. század közepe: elsősorban társadalomtudományi alkalmazások (szociológia, pszichológia) A kifejezést Gene Glass vezette be, 1976-ban ( analysis of analysis ) Egyik első emlékezetes orvosi alkalmazás: aszpirin és szívinfarktus (1974-1980) Elképesztő fejlődés azóta, alapvető eszközzé vált az orvostudományban (együtt a vizsgálatok számának robbanásszerű növekedésével) Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 4 / 18

Miért végzünk metaanalízist? Egyszerűen ugyanazért, amiért a nagyobb mintanagyság jobb (szűkebb konfidenciaintervallumok, erősebb tesztek)... de ez olcsóbb (nem csak forintban, kivitelezési időben is) Konzisztencia megítélése vizsgálatok között Sőt, adott esetben megítélhető, hogy a vizsgálatra jellemző valamilyen tényező számszerűen hogyan függ össze a vizsgálatban talált eredménnyel (metaregresszió) Publikációs torzítás felfedése Persze a metaanalízis sem hibátlan: hogy milyen tanulmányokat vonunk be, az maga is lehet torzítás forrása (minél több paramétert kell hozzá megszabni, annál inkább összelőhetjük úgy, hogy pont az jöjjön ki, ami a prekoncepciónk) GIGO-elv Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 5 / 18

Miért végzünk metaanalízist? Egyszerűen ugyanazért, amiért a nagyobb mintanagyság jobb (szűkebb konfidenciaintervallumok, erősebb tesztek)... de ez olcsóbb (nem csak forintban, kivitelezési időben is) Konzisztencia megítélése vizsgálatok között Sőt, adott esetben megítélhető, hogy a vizsgálatra jellemző valamilyen tényező számszerűen hogyan függ össze a vizsgálatban talált eredménnyel (metaregresszió) Publikációs torzítás felfedése Persze a metaanalízis sem hibátlan: hogy milyen tanulmányokat vonunk be, az maga is lehet torzítás forrása (minél több paramétert kell hozzá megszabni, annál inkább összelőhetjük úgy, hogy pont az jöjjön ki, ami a prekoncepciónk) GIGO-elv Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 5 / 18

Miért végzünk metaanalízist? Egyszerűen ugyanazért, amiért a nagyobb mintanagyság jobb (szűkebb konfidenciaintervallumok, erősebb tesztek)... de ez olcsóbb (nem csak forintban, kivitelezési időben is) Konzisztencia megítélése vizsgálatok között Sőt, adott esetben megítélhető, hogy a vizsgálatra jellemző valamilyen tényező számszerűen hogyan függ össze a vizsgálatban talált eredménnyel (metaregresszió) Publikációs torzítás felfedése Persze a metaanalízis sem hibátlan: hogy milyen tanulmányokat vonunk be, az maga is lehet torzítás forrása (minél több paramétert kell hozzá megszabni, annál inkább összelőhetjük úgy, hogy pont az jöjjön ki, ami a prekoncepciónk) GIGO-elv Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 5 / 18

Miért végzünk metaanalízist? Egyszerűen ugyanazért, amiért a nagyobb mintanagyság jobb (szűkebb konfidenciaintervallumok, erősebb tesztek)... de ez olcsóbb (nem csak forintban, kivitelezési időben is) Konzisztencia megítélése vizsgálatok között Sőt, adott esetben megítélhető, hogy a vizsgálatra jellemző valamilyen tényező számszerűen hogyan függ össze a vizsgálatban talált eredménnyel (metaregresszió) Publikációs torzítás felfedése Persze a metaanalízis sem hibátlan: hogy milyen tanulmányokat vonunk be, az maga is lehet torzítás forrása (minél több paramétert kell hozzá megszabni, annál inkább összelőhetjük úgy, hogy pont az jöjjön ki, ami a prekoncepciónk) GIGO-elv Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 5 / 18

