Ökonometria. Adminisztratív kérdések, bevezetés. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Első fejezet. Budapesti Corvinus Egyetem

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Ökonometria. Adminisztratív kérdések, bevezetés. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Első fejezet. Budapesti Corvinus Egyetem"

Átírás

1 Adminisztratív kérdések, bevezetés Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Első fejezet

2 Tartalom Technikai kérdések 1 Technikai kérdések Adminisztratív ügyek Tudnivalók a félévről 2 a társadalmi-gazdasági jelenségek elemzésében 3 i elemzések kivitelezése

3 Adminisztratív ügyek Tudnivalók a félévről Hol vagyunk most? Bevezetés az ökonometriába (de formálisan: ) kurzus (4MK24NAK01M) G Kar, pénzügy mesterszak, nappali munkarend Egy félév (szemben például a K Karos alapszakos ökonometria oktatással) A kurzus honlapja: Konkrétabban:

4 Oktatók és oktatás Technikai kérdések Adminisztratív ügyek Tudnivalók a félévről Előadás: Ferenci Tamás BCE Statisztika Tsz., óraadó (ÓE, egyetemi adjunktus) tamas.ferenci@medstat.hu Hétfő 11:40 13:10, E.332 (régi épület) Gyakorlatvezető: Ruzsa Gábor BCE Statisztika Tsz., e. tanársegéd Csütörtök, 9:50-11:20, S (G3) Csütörtök, 11:40-13:10, S (G2) Csütörtök, 13:40-15:10, S (G1)

5 Adminisztratív ügyek Tudnivalók a félévről Osztályozás A kurzus státusza: vizsgával záruló (V); 5 kredit A félév során 80 pontot lehet szerezni, összetételt lásd mindjárt Pontok jegyre konvertálása a szokásos Statisztika Tanszékes stílusban (40-től elégséges, onnan 10-esével felfelé)

6 Megszerezhető pontok Adminisztratív ügyek Tudnivalók a félévről A félév során 80 pontot lehet szerezni, a következő összetételben: Gyakorlatokon 4 alkalommal röpzh, 3 legjobb számít, egyenként 5, összesen 15 pont Félév végéig 2 házi feladat beadása, 5 és 10, összesen 15 pont Két teljesen kidolgozott adatelemzés (pontos specifikáció a honlapon) Valós adatokon, gretl használatával Írásban kell beadni, az első vizsga kezdete mínusz 24 óráig, a gyakorlatvezetőnek Vizsgaidőszakban vizsga, 50 pont Írásban (mintavizsga a honlapon, formát mutatja) Feleletválasztás, többszörös feleletválasztás (oda-vissza), példamegoldás és kifejtős (elméleti) kérdések

7 Pluszpontok Technikai kérdések Adminisztratív ügyek Tudnivalók a félévről A félév során pluszpontok is szerezhetőek, jellemzően a 0,25 3 pont tartományban: ezek közvetlenül hozzáadódnak a többi ponthoz az évvégi elszámolásnál! Pluszpontot három dologért lehet szerezni: 1 Gyakorlati aktivitás honorálása 2 Kiadott pluszmunka (jellemzően valamilyen kutatási feladat) elvégzése, jelentkezés alapján 3 Cikkfeldolgozás, egyéb önálló munka, jelentkezés alapján

8 Segédanyagok, ajánlott irodalom Adminisztratív ügyek Tudnivalók a félévről Két szóba jövő könyv: R. Ramanathan: Bevezetés az ökonometriába, alkalmazásokkal (Panem Kiadó, 2003) G. S. Maddala: Bevezetés az ökonometriába (Nemzeti Tankönyvkiadó, 2004) Ramanathan: gyakorlatorientáltabb, idősoros rész problémás; beszerezhetőség? Maddala: sokkal mélyebb elmélet, több téma; idősorhoz egyébként is ajánlott; beszerezhetőség? Angolul Jeffrey M. Wooldridge: Introductory Econometrics, A Modern Approach című műve az alapolvasmány Előadásdiák (és egyéb anyagok) elérhetőek a honlapon ( Diasor handout és lecture note stílusban is fent lesz

9 Egy kis copyright Technikai kérdések Adminisztratív ügyek Tudnivalók a félévről Ezen diasor alapját jelentő diák, valamint a legtöbb gyakorlaton használt adatbázis Hajdu Ottó munkája

10 Adminisztratív ügyek Tudnivalók a félévről Miről fog szólni a félév Ismerkedés az ökonometriával... Elmélet röviden Módszerek és alkalmazási területek bőven... tehát inkább horizontális ismeretbővítés Szemléletünk modellorientált lesz A vizsgált jelenségekre (elsősorban: társadalmi-gazdasági) ökonometriai modelleket alkotunk hogy azok alapján a jelenségeket előrejelezzük elemezzük Tehát: társadalmi-gazdasági jelenségek kvantitatív elemzésére adunk eszközt

11 Adminisztratív ügyek Tudnivalók a félévről Miért bevezetés? A modern ökonometria rendkívül matematika-igényes, ha precízen csinálják Bár gyakorlati tudomány, de ha szabatosan tárgyalják, akkor jó öreg definíció-tétel-bizonyítás tudomány, nagyon-nagyon komoly matematikai apparátussal Mi ezt szinte teljesen megspóroljuk!... ettől bevezetés Nem bizonyítunk semmit, precíz tétel-kimondás is alig Ehelyett a módszerek alkalmazására koncentrálunk, az alapok matematikailag precíz tárgyalását megspórolva

12 Előkövetelmények Technikai kérdések Adminisztratív ügyek Tudnivalók a félévről Formálisan Statisztika I. és Statisztika II., de facto: Statisztika I. gyakorlatilag semmi Statisztika II. intenzíven, különösen: becsléselmélet és hipotézisvizsgálat (mintavételi helyzet, mintavételi ingadozás, becslőfüggvény, becslések tulajdonságai, konfidenciaintervallum, hipotézisvizsgálat alapfogalmai, tesztstatisztika, p-érték) Valószínűségszámítás különösen az idősoros részhez (alapfogalmak, valószínűségi változó, eloszlás- és sűrűségfüggvény, momentumok, korreláció, kovariancia, többdimenziós eloszlások, együttes- és vetületi eloszlás) Analízis (derivált, parciális derivált, optimalizálás) Lineáris algebra (skalár, vektor, mátrix, mátrix szorzása skalárral, mátrixok összeadása, mátrix szorzása mátrixszal, transzponálás, determináns, inverz)

13 Adminisztratív ügyek Tudnivalók a félévről Amit még tudni kell A tanszéki honlap nem frissül, nem is a mostani félévre vonatkozik (ld. helyette a kurzus honlapját, ott minden fent van) Előadások interaktívak Gyakorlatokon a tanult módszerek alkalmazása Használt programok: Excel és gretl gretl-ről még lesz szó gyakorlaton Akit ez sem rémített meg, bátran jelentkezzen, ha van kedve a tananyagon túl is foglalkozni ökonometriával: egyéni kutatásokat, TDK-sokat szívesen látunk!

14 Mi az ökonometria? Technikai kérdések Nem statisztika alkalmazása történetesen gazdasági adatokra nem matematika, amihez történetesen adatok is rendelhetőek a hangsúly az adatok és a módszerek kölcsönös egymásra hatásán van. Definíció () Az ökonometria feladata gazdasági-társadalmi jelenségek statisztikai modellezése. Beszéljünk mindhárom komponensről! Statisztikai ( módszertani bázis) Modellorientált ( lásd később) Gazdasági-társadalmi jelenségekkel foglalkozik

15 A modellezésről általában i modelleket alkotunk... de mit mondhatunk a modellekről általában? A modellezés torzított lényegkiemelés! Azaz: a valóság egyszerű mását hozzuk létre Motiváció: a valóság túl bonyolult, hogy a maga eredeti formájában vizsgáljuk Épp azért egyszerűsítünk, hogy vizsgálni tudjuk valamilyen számunkra kényelmes eszközzel ez legtöbbször matematikai A modell épp azért egyszerűsít, hogy vizsgálható legyen... de közben szükségképp torzít is lásd a turistatérkép példáját Ebből is látszik: a modellezés kulcsa az absztrakciós szint helyes megválasztása Kompromisszumos döntés, optimum keresése: egyensúly a kezelhetőség és a valósághűség között

16 I. esettanulmány: a lakásár-adatbázis Az adatbázis budai használt lakások kínálati árát [M Ft], és bizonyos jellemzőit tartalmazza, jelesül: Alapterület [m 2 ] Teraszméret [m 2 ] Szobák száma [db] Félszobák száma [db] Fürdőszobák száma [db] Hányadik emeleten van? [N] Déli fekvésű? [I/N] Valós adatok a 2000-es évek elejéről n = 1406 megfigyelési egység Ez lesz a mintánk (mi a sokaság?)

