Valószínűségszámítás, statisztika és pénzügyi matematika
|
|
- Gabi Orbánné
- 9 évvel ezelőtt
- Látták:
Átírás
1 Matematika tagozatok. pénzügyi matematika Kedd 16:00 Marx-terem 1. Baharev Ali (BME VMK) 2. Faluközy Tamás Vágvölgyi Bálint Vitéz Ildikó Ibolya (ELTE TTK) 3. Kevei Péter (SZTE TTK) 4. Lukity Anikó (UjE TTK) 5. Lukity Anikó (UjE TTK) 6. Sipos Ádám Szabó Katalin (ELTE TTK) 7. Vető Bálint (BME TTK) - 1 -
2 Számítások nemcentrális F-eloszlással BAHAREV ALI, vegyészmérnök hallgató (2004 ősz) Budapesti Műszaki és Gazdaságtudományi Egyetem, Budapest Témavezető: KEMÉNY SÁNDOR, egyetemi tanár, BME Vegyipari Műveletek Tanszék A kutatás és fejlesztés egyik legmunkaigényesebb és legköltségesebb lépése a kísérletek elvégzése. Ezért nagy a jelentősége a kísérletek matematikai statisztika segítségével történő megtervezésének. A kísérlettervező kérdezheti azt, hogy mekkora mintát kell vennie a hatások egy adott nagyságú különbségének valamilyen bizonyossággal történő kimutatásához. Kíváncsi lehet arra is, hogy mekkora eltérés mutatható ki egy adott kísérleti tervvel. Az irodalomban táblázatokat találunk, amelyek segítségével ezek a kérdések megválaszolhatóak. Az egyik ilyen táblázat adatai ellentmondtak a közelítésekkel végzett számításoknak. A TDK feladatom célja ennek az ellentmondásnak a feloldása volt. A táblázat elkészítése lényegében a nemcentrális F-eloszlást követő valószínűségi változó eloszlásfüggvényének számítását igényli. Ennek az eloszlásfüggvénynek a számítására több mint 20 algoritmus született. A gondos irodalmazás során azonban az is kiderült, hogy az algoritmusok többségének súlyos hibái vannak, valamint kevés táblázat található az irodalomban. Ezek a táblázatok nem szolgálják ki maradéktalanul a gyakorlat igényeit, számításuk menete vagy nem ismert vagy kifogásolható. Rendkívül fontos volt tehát kidolgozni egy algoritmust, és kijavítani a kísérlettervezéshez használt táblázatot, hiszen nincs könnyen hozzáférhető alternatívája az irodalomban. A statisztikai hipotézisvizsgálat során gyakran használt χ 2 -, F- és t-próbák ereje nemcentrális eloszlásokon keresztül számítható. Az általam kidolgozott algoritmus nem korlátozódik pusztán egy táblázat elkészítésére, hanem az előbbi próbák ereje közvetlenül számítható vele vagy a dolgozat alapján könnyen kidolgozható rá algoritmus. A nemcentrális F-eloszlás a kísérlettervezésen kívül a távközlésben és a radartechnikában is fontos szerepet játszik. Munkám során tanulmányoztam a publikált algoritmusokat, szempontok szerint osztályozva őket. Ennek eredményeként sikerült feltárnom az algoritmusok alkalmazása során fellépő hibákat, és új algoritmust készítettem a táblázat számítására. Kijavítottam és bővítettem is a táblázatot. Több szoftver is képes a táblázat adatainak számítására, a szoftverek megbízhatóságának tanulmányozása is a célkitűzéseim közé sorolható. Az egyik ilyen szoftver a Statistica program, ennek a Power Analysis moduljában található algoritmusokat vizsgáltam, hibát nem találtam. A gyakorlat szempontjait figyelembe véve összehasonlítottam az ismertebb közelítéseket is. Megállapítottam, hogy a közelítések a gyakorlat számára kielégítő eredményeket adnak, a táblázat akár közelítéssel is számítható. 2
3 Unit-linked életbiztosítások árazása kvantilis elvvel FALUKÖZY TAMÁS, VÁGVÖLGYI BÁLINT és VITÉZ ILDIKÓ, alkalmazott matematikus szakos hallgatók (2004 ősz) Eötvös Loránd Tudományegyetem, Budapest Témavezető: ARATÓ MIKLÓS, egyetemi docens, ELTE Valószínűségelméleti és Statisztikai Tanszék Az életbiztosítási piacon csak pár éve jelentek meg olyan termékek, melyeknél a kifizetések nemcsak a biztosítottak életbenlététől, hanem valamilyen részvenyárfolyamtól is függnek - ezek az ún. unit-linked életbiztosítások. A klasszikus, fix összegű termékekre széles körben használt várható érték elv gyengéje, hogy csak nagy, homogén veszélyközösség esetén alkalmazható hatékonyan. Ez a unit-linked biztosítások esetében általában nincs meg, ezért másféle díjkalkulációs elvekre van szükség. Dolgozatunkban mi