p-érték, hipotézistesztelés, és ellentmondásaik
|
|
- Edit Faragóné
- 6 évvel ezelőtt
- Látták:
Átírás
1 p-érték, hipotézistesztelés, és ellentmondásaik Ferenci Tamás május 16. Ferenci Tamás p-érték, hipotézistesztelés, és ellentmondásaik május / 9
2 Következtetéselmélet A megfigyelt világ és a tudásunk összekapcsolása Deduktív következtetés: kiindulunk egy hipotézisből (amit a tudásunk alapján fogalmaztunk meg), és ebből következtetünk arra, hogy mit fogunk látni a világban Objektív (abban az értelemben, hogy mindig igaz, ha a kiinduló hipotézis igaz volt) Nem alkalmazható tudásunk bővítésére Induktív következtetés: az alapján, hogy mit látunk a világban, következtetünk arra, hogy mely hipotézis lehet igaz A bizonyíték fogalma Új tudásra tudunk szert tenni Ám ez soha nem tud biztos lenni Számos kísérlet ennek feloldására (pl. Popper és a falszifikáció megspórolható az indukció; ezt valósítja meg a hipotézisvizsgálat is, mindkét iskola) Ferenci Tamás tamas.ferenci@medstat.hu p-érték, hipotézistesztelés, és ellentmondásaik május / 9
3 Statisztikai következtetéselmélet Ferenci Tamás p-érték, hipotézistesztelés, és ellentmondásaik május / 9
4 Orvosi következtetéselmélet Ferenci Tamás p-érték, hipotézistesztelés, és ellentmondásaik május / 9
5 Két iskola ütközése: R. A. Fisher p-érték: measure of evidence Mégpedig egyetlen hipotézisre vonatkozóan (tehát nincs ellenhipotézis) Egyetlen kísérletből akarunk dolgozni (nincs képzeletbeli ismételt mintavétel ) Nem akarunk külső információt felhasználni (nincs prior valószínűség) Nem hibavalószínűség Hogyan is lehetne valószínűség ahhoz több kísérletet kellene, legalább képzeletben, tekintenünk (ahogy annak a kijelentésnek, hogy ez az érme 40% valószínűséggel ad fejet is csak úgy van értelme, ha többször feldobhatjuk ez a valószínűség frekvencionista értelmezése) Inkább informális index, esetleg az a szabály, de ez sem mechanikusan, hogy adott p alatt elutasítunk: significance testing (nem hypothesis testing!) Ferenci Tamás tamas.ferenci@medstat.hu p-érték, hipotézistesztelés, és ellentmondásaik május / 9
6 Két iskola ütközése: J. Neyman és E. Pearson Döntés: hibavalószínűség Két hipotézis között döntünk Kísérletek sorát tételezzük fel és a célunk, hogy hosszú távon biztosítsunk adott első- és másodfajú hibaarányt Egy adott, konkrét hipotézisről úgysem dönthető el, hogy mennyire igaz, a kérdés csak hosszú távon értelmezhető Informális, szubjektív index helyett objektív, döntési szempontú ( viselkedés, nem következtetés ) megközelítés Elfogadási és elutasítási tartomány, mindegy hogy azon belül hová esik az empirikus tesztstatisztika (nincs bizonyíték-erősség) A határt eredetileg még úgy gondolták, hogy a kétféle hiba súlya alapján határozzák meg a kutatók Hypothesis testing (nem significance testing ) Ferenci Tamás tamas.ferenci@medstat.hu p-érték, hipotézistesztelés, és ellentmondásaik május / 9
7 A két iskola inkonzisztenciája Döntési határ van (és mindegy, hogy hová esik az empirikus tesztstatisztika) vagy nincs határ, és egy folytonos mértékünk van a bizonyíték erősségére? Az érdekel minket, hogy az adott gyanúsított ártatlan-e, vagy az, hogy hosszú távon csak kevés ártatlant küldünk börtönbe? A legfontosabb baj: nem lehet egyszerre beállítani a hosszútávú hibavalószínűséget és egyúttal az egyedi eredmény bizonyítőerejéről is nyilatkozni! A jelenlegi orvosi statisztikai gyakorlat azért keveri össze teljesen inkonzisztensen a kettőt, hogy megteremtse ennek az illúzióját Goodman SN. p values, hypothesis tests, and likelihood: implications for epidemiology of a neglected historical debate. Am J Epidemiol Mar 1;137(5):485-96; discussion Gigerenzer G. The superego, the ego, and the id in statistical reasoning. In: A handbook for data analysis in the behavioral sciences: Methodological issues. 1993: Lehmann EL. The Fisher, Neyman-Peerson Theories of Testing Hypotheses: One Theory or Two?. In: Selected Works of EL Lehmann. 2012: Ferenci Tamás tamas.ferenci@medstat.hu p-érték, hipotézistesztelés, és ellentmondásaik május / 9