17 Modellezési feladat megfogalmazása Adjunk ökonometriai modellt a kínálati árra! Tehát: hogyan magyarázhatjuk a kínálati ár alakulását a lakás jellemzőivel? Elemzés Előrejelzés Az ökonometriában matematikai, még közelebbről: algebrai modelleket ( egyenletek ) fogunk használni Mire akarhatunk egy modellt ha már megvan felhasználni? Például egy lehetséges modell erre a kérdésre: Ár = 4,3 + 0,4 Alapterület,

18 Determinisztikus modell Kínálati ár [MFt] Alapterület [m^2] Mi ezzel a baj? Függvényszerű kapcsolat az ár és az alapterület között? Hihető ez...?

19 Következő ötlet Technikai kérdések Próbálkozzunk így: Ár = 4,3 + 0,4 Alapterület + u, ahol u valamiféle hibát foglal magába (kihagyott változó, rossz függvényforma, valóság változékonysága stb.) Kínálati ár [MFt] Alapterület [m^2]

20 Sztochasztikus modellek Csak ennek van értelme! sztochasztikusan fogjuk modellezni a vizsgált jelenségeket Ne foglalkozzunk vele, hogy hogyan jött ki az egyenlet, a lényeg, hogy valahogy kijött Ez az egyenlet tehát egy teljes értékű ökonometriai modell! (Hogy mennyire jó vagy rossz, az persze más kérdés)

21 Modell megfogalmazása Érezhető, hogy a fenti modell két részre bontható: Struktúra: Ár = α + β Alapterület + u Paraméter-becslés: α = 3 és β = 4 E kurzus keretében csak ilyen modellekkel fogunk foglalkozni: a struktúrát előre megadjuk de ez a megadás tartalmaz ismeretlen paramétereket E paraméterek értékét a minta alapján kell megbecsülnünk (valamilyen értelemben a lehető legjobban) Ezt paraméteres modellnek nevezzük; a továbbiakban csak ilyennel fogunk foglalkozni Elemzés? Előrejelzés?

22 Egyetlen példa nem-paraméteres modellekre Kínálati ár [MFt] Alapterület [m^2] Elemzés? Előrejelzés?

23 Struktúra megválasztása paraméteres modellnél Paraméteres modelleknél a struktúra a priori jellege azért nem azt jelenti, hogy az adatoktól teljesen függetlenül kell döntenünk, és ha rossz lóra teszünk, akkor így jártunk Ugyanis mód van arra, hogy egy adott modell (struktúra) jóságát az adatok fényében megítéljük (modelldiagnosztika) majd, ha azt tapasztaljuk, hogy baj van, akkor új modellt keressünk Újrabecsüljük az új modellt, majd újra modelldiagnosztikát végzünk és így tovább: a modellezés iteratív feladat lesz (Azért ezen iterációk száma sem lehet túl sok, különben egyéb problémák jelentkeznek de erről majd később)

24 Modell használata Technikai kérdések Nem törődve most azzal, hogy mennyire jó a fenti modell (és egyáltalán, hogyan jött ki), mire használhatjuk? Elemzés: minden mást változatlanul tartva, önmagában az alapterület hogyan hat a kínálati árra? (mennyivel kell többet fizetni modellünk szerint várhatóan egy m 2 -rel nagyobb lakásért?) Előrejelzés: modellünk szerint várhatóan mennyi az ára egy 30 m 2 -es lakásnak? Ha a modellünk értelmes lenne, akkor ezekre a kérdésekre értelmes válaszokat kapnánk! (A konkrét gazdasági felhasználás, gazdasági kérdések megválaszolása nyilvánvaló) Már a fenti primitív egyenlet mint ökonometriai modell is meg tud ilyen releváns kérdéseket válaszolni

25 Az ökonometriai modellezés módszertana Az ökonometriai modellezés tipikus lépései 1 Hipotézis felállítása (tipikusan: elmélet állítását empirikusan ellenőrizni vagy társadalmi-gazdasági kérdést kvantitatíve megválaszolni) 2 Adatgyűjtés 3 Modell kiválasztása (nem csak a jellege, a bonyolultsága is) 4 Modell becslése 5 A modell és a valóság szembesítése, modelldiagnosztika Iteratív folyamat! Ha viszont már jó a modell, akkor használhatjuk: Elemzés Előrejelzés Cél tehát: kérdések megválaszolása (döntéselőkészítés, hatásvizsgálat, policy-választás stb.)

26 Az ökonometriai adatok természetéről Pontosság kérdése Az adatok jellegük szerint csoportosíthatóak: Keresztmetszeti adatok (több megfigyelési egység egyetlen időpontban) Idősoros adatok (egy megfigyelési egység több időponton keresztül) A kettő kombinációja: paneladatok

27 Vegyük észre, hogy a statisztikai modell semmit nem mond a változók közti okozati kapcsolatokról (Pontosan ugyanolyan jól megmagyarázható a lakásár az alapterülettel, mint az alapterület a lakásárral!) Az előbbi példában elég nyilvánvaló, hogy az alapterület befolyásolja az lakásárat, és nem a lakásár az alapterületet, de sok más esetben ez nem ilyen egyértelmű Még egy egyértelmű példa: tűzoltók száma és a tűzben esett anyagi kár Confounding jelensége, zavaró változók: akkor van probléma, ha ez egyszerre hat az eredményváltozóra és függ össze a felhasznált magyarázóváltozóval Azaz: a korreláció nem implikál kauzalitást!

28 Példák a confounding-ra A confounding problémája teljesen általános a társadalmi-gazdasági jelenségek vizsgálatában! A több iskolát végzetteknek nagyobb a fizetése (a több iskolát végzettek nem oktatással összefüggő munkaalkalmassága is jobb akkor mi a valódi ok, illetve melyik milyen arányban?) A több előadást kihagyó hallgatók rosszabb pontszámot érnek el a vizsgán (a több előadást kihagyók nem csak kevesebbet hallanak az előadásból, de egyúttal tendenciájában kevésbé motiváltak is, ezért előadáshallgatástól függetlenül is kevesebbet tanulnak akkor mi a valódi ok, illetve melyik milyen arányban?) A cigányok többet bűnöznek (a cigányok inkább találhatóak az alsó szocioökonómiai szegmensben, ami önmagában nagyobb bűnőzövé válási kockázattal jár együtt akkor mi a valódi ok, illetve melyik milyen arányban?) Ebben az iskolában magasabb a továbbtanulási arány, tehát jobban tanítanak a tanárok (bizonyos iskolákban, logikus módon, mivel a múltbeli eredményeik is imponálóak az iskolát választó szülők számára, eleve a jobb diákok kerülnek be akkor mi a valódi ok, illetve melyik milyen arányban?) Figyelem: vegyük észre, hogy ezek a problémák csak elemzésnél jelentkeznek, ha pusztán előrejelezni akarunk, akkor ezt akár figyelmen kívül is hagyhatjuk (az alapterület jól előrejelezhető a kínálati árral!), bár sok szempontból ez nem túl jó ötlet

29 A confounding megoldása: kísérlet Tökéletes megoldást csak a randomizált, kontrollált kísérlet elvégzése tud szolgáltatni Ez az egyetlen ugyanis, ami biztosan kiszűr minden confoundert (azokat is, amiket nem tudunk jól mérni, sőt, azokat is, amikről eszünkbe sem jut, hogy confounder-ek!) Azonban a társadalmi-gazdasági vizsgálatokban (ökonometrián túl tipikus példa még az epidemiológia) ez sok eseteben kivihetetlen: embereknek véletlenszerűen különböző fokú oktatást adunk (4 általánostól a PhD-ig), majd megnézzük, hogy mekkora lesz a fizetésük?! Khm...