kvantilis elv alapján számolunk, melyre a nemzetközi szakirodalomban nem találtunk kidolgozott példákat. Az elv lényege, hogy olyan díjat szed a biztosító, amely alapján a biztosítás lejártakor szükséges összeg az esetek adott hányadában (például 99\%-os valószínűséggel) rendelkezésre áll. Az ilyen esetek kiválogatása önkényes, a lényeg, hogy összvalószínűségük elérje a kívánt szintet. Mivel a biztosítónak nyilvánvaló érdeke, hogy minél kevesebb pénzből finanszírozni tudja a kérdéses konstrukciót, így további célunk úgy kiválasztani a fedezendő eseteket, hogy a díj minimális legyen. Jelen dolgozatunkban a biztosításmatematikai és pénzügyi bevezetés után egy konkrét példát mutatunk be, melyre felvázolunk néhány árazási módszert: a legegyszerűbbtől (amikor pénzügyi kockázatot nem vállalunk, csupán halálesetit) a bonyolult, opcióárazási technikákat felhasználókig. Ezután elméleti megoldást adunk a minimális díj meghatározására. Befejezésként általánosítjuk a példát és az addig ismertetett módszereket, majd újabb technikákat vázolunk fel az általános esetre. 3
4 Általánosított n-pál paradoxon KEVEI PÉTER, alkalmazott matematikus szak (2004 ősz) Szegedi Tudományegyetem, Szeged Témavezető: CSÖRGŐ SÁNDOR, tanszékvezető egyetemi tanár, SZTE Sztochasztika Tanszék Péter, a bankos, felajánlja, hogy Pál 1, Pál 2,..., Pál n játékosok mindegyikével egy-egy általánosított szentpétervári játékot játszik, amelyekben mindegyik Pál q k-1 p valószínűséggel nyer r k dukátot, k = 1,2,..., ahol 0 < p < 1, q = 1-p és r = 1/q. Pál j nyereményét X j -vel jelölve, a játékosok megegyeznek, hogy X 1 + X X n össznyereményük önmaguk közötti szétosztására egy p n = (p 1,n,p 2,n,...,p n,n ) valószínűségeloszlással meghatározott együttműködési stratégiát használnak, ahol tehát n p 1,n,p 2,n,...,p n,n 0, és p 1 j= 1 jn, =, úgy, hogy Pál 1 p 1,n X 1 + p 2,n X p n,n X n dukátot, Pál 2 p n,n X 1 + p 1,n X p n-1,n X n dukátot,..., Pál n pedig p 2,n X 1 + p 3,n X p 1,n X n dukátot kap. Végtelen várható értékek összehasonlításával meghatározzuk azokat a stratégiákat, amelyek minden Pál számára eredeti saját nyereményéhez képest extra hozamot eredményeznek annak ellenére, hogy Péter összesen ugyanazt az X 1 + X X n dukátot fizeti ki. Ezek a megengedett stratégiák akkor és csak akkor léteznek, ha q egy speciális algebrai szám, és ekkor egy megengedett stratégia hozama a stratégia entrópiájának p/q-szorosa. Megmutatjuk, hogy ez a hozam nemcsak improprius Riemann, hanem Lebesgue értelemben is mindig létezik annak ellenére, hogy a klasszikus p = 1/2 esettől eltérően az eredeti saját nyereményeket a megengedett stratégiákkal kapott összegek sztochasztikusan csak két játékos esetén dominálják mindig. Legalább három játékos esetén ugyanis megmutatjuk, hogy a sztochasztikus összehasonlítás általában nem lehetséges. Mint kiderül, ez meg annak ellenére van így, hogy sztochasztikusan domináns helyzetből egy természetes algoritmussal nyert megengedett stratégiák esetén a sztochasztikus dominancia öröklődik. Több esetben meghatározzuk az optimális megengedett stratégiát és ennek maximális hozamát, az általános helyzetben pedig feltárjuk a kapcsolatos számelméleti természetű nehézségeket. 4
5 A diszkontált jelenérték meghatározása elsőrendű differenciaegyenletek segítségével LUKITY ANIKÓ, szakos abszolvens hallgató (2003 ősz) Újvidéki Egyetem, Újvidék Témavezetők: TAKÁCSY ÁRPÁD, egyetemi tanár, UjE Matematikai és Informatikai Intézet E tudományos dolgozat arra keresi a választ, hogy milyen hatással van a kamatos kamat egy befektetéseket és kifizetéseket tartalmazó folyószámla egyenlegére. Kezdetben a periódusonkénti kamatláb állandó. Ez esetben a konstans együtthatós elsőrendű differenciaegyenletek alkalmazása bizonyul a leghatékonyabbnak. Azonban, ha megengedett a kamatláb periódusonkénti váltakozása, a folyamat változó együtthatós lineáris elsőrendű differenciaegyenletek alkalmazását igényli. A harmadik részben tovább módosítsuk a feltételeket. Vesszük, hogy bármely két időpont közötti időtartam nullához közelít. Ekkor bebizonyosodik, hogy a folyama lineáris differenciálegyenlet segítségével jól modellezhető. A fent említett egyenletek megoldásai elvezetnek a számunkra igen jól ismert diszkontált jelenérték képletéhez minden egyes esetnek megfelelően. 5