8 A kompromisszum elkerülésének illúziója Úgy tűnhet, hogy a p-érték is egyfajta hibavalószínűség 15. legjobb vagyok az évfolyamban Ferenci Tamás tamas.ferenci@medstat.hu p-érték, hipotézistesztelés, és ellentmondásaik május / 9
9 A kompromisszum elkerülésének illúziója Hosszútáv vs. rövidtáv Ferenci Tamás p-érték, hipotézistesztelés, és ellentmondásaik május / 9
p-érték, hipotézistesztelés, és ellentmondásaik
p-érték, hipotézistesztelés, és ellentmondásaik Ferenci Tamás tamas.ferenci@medstat.hu 2018. május 16. Következtetéselmélet A megfigyelt világ és a tudásunk összekapcsolása Deduktív következtetés: kiindulunk
3. Az indukció szerepe
3. Az indukció szerepe Honnan jönnek a hipotézisek? Egyesek szerint az előzetesen összegyűjtött adatokból induktív (általánosító) következtetések útján. [Az induktív következtetésekről l. Kutrovátz jegyzet,
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
Statisztikai alapfogalmak a klinikai kutatásban. Molnár Zsolt PTE, AITI
Statisztikai alapfogalmak a klinikai kutatásban Molnár Zsolt PTE, AITI Bevezetés Research vs. Science Kutatás Tudomány Szerkezeti háttér hiánya Önkéntesek (lelkes kisebbség) Beosztottak (parancsot teljesítő
Hipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:
Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.
Normális eloszlás tesztje
Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra
A confounding megoldásai: megfigyelés és kísérlet
A confounding megoldásai: megfigyelés és kísérlet Ferenci Tamás tamas.ferenci@medstat.hu 2018. szeptember 24. Ferenci Tamás tamas.ferenci@medstat.hu A confounding megoldásai: megfigyelés és kísérlet 2018.
Elemszám becslés. Kaszaki József Ph.D. SZTE ÁOK Sebészeti Műtéttani Intézet
Elemszám becslés Kaszaki József Ph.D. SZTE ÁOK Sebészeti Műtéttani Intézet Miért fontos? Gazdasági okok: Túl kevés elem esetén nem tudjuk kimutatni a kívánt hatást Túl kevés elem esetén olyan eredmény
A legfontosabb félreértések a p-érték kapcsán
A legfontosabb félreértések a p-érték kapcsán Ferenci Tamás tamas.ferenci@medstat.hu 2018. szeptember 1. A legfontosabb félreértés a p-érték kapcsán Az első és legfontosabb félreértés: a p-érték csak és
Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem.
Kabos: Statisztika II. ROC elemzések 10.1 ROC elemzések Szenzitivitás és specificitás a jelfeldolgozás szóhasználatával A riasztóberendezés érzékeli, ha támadás jön, és ilyenkor riaszt. Máskor nem. TruePositiveAlarm:
1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
Statisztika Elıadások letölthetık a címrıl
Statisztika Elıadások letölthetık a http://www.cs.elte.hu/~arato/stat*.pdf címrıl Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább 1-α valószínőséggel
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
Matematikai statisztika c. tárgy oktatásának célja és tematikája
Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:
Közösségi kezdeményezéseket megalapozó szükségletfeltárás módszertana. Domokos Tamás, módszertani igazgató
Közösségi kezdeményezéseket megalapozó szükségletfeltárás módszertana Domokos Tamás, módszertani igazgató A helyzetfeltárás célja A közösségi kezdeményezéshez kapcsolódó kutatások célja elsősorban felderítés,
Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás
STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H
GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet
GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő
Szocio- lingvisztikai alapismeretek
Szocio- lingvisztikai alapismeretek 10. A szociolingvisztika kialakulásának okai Hagyományos nyelvészet: A nyelv társadalmi normák strukturált halmaza (invariáns, homogén) Noam Chomsky: A nyelvelmélet
STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése
4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól
Hipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
Mit mond a XXI. század emberének a statisztika?