30 A confounding megoldása: megfigyelés Gyengébb bizonyítóerejű adatokból kell dolgozni (megfigyeléses adatok, kvázi-kísérlet, természetes kísérlet stb.) A statisztikai modellezés egyik felhasználása épp az lesz, hogy ilyen gyengébb adatokon is képesek legyünk kiszűrni a confounding-ot és ez által a gyengébb adataink ellenére is a valódi okozati viszonyokra következtetni! i modellekkel a modellfeltevések teljesülésének erejéig szét tudjuk választani az egyes hatásokat

31 Statisztikai modellek a confounding szűrésében Például építhetünk modellt, melyben az iskolai eredményt magyarázzuk az iskola valamely jellemzőjével (például típusával, helyével, fenntartójával stb.) és a belépő diákok teljesítményével Egy ilyen modellben el tudjuk különíteni, hogy a kimeneti eredményben milyen szerepet játszanak az egyes tényezők önmagukban! Ha a budapesti iskolákat hasonlítjuk a falusiakkal, nyilván a budapestiek a jobbak de ekkor a budapesti mivolt hatásába belemérjük azt is, hogy itt tendenciájában a diákok már belépéskor is jobbak a fenti modellel viszont ki tudjuk mutatni, hogy önmagában a budapesti mivolt (azaz ha a belépő teljesítmény adott, állandó értéken tartjuk) hogyan hat a kimeneti eredményre!

32 Confoundig szűrése: kontrollálás bizonyos változókra Sokszor tényleg így jelenik meg a feladat, tehát nem mindegyik hatás érdekel, csak egy kiemelt, de a többi zavaró hatását ki akarjuk szűrni, ezt úgy is szokás mondani, hogy kontrollálunk a többire ( budapesti mivolt hatása, kontrollálva a belépő teljesítményre ) Ez hatalmas fegyvertény, de természetesen az alapproblémát nem oldja tökéletesen meg: csak azt tudjuk szűrni, amiről egyáltalán tudunk (és le is tudjuk mérni ez sem feltétlenül triviális: hogyan mérhető le a szocioökonómiai státusz?), és persze azt is csak a modell jóságának erejéig

33 Szimultaneitás Technikai kérdések A helyzet lehet még ennél komplexebb is Nagyon sok esetben ugyanis nem csak az a probléma, hogy mi hat mire, hanem az is, hogy változók kölcsönösen hatnak egymásra Egészségügyi állapot és GDP, kínálat és kereslet, rendőri létszám és bűnözés stb. stb. Ez a szimultaneitás problémája

34 i elemzések kivitelezése Számítógépes ökonometriai programcsomagok Ma már ökonometriai munka elképzelhetetlen számítógépes támogatás nélkül Számítógépet használunk adatok tárolásához, feldolgozásához (pl. vizualizálás) és a tényleges modellezéshez is A legismertebb, ökonometriai munkára (is) alkalmas programcsomagok: gretl Egyszerű, nagyon kényelmesen használható, ingyenes, de némileg limitált tudású EViews Az ipar egyik legnépszerűbb, dedikáltan ökonometriai programcsomagja, nagy tudással bír, felhasználóbarát Stata Komplex statisztikai programcsomag, mely ökonometriai támogatást is nyújt R Ingyenes, hatalmas tudású, de nem célirányosan ökonometriára tervezett környezet, a kezdeti beletanulás komolyabb befektetést igényel

Ökonometria. Adminisztratív kérdések, bevezetés. Ferenci Tamás 1 Első fejezet. Budapesti Corvinus Egyetem

Ökonometria. Adminisztratív kérdések, bevezetés. Ferenci Tamás 1 Első fejezet. Budapesti Corvinus Egyetem Adminisztratív kérdések, bevezetés Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Első fejezet Tartalom 1 2 Alapvetés az ökonometriai modellezéshez Az ökonometria

Részletesebben

1. Technikai kérdések Adminisztratív ügyek Tudnivalók a félévről... 3

1. Technikai kérdések Adminisztratív ügyek Tudnivalók a félévről... 3 Tartalom Tartalomjegyzék 1. Technikai kérdések 1 1.1. Adminisztratív ügyek....................................... 1 1.2. Tudnivalók a félévről....................................... 3 2. Bevezetés, alapgondolatok

Részletesebben

1. Technikai kérdések 1 1.1. Adminisztratív ügyek... 1 1.2. Tudnivalók a félévről... 3

1. Technikai kérdések 1 1.1. Adminisztratív ügyek... 1 1.2. Tudnivalók a félévről... 3 Tartalom Tartalomjegyzék 1. Technikai kérdések 1 1.1. Adminisztratív ügyek....................................... 1 1.2. Tudnivalók a félévről....................................... 3 2. Bevezetés, alapgondolatok

Részletesebben

1. Technikai kérdések Adminisztratív ügyek Tudnivalók a félévről... 3

1. Technikai kérdések Adminisztratív ügyek Tudnivalók a félévről... 3 Tartalom Tartalomjegyzék 1. Technikai kérdések 1 1.1. Adminisztratív ügyek.................................. 1 1.2. Tudnivalók a félévről.................................. 3 2. Bevezetés, alapgondolatok

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós lineáris regresszió: mintavételi vonatkozások és modelljellemzés Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Harmadik

Részletesebben

Általános statisztika II. Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László

Általános statisztika II. Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Publication

Részletesebben

Matematika 9. évfolyam

Matematika 9. évfolyam I. Vezetői összefoglaló Matematika 9. évfolyam A tankönyv a megkérdezett pedagógusok többségének nem nyerte el a tetszését. A pedagógusok fele egyáltalán nem szeretne a jövőben a tankönyvből tanítani,

Részletesebben

Bevezetés, tudnivalók, ökonometriai alapok

Bevezetés, tudnivalók, ökonometriai alapok Orlovits Zsanett orlovits@kgt.bme.hu BME GTK Közgazdaságtan Tanszék 2019. február 6. Adminisztratív ügyek BMEGT30A107, BMEGT35A016 - Ökonometria kurzusok Honlap: http://kgt.bme.hu/tantargyak/bsc oldalon

Részletesebben

Matematika 8. PROGRAM. általános iskola 8. osztály nyolcosztályos gimnázium 4. osztály hatosztályos gimnázium 2. osztály. Átdolgozott kiadás

Matematika 8. PROGRAM. általános iskola 8. osztály nyolcosztályos gimnázium 4. osztály hatosztályos gimnázium 2. osztály. Átdolgozott kiadás Dr. Czeglédy István fôiskolai tanár Dr. Czeglédy Istvánné vezetôtanár Dr. Hajdu Sándor fôiskolai docens Novák Lászlóné tanár Dr. Sümegi Lászlóné szaktanácsadó Zankó Istvánné tanár Matematika 8. PROGRAM

Részletesebben

Elméleti összefoglalók dr. Kovács Péter

Elméleti összefoglalók dr. Kovács Péter Elméleti összefoglalók dr. Kovács Péter 1. Adatállományok létrehozása, kezelése... 2 2. Leíró statisztikai eljárások... 3 3. Várható értékek (átlagok) vizsgálatára irányuló próbák... 5 4. Eloszlások vizsgálata...