Miért végzünk metaanalízist? Egyszerűen ugyanazért, amiért a nagyobb mintanagyság jobb (szűkebb konfidenciaintervallumok, erősebb tesztek)... de ez olcsóbb (nem csak forintban, kivitelezési időben is) Konzisztencia megítélése vizsgálatok között Sőt, adott esetben megítélhető, hogy a vizsgálatra jellemző valamilyen tényező számszerűen hogyan függ össze a vizsgálatban talált eredménnyel (metaregresszió) Publikációs torzítás felfedése Persze a metaanalízis sem hibátlan: hogy milyen tanulmányokat vonunk be, az maga is lehet torzítás forrása (minél több paramétert kell hozzá megszabni, annál inkább összelőhetjük úgy, hogy pont az jöjjön ki, ami a prekoncepciónk) GIGO-elv Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 5 / 18

Miért végzünk metaanalízist? Egyszerűen ugyanazért, amiért a nagyobb mintanagyság jobb (szűkebb konfidenciaintervallumok, erősebb tesztek)... de ez olcsóbb (nem csak forintban, kivitelezési időben is) Konzisztencia megítélése vizsgálatok között Sőt, adott esetben megítélhető, hogy a vizsgálatra jellemző valamilyen tényező számszerűen hogyan függ össze a vizsgálatban talált eredménnyel (metaregresszió) Publikációs torzítás felfedése Persze a metaanalízis sem hibátlan: hogy milyen tanulmányokat vonunk be, az maga is lehet torzítás forrása (minél több paramétert kell hozzá megszabni, annál inkább összelőhetjük úgy, hogy pont az jöjjön ki, ami a prekoncepciónk) GIGO-elv Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 5 / 18

Miért végzünk metaanalízist? Egyszerűen ugyanazért, amiért a nagyobb mintanagyság jobb (szűkebb konfidenciaintervallumok, erősebb tesztek)... de ez olcsóbb (nem csak forintban, kivitelezési időben is) Konzisztencia megítélése vizsgálatok között Sőt, adott esetben megítélhető, hogy a vizsgálatra jellemző valamilyen tényező számszerűen hogyan függ össze a vizsgálatban talált eredménnyel (metaregresszió) Publikációs torzítás felfedése Persze a metaanalízis sem hibátlan: hogy milyen tanulmányokat vonunk be, az maga is lehet torzítás forrása (minél több paramétert kell hozzá megszabni, annál inkább összelőhetjük úgy, hogy pont az jöjjön ki, ami a prekoncepciónk) GIGO-elv Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 5 / 18

Nagyobb mintanagyság Béta-blokkolók adása szívinfarktus másodlagos prevenciójában: Antman EM, Lau J, Kupelnick B, Mosteller F, Chalmers TC. A comparison of results of meta-analyses of randomized control trials and recommendations of clinical experts. Treatments for myocardial infarction. JAMA. 1992 Jul 8;268(2):240-8. Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 6 / 18

Nagyobb mintanagyság Béta-blokkolók adása szívinfarktus másodlagos prevenciójában: Antman EM, Lau J, Kupelnick B, Mosteller F, Chalmers TC. A comparison of results of meta-analyses of randomized control trials and recommendations of clinical experts. Treatments for myocardial infarction. JAMA. 1992 Jul 8;268(2):240-8. Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 7 / 18

A Cochrane-logó és története Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 8 / 18

Konzisztencia megítélése és metaregresszió BCG hatásossága a tüdő-tuberkulózis ellen: Borenstein M, Hedges LV, Higgins J, Rothstein HR. Introduction to Meta-Analysis. Wiley. 2009. Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 9 / 18

Publikációs torzítás megítélése Lásd később, a rendszerszintű hibáknál Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 10 / 18

Mikor végezhető metaanalízis? Ugyanazt a kérdést vizsgálja több kutatás Mi az, hogy ugyanaz...? Két kutatás soha nem tökéletesen ugyanolyan, de legyen hasonló, vagy legalábbis összevethető a minta (definíció, bevonási, kizárási kritériumok!), a kutatás alapkoncepciója, tervezése ugyanaz az expozíció ugyanaz, vagy legalábbis közös nevezőre hozható a hatásnagyság-mutató Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 11 / 18