Mit mond a XXI. század emberének a statisztika? Rudas Tamás Magyar Tudományos Akadémia Társadalomtudományi Kutatóközpont Eötvös Loránd Tudományegyetem Statisztika Tanszék Nehéz a jövőbe látni Változik
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján
Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58
u- t- Matematikai statisztika Gazdaságinformatikus MSc 2. előadás 2018. szeptember 10. 1/58 u- t- 2/58 eloszlás eloszlás m várható értékkel, σ szórással N(m, σ) Sűrűségfüggvénye: f (x) = 1 e (x m)2 2σ
A statisztika alapjai - Bevezetés az SPSS-be -
A statisztika alapjai - Bevezetés az SPSS-be - Kvantitatív statisztikai módszerek Petrovics Petra, Géczi-Papp Renáta SPSS alapok Statistical Package for Social Sciences SPSS nézetek: Data View Variable
Az empirikus orvosi kutatások alapgondolata és a kauzalitás
Az empirikus orvosi kutatások alapgondolata és a kauzalitás Ferenci Tamás tamas.ferenci@medstat.hu 2017. október 22. Az orvosi kutatások egy általános sémája felé Az orvostudomány egy jelentős része egész
Bevezetés az SPSS program használatába
Bevezetés az SPSS program használatába Statisztikai szoftver alkalmazás Géczi-Papp Renáta SPSS alapok Statistical Package for Social Sciences SPSS nézetek: Data View Variable View Output Viewer Sintax
Probabilisztikus modellek V: Struktúra tanulás. Nagy Dávid
Probabilisztikus modellek V: Struktúra tanulás Nagy Dávid Statisztikai tanulás az idegrendszerben, 2015 volt szó a normatív megközelítésről ezen belül a probabilisztikus modellekről láttatok példákat az
Az államvizsga dolgozat tartalmi követelményei
Az államvizsga dolgozat tartalmi követelményei Tartalomjegyzék Bevezető a téma körvonalazása; a probléma tömör megfogalmazása; a témaválasztás megindoklása a témaválasztás újszerűsége, eredetisége A bevezetőt
Emerald: Integrált jogi modellező keretrendszer
Emerald: Integrált jogi modellező keretrendszer Förhécz András Szőke Ákos Kőrösi Gábor Strausz György Budapesti Műszaki és Gazdaságtudományi Egyetem Multilogic Kft, Budapest Networkshop 2011 2011. április
Pár történeti megjegyzés
Ferenci Tamás tamas.ferenci@medstat.hu 2017. október 22. Az orvosi kutatások egy általános sémája felé Az orvostudomány egy jelentős része egész története alatt igen egyszerű alakban megfogalmazható kérdések
Matematika III. 9. Statisztikai hipotézisek Prof. Dr. Závoti, József
Matematika III. 9. Statisztikai hipotézisek Prof. Dr. Závoti, József Matematika III. 9. : Statisztikai hipotézisek Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027
Bizonytalan tudás kezelése
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Bizonytalan tudás kezelése Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz Valószínűségi
Vadbiológiai kutatási módszerek
Vadbiológiai kutatási módszerek Kérdés Kutatás előzetes kérdésfeltevéssel indul (korábbi ismereteink, olvasmányaink, stb.) A kutatás elején a kérdések gyakran homályosak, szerteágazóak Egy kérdés több
Pár történeti megjegyzés
Pár történeti megjegyzés Ferenci Tamás tamas.ferenci@medstat.hu 2017. október 22. Az orvosi kutatások egy általános sémája felé Az orvostudomány egy jelentős része egész története alatt igen egyszerű alakban
Szociolingvisztikai. alapismeretek
Szociolingvisztikai alapismeretek 10. A szociolingvisztika kialakulásának okai Hagyományos nyelvészet: A nyelv társadalmi normák strukturált halmaza (invariáns, homogén) Noam Chomsky: A nyelvelmélet elsődlegesen
Adatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
- Az óvodáskori gyermeki intelligenciák mozgósításánakfeltárásának
EGY PLURÁLIS INTELLIGENCIA KONCEPCIÓ ÉS A MONTESSORI PEDAGÓGIA KOMPARATÍV MEGKÖZELÍTÉSE - Az óvodáskori gyermeki intelligenciák mozgósításánakfeltárásának egy lehetséges alternatívája Sándor-Schmidt Barbara