6 Opcióárazás LUKITY ANIKÓ, szakos apszolvens hallgató (2004 ősz) Újvidéki Egyetem, Újvidék Témavezetők: TAKÁCSY ÁRPÁD, egyetemi tanár, UjE Matematikai és Informatikai Intézet A pénzügyi eszközök nagyon fontos csoportját alkotják a származtatott ügyletek, derivatívok. Ezek olyan ügyletek, amelyek értékét más értékpapírok árfolyama határozza meg. Az egyik legfontosabb ilyen származtatott ügylet az opciók. A dolgozat tárgya az opcióárazás, azaz arra keresi a választ, hogy mennyit ér egy opció és melyek azok a tényezők amelyek a részvényopciók árára kihatással vannak. Indulásképpen kivizsgálásra kerül az ún. egyperiódusos binomiális fa modellje, amely csak a legszükségesebbeket tartalmazza: egy részvényt és egy kincstárjegyet. Arbitrázsmentességen alapuló értékelés mellett meghatározásra kerül az opció ára. A munka második részében módosulnak a feltételek. A lejárati idő több azonos részre osztódik és minden időszak végén a részvény árfolyama kétféleképpen változhat. Ily módon jön létre a többperiódusos binomiális fa modellje. A fa szerkezete biztosítja azt, hogy bármely derivatív terméknek a fa minden egyes pontjában egyértelmű értéke legyen, hiszen bármely más érték arbitrázshelyzetet teremtene. A kifizetések a megfelelő visszaszámított értékeken keresztül a fa teljes kitöltésével elvezetnek a derivatív jelenbeli értékéhez. Végül levezetésre kerül a nevezetes Black-Scholes opcióárazási formula. 6
7 Költségminimalizálás gyártási folyamatok statisztikai minőségszabályozása esetén SIPOS ÁDÁM és SZABÓ KATALIN, alkalmazott matematikus szak (2004 ősz) Eötvös Loránd Tudományegyetem, Budapest Témavezető: ZEMPLÉNI ANDRÁS, egyetemi docens, ELTE Valószínűségelméleti és Statisztika Tanszék Napjainkban az életszínvonal emelkedésével párhuzamosan egyre növekszik a minőségbiztosítás jelentősége. Az előállított termékek megfelelőségét a gyártási folyamat során akkor garantálhatjuk, ha a folyamatot mindvégig statisztikai ellenőrzés alatt tartjuk. Az ipari gyakorlatban ennek eléréséhez használt eszközök közül az egyik leggyakoribbak a szabályozó kártyák. Használatukkor nagy szerepe van a kártyák paraméter-beállításainak, hiszen ezek nem csak a minőséget határozzák meg, hanem a költségtényezőket is befolyásolják. Az optimális beállítások megtalálásával jelentős költségmegtakarítás érhető el. Dolgozatunkban két ilyen szabályozó kártyával foglalkozunk: az X-kártyával és a Shiryayev-Roberts statisztikán alapuló kártyával. Célunk ezek paramétereinek meghatározása úgy, hogy közben az általunk használt költségfüggvényt minimalizáljuk. A dolgozatban tehát arra a kérdésre keressük a választ, hogy milyen gyakran kell mintát venni, és hogyan kell megválasztani a riasztási küszöböt ahhoz, hogy a felmerülő költségek hosszútávon minimálisak legyenek. A költségfüggvényt úgy igyekszünk megválasztani, hogy tartalmazza a gyártás és ellenőrzés során felmerülő legfontosabb költségelemeket: a mintavétel, a hibásan előállított termékek, a téves riasztás költségét valamint a termeléskiesésből és a gyártósor javításából adódó költséget. Miután megadjuk a minimális költségeket eredményező optimális paramétereket, összehasonlítjuk a két módszert, valamint azt is megvizsgáljuk, hogy az általunk bevezetett költségelemek mennyire érzékenyek a kártyák paramétereire. 7