Mikor végezhető metaanalízis? Ugyanazt a kérdést vizsgálja több kutatás Mi az, hogy ugyanaz...? Két kutatás soha nem tökéletesen ugyanolyan, de legyen hasonló, vagy legalábbis összevethető a minta (definíció, bevonási, kizárási kritériumok!), a kutatás alapkoncepciója, tervezése ugyanaz az expozíció ugyanaz, vagy legalábbis közös nevezőre hozható a hatásnagyság-mutató Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 11 / 18

Mikor végezhető metaanalízis? Ugyanazt a kérdést vizsgálja több kutatás Mi az, hogy ugyanaz...? Két kutatás soha nem tökéletesen ugyanolyan, de legyen hasonló, vagy legalábbis összevethető a minta (definíció, bevonási, kizárási kritériumok!), a kutatás alapkoncepciója, tervezése ugyanaz az expozíció ugyanaz, vagy legalábbis közös nevezőre hozható a hatásnagyság-mutató Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 11 / 18

Mikor végezhető metaanalízis? Ugyanazt a kérdést vizsgálja több kutatás Mi az, hogy ugyanaz...? Két kutatás soha nem tökéletesen ugyanolyan, de legyen hasonló, vagy legalábbis összevethető a minta (definíció, bevonási, kizárási kritériumok!), a kutatás alapkoncepciója, tervezése ugyanaz az expozíció ugyanaz, vagy legalábbis közös nevezőre hozható a hatásnagyság-mutató Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 11 / 18

Mikor végezhető metaanalízis? Ugyanazt a kérdést vizsgálja több kutatás Mi az, hogy ugyanaz...? Két kutatás soha nem tökéletesen ugyanolyan, de legyen hasonló, vagy legalábbis összevethető a minta (definíció, bevonási, kizárási kritériumok!), a kutatás alapkoncepciója, tervezése ugyanaz az expozíció ugyanaz, vagy legalábbis közös nevezőre hozható a hatásnagyság-mutató Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 11 / 18

Mikor végezhető metaanalízis? Ugyanazt a kérdést vizsgálja több kutatás Mi az, hogy ugyanaz...? Két kutatás soha nem tökéletesen ugyanolyan, de legyen hasonló, vagy legalábbis összevethető a minta (definíció, bevonási, kizárási kritériumok!), a kutatás alapkoncepciója, tervezése ugyanaz az expozíció ugyanaz, vagy legalábbis közös nevezőre hozható a hatásnagyság-mutató Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 11 / 18

Metaanalízis lépései Nulladik lépés: az előbbiben szereplő kérdéseket rögzíteni, definiálni kell (több tucat vagy annál is több oldal lehet egy ilyen protokoll!) Elsőként össze kell gyűjteni az aggregált tanulmányokat Lehetőleg nem ad hoc módon: szisztematikus review Egységes formátumra kell hozni őket, megteremtve az összehasonlíthatóságot (pl. azonos hatásnagyság-mutató kiszámítása) El kell végezni a metaanalízist...... majd a szükséges diagnosztikát: részint magára a metaanalízisre vonatkozóan (pl. különböző analitikus módszerek hatása a végeredményre), részint a nyers adatokra vonatkozóan (pl. publikációs torzítás megítélése) Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 12 / 18

Metaanalízis lépései Nulladik lépés: az előbbiben szereplő kérdéseket rögzíteni, definiálni kell (több tucat vagy annál is több oldal lehet egy ilyen protokoll!) Elsőként össze kell gyűjteni az aggregált tanulmányokat Lehetőleg nem ad hoc módon: szisztematikus review Egységes formátumra kell hozni őket, megteremtve az összehasonlíthatóságot (pl. azonos hatásnagyság-mutató kiszámítása) El kell végezni a metaanalízist...... majd a szükséges diagnosztikát: részint magára a metaanalízisre vonatkozóan (pl. különböző analitikus módszerek hatása a végeredményre), részint a nyers adatokra vonatkozóan (pl. publikációs torzítás megítélése) Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 12 / 18