GONDOLKODÁS ÉS NYELV
GONDOLKODÁS ÉS NYELV GONDOLKODÁS A. Propozicionális B. Képzeleti Propozicionális gondolkodás Propozíció kijelentés, amely egy tényállásra vonatkozik, meghatározott viszonyban összekombinált fogalmakból
TARTALOMJEGYZÉK. 1. téma Átlagbecslés (Barna Katalin) téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23
TARTALOMJEGYZÉK 1. téma Átlagbecslés (Barna Katalin).... 7 2. téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23 3. téma Összefüggések vizsgálata, korrelációanalízis (Dr. Molnár Tamás)... 73 4. téma Összefüggések
Funkcionális konnektivitás vizsgálata fmri adatok alapján
Funkcionális konnektivitás vizsgálata fmri adatok alapján Képalkotási technikák 4 Log Resolution (mm) 3 Brain EEG & MEG fmri TMS PET Lesions 2 Column 1 0 Lamina -1 Neuron -2 Dendrite -3 Synapse -4 Mikrolesions
Több valószínűségi változó együttes eloszlása, korreláció
Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
Páros összehasonlítás mátrixok empirikus vizsgálata. Bozóki Sándor
Páros összehasonlítás mátrixok empirikus vizsgálata Bozóki Sándor MTA SZTAKI Operációkutatás és Döntési Rendszerek Kutatócsoport Budapesti Corvinus Egyetem Operációkutatás és Aktuáriustudományok Tanszék
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév A pirossal írt anyagrészeket nem fogom közvetlenül számon kérni a vizsgán, azok háttérismeretként,
Több laboratórium összehasonlítása, körmérés
Több oratórium összehasonlítása, körmérés colorative test, round robin a rendszeres hibák ellenőrzése, számszerűsítése Statistical Manual of AOAC, W. J. Youden: Statistical Techniques for Colorative Tests,
A statisztikai próbák gondolatvilága
A statisztikai próbák gondolatvilága Vita László CSc, a Budapesti Corvinus Egyetem egyetemi tanára E-mail: laszlo.vita@unicorvinus.hu A szerző sorra veszi a hipotézisvizsgálat lépéseit, kitér azok szerepére,
A pedagógiai kutatás metodológiai alapjai. Dr. Nyéki Lajos 2015
A pedagógiai kutatás metodológiai alapjai Dr. Nyéki Lajos 2015 A pedagógiai kutatás jellemző sajátosságai A pedagógiai kutatás célja a személyiség fejlődése, fejlesztése során érvényesülő törvényszerűségek,
Bizonytalanság. Mesterséges intelligencia április 4.
Bizonytalanság Mesterséges intelligencia 2014. április 4. Bevezetés Eddig: logika, igaz/hamis Ha nem teljes a tudás A világ nem figyelhető meg közvetlenül Részleges tudás nem reprezentálható logikai eszközökkel
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement
Míg a kérdıíves felérés elsısorban kvantitatív (statisztikai) elemzésre alkalmas adatokat szolgáltat, a terepkutatásból ezzel szemben inkább
Terepkutatás Míg a kérdıíves felérés elsısorban kvantitatív (statisztikai) elemzésre alkalmas adatokat szolgáltat, a terepkutatásból ezzel szemben inkább kvalitatív adatok származnak Megfigyelések, melyek
Az új érettségi rendszer bevezetésének tapasztalatai
Középiskolai biológiatanárok szaktárgyi továbbképzése Pázmány Péter Katolikus Egyetem Információs Technológiai és Bionikai Kar Budapest, 2017.10. 06 Kleininger Tamás Az új érettségi rendszer bevezetésének
Kockázatalapú változó paraméterű szabályozó kártya kidolgozása a mérési bizonytalanság figyelembevételével
Kockázatalapú változó paraméterű szabályozó kártya kidolgozása a mérési bizonytalanság figyelembevételével Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése
egyetemi jegyzet Meskó Balázs
egyetemi jegyzet 2011 Előszó 2. oldal Tartalomjegyzék 1. Bevezetés 4 1.1. A matematikai statisztika céljai.............................. 4 1.2. Alapfogalmak......................................... 4 2.