8 Véletlen permutációk ciklusstruktúrája: egy keveredési modell VETŐ BÁLINT, matematikus szak Budapesti Műszaki és Gazdaságtudományi Egyetem, Budapest Témavezetők: TÓTH BÁLINT, tanszékvezető, VALKÓ BENEDEK, tudományos munkatárs BME Sztochasztika Tanszék Legyen V := {1,,n}, melynek egyik elemét megjelöljük. Definiáljuk a V halmazon egymástól függetlenül a Ti i= 1,2, véletlen transzpozíciókat. A π(t) = T t ο T t-1 ο ο T 1 véletlen permutáció ciklusfelbontásának (ciklushosszainak) időbeli változását vizsgáljuk. A modell egy összeolvadási-töredezési folyamatot (coagulationfragmentation process) valósít meg, melynek határeloszlását (n ) szeretnénk megismerni. Oded Schramm bizonyította, hogy ha a T i transzpozíciókat az összes transzpozíció közül egyenletes eloszlással választjuk ki, és az időt n-szeresére gyorsítjuk, akkor az n-nel összemérhető nagyságú ún. óriásciklusok részarányának határeloszlása 1 paraméterű Poisson-Dirichlet eloszlás. A kérdéskört először témavezetőm, Tóth Bálint vetette föl a probléma kvantumfizikai alkalmazása miatt. A T i transzpozíciókat dolgozatomban az összes olyan transzpozíció közül választom egyenletes eloszlással, amelyek a megjelölt elemet is mozgatják. Ekkor az idő természetes skálázása a n - szeresre való felgyorsítás, ezért a ciklusok méretét n - hez viszonyítom. Az így kapott határfolyamatban a megjelölt elem ciklusának részaránya lineárisan növekszik, és a nemtriviális ciklusok összhosszával arányos sűrűségű inhomogén Poisson-folyamat által meghatározott időnként történik a következők valamelyike: a megjelölt elem ciklusa két részre szakad vagy egy másik ciklussal egyesül. Az eloszlássorozat konvergenciáját a csatolás módszerével bizonyítom, vagyis közös valószínűségi mezőn konstruálom meg a határfolyamatot és a permutációkból kiszámítható részarányok változását, majd belátom, hogy azok 1-hez tartó valószínűséggel közel vannak egymáshoz. A feladat általánosításával, a több megjelölt elem esetével is foglalkozom. 8
TANTÁRGYI PROGRAM Matematikai alapok II. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok II. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:
TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató 2015/2016. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:
Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,
Valószínűségszámítás és statisztika
Valószínűségszámítás és statisztika Programtervező informatikus szak esti képzés Varga László Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem
Vállalkozási finanszírozás kollokvium
Harsányi János Főiskola Gazdaságtudományok tanszék Vállalkozási finanszírozás kollokvium E Név: soport: Tagozat: Elért pont: Érdemjegy: Javította: 43 50 pont jeles 35 42 pont jó 27 34 pont közepes 19 26
14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull
14 A Black-choles-Merton modell Copyright John C. Hull 01 1 Részvényárak viselkedése (feltevés!) Részvényár: μ: elvárt hozam : volatilitás Egy rövid Δt idő alatt a hozam normális eloszlású véletlen változó:
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
Gazdasági matematika II. Tantárgyi útmutató
Módszertani Intézeti Tanszék Gazdálkodási és menedzsment, pénzügy és számvitel szakok távoktatás tagozat Gazdasági matematika II. Tantárgyi útmutató 2016/17 tanév II. félév 1/6 A KURZUS ALAPADATAI Tárgy
Társaságok pénzügyei kollokvium
udapesti Gazdasági Főiskola Pénzügyi és Számviteli Főiskolai Kar udapesti Intézet Továbbképzési Osztály Társaságok pénzügyei kollokvium F Név: soport: Tagozat: Elért pont: Érdemjegy: Javította: 55 60 pont
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,
Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel
Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!
MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Szokol Patricia szeptember 19.
a Haladó módszertani ismeretek című tárgyhoz 2017. szeptember 19. Legyen f : N R R adott függvény, ekkor a x n = f (n, x n 1 ), n = 1, 2,... egyenletet elsőrendű differenciaegyenletnek nevezzük. Ha még
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor
Matematikai statisztika c. tárgy oktatásának célja és tematikája
Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:
Véletlen sorozatok ellenőrzésének módszerei. dolgozat
Eötvös Loránd Tudományegyetem Informatikai Kar Komputeralgebra Tanszék Véletlen sorozatok ellenőrzésének módszerei dolgozat Témavezető: Dr. Iványi Antal Miklós egyetemi tanár Készítette: Potempski Dániel
Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor
Mit mond a XXI. század emberének a statisztika?