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter. 2010. június

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter. 2010. június ÖKONOMETRIA ÖKONOMETRIA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék, az MTA

Részletesebben

6. AZ EREDMÉNYEK ÉRTELMEZÉSE

6. AZ EREDMÉNYEK ÉRTELMEZÉSE 6. AZ EREDMÉNYEK ÉRTELMEZÉSE A kurzus anyagát felhasználva összeállíthatunk egy kitűnő feladatlapot, de még nem dőlhetünk nyugodtan hátra. Diákjaink teljesítményét még osztályzatokra kell átváltanunk,

Részletesebben

MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI

MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A vizsga formája Középszinten: írásbeli. Emelt szinten: írásbeli és szóbeli. MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A matematika érettségi vizsga célja A matematika érettségi vizsga célja

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 5 V ELEmI ALGEbRA 1 BINÁRIS műveletek Definíció Az halmazon definiált bináris művelet egy olyan függvény, amely -ből képez -be Ha akkor az elempár képét jelöljük -vel, a művelet

Részletesebben

Tartalom. Matematikai alapok. Termékgyártási példafeladat. Keverési példafeladat Szállítási példafeladat Hátizsák feladat, egészértékű feladat

Tartalom. Matematikai alapok. Termékgyártási példafeladat. Keverési példafeladat Szállítási példafeladat Hátizsák feladat, egészértékű feladat 6. előadás Termelési és optimalizálási feladatok Dr. Szörényi Miklós, Dr. Kallós Gábor 2013 2014 1 Tartalom Matematikai alapok Matematikai modell Fontosabb feladattípusok Érzékenységvizsgálat Termékgyártási

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 11 XI LINEÁRIS EGYENLETRENDSZEREk 1 LINEÁRIS EGYENLETRENDSZER A lineáris egyenletrendszer általános alakja: (1) Ugyanez mátrix alakban: (2), ahol x az ismeretleneket tartalmazó

Részletesebben

Matematikai statisztikai elemzések 6.

Matematikai statisztikai elemzések 6. Matematikai statisztikai elemzések 6. Regressziószámítás: kétváltozós lineáris és nemlineáris regresszió, többváltozós regresszió Prof. Dr. Závoti, József Matematikai statisztikai elemzések 6.: Regressziószámítás:

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Statisztika 2. normál kurzusok számára

TANTÁRGYI ÚTMUTATÓ. Statisztika 2. normál kurzusok számára II. évfolyam BA TANTÁRGYI ÚTMUTATÓ Statisztika 2. normál kurzusok számára TÁVOKTATÁS Tanév 2014/2015 I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Statisztika 2. Tanszék: Módszertani Tantárgyfelelős

Részletesebben

Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam

Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam Helyi tanterv Német nyelvű matematika érettségi előkészítő 11. évfolyam Tematikai egység címe órakeret 1. Gondolkodási és megismerési módszerek 10 óra 2. Geometria 30 óra 3. Számtan, algebra 32 óra Az

Részletesebben

MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK

MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: - középszinten a mai társadalomban tájékozódni és alkotni tudó ember matematikai ismereteit kell

Részletesebben

MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ

MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: középszinten a

Részletesebben

GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június

GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén, az ELTE Közgazdaságtudományi Tanszék, az MTA Közgazdaságtudományi

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Pénzügyi számvitel 2. tanulmányokhoz

TANTÁRGYI ÚTMUTATÓ. Pénzügyi számvitel 2. tanulmányokhoz III. évfolyam PSZ szak BA TANTÁRGYI ÚTMUTATÓ Pénzügyi számvitel 2 tanulmányokhoz TÁVOKTATÁS Tanév (2015/2016) I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Pénzügyi számvitel 2. Tanszék: Számvitel Intézeti

Részletesebben

tantárgy E GY E GY Matematikai alapok I. kötelező - kollokvium 30 3 Matematikai alapok I.

tantárgy E GY E GY Matematikai alapok I. kötelező - kollokvium 30 3 Matematikai alapok I. TELJES IDEJŰ (NAPPALI) MUNKARENDŰ KÉPZÉS TANTERVE I. félév tárgy kódja tantárgy neve tantárgy számonkérés óraszám kredit előfeltétel típusa formája E GY E GY Matematikai alapok I. kötelező - kollokvium

Részletesebben

KÖNYVEKRÕL, FOLYÓIRATOKRÓL MURÁNYI ISTVÁN

KÖNYVEKRÕL, FOLYÓIRATOKRÓL MURÁNYI ISTVÁN KÖNYVEKRÕL, FOLYÓIRATOKRÓL MURÁNYI ISTVÁN Foglalkoztatáspolitika: problémák és megoldások (Csoba Judit Czibere Ibolya [szerk.]: Tipikus munkaerõ-piaci problémák atipikus megoldások, Kossuth Egyetemi Kiadó,

Részletesebben

Tantárgyi útmutató. 1. A tantárgy helye a szaki hálóban. 2. A tantárgyi program általános célja. Statisztika 1.

Tantárgyi útmutató. 1. A tantárgy helye a szaki hálóban. 2. A tantárgyi program általános célja. Statisztika 1. Tantárgyi útmutató 1. A tantárgy helye a szaki hálóban Gazdálkodási és menedzsment szakirány áttekintő tanterv Nagyításhoz kattintson a képre! Turizmus - vendéglátás szakirány áttekintő tanterv Nagyításhoz

Részletesebben

MATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok

MATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok MATEMATIKA TANTERV Bevezetés A matematika tanítását minden szakmacsoportban és minden évfolyamon egységesen heti három órában tervezzük Az elsı évfolyamon mindhárom órát osztálybontásban tartjuk, segítve

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2006. május 9. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2006. május 9. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika

Részletesebben

Következõ: Lineáris rendszerek jellemzõi és vizsgálatuk. Jelfeldolgozás. Lineáris rendszerek jellemzõi és vizsgálatuk

Következõ: Lineáris rendszerek jellemzõi és vizsgálatuk. Jelfeldolgozás. Lineáris rendszerek jellemzõi és vizsgálatuk 1 1 Következõ: Lineáris rendszerek jellemzõi és vizsgálatuk Jelfeldolgozás 1 Lineáris rendszerek jellemzõi és vizsgálatuk 2 Bevezetés 5 Kérdések, feladatok 6 Fourier sorok, Fourier transzformáció 7 Jelek

Részletesebben

MATEMATIKUS SZAKMAISMERTETŐ INFORMÁCIÓS MAPPA. Humánerőforrás-fejlesztési Operatív Program (HEFOP) 1.2 intézkedés

MATEMATIKUS SZAKMAISMERTETŐ INFORMÁCIÓS MAPPA. Humánerőforrás-fejlesztési Operatív Program (HEFOP) 1.2 intézkedés MATEMATIKUS SZAKMAISMERTETŐ INFORMÁCIÓS MAPPA Humánerőforrás-fejlesztési Operatív Program (HEFOP) 1.2 intézkedés Az Állami Foglalkoztatási Szolgálat fejlesztése MATEMATIKUS Feladatok és tevékenységek Mit

Részletesebben

KÉPZÉSI PROGRAM PÉNZÜGY ÉS SZÁMVITEL ALAPKÉPZÉSI SZAK

KÉPZÉSI PROGRAM PÉNZÜGY ÉS SZÁMVITEL ALAPKÉPZÉSI SZAK KÉPZÉSI PROGRAM PÉNZÜGY ÉS SZÁMVITEL ALAPKÉPZÉSI SZAK SZOLNOKI FŐISKOLA SZOLNOK SZOLNOKI FŐISKOLA SZOLNOK TANTERV érvényes a 2013/2014. tanévtől felmenő rendszerben PÉNZÜGY ÉS SZÁMVITEL ALAPKÉPZÉSI SZAK

Részletesebben

Az Országos Közoktatási Intézet keretében szervezett obszervációs vizsgálatok

Az Országos Közoktatási Intézet keretében szervezett obszervációs vizsgálatok Iskolakultúra 005/10 Radnóti Katalin Általános Fizika Tanszék, TTK, ELTE Hogyan lehet eredményesen tanulni a fizika tantárgyat? Szinte közhelyszámba megy, hogy a fizika az egyik legkeésbé kedelt a tantárgyak

Részletesebben

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013 UKRAJNA OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUMA ÁLLAMI FELSŐOKTATÁSI INTÉZMÉNY UNGVÁRI NEMZETI EGYETEM MAGYAR TANNYELVŰ HUMÁN- ÉS TERMÉSZETTUDOMÁNYI KAR FIZIKA ÉS MATEMATIKA TANSZÉK Sztojka Miroszláv LINEÁRIS