Probabilisztikus modellek II: Inferencia. Nagy Dávid
Probabilisztikus modellek II: Inferencia Nagy Dávid Statisztikai tanulás az idegrendszerben, 2015 előző előadás előző előadás az agy modellt épít a világról előző előadás az agy modellt épít a világról
Correlation & Linear Regression in SPSS
Petra Petrovics Correlation & Linear Regression in SPSS 4 th seminar Types of dependence association between two nominal data mixed between a nominal and a ratio data correlation among ratio data Correlation
A kvantitatív kutatás folyamata
A kvantitatív kutatás folyamata A kvantitatív stratégia keretében zajló kutatómunka teljes ívét a következı szakaszokra lehet osztani: 1. Tájékozódás 2. Tervezés 3. Elıvizsgálat (Pilot vizsgálat) 4. Adatgyőjtés
Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat
Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi fizika és statisztika I. előadás 2016.11.09 Orvosi
Módszertani dilemmák a statisztikában 40 éve alakult a Jövőkutatási Bizottság
Módszertani dilemmák a statisztikában 40 éve alakult a Jövőkutatási Bizottság SZIGNIFIKANCIA Sándorné Kriszt Éva Az MTA IX. Osztály Statisztikai és Jövőkutatási Tudományos Bizottságának tudományos ülése
Biometria az orvosi gyakorlatban. Regresszió Túlélésanalízis
SZDT-09 p. 1/36 Biometria az orvosi gyakorlatban Regresszió Túlélésanalízis Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Logisztikus regresszió
Ismétlı áttekintés. Statisztika II., 1. alkalom
Ismétlı áttekintés Statisztika II., 1. alkalom Hipotézisek Milyen a jó null hipotézis?? H0: Léteznek kitőnı tanuló diszlexiások. Sokkal inkább: H0: Nincs diszlexiás kitőnı tanuló általános iskolában Mo-on.
kritikus érték(ek) (critical value).
Hipotézisvizsgálatok (hypothesis testing) A statisztikának egyik célja lehet a populáció tulajdonságainak, ismeretlen paramétereinek a becslése. A másik tipikus cél: valamely elmélet, hipotézis empirikus
LINEÁRIS REGRESSZIÓ (I. MODELL) ÉS KORRELÁCIÓ FELADATOK
LINEÁRIS REGRESSZIÓ (I. MODELL) ÉS KORRELÁCIÓ FELADATOK 2004 november 29. 1.) Lisztbogarak súlyvesztése 9 lisztbogár-csapat súlyát megmérték, (mindegyik 25 bogárból állt, mert egyenként túl kis súlyúak
18. modul: STATISZTIKA
MATEMATIK A 9. évfolyam 18. modul: STATISZTIKA KÉSZÍTETTE: LÖVEY ÉVA, GIDÓFALVI ZSUZSA MODULJÁNAK FELHASZNÁLÁSÁVAL Matematika A 9. évfolyam. 18. modul: STATISZTIKA Tanári útmutató 2 A modul célja Időkeret
Kutatásmódszertan és prezentációkészítés
Kutatásmódszertan és prezentációkészítés 8. rész: Statisztikai eszköztár: Alapfokú statisztikai ismeretek Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Nyolcadik rész Statisztikai eszköztár: Alapfokú statisztikai
Miért téves az antropikus elv a kozmológiában?