Mit mond a XXI. század emberének a statisztika? Rudas Tamás Magyar Tudományos Akadémia Társadalomtudományi Kutatóközpont Eötvös Loránd Tudományegyetem Statisztika Tanszék Nehéz a jövőbe látni Változik
Vállalati pénzügyek alapjai
BME Pénzügyek Tanszék Vállalati pénzügyek alapjai Befektetési döntések - Kötvények értékelése Előadó: Deliné Pálinkó Éva Pénzügyi piacok, pénzügyi eszközök 1. Vállalat a közvetlen pénzügyi piacokon szerez
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás
Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre
Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
Feleségem Hizsnyik Mária, gyermekeim Gyula (1979) és Júlia (1981), unokáim Lola (2007), Kende (2010) és Márkó (2010)
Pap Gyula Születési hely és idő: Debrecen, 1954 Feleségem Hizsnyik Mária, gyermekeim Gyula (1979) és Júlia (1981), unokáim Lola (2007), Kende (2010) és Márkó (2010) TANULMÁNYOK, TUDOMÁNYOS FOKOZATOK Gimnáziumi
Tartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE
Tartalomjegyzék 5 Tartalomjegyzék Előszó I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE 1. fejezet: Kontrollált kísérletek 21 1. A Salk-oltás kipróbálása 21 2. A porta-cava sönt 25 3. Történeti kontrollok 27 4. Összefoglalás
Pénzügyi matematika. Vizsgadolgozat I. RÉSZ. 1. Deniálja pontosan, mit értünk amerikai vételi opció alatt!
NÉV: NEPTUN KÓD: Pénzügyi matematika Vizsgadolgozat I. RÉSZ Az ebben a részben feltett 4 kérdés közül legalább 3-ra kell hibátlan választ adni ahhoz, hogy a vizsga sikeres lehessen. Kett vagy kevesebb
Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika
Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI
/ Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI /. Legyen adott az alábbi LP-feladat: x + 4x + x 9 x + x x + x + x 6 x, x, x x + x +
Gazdasági matematika II. vizsgadolgozat megoldása A csoport
Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége
Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László
Gyakorló feladatok Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László I/. A vizsgaidőszak második napján a hallgatók %-ának az E épületben, %-ának a D épületben,
Adatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
Vállalkozási finanszírozás kollokvium
Harsányi János Főiskola Gazdálkodási és Menedzsment Intézet Vállalkozási finanszírozás kollokvium G Név: soport: Tagozat: Elért pont: Érdemjegy: Javította: 43 50 pont jeles 35 42 pont jó 27 34 pont közepes
Közlemény. Biostatisztika és informatika alapjai. Alapsokaság és minta
Közlemény Biostatisztika és informatika alajai. előadás: Az orvostudományban előforduló nevezetes eloszlások 6. szetember 9. Veres Dániel Statisztika és Informatika tankönyv (Herényi Levente) már kaható
Valószínűségszámítás összefoglaló
Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
MELLÉKLETEK. a következőhöz: A BIZOTTSÁG (EU).../... FELHATALMAZÁSON ALAPULÓ RENDELETE
EURÓPAI BIZOTTSÁG Brüsszel, 2016.10.4. C(2016) 6329 final ANNEXES 1 to 4 MELLÉKLETEK a következőhöz: A BIZOTTSÁG (EU).../... FELHATALMAZÁSON ALAPULÓ RENDELETE a tőzsdén kívüli származtatott ügyletekről,
Szent István Egyetem Gazdasági és Társadalomtudományi Kar Pénzügyi és Számviteli Intézet. Beadandó feladat. Pénzügytan I. tárgyból
Szent István Egyetem Gazdasági és Társadalomtudományi Kar Pénzügyi és Számviteli Intézet Beadandó feladat Pénzügytan I. tárgyból Közgazdász gazdálkodási alap levelező, GAM alap és kieg. levelező képzés
Gazdasági Információs Rendszerek
Gazdasági Információs Rendszerek 1. előadás Bánhelyi Balázs Alkalmazott Informatika Tanszék, Szegedi Tudományegyetem 2009 A pénz időértéke Mit jelent a pénz időértéke? Egy forint (dollár, euró, stb.) ma
Vállalkozási finanszírozás kollokvium
Harsányi János Főiskola Gazdaságtudományok tanszék Vállalkozási finanszírozás kollokvium Név: soport: Tagozat: Elért pont: Érdemjegy: Javította: 47 55 pont jeles 38 46 pont jó 29 37 pont közepes 20 28
Gépi tanulás. Hány tanítómintára van szükség? VKH. Pataki Béla (Bolgár Bence)
Gépi tanulás Hány tanítómintára van szükség? VKH Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Induktív tanulás A tanítás folyamata: Kiinduló