Részletesebben

Sztochasztikus folyamatok 1. házi feladat

Sztochasztikus folyamatok 1. házi feladat Sztochasztikus folyamatok 1. házi feladat 1. Egy borfajta alkoholtartalmának meghatározására méréseket végzünk. Az egyes mérések eredményei egymástól független valószínûségi változók, melyek normális eloszlásúak,

Részletesebben

A TANÁRI MESTERSZAKRA VONATKOZÓ SAJÁTOS RENDELKEZÉSEK. Alapfogalmak

A TANÁRI MESTERSZAKRA VONATKOZÓ SAJÁTOS RENDELKEZÉSEK. Alapfogalmak KRE TVSz 10. függelék 2012.05.10. A TANÁRI MESTERSZAKRA VONATKOZÓ SAJÁTOS RENDELKEZÉSEK 10. FÜGGELÉK 1. Tanári szakképzettség ciklusokra bontott, osztott képzésben, mesterfokozatot nyújtó tanári mesterszakon

Részletesebben

Számsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás

Számsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás 12. évfolyam Osztályozó vizsga 2013. augusztus Számsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás Ismerje a számsorozat

Részletesebben

KÉPZÉSI PROGRAM NEMZETKÖZI GAZDÁLKODÁS ALAPKÉPZÉSI SZAK

KÉPZÉSI PROGRAM NEMZETKÖZI GAZDÁLKODÁS ALAPKÉPZÉSI SZAK KÉPZÉSI PROGRAM NEMZETKÖZI GAZDÁLKODÁS ALAPKÉPZÉSI SZAK SZOLNOKI FŐISKOLA SZOLNOK SZOLNOKI FŐISKOLA SZOLNOK TANTERV érvényes a 2013/2014. tanévtől felmenő rendszerben NEMZETKÖZI GAZDÁLKODÁS ALAPKÉPZÉSI

Részletesebben

LINEÁRIS ALGEBRA PÉLDATÁR MÉRNÖK INFORMATIKUSOKNAK

LINEÁRIS ALGEBRA PÉLDATÁR MÉRNÖK INFORMATIKUSOKNAK Írta: LEITOLD ADRIEN LINEÁRIS ALGEBRA PÉLDATÁR MÉRNÖK INFORMATIKUSOKNAK Egyetemi tananyag COPYRIGHT: Dr. Leitold Adrien Pannon Egyetem Műszaki Informatika Kar Matematika Tanszék LEKTORÁLTA: Dr. Buzáné

Részletesebben

KÉPZÉSI PROGRAM KERESKEDELEM ÉS MARKETING ALAPKÉPZÉSI SZAK

KÉPZÉSI PROGRAM KERESKEDELEM ÉS MARKETING ALAPKÉPZÉSI SZAK KÉPZÉSI PROGRAM KERESKEDELEM ÉS MARKETING ALAPKÉPZÉSI SZAK SZOLNOKI FŐISKOLA SZOLNOK SZOLNOKI FŐISKOLA SZOLNOK TANTERV KERESKEDELEM ÉS MARKETING ALAPKÉPZÉSI SZAK (BA.) NAPPALI TAGOZAT érvényes a 2013/2014.

Részletesebben

OPERÁCIÓKUTATÁS, AZ ELFELEDETT TUDOMÁNY A LOGISZTIKÁBAN (A LOGISZTIKAI CÉL ELÉRÉSÉNEK ÉRDEKÉBEN)

OPERÁCIÓKUTATÁS, AZ ELFELEDETT TUDOMÁNY A LOGISZTIKÁBAN (A LOGISZTIKAI CÉL ELÉRÉSÉNEK ÉRDEKÉBEN) OPERÁCIÓKUTATÁS, AZ ELFELEDETT TUDOMÁNY A LOGISZTIKÁBAN (A LOGISZTIKAI CÉL ELÉRÉSÉNEK ÉRDEKÉBEN) Fábos Róbert 1 Alapvető elvárás a logisztika területeinek szereplői (termelő, szolgáltató, megrendelő, stb.)

Részletesebben

Százalékok kezdőknek és haladóknak Arányok és százalékszámítás 2. feladatcsomag

Százalékok kezdőknek és haladóknak Arányok és százalékszámítás 2. feladatcsomag SZÁMTAN, ALGERA Százalékok kezdőknek és haladóknak Arányok és százalékszámítás 2. feladatcsomag Életkor: Fogalmak, eljárások: 13 18 év a százalék fogalma a százalékszámítás alapesetei algebrai kifejezések

Részletesebben

TOVÁBBTANULÁSI LEHETŐSÉGEK A KÁROLY RÓBERT FŐISKOLÁN A 2014/2015. TANÉVBEN (SZEPTEMBERBEN INDULÓ KÉPZÉSEK)

TOVÁBBTANULÁSI LEHETŐSÉGEK A KÁROLY RÓBERT FŐISKOLÁN A 2014/2015. TANÉVBEN (SZEPTEMBERBEN INDULÓ KÉPZÉSEK) TOVÁBBTANULÁSI LEHETŐSÉGEK A KÁROLY RÓBERT FŐISKOLÁN A 2014/2015. TANÉVBEN (SZEPTEMBERBEN INDULÓ KÉPZÉSEK) Gyöngyös 2014. január 6. 1. FELSŐOKTATÁSI SZAKKÉPZÉSBEN MEGHIRDETÉSRE KERÜLŐ SZAKOK A képzési

Részletesebben

Miért tanulod a nyelvtant?

Miért tanulod a nyelvtant? Szilágyi N. Sándor Mi kell a beszédhez? Miért tanulod a nyelvtant? Nyelvtani kiskalauz (Részletek a szerző Ne lógasd a nyelved hiába! c. kötetéből, Anyanyelvápolók Erdélyi Szövetsége, 2000) 2. rész Térjünk

Részletesebben

TVSZ. 10. SZ. FÜGGELÉK A CIKLUSOKRA BONTOTT, OSZTOTT KÉPZÉSBEN MEGVALÓSULÓ TANÁRI MESTERSZAKRA VONATKOZÓ SAJÁTOS RENDELKEZÉSEK

TVSZ. 10. SZ. FÜGGELÉK A CIKLUSOKRA BONTOTT, OSZTOTT KÉPZÉSBEN MEGVALÓSULÓ TANÁRI MESTERSZAKRA VONATKOZÓ SAJÁTOS RENDELKEZÉSEK TVSZ. 10. SZ. FÜGGELÉK A CIKLUSOKRA BONTOTT, OSZTOTT KÉPZÉSBEN MEGVALÓSULÓ TANÁRI MESTERSZAKRA VONATKOZÓ SAJÁTOS RENDELKEZÉSEK 1. Az osztott képzésben megvalósuló tanári mesterszakon tanulmányokat folytató

Részletesebben

DOKUMENTUM. EDUCATlO 1995/3 DOKUMENTUM pp. 555-560.

DOKUMENTUM. EDUCATlO 1995/3 DOKUMENTUM pp. 555-560. DOKUMENTUM Az EDUCATIO dokumentumrovata ezúttal az ún. "Nemzetközi Érettségi" magyar leírását közli. A szöveget a nemzetközi érettségire való felkészítést és megméretést kísérleti jelleggel ellátó Karinthy

Részletesebben

2015 június: A hallás elemzése - Winkler István

2015 június: A hallás elemzése - Winkler István 2015 június: A hallás elemzése - Winkler István Winkler István tudományos tanácsadó, az MTA Természettudományi Kutatóintézetében a Kognitív Idegtudományi II. csoport vezetője. Villamosmérnöki és pszichológusi

Részletesebben

Matematika. 5. 8. évfolyam

Matematika. 5. 8. évfolyam Matematika 5. 8. évfolyam 5. 6. évfolyam Éves órakeret: 148 Heti óraszám: 4 Témakörök Óraszámok Gondolkodási és megismerési módszerek folyamatos Számtan, algebra 65 Összefüggések, függvények, sorozatok

Részletesebben

Komplex számok. 2014. szeptember 4. 1. Feladat: Legyen z 1 = 2 3i és z 2 = 4i 1. Határozza meg az alábbi kifejezés értékét!

Komplex számok. 2014. szeptember 4. 1. Feladat: Legyen z 1 = 2 3i és z 2 = 4i 1. Határozza meg az alábbi kifejezés értékét! Komplex számok 014. szeptember 4. 1. Feladat: Legyen z 1 i és z 4i 1. (z 1 z ) (z 1 z ) (( i) (4i 1)) (6 9i 8i + ) 8 17i 8 + 17i. Feladat: Legyen z 1 i és z 4i 1. Határozza meg az alábbi kifejezés értékét!

Részletesebben

Grilla Stúdiója - gyógytorna, szülésfelkészítés

Grilla Stúdiója - gyógytorna, szülésfelkészítés Az ikrek nevelése R.: - Önt talán azért is érdekli az ikerkutatás, az ikergyerekek világa és élete, mert Ön is egy iker, ikerpár egyik tagja. Önök egypetéjû ikrek, vagy kétpetéjû ikrek? Métneki Júlia,

Részletesebben

EGÉSZSÉGÜGYI DÖNTÉS ELŐKÉSZÍTŐ

EGÉSZSÉGÜGYI DÖNTÉS ELŐKÉSZÍTŐ EGÉSZSÉGÜGYI DÖNTÉS ELŐKÉSZÍTŐ MODELLEZÉS Brodszky Valentin, Jelics-Popa Nóra, Péntek Márta BCE Közszolgálati Tanszék A tananyag a TÁMOP-4.1.2/A/2-10/1-2010-0003 "Képzés- és tartalomfejlesztés a Budapesti

Részletesebben

N éhány hete felmérést készítettem Dél-Szlovákia nagy munkanélküliséggel

N éhány hete felmérést készítettem Dél-Szlovákia nagy munkanélküliséggel Lampl Zsuzsanna MUNKAERÕPIACI ÉS EGÉSZSÉGÜGYI HELYZET A SZLOVÁKIAI MAGYAR IDENTITÁS ALAKULÁSÁNAK ÚJABB TÉNYEZÕI N éhány hete felmérést készítettem Dél-Szlovákia nagy munkanélküliséggel sújtott területein

Részletesebben

BVHSZC Gundel Károly Szakképző Iskolája FELVÉTELI TÁJÉKOZTATÓ 2015

BVHSZC Gundel Károly Szakképző Iskolája FELVÉTELI TÁJÉKOZTATÓ 2015 BVHSZC Gundel Károly Szakképző Iskolája FELVÉTELI TÁJÉKOZTATÓ 2015 OM azonosító: 203078 Feladatellátási hely kód: 006 Felvilágosítás és ügyintézés: 280-6810, 280-6820/127, 128 titkarsag@gundeliskola.hu

Részletesebben

MATEMATIKA. 5 8. évfolyam

MATEMATIKA. 5 8. évfolyam MATEMATIKA 5 8. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata: megismertetni a tanulókat az őket körülvevő konkrét környezet mennyiségi és térbeli viszonyaival, megalapozni

Részletesebben

Online Angol Tanszék tájékoztató fix tanmenetű kurzusokhoz

Online Angol Tanszék tájékoztató fix tanmenetű kurzusokhoz Online Angol Tanszék tájékoztató fix tanmenetű kurzusokhoz www.angoltanszek.hu Welcome online Szeretettel köszöntünk az Online Angol Tanszék oktatási rendszerében! Az alábbiakban egy általános tájékoztatót

Részletesebben

A Taní tó i/tana ri ké rdó ívré békü ldó tt va laszók ó sszésí té sé

A Taní tó i/tana ri ké rdó ívré békü ldó tt va laszók ó sszésí té sé A Taní tó i/tana ri ké rdó ívré békü ldó tt va laszók ó sszésí té sé A Matematika Közoktatási Munkabizottságot az MTA III. osztálya azzal a céllal hozta létre, hogy felmérje a magyarországi matematikatanítás

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 6. MA3-6 modul. A statisztika alapfogalmai

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 6. MA3-6 modul. A statisztika alapfogalmai Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 6. MA3-6 modul A statisztika alapfogalmai SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999.

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 10 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

KÉPZÉSI PROGRAM TURIZMUS-VENDÉGLÁTÁS ALAPKÉPZÉSI SZAK

KÉPZÉSI PROGRAM TURIZMUS-VENDÉGLÁTÁS ALAPKÉPZÉSI SZAK KÉPZÉSI PROGRAM TURIZMUS-VENDÉGLÁTÁS ALAPKÉPZÉSI SZAK SZOLNOKI FŐISKOLA SZOLNOK SZOLNOKI FŐISKOLA SZOLNOK TANTERV érvényes a 2013/2014. tanévtől felmenő rendszerben TURIZMUS-VENDÉGLÁTÁS ALAPKÉPZÉSI SZAK

Részletesebben

Csődvalószínűségek becslése a biztosításban

Csődvalószínűségek becslése a biztosításban Csődvalószínűségek becslése a biztosításban Diplomamunka Írta: Deák Barbara Matematikus szak Témavezető: Arató Miklós, egyetemi docens Valószínűségelméleti és Statisztika Tanszék Eötvös Loránd Tudományegyetem,

Részletesebben

Mesterséges intelligencia, 7. előadás 2008. október 13. Készítette: Masa Tibor (KPM V.)

Mesterséges intelligencia, 7. előadás 2008. október 13. Készítette: Masa Tibor (KPM V.) Mesterséges intelligencia, 7. előadás 2008. október 13. Készítette: Masa Tibor (KPM V.) Bizonytalanságkezelés: Az eddig vizsgáltakhoz képest teljesen más világ. A korábbi problémák nagy része logikai,

Részletesebben

BANYÁR JÓZSEF: DRÁGÁK-E A MAGYAR BIZTOSÍTÁSOK?

BANYÁR JÓZSEF: DRÁGÁK-E A MAGYAR BIZTOSÍTÁSOK? BANYÁR JÓZSEF: DRÁGÁK-E A MAGYAR BIZTOSÍTÁSOK? 2013. szeptember 16. Bevezetés 2 A pénzügyi termékek ára 2 Az ár más pénzügyi termékeknél 3 A hitelek ára 3 A betéti termékek ára 4 A befektetési jegyek ára

Részletesebben

Egyetemi Számítóközpont

Egyetemi Számítóközpont NETWORKSHOP 2012. április 11-13. 2. KÖZOKTATÁS, FELSŐOKTATÁS, E-LEARNING 2.1. Intézménytámogató rendszerek Admin(isztr)átor a dzsungelben Felsőoktatás: OSAP adatszolgáltatás, hallgatói támogatási idő Kövesi-Nagy

Részletesebben

Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag!

Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag! Részletes követelmények Matematika házivizsga Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag! A vizsga időpontja: 2015. április

Részletesebben

MATEMATIKA. Tildy Zoltán Általános Iskola és Alapfokú Művészeti Iskola Helyi tanterv 1-4. évfolyam 2013.

MATEMATIKA. Tildy Zoltán Általános Iskola és Alapfokú Művészeti Iskola Helyi tanterv 1-4. évfolyam 2013. MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről, és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

Megjelent: Magyar Földrajzi Konferencia tudományos közleményei (CD), Szeged, 2001

Megjelent: Magyar Földrajzi Konferencia tudományos közleményei (CD), Szeged, 2001 Megjelent: Magyar Földrajzi Konferencia tudományos közleményei (CD), Szeged, 2001 A területi lehatárolások statisztikai következményei A területi lehatárolások statisztikai következményeinek megközelítése

Részletesebben

Bánhalmi Árpád * Bakos Viktor ** MIÉRT BUKNAK MEG STATISZTIKÁBÓL A JÓ MATEKOSOK?

Bánhalmi Árpád * Bakos Viktor ** MIÉRT BUKNAK MEG STATISZTIKÁBÓL A JÓ MATEKOSOK? Bánhalmi Árpád * Bakos Viktor ** MIÉRT BUKNAK MEG STATISZTIKÁBÓL A JÓ MATEKOSOK? A BGF KKFK Nemzetközi gazdálkodás és Kereskedelem és marketing szakjain a hallgatók tanrendjében statisztikai és matematikai

Részletesebben

KREDITRENDSZERŰ TANULMÁNYI ÉS VIZSGASZABÁLYZAT (KTVSZ) (A Hallgatói követelményrendszer C része) 2015. február 18.

KREDITRENDSZERŰ TANULMÁNYI ÉS VIZSGASZABÁLYZAT (KTVSZ) (A Hallgatói követelményrendszer C része) 2015. február 18. KREDITRENDSZERŰ TANULMÁNYI ÉS VIZSGASZABÁLYZAT (KTVSZ) (A Hallgatói követelményrendszer C része) 2015. február 18. T A R T A L O M J E G Y Z É K T A R T A L O M J E G Y Z É K... 2 E L Ő S Z Ó... 4 I. ÁLTALÁNOS

Részletesebben

Felvételi 2016 Felvételi tájékoztató 2016

Felvételi 2016 Felvételi tájékoztató 2016 Felvételi 2016 A döntést segítő kiadványok Felsőoktatási felvételi tájékoztató 2016. szeptemberben induló képzésekre (www.felvi.hu) Hivatalos kiegészítő 2016. január 31-ig Felvételi tájoló 2016. (Felvi-rangsorokkal)

Részletesebben

A Szekszárdi I. Béla Gimnázium Helyi Tanterve

A Szekszárdi I. Béla Gimnázium Helyi Tanterve A Szekszárdi I. Béla Gimnázium Helyi Tanterve Négy évfolyamos gimnázium Informatika Készítette: a gimnázium reál munkaközössége 2015. Tartalomjegyzék Alapvetés...3 Egyéb kötelező direktívák:...6 Informatika

Részletesebben

MATEMATIKA 5 8. ALAPELVEK, CÉLOK

MATEMATIKA 5 8. ALAPELVEK, CÉLOK MATEMATIKA 5 8. ALAPELVEK, CÉLOK Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.

Részletesebben

J e g y zőkönyv ISZB-NP-1/2010. (ISZB-NP-1/2010-2014.)

J e g y zőkönyv ISZB-NP-1/2010. (ISZB-NP-1/2010-2014.) ISZB-NP-1/2010. (ISZB-NP-1/2010-2014.) J e g y zőkönyv az Országgyűlés Ifjúsági, szociális, családügyi és lakhatási bizottsága népesedéspolitikai albizottságának 2010. november 8-án, hétfőn, 8 óra 37 perckor

Részletesebben

A hónap témája. Nemzetközi számvitel. Jogesetek. Meritum. Szakkönyvajánló. Havi bürokrata. Példatár

A hónap témája. Nemzetközi számvitel. Jogesetek. Meritum. Szakkönyvajánló. Havi bürokrata. Példatár SZÁMVITELI ÉS PÉNZÜGYI SZAKLAP AZ LAPOK KIADÓJÁTÓL BEMUTATÓ SZÁM 2008. OKTÓBER SZÁMVITELI tanácsadó A hónap témája Épületek bővítése, felújítása, karbantartása Könyvvizsgálatról könyvelőknek Könyvvizsgáló

Részletesebben

A 2011-es év kompetencia-méréseinek elemzése

A 2011-es év kompetencia-méréseinek elemzése A 2011-es év kompetencia-méréseinek elemzése SIOK Dr. Faust Miklós Általános Iskola Nagyberény Készítette: Kristáné Soós Melinda Nagyberény, 2012. április 2. 6. osztály Matematika 3. oldal Az első grafikonon

Részletesebben

TANULÁSI STÍLUS KÉRDŐÍV

TANULÁSI STÍLUS KÉRDŐÍV 1. A tanulási mintázat kérdőív... 215 2. A hallgatói élettörténetek gyűjtésének kutatási eszköze... 223 3. A tanulási orientációk állításainak újrarendezési kísérlete faktoranalízis segítségével (N=1004)...

Részletesebben

Digitális matematika taneszközök a. hatékonyabb tanulásszervezés szolgálatában. Szerző: Huszka Jenő

Digitális matematika taneszközök a. hatékonyabb tanulásszervezés szolgálatában. Szerző: Huszka Jenő 1 Digitális matematika taneszközök a hatékonyabb tanulásszervezés szolgálatában Szerző: Huszka Jenő 2009 1 2 Digitális pedagógia, digitális tananyagok Digitális pedagógia: minden olyan hagyományos (instruktív)

Részletesebben

Társadalmi Megújulás Operatív Program. Akcióterv

Társadalmi Megújulás Operatív Program. Akcióterv Társadalmi Megújulás Operatív Program 4.prioritás: A felsıoktatás tartalmi és szervezeti fejlesztése a tudásalapú gazdaság kiépítése érdekében Akcióterv 2009-2010 2009. január 13. I. Prioritás bemutatása

Részletesebben

Műszaki szakoktató alapképzési szak

Műszaki szakoktató alapképzési szak Dunaújvárosi Főiskola Műszaki szakoktató alapképzési szak Tanterv. július 29. 2 Tartalomjegyzék Szakleírás... 5 Óraterv:... 8 tantárgyainak rövid ismertetése... 12 Matematika I.... 13 Közgazdaságtan I....

Részletesebben

TÁMOP 3.1.2 12/1 Új tartalomfejlesztések a közoktatásban pályázathoz Budapest, 2012. december 19.

TÁMOP 3.1.2 12/1 Új tartalomfejlesztések a közoktatásban pályázathoz Budapest, 2012. december 19. Pedagógiai terv A Nemzeti alaptanterven alapuló, egyes műveltségi területek önálló tanulását támogató digitális tananyag és képzésmenedzsment rendszer létrehozása 9-12. évfolyamon tanulók számára TÁMOP

Részletesebben

SZAKIRÁNYÚ TOVÁBBKÉPZÉS (SZAKMÉRNÖKKÉPZÉS) a JÁRMŰGÉPÉSZ SZAKMÉRNÖKI SZAK

SZAKIRÁNYÚ TOVÁBBKÉPZÉS (SZAKMÉRNÖKKÉPZÉS) a JÁRMŰGÉPÉSZ SZAKMÉRNÖKI SZAK B U D A P E S T I M Ű S Z A K I É S G A Z D A S Á G T U D O M ÁN Y I E G Y E T E M K Ö Z L E K E D É S M É R N Ö K I ÉS J Á R M Ű M É R N Ö K I K A R VASÚTI JÁRMŰVEK, REPÜLŐGÉPEK ÉS HAJÓK TANSZÉK SZAKIRÁNYÚ

Részletesebben

Makroökonómia. nemzetközi gazdaságtan. Tematika 2014. Alkalmazott közgazdaságtan alapszak

Makroökonómia. nemzetközi gazdaságtan. Tematika 2014. Alkalmazott közgazdaságtan alapszak Makroökonómia nemzetközi gazdaságtan Tematika 2014 Alkalmazott közgazdaságtan alapszak Kérjük, hogy a kurzus megkezdése előtt a tematikát figyelmesen olvassa el, az abban foglaltakhoz a Makroökonómia Tanszék

Részletesebben

S zlovákiában azok a települések számítanak szórványnak, amelyekben a magyar

S zlovákiában azok a települések számítanak szórványnak, amelyekben a magyar Lampl Zsuzsanna NEMZETI IDENTITÁS TÖMBBEN ÉS SZÓRVÁNYBAN S zlovákiában azok a települések számítanak szórványnak, amelyekben a magyar nemzetiségû lakosság részaránya nem éri el a tíz százalékot, viszont

Részletesebben

Érveléstechnika-logika 7. Filozófia és Tudománytörténet Tanszék 1111 Budapest, Sztoczek J. u. 2-4. fsz. 2.

Érveléstechnika-logika 7. Filozófia és Tudománytörténet Tanszék 1111 Budapest, Sztoczek J. u. 2-4. fsz. 2. Érveléstechnika-logika 7. Filozófia és Tudománytörténet Tanszék 1111 Budapest, Sztoczek J. u. 2-4. fsz. 2. Induktív érvek Az induktív érvnél a premisszákból sosem következik szükségszerűen a konklúzió.

Részletesebben

PTE KTK MSC-TANTERV GAZDASÁGTUDOMÁNYI KÉPZÉSI TERÜLET KÖZGAZDASÁGI ELEMZŐ TELJES MUNKAIDŐS (NAPPALI) KÉPZÉS MSC 2014 MESTERSZAK. Pécs, 2016.

PTE KTK MSC-TANTERV GAZDASÁGTUDOMÁNYI KÉPZÉSI TERÜLET KÖZGAZDASÁGI ELEMZŐ TELJES MUNKAIDŐS (NAPPALI) KÉPZÉS MSC 2014 MESTERSZAK. Pécs, 2016. PTE KTK MSC-TANTERV GAZDASÁGTUDOMÁNYI KÉPZÉSI TERÜLET KÖZGAZDASÁGI ELEMZŐ MESTERSZAK TELJES MUNKAIDŐS (NAPPALI) KÉPZÉS MSC 2014 Pécs, 2016. Utolsó módosítás: 2016-04-20 Gáspár Tamás 1. Alapvető jellemzők

Részletesebben

IMÁDSÁG MINDENEK ELŐTT

IMÁDSÁG MINDENEK ELŐTT Újpest-Belsőváros 2004. 03. 14. Loránt Gábor IMÁDSÁG MINDENEK ELŐTT Alapige (textus): Neh 1 és Lk 11,1 Lectio: Neh 1 Lk 11,1: Történt egyszer, hogy valahol imádkozott, és mikor befejezte, így szólt hozzá

Részletesebben

Suri Éva Kézikönyv www.5het.hu. Kézikönyv. egy ütős értékesítési csapat mindennapjaihoz. Minden jog fenntartva 2012.

Suri Éva Kézikönyv www.5het.hu. Kézikönyv. egy ütős értékesítési csapat mindennapjaihoz. Minden jog fenntartva 2012. Kézikönyv egy ütős értékesítési csapat mindennapjaihoz 1 Mi az, amin a legtöbbet bosszankodunk? Az értékesítőink teljesítményének hektikusságán és az állandóan jelenlévő fluktuáción. Nincs elég létszámunk

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 9 IX MÁTRIxOk 1 MÁTRIx FOGALmA, TULAJDONSÁGAI A mátrix egy téglalap alakú táblázat, melyben az adatok, a mátrix elemei, sorokban és oszlopokban vannak elhelyezve Az (1) mátrixnak

Részletesebben

A Pécsi Tudományegyetem. Szervezeti és Működési Szabályzatának 5. számú melléklete. A Pécsi Tudományegyetem Tanulmányi és Vizsgaszabályzata

A Pécsi Tudományegyetem. Szervezeti és Működési Szabályzatának 5. számú melléklete. A Pécsi Tudományegyetem Tanulmányi és Vizsgaszabályzata A Pécsi Tudományegyetem Szervezeti és Működési Szabályzatának 5. számú melléklete A Pécsi Tudományegyetem Tanulmányi és Vizsgaszabályzata Pécs 2006. 2016. április 21. napjától hatályos változat A Pécsi

Részletesebben

Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra

Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra A Kiadó javaslata alapján összeállította: Látta:...... Harmath Lajos munkaközösség vezető tanár Jóváhagyta:... igazgató

Részletesebben

Vargha András PSZICHOLÓGIAI STATISZTIKA DIÓHÉJBAN 1. X.1. táblázat: Egy iskolai bizonyítvány. Magyar irodalom. Biológia Földrajz

Vargha András PSZICHOLÓGIAI STATISZTIKA DIÓHÉJBAN 1. X.1. táblázat: Egy iskolai bizonyítvány. Magyar irodalom. Biológia Földrajz Megjelent: Vargha A. (7). Pszichológiai statisztika dióhéjban. In: Czigler I. és Oláh A. (szerk.), Találkozás a pszichológiával. Osiris Kiadó, Budapest, 7-46. Mi az, hogy statisztika? Vargha András PSZICHOLÓGIAI

Részletesebben

Adatelemzés kommunikációs dosszié ADATELEMZÉS. ANYAGMÉRNŐK NAPPALI MSc KÉPZÉS TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ

Adatelemzés kommunikációs dosszié ADATELEMZÉS. ANYAGMÉRNŐK NAPPALI MSc KÉPZÉS TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ ADATELEMZÉS ANYAGMÉRNŐK NAPPALI MSc KÉPZÉS TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI INTÉZET Miskolc, 2014. Tartalom jegyzék 1. Tantárgyleírás, tárgyjegyző, óraszám,

Részletesebben

STATISZTIKA I. Tantárgykódok. Oktatók. Időbeosztás. Tematika. http://www.agr.unideb.hu/~huzsvai. 1. Előadás Bevezetés, a statisztika szerepe

STATISZTIKA I. Tantárgykódok. Oktatók. Időbeosztás. Tematika. http://www.agr.unideb.hu/~huzsvai. 1. Előadás Bevezetés, a statisztika szerepe Tantárgykódok STATISZTIKA I. GT_APSN018 GT_AKMN021 GT_ATVN020 1. Előadás Bevezetés, a statisztika szerepe Oktatók Előadó: Dr. habil. Huzsvai László tanszékvezető Gyakorlatvezetők: Dr. Balogh Péter Dr.

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A-9.C-9.D OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A-9.C-9.D OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Matematika 9. nyelvi előkészítő évfolyam. 1 óra/hét (37 óra) Kiselőadások tartása, interjúk készítése (matematikatörténeti

Matematika 9. nyelvi előkészítő évfolyam. 1 óra/hét (37 óra) Kiselőadások tartása, interjúk készítése (matematikatörténeti Matematika 9. nyelvi előkészítő évfolyam Témakörök Gondolkodási és megismerési módszerek Számtan, algebra Összefüggések, függvények, sorozatok Geometria, mérés Statisztika, valószínűség Év végi összefoglaló

Részletesebben

Református Pedagógiai Intézet OM 102246

Református Pedagógiai Intézet OM 102246 Református Pedagógiai Intézet OM 102246 Budapest-Debrecen-Miskolc-Nagykőrös Tárgy: Egyházi ének jelentés Iktatószám:31.21-0075 /2016. Ügyintéző: Dr. Jakab-Szászi Andrea Összefoglaló a hit- és erkölcstan

Részletesebben

MATEMATIKA 1-12. ÉVFOLYAM

MATEMATIKA 1-12. ÉVFOLYAM MATEMATIKA 1-12. ÉVFOLYAM SZERZŐK: Veppert Károlyné, Ádám Imréné, Heibl Sándorné, Rimainé Sz. Julianna, Kelemen Ildikó, Antalfiné Kutyifa Zsuzsanna, Grószné Havasi Rózsa 1 1-2. ÉVFOLYAM Gondolkodási, megismerési

Részletesebben

Tantárgyi útmutató. Gazdasági matematika II.

Tantárgyi útmutató. Gazdasági matematika II. Módszertani Intézeti Tanszék Tantárgyi útmutató Gazdasági matematika II. Nappali Tagozat 2015/16 tanév II. félév 1/5 Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa: Gazdasági matematika

Részletesebben

Modern piacelmélet. ELTE TáTK Közgazdaságtudományi Tanszék. Selei Adrienn

Modern piacelmélet. ELTE TáTK Közgazdaságtudományi Tanszék. Selei Adrienn Modern piacelmélet ELTE TáTK Közgazdaságtudományi Tanszék Selei Adrienn A tananyag a Gazdasági Versenyhivatal Versenykultúra Központja és a Tudás-Ökonómia Alapítvány támogatásával készült az ELTE TáTK

Részletesebben

Országos kompetenciamérés. Országos jelentés

Országos kompetenciamérés. Országos jelentés Országos kompetenciamérés 2009 Országos jelentés Országos jelentés TARTALOMJEGYZÉK JOGSZABÁLYI HÁTTÉR... 7 A 2009. ÉVI ORSZÁGOS KOMPETENCIAMÉRÉS SZÁMOKBAN... 8 A FELMÉRÉSRŐL... 9 EREDMÉNYEK... 11 AJÁNLÁS...

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok II. útmutató

TANTÁRGYI PROGRAM Matematikai alapok II. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok II. útmutató 2014/2015. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:

Részletesebben