Konferenciaelőadás, Magyar Pax Romana 47. kongresszusa, Győr, 2005. Miért téves az antropikus elv a kozmológiában? E. Szabó László MTA ELTE Elméleti Fizika Kutatócsoport ELTE, Tudománytörténet és Tudományfilozófia
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
VIZSGADOLGOZAT. I. PÉLDÁK (60 pont)
VIZSGADOLGOZAT (100 pont) A megoldások csak szöveges válaszokkal teljes értékűek! I. PÉLDÁK (60 pont) 1. példa (13 pont) Az egyik budapesti könyvtárban az olvasókból vett 400 elemű minta alapján a következőket
Biomatematika 13. Varianciaanaĺızis (ANOVA)
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:
Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef.
Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Feladatok Gazdaságstatisztika 7. Statisztikai becslések (folyt.); 8. Hipotézisvizsgálat
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel
A gyakorló feladatok számozása a bevezetı órát követı órán, azaz a második órán indul. Gyakorló feladatok megoldásai 1
A gyakorló feladatok számozása a bevezetı órát követı órán, azaz a második órán indul. Gyakorló feladatok megoldásai 1 1. A populációt a számunkra érdekes egységek (személyek, csalások, iskolák stb.) alkotják,
Metaanalízisek. Ferenci Tamás május 16. Ferenci Tamás Metaanalízisek május 16.
Metaanalízisek Ferenci Tamás tamas.ferenci@medstat.hu 2018. május 16. Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 1 / 18 A metaanalízis fogalma Több, ugyanarra a kérdésre vonatkozó
Egy régi probléma újra előtérben: a nullhipotézis szignifikancia-teszt téves gyakorlata
Egy régi probléma újra előtérben: a nullhipotézis szignifikancia-teszt téves gyakorlata Bárdits Anna, Németh Renáta, Terplán Győző barditsanna@gmail.com nemethr@tatk.elte.hu terplangyozo@caesar.elte.hu
Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
3. A személyközi problémák megoldásának mérése
3. A személyközi problémák megoldásának mérése Élete során ki ritkábban, ki gyakrabban mindenki kerül olyan helyzetbe, amikor nem egyezik véleménye a másik véleményével, más célokat fogalmaz meg, eltérő
[Biomatematika 2] Orvosi biometria. Visegrády Balázs
[Biomatematika 2] Orvosi biometria Visegrády Balázs 2017. 03. 20. Khí-négyzet (χ 2 ) Próba Ha mérés során kapott adatokról eleve tudjuk, hogy nem követik a normális vagy más ismert eloszlást, akkor a korábban
A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András
Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András A kockázat fogalma A kockázat (def:) annak kifejezése, hogy valami nem kívánt hatással lesz a valaki/k értékeire, célkitűzésekre. A kockázat
Ökonometria. Adminisztratív kérdések, bevezetés. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Első fejezet. Budapesti Corvinus Egyetem
Adminisztratív kérdések, bevezetés Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Első fejezet Tartalom Technikai kérdések 1 Technikai kérdések Adminisztratív
Normális eloszlás paramétereire vonatkozó próbák
Normális eloszlás paramétereire vonatkozó próbák Az alábbi próbák akkor használhatók, ha a meggyelések függetlenek, és feltételezhetjük, hogy normális eloszlásúak a meggyelések függetlenek, véges szórású
[Biomatematika 2] Orvosi biometria. Visegrády Balázs
[Biomatematika 2] Orvosi biometria Visegrády Balázs 2016. 03. 27. Probléma: Klinikai vizsgálatban három különböző antiaritmiás gyógyszert (ß-blokkoló) alkalmaznak, hogy kipróbálják hatásukat a szívműködés
A TÁRSADALOM KULTURÁLIS HATÁSAI A KKV VEZETŐK GONDOLKODÁSI ÉS VISELKEDÉSI MINTÁZATÁRA
A TÁRSADALOM KULTURÁLIS HATÁSAI A KKV VEZETŐK GONDOLKODÁSI ÉS VISELKEDÉSI MINTÁZATÁRA Németh Gergely munka és szervezetpszichológus Corporate Values Vezetési és Szervezetfejlesztési Tanácsadó Kft. Vállalkozó
Bevezetés a statisztikai hipotézisvizsgálatba
Bevezetés a statisztikai hipotézisvizsgálatba Szakdolgozat Készítette: Pupli Márton Matematika BSc tanári szakirány Témavezető: Vancsó Ödön adjunktus Matematikatanítási és Módszertani Központ Eötvös Loránd
Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat
Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat 7. lecke Paraméter becslés Konfidencia intervallum Hipotézis vizsgálat feladata Paraméter becslés és konfidencia
Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a
Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,
Least Squares becslés
Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás
Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Hypothesis Testing. Petra Petrovics.