Metaanalízis lépései Nulladik lépés: az előbbiben szereplő kérdéseket rögzíteni, definiálni kell (több tucat vagy annál is több oldal lehet egy ilyen protokoll!) Elsőként össze kell gyűjteni az aggregált tanulmányokat Lehetőleg nem ad hoc módon: szisztematikus review Egységes formátumra kell hozni őket, megteremtve az összehasonlíthatóságot (pl. azonos hatásnagyság-mutató kiszámítása) El kell végezni a metaanalízist...... majd a szükséges diagnosztikát: részint magára a metaanalízisre vonatkozóan (pl. különböző analitikus módszerek hatása a végeredményre), részint a nyers adatokra vonatkozóan (pl. publikációs torzítás megítélése) Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 12 / 18

Metaanalízis lépései Nulladik lépés: az előbbiben szereplő kérdéseket rögzíteni, definiálni kell (több tucat vagy annál is több oldal lehet egy ilyen protokoll!) Elsőként össze kell gyűjteni az aggregált tanulmányokat Lehetőleg nem ad hoc módon: szisztematikus review Egységes formátumra kell hozni őket, megteremtve az összehasonlíthatóságot (pl. azonos hatásnagyság-mutató kiszámítása) El kell végezni a metaanalízist...... majd a szükséges diagnosztikát: részint magára a metaanalízisre vonatkozóan (pl. különböző analitikus módszerek hatása a végeredményre), részint a nyers adatokra vonatkozóan (pl. publikációs torzítás megítélése) Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 12 / 18

Metaanalízis lépései Nulladik lépés: az előbbiben szereplő kérdéseket rögzíteni, definiálni kell (több tucat vagy annál is több oldal lehet egy ilyen protokoll!) Elsőként össze kell gyűjteni az aggregált tanulmányokat Lehetőleg nem ad hoc módon: szisztematikus review Egységes formátumra kell hozni őket, megteremtve az összehasonlíthatóságot (pl. azonos hatásnagyság-mutató kiszámítása) El kell végezni a metaanalízist...... majd a szükséges diagnosztikát: részint magára a metaanalízisre vonatkozóan (pl. különböző analitikus módszerek hatása a végeredményre), részint a nyers adatokra vonatkozóan (pl. publikációs torzítás megítélése) Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 12 / 18

Metaanalízis lépései Nulladik lépés: az előbbiben szereplő kérdéseket rögzíteni, definiálni kell (több tucat vagy annál is több oldal lehet egy ilyen protokoll!) Elsőként össze kell gyűjteni az aggregált tanulmányokat Lehetőleg nem ad hoc módon: szisztematikus review Egységes formátumra kell hozni őket, megteremtve az összehasonlíthatóságot (pl. azonos hatásnagyság-mutató kiszámítása) El kell végezni a metaanalízist...... majd a szükséges diagnosztikát: részint magára a metaanalízisre vonatkozóan (pl. különböző analitikus módszerek hatása a végeredményre), részint a nyers adatokra vonatkozóan (pl. publikációs torzítás megítélése) Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 12 / 18

Hatásnagyság mutató fogalma A tanulmányok összehasonlíthatóságának alapfeltétele, hogy ugyanazon a módon mérjük a végpontot (kompatibilis hatások) A mutatók persze függnek a végpont jellegétől: Bináris (vagy arány): kockázat-különbség, kockázat-arány (relatív rizikó), log relatív rizikó, esélyhányados, log esélyhányados,... Folytonos: átlag-különbség, standardizált átlag-különbség, relatív átlag-különbség,... Korreláció: korrelációs együttható, transzformáltjai,... Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 13 / 18

Hatásnagyság mutató fogalma A tanulmányok összehasonlíthatóságának alapfeltétele, hogy ugyanazon a módon mérjük a végpontot (kompatibilis hatások) A mutatók persze függnek a végpont jellegétől: Bináris (vagy arány): kockázat-különbség, kockázat-arány (relatív rizikó), log relatív rizikó, esélyhányados, log esélyhányados,... Folytonos: átlag-különbség, standardizált átlag-különbség, relatív átlag-különbség,... Korreláció: korrelációs együttható, transzformáltjai,... Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 13 / 18

Hatásnagyság mutató fogalma A tanulmányok összehasonlíthatóságának alapfeltétele, hogy ugyanazon a módon mérjük a végpontot (kompatibilis hatások) A mutatók persze függnek a végpont jellegétől: Bináris (vagy arány): kockázat-különbség, kockázat-arány (relatív rizikó), log relatív rizikó, esélyhányados, log esélyhányados,... Folytonos: átlag-különbség, standardizált átlag-különbség, relatív átlag-különbség,... Korreláció: korrelációs együttható, transzformáltjai,... Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 13 / 18

Hatásnagyság mutató fogalma A tanulmányok összehasonlíthatóságának alapfeltétele, hogy ugyanazon a módon mérjük a végpontot (kompatibilis hatások) A mutatók persze függnek a végpont jellegétől: Bináris (vagy arány): kockázat-különbség, kockázat-arány (relatív rizikó), log relatív rizikó, esélyhányados, log esélyhányados,... Folytonos: átlag-különbség, standardizált átlag-különbség, relatív átlag-különbség,... Korreláció: korrelációs együttható, transzformáltjai,... Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 13 / 18

Hatásnagyság mutató fogalma A tanulmányok összehasonlíthatóságának alapfeltétele, hogy ugyanazon a módon mérjük a végpontot (kompatibilis hatások) A mutatók persze függnek a végpont jellegétől: Bináris (vagy arány): kockázat-különbség, kockázat-arány (relatív rizikó), log relatív rizikó, esélyhányados, log esélyhányados,... Folytonos: átlag-különbség, standardizált átlag-különbség, relatív átlag-különbség,... Korreláció: korrelációs együttható, transzformáltjai,... Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 13 / 18

A szisztematikus review Egy ilyen kutatás nem a metaanalízisnél kezdődik...... hanem a metaanalizált tanulmányok összegyűjtésénél! Szisztematikus vs. nem-szisztematikus Számos kérdést vet fel: betegség definíciója, kontrollcsoport, betegjellemzők, hosszúság, stb. Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 14 / 18

A szisztematikus review Egy ilyen kutatás nem a metaanalízisnél kezdődik...... hanem a metaanalizált tanulmányok összegyűjtésénél! Szisztematikus vs. nem-szisztematikus Számos kérdést vet fel: betegség definíciója, kontrollcsoport, betegjellemzők, hosszúság, stb. Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 14 / 18

A szisztematikus review Egy ilyen kutatás nem a metaanalízisnél kezdődik...... hanem a metaanalizált tanulmányok összegyűjtésénél! Szisztematikus vs. nem-szisztematikus Számos kérdést vet fel: betegség definíciója, kontrollcsoport, betegjellemzők, hosszúság, stb. Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 14 / 18

A szisztematikus review Egy ilyen kutatás nem a metaanalízisnél kezdődik...... hanem a metaanalizált tanulmányok összegyűjtésénél! Szisztematikus vs. nem-szisztematikus Számos kérdést vet fel: betegség definíciója, kontrollcsoport, betegjellemzők, hosszúság, stb. Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 14 / 18

Módszertani alaplogika A továbbiakban feltételezzük, hogy az előkészületek megtörténtek: összegyűjtöttük a megfelelő tanulmányokat (lehetőleg szisztematikusan) összevethető formátumra hoztuk őket Így tehát van egy adatbázisunk: minden sor egy tanulmány, azaz minden sorban van egy Y i hatásmutató (ugyanaz!), és esetleg még egyéb információk a kutatásról A kérdés már csak az (innen jön a matematika): hogyan aggregáljuk őket? Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 15 / 18

Módszertani alaplogika A továbbiakban feltételezzük, hogy az előkészületek megtörténtek: összegyűjtöttük a megfelelő tanulmányokat (lehetőleg szisztematikusan) összevethető formátumra hoztuk őket Így tehát van egy adatbázisunk: minden sor egy tanulmány, azaz minden sorban van egy Y i hatásmutató (ugyanaz!), és esetleg még egyéb információk a kutatásról A kérdés már csak az (innen jön a matematika): hogyan aggregáljuk őket? Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 15 / 18

Módszertani alaplogika A továbbiakban feltételezzük, hogy az előkészületek megtörténtek: összegyűjtöttük a megfelelő tanulmányokat (lehetőleg szisztematikusan) összevethető formátumra hoztuk őket Így tehát van egy adatbázisunk: minden sor egy tanulmány, azaz minden sorban van egy Y i hatásmutató (ugyanaz!), és esetleg még egyéb információk a kutatásról A kérdés már csak az (innen jön a matematika): hogyan aggregáljuk őket? Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 15 / 18

Módszertani alaplogika A továbbiakban feltételezzük, hogy az előkészületek megtörténtek: összegyűjtöttük a megfelelő tanulmányokat (lehetőleg szisztematikusan) összevethető formátumra hoztuk őket Így tehát van egy adatbázisunk: minden sor egy tanulmány, azaz minden sorban van egy Y i hatásmutató (ugyanaz!), és esetleg még egyéb információk a kutatásról A kérdés már csak az (innen jön a matematika): hogyan aggregáljuk őket? Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 15 / 18

Módszertani alaplogika A továbbiakban feltételezzük, hogy az előkészületek megtörténtek: összegyűjtöttük a megfelelő tanulmányokat (lehetőleg szisztematikusan) összevethető formátumra hoztuk őket Így tehát van egy adatbázisunk: minden sor egy tanulmány, azaz minden sorban van egy Y i hatásmutató (ugyanaz!), és esetleg még egyéb információk a kutatásról A kérdés már csak az (innen jön a matematika): hogyan aggregáljuk őket? Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 15 / 18

Tanulmányok eredményeinek aggregálása Az alapötlet: az átlagos hatást több kutatásból úgy kapjuk meg, hogy kiátlagoljuk őket De nem egyszerű átlaggal (ha egy 10 fős tanulmány szerint -5% a hatás, egy 10 ezer fős szerint pedig +5%, akkor aligha mondható, hogy átlagban nincs hatás)...... hanem súlyozott átlaggal! A fontosabb, lényegesebb tanulmányok nagyobb súlyt kapnak az átlagolásban! Na de mi az, hogy fontosabb? Legáltalánosabb módszer: inverse variance weighting Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 16 / 18

Tanulmányok eredményeinek aggregálása Az alapötlet: az átlagos hatást több kutatásból úgy kapjuk meg, hogy kiátlagoljuk őket De nem egyszerű átlaggal (ha egy 10 fős tanulmány szerint -5% a hatás, egy 10 ezer fős szerint pedig +5%, akkor aligha mondható, hogy átlagban nincs hatás)...... hanem súlyozott átlaggal! A fontosabb, lényegesebb tanulmányok nagyobb súlyt kapnak az átlagolásban! Na de mi az, hogy fontosabb? Legáltalánosabb módszer: inverse variance weighting Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 16 / 18

Tanulmányok eredményeinek aggregálása Az alapötlet: az átlagos hatást több kutatásból úgy kapjuk meg, hogy kiátlagoljuk őket De nem egyszerű átlaggal (ha egy 10 fős tanulmány szerint -5% a hatás, egy 10 ezer fős szerint pedig +5%, akkor aligha mondható, hogy átlagban nincs hatás)...... hanem súlyozott átlaggal! A fontosabb, lényegesebb tanulmányok nagyobb súlyt kapnak az átlagolásban! Na de mi az, hogy fontosabb? Legáltalánosabb módszer: inverse variance weighting Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 16 / 18

Tanulmányok eredményeinek aggregálása Az alapötlet: az átlagos hatást több kutatásból úgy kapjuk meg, hogy kiátlagoljuk őket De nem egyszerű átlaggal (ha egy 10 fős tanulmány szerint -5% a hatás, egy 10 ezer fős szerint pedig +5%, akkor aligha mondható, hogy átlagban nincs hatás)...... hanem súlyozott átlaggal! A fontosabb, lényegesebb tanulmányok nagyobb súlyt kapnak az átlagolásban! Na de mi az, hogy fontosabb? Legáltalánosabb módszer: inverse variance weighting Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 16 / 18

Tanulmányok eredményeinek aggregálása Az alapötlet: az átlagos hatást több kutatásból úgy kapjuk meg, hogy kiátlagoljuk őket De nem egyszerű átlaggal (ha egy 10 fős tanulmány szerint -5% a hatás, egy 10 ezer fős szerint pedig +5%, akkor aligha mondható, hogy átlagban nincs hatás)...... hanem súlyozott átlaggal! A fontosabb, lényegesebb tanulmányok nagyobb súlyt kapnak az átlagolásban! Na de mi az, hogy fontosabb? Legáltalánosabb módszer: inverse variance weighting Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 16 / 18

Tanulmányok eredményeinek aggregálása Az alapötlet: az átlagos hatást több kutatásból úgy kapjuk meg, hogy kiátlagoljuk őket De nem egyszerű átlaggal (ha egy 10 fős tanulmány szerint -5% a hatás, egy 10 ezer fős szerint pedig +5%, akkor aligha mondható, hogy átlagban nincs hatás)...... hanem súlyozott átlaggal! A fontosabb, lényegesebb tanulmányok nagyobb súlyt kapnak az átlagolásban! Na de mi az, hogy fontosabb? Legáltalánosabb módszer: inverse variance weighting Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 16 / 18

Az inverse variance weighting lényege A súly a varianciával fordítottan arányos: W i = 1 V i Itt a variancia természetesen a mintavételi variancia...... azaz a súlyozás a mintavételi bizonytalansággal fordítottan arányos: minél kisebb a mintavételi bizonytalanság egy kutatásban, annál nagyobb súlyt kap az átlagolás során! Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 17 / 18

Az inverse variance weighting lényege A súly a varianciával fordítottan arányos: W i = 1 V i Itt a variancia természetesen a mintavételi variancia...... azaz a súlyozás a mintavételi bizonytalansággal fordítottan arányos: minél kisebb a mintavételi bizonytalanság egy kutatásban, annál nagyobb súlyt kap az átlagolás során! Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 17 / 18

Az inverse variance weighting lényege A súly a varianciával fordítottan arányos: W i = 1 V i Itt a variancia természetesen a mintavételi variancia...... azaz a súlyozás a mintavételi bizonytalansággal fordítottan arányos: minél kisebb a mintavételi bizonytalanság egy kutatásban, annál nagyobb súlyt kap az átlagolás során! Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 17 / 18

Fix és random hatás feltevése Alapfeltételezés: az Y i hatásmutatók eloszlása normális Fix hatás: Y i = θ + ε i, ahol ε i N (0, V i ) Random hatás: Y i = θ + θ i + ε i, ahol θ i N ( 0, τ 2) és ε i N (0, V i ) Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 18 / 18

Fix és random hatás feltevése Alapfeltételezés: az Y i hatásmutatók eloszlása normális Fix hatás: Y i = θ + ε i, ahol ε i N (0, V i ) Random hatás: Y i = θ + θ i + ε i, ahol θ i N ( 0, τ 2) és ε i N (0, V i ) Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 18 / 18

Fix és random hatás feltevése Alapfeltételezés: az Y i hatásmutatók eloszlása normális Fix hatás: Y i = θ + ε i, ahol ε i N (0, V i ) Random hatás: Y i = θ + θ i + ε i, ahol θ i N ( 0, τ 2) és ε i N (0, V i ) Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 18 / 18