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
ANULMÁNYI SZ NDÍJOSZ ÁSI SZA ÁLYZA
M - K ANULMÁNYI SZ NDÍJOSZ ÁSI SZA ÁLYZA Hatályos: 2012. augusztus 1-től. 1 Á 1. (1) Jelen szabályzat a felsőoktatásról szóló 2005. évi CXXXIX. törvény (a továbbiakban: felsőoktatási törvény) továbbá a
Társadalmi és gazdasági hálózatok modellezése
Társadalmi és gazdasági hálózatok modellezése 9. el adás Bevezetés az ökonozikába El adó: London András 2015. november 2. Motiváció Komplex rendszerek modellezése statisztikus mechanika és elméleti zika
Vállalkozási finanszírozás kollokvium
Harsányi János Főiskola Gazdaságtudományok tanszék Vállalkozási finanszírozás kollokvium Név: soport: Tagozat: Elért pont: Érdemjegy: Javította: 47 55 pont jeles 38 46 pont jó 29 37 pont közepes 20 28
MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI
MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk
Matematikai alapok és valószínőségszámítás. Normál eloszlás
Matematikai alapok és valószínőségszámítás Normál eloszlás A normál eloszlás Folytonos változók esetén az eloszlás meghatározása nehezebb, mint diszkrét változók esetén. A változó értékei nem sorolhatóak
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
KUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel
KUTATÁSMÓDSZERTAN 4. ELŐADÁS A minta és mintavétel 1 1. A MINTA ÉS A POPULÁCIÓ VISZONYA Populáció: tágabb halmaz, alapsokaság a vizsgálandó csoport egésze Minta: részhalmaz, az alapsokaság azon része,
Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása
Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból
Kockázatalapú változó paraméterű szabályozó kártya kidolgozása a mérési bizonytalanság figyelembevételével
Kockázatalapú változó paraméterű szabályozó kártya kidolgozása a mérési bizonytalanság figyelembevételével Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése
Vállalkozási finanszírozás kollokvium
Harsányi János Főiskola Gazdaságtudományok tanszék Vállalkozási finanszírozás kollokvium F Név: soport: Tagozat: Elért pont: Érdemjegy: Javította: 43 50 pont jeles 35 42 pont jó 27 34 pont közepes 19 26
Kockázatok és mérési bizonytalanság kezelése a termelésmenedzsment területén
Kockázatok és mérési bizonytalanság kezelése a termelésmenedzsment területén Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és ködtetése konvergencia program Projekt
Vállalati pénzügyek alapjai
BME Pénzügyek Tanszék Vállalati pénzügyek alapjai Befektetési döntések - Kötvények értékelése Előadó: Deliné Pálinkó Éva Pénzügyi piacok, pénzügyi eszközök 1. Vállalat a közvetlen pénzügyi piacokon szerez
Véletlenszám generátorok és tesztelésük. Tossenberger Tamás
Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél
Statisztika oktatása és alkalmazása a mérnöki területen
Statisztika oktatása és alkalmazása a mérnöki területen 1,2 1:, Neumann János Informatikai Kar, Élettani Szabályozások Csoport 2: Budapesti Corvinus Egyetem, Statisztika Tanszék MTA Statisztikai Tudományos
JÁTÉKELMÉLETTEL KAPCSOLATOS FELADATOK
1.Feladat JÁTÉKELMÉLETTEL KAPCSOLATOS FELADATOK Az alábbi kifizetőmátrixok három különböző kétszemélyes konstans összegű játék sorjátékosának eredményeit mutatják: 2 1 0 2 2 4 2 3 2 4 0 0 1 0 1 5 3 4 3
Hipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC
016.03.1. BSC MATEMATIKA II. ELSŐ ÉS MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC AZ ELSŐRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLET FOGALMA Az elsőrendű közönséges differenciálegyenletet
MTA TANTÁRGY-PEDAGÓGIAI KUTATÁSI PROGRAM
MEGHÍVÓ MTA TANTÁRGY-PEDAGÓGIAI KUTATÁSI PROGRAM TERMÉSZETTUDOMÁNYI-MATEMATIKAI-INFORMATIKAI OKTATÁS MUNKACSOPORT BESZÁMOLÓ KONFERENCIA MTA TANTÁRGY-PEDAGÓGIAI KUTATÁSI PROGRAM TERMÉSZETTUDOMÁNYI-MATEMATIKAI-INFORMATIKAI
Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás
STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
Stippinger Marcell: Tőzsdei modellezés (Szeminárium 2. előadás)
1 2010. április 8. Cégvilág 2010, Wigner Jenő Kollégium nagytermében Pénzügy: elsősorban MC-szimulációés informatikai feladatok. Fizikusok keresettek, egzotikus nyelveket is el kell sajátítani. 2 3 Matematikai