Hypothesis Testing Petra Petrovics PhD Student Inference from the Sample to the Population Estimation Hypothesis Testing Estimation: how can we determine the value of an unknown parameter of a population
1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.
1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét
Kettőnél több csoport vizsgálata. Makara B. Gábor
Kettőnél több csoport vizsgálata Makara B. Gábor Három gyógytápszer elemzéséből az alábbi energia tartalom adatok származtak (kilokalória/adag egységben) Három gyógytápszer elemzésébô A B C 30 5 00 10
Megfigyeléses vizsgálatok
Megfigyeléses vizsgálatok Ferenci Tamás tamas.ferenci@medstat.hu 2018. május 16. A megfigyeléses vizsgálatok alaptípusai Egyedi adatok alapján Kohorsz: Az expozíció szerinti csoportok később eltérnek-e
Mintavételes átvételi ellenőrzés
Mintavételes átvételi ellenőrzés öntés a tétel átvételéről vagy visszautasításáról beszállítótól érkezett tétel másik részlegből érkezett tétel kiszállítandó tétel Nem paraméterbecslés, hanem hipotézisvizsgálat
10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK
MATEMATIK A 9. évfolyam 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK Tanári útmutató 2 MODULLEÍRÁS A modul
Logisztikus regresszió október 27.
Logisztikus regresszió 2017. október 27. Néhány példa Mi a valószínűsége egy adott betegségnek a páciens bizonyos megfigyelt jellemzői (pl. nem, életkor, laboreredmények, BMI stb.) alapján? Mely genetikai
Matematikai statisztikai elemzések 4.
Matematikai statisztikai elemzések 4. Hipotézisvizsgálat: alapfogalmak, egymintás és kétmintás próbák. Prof. Dr. Závoti, József Matematikai statisztikai elemzések 4.: Hipotézisvizsgálat: alapfogalmak,
ANOVA összefoglaló. Min múlik?
ANOVA összefoglaló Min múlik? Kereszt vagy beágyazott? Rögzített vagy véletlen? BIOMETRIA_ANOVA5 1 I. Kereszt vagy beágyazott Két faktor viszonyát mondja meg. Ha több, mint két faktor van, akkor bármely
Matematikai statisztikai elemzések 4.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzések 4. MSTE4 modul Hipotézisvizsgálat: alapfogalmak, egymintás és kétmintás próbák. Illeszkedés-
Megjelent: Magyar Földrajzi Konferencia tudományos közleményei (CD), Szeged, 2001
Megjelent: Magyar Földrajzi Konferencia tudományos közleményei (CD), Szeged, 2001 A területi lehatárolások statisztikai következményei A területi lehatárolások statisztikai következményeinek megközelítése
Populációbecslés és monitoring. Eloszlások és alapstatisztikák
Populációbecslés és monitoring Eloszlások és alapstatisztikák Eloszlások Az eloszlás megadja, hogy milyen valószínűséggel kapunk egy adott intervallumba tartozó értéket, ha egy olyan populációból veszünk
PIACKUTATÁS (MARKETINGKUTATÁS)
PIACKUTATÁS (MARKETINGKUTATÁS). FŐBB PONTOK A kutatási terv fogalmának meghatározása, a különböző kutatási módszerek osztályozása, a feltáró és a következtető kutatási módszerek közötti különbségtétel
SZAK MA AKTUALITÁSOK, KÖZÉLET, VITA SZAK-MA. Beszámoló a Módszeresen című rendezvénysorozatról. Bevezető
SZAK MA AKTUALITÁSOK, KÖZÉLET, VITA Szociológiai Szemle 27(1): 118. SZAK-MA Beszámoló a Módszeresen című rendezvénysorozatról Bevezető A Szociológiai Szemle örömmel vesz részt minden, a szakmai közéleti