OPCIÓS PIACOK VIZSGA MINTASOR
OPCIÓS PIACOK VIZSGA MINTASOR ELMÉLET ÉS SZÁMOLÁS ELMÉLETI ÉS SZÁMOLÁSI KÉRDÉSEK 1. A devizára szóló európai call opciók a) belsőértéke mindig negatív. b) időértéke pozitív és negatív is lehet. c) időértéke
Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November
Oktatói önéletrajz Bozóki Sándor
egyetemi docens Közgazdaságtudományi Kar Operációkutatás és Aktuáriustudományok Tanszék Karrier Felsőfokú végzettségek: 1996-2001 ELTE-TTK, alkalmazott matematikus 1999-2003 ELTE-TTK, matematika tanár
Mérési hibák 2006.10.04. 1
Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség
Oktatói önéletrajz Bozóki Sándor
egyetemi docens Közgazdaságtudományi Kar Operációkutatás és Aktuáriustudományok Tanszék Karrier Felsőfokú végzettségek: 1999-2003 ELTE-TTK, matematika tanár 1996-2001 ELTE-TTK, alkalmazott matematikus
Parciális differenciálegyenletek numerikus módszerei számítógépes alkalmazásokkal Karátson, János Horváth, Róbert Izsák, Ferenc
Karátson, János Horváth, Róbert Izsák, Ferenc numerikus módszerei számítógépes írta Karátson, János, Horváth, Róbert, és Izsák, Ferenc Publication date 2013 Szerzői jog 2013 Karátson János, Horváth Róbert,
Minőségelmélet kommunikációs dosszié MINŐSÉGELMÉLET. Anyagmérnök mesterképzés (MsC) Tantárgyi kommunikációs dosszié
MINŐSÉGELMÉLET Anyagmérnök mesterképzés (MsC) Tantárgyi kommunikációs dosszié MISKOLCI EGYETEM Műszaki Anyagtudományi Kar Energia- és Minőségügyi Intézet Minőségügyi Intézeti Kihelyezett Tanszék MISKOLC,
EÖTVÖS LORÁND TUDOMÁNYEGYETEM MATEMATIKAI INTÉZET ALKALMAZOTT MATEMATIKUS MESTERKÉPZÉS SZAKLEÍRÁS
EÖTVÖS LORÁND TUDOMÁNYEGYETEM MATEMATIKAI INTÉZET ALKALMAZOTT MATEMATIKUS MESTERKÉPZÉS SZAKLEÍRÁS BUDAPEST 2013 ALKALMAZOTT MATEMATIKUS MESTERSZAK (2013 ) Képzési idő: 4 félév A szak indításának tervezett
Bevezető ismeretek a pénzügyi termékekről Intézményekről, tranzakciókról 1.
Bevezető ismeretek a pénzügyi termékekről Intézményekről, tranzakciókról 1. Jánosi Imre Kármán Környezeti Áramlások Hallgatói Laboratórium, Komplex Rendszerek Fizikája Tanszék Eötvös Loránd Tudományegyetem,
Mátrixjátékok tiszta nyeregponttal
1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják
Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén
Matematikai modellek, I. kisprojekt Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén Unger amás István B.Sc. szakos matematikus hallgató ungert@maxwell.sze.hu, http://maxwell.sze.hu/~ungert
8. Előadás. Megyesi László: Lineáris algebra, , oldal. 8. előadás Mátrix rangja, Homogén lineáris egyenletrendszer
8. Előadás Megyesi László: Lineáris algebra, 51. 56., 70. 74. oldal. Gondolkodnivalók Elemi bázistranszformáció 1. Gondolkodnivaló Most ne vegyük figyelembe, hogy az elemi bázistranszformáció során ez
KÉSZLETMODELLEZÉS EGYKOR ÉS MA
DR. HORVÁTH GÉZÁNÉ PH.D. * KÉSZLETMODELLEZÉS EGYKOR ÉS MA Az optimális tételnagyság (Economic Order Quantity) klasszikus modelljét 96-tól napjainkig a világon széles körben alkalmazták és módosított változatait
A pénzügyi kockázat elmélete
7. Kötvények és árazásuk Részvények és kötvények Részvény: tulajdonrészt jelent, részesedést a vállalat teljesítményéb l. Kötvény: hitelt jelent és a tartozás visszazetésének szabályait. A részvényeket
II. Tárgyi eszközök III. Befektetett pénzügyi. eszközök. I. Hosszú lejáratú III. Értékpapírok
Gyakorló feladatok: 1. Az alábbi adatok alapján állítsa össze a vizsgált vállalat szabályozott cash flow kimutatását! FCF kimutatását! (Határozza meg azokat a feltételeket, amely mellett érvényes az FCF
TANTÁRGYI PROGRAM Matematikai alapok II. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok II. útmutató 2014/2015. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:
1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI
/ Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI Normál feladatok megoldása szimplex módszerrel / / Normál feladatok megoldása szimplex
A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma
A Riemann-Siegel zeta függvény kiugró értékeinek keresése A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma 2013 A probléma fontossága és hatása a hétköznapi életre A prímszámok
NYF-MMFK Műszaki Alapozó és Gépgyártástechnológiai Tanszék mezőgazdasági gépészmérnöki szak III. évfolyam
ALKALMAZOTT SZÁMÍTÁSTECHNIKA MG2613 Meghirdetés féléve: 6. 6. 11 1 1 11 11 Összesen: 11 11 Előfeltétel (tantárgyi kód): Tantárgyfelelős beosztása: MG1108; MG1207 Dr. Végső Károly főiskolai docens A tantárgy
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria Bódis Emőke 2016. 04. 25. J J 9 Korrelációanalízis Regresszióanalízis: hogyan változik egy vizsgált változó értéke egy másik változó változásának függvényében. Korrelációs
KÖVETKEZTETŐ STATISZTIKA
ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak
Kontrol kártyák használata a laboratóriumi gyakorlatban
Kontrol kártyák használata a laboratóriumi gyakorlatban Rikker Tamás tudományos igazgató WESSLING Közhasznú Nonprofit Kft. 2013. január 17. Kis történelem 1920-as években, a Bell Laboratórium telefonjainak
3. Lineáris differenciálegyenletek
3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra
A mérési eredmény megadása
A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű
A MATEMATIKAI SZOFTVEREK ALKALMAZÁSI KÉSZSÉGÉT, VALAMINT A TÉRSZEMLÉLETET FEJLESZTŐ TANANYAGOK KIDOLGOZÁSA A DEBRECENI EGYETEM MŰSZAKI KARÁN
A MATEMATIKAI SZOFTVEREK ALKALMAZÁSI KÉSZSÉGÉT, VALAMINT A TÉRSZEMLÉLETET FEJLESZTŐ TANANYAGOK KIDOLGOZÁSA A DEBRECENI EGYETEM MŰSZAKI KARÁN Dr. Kocsis Imre DE Műszaki Kar Dr. Papp Ildikó DE Informatikai
Szolvencia II. Biztosítástechnikai tartalékok 2005.04.27
Szolvencia II. Biztosítástechnikai tartalékok 2005.04.27 Biztosítástechnikai tartalékok A. Nem-életbiztosítási tartalékok B. Életbiztosítási tartalékok C. Próbaszámolások 2005.04.27 2 A. Nem-életbiztosítási
Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék
Ütemezési problémák Kis Tamás 1 1 MTA SZTAKI valamint ELTE, Operációkutatási Tanszék ELTE Problémamegoldó Szeminárium, 2012. ősz Kivonat Alapfogalmak Mit is értünk ütemezésen? Gépütemezés 1 L max 1 rm
4 Kamatlábak. Options, Futures, and Other Derivatives 8th Edition, Copyright John C. Hull
4 Kamatlábak 1 Típusok Jegybanki alapkamat LIBOR (London Interbank Offered Rate, naponta, AA minősítésű partnereknek kölcsön) BUBOR (Budapest Interbank Offered Rate) Repo kamatláb (repurchase, értékpapír
1000 forintos adósságunkat, de csak 600 forintunk van. Egyetlen lehetőségünk, hogy a
A merész játékok stratégiája A következő problémával foglalkozunk: Tegyük fel, hogy feltétlenül ki kell fizetnünk 000 forintos adósságunkat, de csak 600 forintunk van. Egyetlen lehetőségünk, hogy a még
Több valószínűségi változó együttes eloszlása, korreláció
Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...
Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.
Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati
Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Osztályozási fák, durva halmazok és alkalmazásaik. PhD értekezés
Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Osztályozási fák, durva halmazok és alkalmazásaik PhD értekezés Készítette: Veres Laura okleveles matematikus-informatikus Hatvany József Informatikai
Döntési rendszerek I.
Döntési rendszerek I. SZTE Informatikai Intézet Számítógépes Optimalizálás Tanszék Készítette: London András 3. Gyakorlat Egy újságárus 20 centért szerez be egy adott napilapot a kiadótól és 25-ért adja
Vállalati pénzügyek alapjai
BME Pénzügyek Tanszék Vállalati pénzügyek alapjai Befektetési döntések - Kötvények értékelése Előadó: Deliné Pálinkó Éva A vizsgálat köre, rendszere - Tematika 3. Befektetési döntések 5. Befekt. és finansz.
Pénzügyi számítások. 7. előadás. Vállalati pénzügyi döntések MAI ÓRA ANYAGA. Mérleg. Rózsa Andrea Csorba László FINANSZÍROZÁS MÓDJA
Pénzügyi számítások 7. előadás Rózsa Andrea Csorba László Vállalati pénzügyi döntések Hosszú távú döntések Típusai Tőke-beruházási döntések Feladatai - projektek kiválasztása - finanszírozás módja - osztalékfizetés
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika