BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM. - Schlieren, lángterjedési sebesség mérés-
|
|
- Aurél Dobos
- 9 évvel ezelőtt
- Látták:
Átírás
1 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KALORIKUS GÉPEK MÉRÉSEI - Schlieren, lángterjedési sebesség mérés- ENERGETIKAI GÉPEK ÉS RENDSZEREK TANSZÉK
2 SCHLIEREN TECHNIKA A Schlieren jelenség Schlieren jelenség alatt optikai inhomogenitásokon áthaladó fénysugarak irányváltozását értjük. Az optikai inhomogenitás önmagában tág fogalom, kialakulhat szilárd testeknél pl.: felületi egyenetlenségeknek köszönhetően, vagy gáznemű közegeknél pl.: a sűrűség rohamos változása esetén. Az optikai inhomogenitásokban közös, hogy a rajtuk való áthaladás során az eltérülő fénysugarak miatt a képtorzulás alakul ki. Az 1. ábrán látható esetben egy autó tetején kialakult termikus határréteg okozza a Schlieren jelenséget, ami a háttérben látható rács párhuzamos vonalait eltorzítja. A jelenség összetett, de némely esetben jól leírható törvényszerűségek szerint megy végbe, ezért a Schlieren módszerek fizikai jelenségek megmutatására és számszerűsítésére is alkalmasak (kvalitatív és kvantitatív felhasználás). Fizikai háttér 1. ábra - Termikus határréteg autó tetején [3] Tekintsünk valamilyen közeget, melyben a törésmutató eloszlása nem konstans, hanem folyamatosan változik. Ekkor a törésmutató mező változása grad (n) vektorral, vagyis a törésmutató mező gradiensével jellemezhető. Ha egy fénysugár egy ilyen folytonosan változó törésmutatójú közegrészen halad át, akkor adott pontban egy R sugarú görbe pályára áll rá a 2. ábrán látható módon. R görbületi sugárra írható: 1 grad( n) = sinϕ R n 2. ábra - Fénysugár elhajlása folytonosan változó törésmutatójú közegben Az eltérülési szög értelmezése Ha egy fénysugár x távolságot tesz meg egy grad(n) -nel jellemzett, folytonosan változó törésmutatójú közegben, akkor az eltérülési szög a görbe vonal érintője és a zavartalan fényterjedéshez tartozó egyenes által bezárt szög: ε (lásd. 3. ábra)
3 3. ábra - Az eltérülés szögének értelmezése A törésmutatót befolyásoló fizikai jellemzők A törésmutató általában függ a fény hullámhosszától; a közeg melyen a fény áthalad hőmérsékletétől, nyomásától és anyagi minőségétől, keverék esetén a komponensek koncentrációjától. n = n( λ, T, p, ρi ) Adott anyagi minőség esetén a törésmutató a sűrűségtől függ. A gázokra vonatkozó állapotegyenletek figyelembevételével az állapotegyenlet egyértelmű összefüggést teremt a sűrűség, a nyomás és a hőmérséklet között a törésmutató változása a hőmérséklet és nyomásváltozást is mutatja. n = n( ρ ( p, T )) = n( p, T ) A törésmutató hőmérséklet és nyomásfüggésének leírásában igen fontos a Gladstone Dale összefüggés: n 1 = konst ρ Az ideális gáztörvényt ugyanazon anyag két állapotára felírva ρ T = p 0 ρ0 p0 T Behelyettesítve a Gladstone Dale egyenletet, írható: n 1 p T0 p T0 =, illetve: n = ( n0 1) + 1. n 0 1 Izobár folyamatnál ( ) p 0 n T p 0 T0 = n T T ( 1) p = : p 0 T p ρ T = konst 2 A 4. ábrán atmoszférikus nyomású levegő törésmutatójának hőmérsékletfüggése látható. Megfigyelhető, hogy a hőmérséklet emelkedésével a görbe ellaposodik, ami egy a törésmutató hőmérsékletfüggésére alapozó mérés érzékenységét magas hőmérséklettartományban lerontja. :
4 4. ábra - Atmoszférikus nyomású levegő törésmutatója a hőmérséklet függvényében Párhuzamos sugármenetű Schlieren berendezések ek Egy párhuzamos sugármenetű Schlieren berendezés egyszerűsített sémáját mutatja az 5. ábra. 5. ábra - Schlieren berendezés vázlata R - Rés O 1,O 2 - Schlieren objektívek S - Tárgy B - Blende (kés) S - Vetítés síkja A fényforrás képét egy kondenzor lencserendszer egyesíti R rés helyén. R rés fényforrásnak tekinthető. O 1 és O 2 azonos kiképzésű lencséket jelölnek, így az O 1 O 2 lencserendszer az R rés éles képét hozza létre O 2 fókuszsíkjában (ez a sík megegyezik B kés síkjával). A fénysugarak a továbbiakban egy vetítőlencsén haladnak át, amely S tárgy képét hozza létre S megfigyelési síkban. Az R rés adott pontjából kiinduló fénysugarak O 1 -en áthaladva párhuzamos sugarakat alkotnak. Tekintve, hogy ez R bármely pontjára igaz belátható, hogy párhuzamos sugárnyalábokat kapunk (6. ábra). 6. ábra - Párhuzamos sugárnyalábok kialakulása A 4. ábrából leolvasva a párhuzamos sugárnyalábok maximális szögeltérése: s max = tan 1 s 1 γ, ami kis szögekre: γ max = f 1 f1 Tekintsük R rés hosszabbik élét a lap síkjára merőlegesnek (3. ábra). O 2 fókuszsíkjában helyezzük el B Schlieren blendét (kés) úgy, hogy a blende éle párhuzamos legyen a rés hosszabbik élével (s 1 a rés rövidebbik éle). A B blendét felfelé mozgatva R rés képéből egyre nagyobb részt takar ki, míg végül teljesen ki nem takarja. A kitakarásnak megfelelően S ernyőn a megvilágítás erőssége egyenletesen az ernyő bármely pontjában egyformán csökken. Tegyünk S tárgy helyébe egy olyan síkot, amely csak egy pontban (P) képes a fénysugarakat átereszteni. Ebben az esetben a P ponton áthaladó fénysugarak egy γ szögű fénykúpot alkotnak. A fénykúp sugarai a párhuzamos fénysugarakból kerülnek ki, minden irányhoz tartozó sugárnyalábból egy-egy. Ennek a fénykúpnak is egy s 1 szélességű rés a képe B blende síkjában, a fénysugarak S ernyőn egy pontban (P ) egyesülnek. Tehát a vizsgált térrész, vagy tárgy egy pontjának képe a leképzésben szintén pont. Ha a P pontban a fénysugarak iránya Schlieren következtében megváltozik, a rés képe eltolódik annak megfelelően, hogy az eltolódás a blende
5 élével párhuzamosan felfelé, vagy lefelé történt. Ha a réskép lefelé tolódik el, akkor a blende annak egy részét kitakarja, a létrejövő P képpont megvilágításának erőssége csökken. Mivel ez érvényes P síkjának bármely pontjára a Schlieren helyek egy időben mutathatók ki. A Schlieren blende alaphelyzetét alkalmasan megválasztva Schlierentől mentes körülmények között a résképet részben már kitakarja a blende élére merőleges irányban az elhajlások mindkét irányban kimutathatók. Azon pontok megvilágítása, amelyek a blende él felé hajlottak el gyengébb lesz az alap megvilágításhoz képest míg amelyek az ellenkező irányban térültek el, azoké erősebb. A blende élével párhuzamos elhajlásokra a megvilágítás erőssége nem változik, így azokra a rendszer érzéketlen. Ezért a gyakorlatban két rés és vele párhuzamos állású blende állás mellett kell felvételeket készíteni. Célszerű a két állást úgy megválasztani, hogy azok egymással derékszöget zárjanak be. Az eltérülési szög a kés pozíciójának és a Schlieren objektívek fókusztávolságának ismeretében számítható. Méréshatár,, érzékenység A méréshatár vizsgálatánál azt kell tudnunk, hogy mekkora az a legnagyobb eltérülési szög, amit a rendszer még ki tud mutatni. A 7. ábra alapján belátható, hogy ha a rés képe s 1 mértékben eltérül, akkor a kitakarás teljes, további eltérülés ebben az irányban már nem okoz változást a megvilágítás erősségében. 7. ábra - a, Nincs kitakarás b, Teljes kitakarás Közelítőleg írható: s1 δ max az adott készüléken mérhető legnagyobb szögelhajlás. f 2 A fenti egyenletből látható, hogy a méréshatár s 1 változtatásával változtatható (pl. növelhető, ha a kialakult Schlieren képen a teljes kivilágosodás, vagy teljes elsötétedés kialakul, lásd 6. ábra). Fontos ugyanakkor megjegyezni, hogy a rés változtatása hatással van az érzékenységre is. Az érzékenység azt a minimális változást jelenti, amit egy módszerrel már észlelni lehet. Esetünkben ez a minimális eltérülési szög, amit tételezzünk fel a legnagyobb eltérülési szög p százalékának: pδ max δ min 100 Az érzékenység δ min reciproka: f 2 E = δ min p s1 Látható., hogy s 1 résméret növelésével az érzékenység csökken. Mérési stratégiák 8. ábra - A vizsgált termikus határrétegben teljes elsötétedés alakult ki Szimmetrikus jelenség, teljes eltérülés nem jön létre
6 blende pozíció középen Szimmetrikus jelenség, teljes eltérülés jön létre blende középső pozícióban, résméret növelése ha a résméret tovább nem növelhető, akkor a blendét a középső pozícióból el kell mozdítani, ekkor a jelenség egyik oldala deríthető fel Nem szimmetrikus jelenség, teljes eltérülés jön létre a blendét a középső pozícióból el kell mozdítani olyan irányban, hogy a teljes eltérülés csökkenjen (a teljes elsötétedés világosodni, a teljes kivilágosodás sötétedni kezd, lásd 9. ábrán a 8. ábrán látható esetet) 8-9. ábra - A vizsgált termikus határrétegben teljes elsötétedés alakult ki, termikus határréteg képe a blende elmozdítása esetén A tanszéki Schlieren berendezés A tanszéki Schlieren berendezés vázlata a 10. ábrán látható. A fényforrás higanygőz lámpa, a rés és a kés pozíciója precízen állítható. A Schlieren objektívek átmérője 80 mm, ez a vizsgálható térrész méretének felső korlátja. 10. ábra - A tanszéki Schlieren berendezés vázlata (Schlieren Aufnahmegerät 80) 1 - Fényforrás 2 - Kondenzor 3 - Rés 4,6 - Schlieren objektívek 5 - Vizsgálandó tárgy 7 - Blende 8 - Fotó objektív 9 - Vetítő objektív 10 - Mattüveg/vetítés helye 11 - Eltérítő tükör 12 - Leképező objektív 13 - Mattüveg/kés pozíciójának ellenőrzése Mérés menete 1, fényforrás begyújtása, bemelegítése 2, vizsgálandó tárgy elhelyezése a vizsgálótérben
7 3, 4, 5, precíz elhelyezésről gondoskodni kell (párhuzamosság, merőlegesség). Ehhez a látómezőt élesre kell állítani. megfelelő résvastagság kiválasztása, a rés pozíciójának beállítása ez a vizsgálandó jelenség előzetes átgondolását igényli. A tipikus réspozíciók: függőleges, vízszintes. a kés réssel való párhuzamosságának beállítása kés pozíciójának beállítása tipikus késpozíció: középső ( a kés Schlieren mentes esetben a rés képének felét takarja ki) Színes Schlieren felvételek Lehetőség van a rés (10. ábra 7) helyére színes illetve csíkos diát elhelyezni (lásd. 11. ábra). 11. ábra - Schlieren berendezéshez használható színes dia A színes dia használata esetén, ha üres vizsgálótér mellett a dia pozícióját változtatjuk, akkor feltéve, hogy a rés legfeljebb olyan vastag, mint a dián lévő csíkok vastagsága egységes színű, alap megvilágítású képet kapunk. Az ekkor látható 0 eltérülésű fénysugarakhoz tartozó szín színt alapszínnek nevezzük. Ha a vizsgálótérben Schlieren tartalmú tárgyat, vagy közeget helyezünk el, akkor az eltérülések eredményeként különböző színű zónák jönnek létre a leképzés során. Ekkor az eltérülési szög a színes dia csíkjainak vastagságából és a szín sorrendből számítható ki. Színes képre mutat példát a következő ábra: 12. ábra - Rakétamodell körüli áramlás szemléltetése színes Schlieren technikával [2] 13. ábra - Turbinalapátok közötti áramlás szemléltetése színes Schlieren technikával [3]
8 14. ábra - Lökéshullámok lövedék körül [4] BUNSEN LÁNGOK Gáznemű égési formák felosztása A gáznemű anyagok égését két alapvető csoportba sorolhatjuk: 1, előkevert lángok (premixed flames) a tüzelőanyag és oxigén összekeverve éri el a reakciózónát. Ha az áramlás nem turbulens erre az égésfajtára vékony reakciózóna (lángfront) jellemző. 2, 15. ábra Bunsen láng diffúziós lángok (non premixed, diffusion flames) a tüzelőanyagot és oxigént különkülön vezetjük a reakciózóna közelébe. A keveredés diffúzió és turbulencia útján jön létre. Előkevert láng szerkezete 16. ábra - A gyertya lángja tipikus diffúziós láng [5] Az előkeveredési zónához közeledve a keverék előmelegszik, majd a reakciózónát elérve hőmérséklete hirtelen megnő. A hőmérséklet és a tüzelőanyag ill. oxigén koncentráció alakulásának jellegét mutatja a következő ábra:
9 17. ábra Előkevert láng felépítése, hőmérséklet és reakciósebesség eloszlás A Bunsen láng felépítése az alábbi ábrán látható. Ha a tüzelőanyag túl sok, akkor a környezeti levegővel keveredve egy második lángfrontban ég el. 18. ábra - Bunsen láng felépítése 19. ábra - Áramlási és lángterjedési sebesség egyensúlya stabil lángban A Schlieren felvételeken a belső kúp jól látható. Feltételezve, hogy a belső lángfront alakja kúpos (nem forgási paraboloid) a Schlieren felvételből meghatározható a lángterjedési sebesség a 19. ábra felhasználásával. Ekkor ugyanis felírható a lángterjedési sebesség és az áramlási sebesség lángfrontra merőleges komponensének egyensúlya a fél-kúpszög segítségével: u = v sin ( α) u - Lángterjedési sebesség [m/s] v - Átlagsebesség [m/s]
10 Az égés levegőszükséglete Az égés elméleti levegőszükséglete elemi, tökéletes égési reakciók összességeként írja fel egy tüzelőanyag égését. Ezeket az egyenleteket sztöchiometriai egyenleteknek nevezik. Például a metán (CH 4 ) sztöchiometriai egyenlete a következő: CH + 2 O + N CO + 2 H O N Fontos megjegyezni, hogy nem oxigénnel, hanem levegővel égetünk, így a levegő N2 tartalmát is figyelembe kell venni. Az egyenletben anyagmennyiség szerepel (mól), ugyanakkor feltételezve, hogy a kiinduló anyagok és reakció termékek azonos nyomáson és hőmérsékleten vannak jelen a rendszerben ezek az arányok térfogat arányt is jelentenek. Az egyenletből kiszámítható, hogy egységnyi mennyiségű tüzelőanyaghoz mennyi levegőre van szükség. Ez a kifejezés az elméleti levegőszükséglet. Értéke az előző példa alapján (O 2 és N 2 együtt): 3 79 m levegő L 0 = = m tü.a. Az elméleti levegőszükséglet felhasználásával bevezethető a légfelesleg tényező, ami azt mutatja meg, hogy az elméletileg szükségeshez képest mennyi levegőt juttattunk az égéshez: L λ = L 0 λ - Légfelesleg tényező L - Égéshez vezetett levegő mennyisége [m 3 ], [m 3 /s] L 0 - Elméleti levegőszükséglet [m 3 ], [m 3 /s] λ > 1 esetén a keverék az elméletileg szükségesnél több levegőt tartalmaz (tüzelőanyagban szegény), λ < 1 esetén pedig kevesebbet (tüzelőanyagban dús). A légfelesleg tényező a tüzeléstechnikában az egyik legalapvetőbb és egyben legfontosabb fogalom. Az égés jellemzőit (lángterjedési sebesség, károsanyag képződés) a légfelesleg tényező függvényében szokás megadni. A lángterjedési sebesség légfelesleg függésére mutat példát a következő ábra: 20. ábra - Földgáz lángterjedési sebessége a légfelesleg függvényében
11 LÁNGCSÖVES LÁNGTERJEDÉSI SEBESSÉG MÉRÉS Homogén gáz levegő keverékben a kísérleti tapasztalatok szerint a láng terjedési sebessége több tényező függvénye: nyomás, hőmérséklet és a gáz és levegő térfogataránya. Adott hőmérsékleten és nyomáson az égés gáz levegő keverékben csak egy meghatározott alsó és felső keverékarány között lehetséges. Ezen határok között a láng terjedési sebesség maximummal rendelkező görbe szerint változik. Az így meghatározható alsó- és felső gyulladási koncentráció határ biztonságtechnikai szempontból is fontos jellemző. Egy térben az alsó gyulladási koncentráció határ alatt, annak kb 1/10-részét szokták megengedni. Ha az éghető gáz koncentrációja ezt meghaladja, robbanás veszély állhat elő. Megfelelő készülékben különböző, mérhető összetételű gázkeverékek állíthatók elő. A gázkeverékkel egy függőleges helyzetű, alul teljesen nyitott üvegcsövet feltöltve, villamos szikrával meggyújtható a keverék. A gyújtás helyétől a lángfront a csőben egy megjelölt távolságot fut be, aminek idejét méréssel meghatározva a lángterjedési sebessége a gáz levegő keverékben kiszámítható. A terjedési sebességet a gáz-levegő elegy összetétele függvényében ábrázolhatjuk. Lángterjedési sebesség vizsgálata Egy felül zárt, alul nyitott csövet ismert éghető gáz levegő keverékkel feltöltünk, majd villamos szikrával meggyújtunk. A gyújtás helyétől kiindulva egy vékony lángfront jön létre, amely végig halad a csövön egészen a teljes kiégésig. A lángfront egy t időpontban való helyzetét az 21. ábra, a lángfront előtt és után kialakult hőmérséklet és nyomás viszonyokat a 22. és 23. ábra szemlélteti ábra Lángfront helyzete, a lángfront előtt és után kialakult hőmérséklet és nyomás viszonyok u - Lángterjedési sebesség w - A visszaáramló égéstermék sebessége t k - Kezdeti hőmérséklet t - Visszaáramló égéstermék hőmérséklet t p r - A lángfront előtti reagens zónában kialakult nyomás p - A lángfront utáni nyomás t c - Koncentráció (gáz levegő keverékarány) g t gyull Gyulladási hőmérséklet t max A lángfrontban lévő hőmérséklet p A lángfront előtti és utáni nyomáskülönbség
12 A láng terjedési sebessége egy gáz fajtájánál a kezdeti hőmérséklettől, a nyomástól és gáz levegő arányától függ; u = f (c g, p, t k ) A csőben álló gáz levegő elegyben a keletkező égéstermék visszafelé áramlik. A visszaáramló égéstermék sebességét döntően a lángfront hőmérséklete határozza meg; w = f (t max ) A 2. ábrán jól nyomon követhető adott τ időpillanatban az égéstermék zóna és a reagens zóna közötti hőtranszport folyamat a hőmérséklet gradiens következtében. A hideg keverék a gyulladási hőmérsékletig felmelegszik. Az égőképes keverék gyulladása után hőfejlődés indul meg, ami további hőmérsékletemelkedést eredményez. A magas hőmérséklet felől az előmelegítést is a hőfejlődés biztosítja. A reagens zónában a nyomás /p r / nagyobb, mint a termékzónában /p t /, mert a fajtérfogat növekedés miatt létrejövő áramlás gyorsítását ez a nyomáskülönbség biztosítja. p > r p t w = v u t v r u - Reagens közeg fajtérfogata w - Az égéstermék fajtérfogata Az egyenletet rendezve: vt w = u v A fal kioltó hatása r A normál lángterjedési sebesség sík lángfront esetén egyértelmű mennyiség. A görbült lángfront esetén a nyomáskülönbség hatására szekunder áramlás alakul ki. A kísérlet során ez jól megfigyelhető: A gyújtás helyétől kiinduló lángfront jellegzetes medúza alakot vesz fel. Ez a lángfront alak a cső fala mentén, a kioltási távolságon belül kialakuló áramlás következménye. A fal melletti visszaáramlás egy tórusz gyűrű menti örvény kialakulását okozza ( 24. és 25. ábra ) A láng terjedési sebessége ábra A fal mellett kialakuló áramlás Különböző koncentrációk esetén a mért futási idők és futási távolság ismeretében számított sebesség alapján a láng terjedési sebessége a koncentráció függvényében ábrázolható. A jelleggörbéje egy másod, vagy harmadfokú polinommal közelíthető (26. ábra). A jelleggörbe három meghatározó alapponttal rendelkezik / c g, min, c g, 0, c g, max /.
13 Ahol: c g,min - c g,0 - c g,max ábra A láng terjedési sebessége Alsó gyulladási határérték. A keverékben sok a levegő és kevés a gáz, ez az érték alatt gyulladás nem jöhet létre. A görbe maximuma. Ismert gáz fajtára az értéke sztöchiometrikus egyenlettel meghatározható /tökéletes égés/. Felső gyulladási határérték. A keverékben kevés az éghető, nagy a légfelesleg tényező, ez az érték felett gyulladás nem jöhet létre. A bevitt gyulladási energia meghatározza az alsó és felső határértéket /c g,min, c g,max /. A láng terjedési sebessége állandó hőmérséklet (t), illetve nyomás (p) mellett, változó nyomás és hőmérséklet esetét a 27. és 28. ábra szemlélteti ábra Láng terjedési sebessége állandó hőmérséklet és változó nyomás mellett illetve állandó nyomás és változó hőmérséklet mellett A lángterjedési sebesség mérő berendezés felépítése és kezelése A tanszéki lángterjedési sebesség mérő berendezés elvi felépítése a 29. ábrán látható. Ezen az ábrán követhető nyomon különböző gáz levegő elegy összetételénél a láng terjedési sebességének mérése. A rendszer gáz ellátása hálózati vezetékes gáz útján történik, míg a levegő ellátását egy ventilátor biztosítja. Mind a gáz, mind a levegő egy meghatározott mennyiségének szállítása egy keverőtéren keresztül történik az elégetésre és a keverék elegy sebességének mérésére szolgáló üvegcsőbe. A gáz és a levegő útja a keverőtérig megegyezik. Külön külön gázórával mérjük a eltérő koncentráció értékek beállításához szükséges mennyiségeket, majd egy kézi vezérlésű mágnesszelepeken keresztül juttatjuk a keverőtérbe. Itt jön létre a keverékképzés. A másik lehetőség a mennyiségek beállítására az azonos kialakítású furattárcsák alkalmazása, amelyek az osztókörön különböző átmérőjű furatokkal rendelkeznek. A két tárcsával azonos nyomáson,
14 eltérő furatátmérőkkel, azonos áramlási idő esetén a térfogatáramot lehet változtatni. A furat átmérők arányából számítható a gáz levegő aránya ( G/ L). A keverőtérből a beállított gáz levegő elegy az ábrán látható módon feltölti a mindkét végén zárt üvegcsövet. Az üvegcső alsó zárófedele egy visszagyulladásgátló betéthez kapcsolódik. Ennek kettős szerepe van. Egyrészt az égés során a visszagyulladást akadályozza meg, másrészt a mérőcső beállított koncentrációjú keverékkel való feltöltődését is jelzi. A visszagyulladásgátló betét is telítődik az éghető eleggyel, amit a végén elhelyezett gyújtóláng meggyújt. A mérésre szolgáló üvegcsőben az égőképes keveréket egy kézi vezérlésű gyújtó elektródával gyújtjuk meg. A üvegcső alján és a végén két ionizációs detektor található, amelyek érzékelik a lángfront kialakulását, és a lángfront futásának befejezését. A két ionizációs érzékelő alternatív kapcsolóként egy relén keresztül indítja, illetve leállítja az elektromos stoppert a mérés során A mérés menete 29. ábra - A tanszéki lángterjedési sebesség mérő berendezés elvi felépítése 1 - Nyomásszabályzó 2 - Gázóra (levegő) 3 - Gázóra (földgáz) 4 - Nyomáskülönbség mérő 5 - Mágnes szelep 6 - Furattárcsás áramlás szabályzó 7 - Keverőtér 8 - Visszaégés gátló / kontrolégő 9 - Gyújtóláng 10 - Stopper 11 - Jelfeldolgozó és stopper vezérlő 12 - Lefuvató szelep 13 - Nyomás ellenörző U cső 14 - Gyújtóelektróda 15 - Lángcső 16 - Lángfont érzékelő ionizációs detektor 17 - Töltés kapcsoló A mérés során állandó gázmennyiség mellett a levegő mennyiségét változtatva állítjuk be a különböző keverékarányokat a furattárcsák segítségével. 1. Zárjuk a mérőcső alsó zárófedelét, majd a gáz és levegő oldali furattárcsát a legkisebb furatállásba állítjuk. Ezt követően nyitjuk a mágnesszelepeket. Megkezdődik a keverőtéren
15 keresztül a mérőcsőnek a beállított keverék eleggyel való feltöltése. A cső teljes feltöltését a visszagyulladásgátló betét tetején megjelenő kis láng jelzi. Ezt követően zárjuk a mágnesszelepeket, nyitjuk a mérőcső alsó zárófedelét, és kézi vezérlés útján gyújtó szikrával meggyújtjuk mérőcsőben lévő keverék elegyet. Ha nem jött létre égés, akkor a keverék elegy az alsó gyulladási határérték alatt van. Ebben az esetben zárjuk a mérőcső alsó zárófedelét, a levegő rendszer furattárcsáját másik állásba helyezzük ( csökkentjük a levegő mennyiségét ), és nyitjuk a mágnesszelepeket. Újra töltjük a mérő rendszert. A feltöltés után ismételjük meg a fentiekben már ismertetett lépés sort mindaddig amíg el nem érjük az alsó gyulladási határértékét. 2. Az alsó gyulladási határérték elérése után létre jön az égés, kialakul a lángfront, az ionizációs kör ezt érzékeli, és elindítja az elektromos stoppert. A lángfront a csőben ismert távolság megtétele után érzékeli az ott elhelyezett másik ionizációs kör és leállítja a stoppert. A mért idő és a lángfront által befutott távolság ismeretében a lángfront sebessége számítható. 3. Az mérést mindaddig folytatjuk változó levegő mennyiség hozzákeverésével, amíg el nem érjük a felső gyulladási határértéket. 4. A mérési sorozat végén a különböző gáz levegő arányoknál mért futási sebesség ismeretében számítható a láng terjedési sebessége, valamint ábrázolható az ismert futási távolság ismeretében a lángterjedési sebesség - koncentráció függvény Felkészülést segítő kérdések Schlieren 1, Mi a Schlieren jelenség? 2, Milyen összefüggés van egy folytonosan változó törésmutatójú közeg törésmutatójának gradiense és a rajta áthaladó fénysugár pályájának görbületi sugara között? Készítsen ábrát! 3, Fejezze ki az eltérülési szöget, mint a zavartalan fényterjedés irányában mért x távolság és R görbületi sugár függvényét! Készítsen magyarázó ábrát! 4, Adott gáz milyen jellemzőitől függ a törésmutató? Tüzeléstechnika 1, Mi jellemző az előkevert égésre? Vázolja fel egy előkevert, lamináris láng szerkezetét! 2, Milyen megfontolás alapján számítható a lángterjedési sebesség? 3, Milyen egyenletek a sztöchiometriai egyenletek? Mit fejeznek ki ezek az egyenletek? 4, Mi az elméleti levegőszükséglet? 5, Mi a légfelesleg tényező? Lángterjedési sebesség mérés 1, Lángterjedési sebességet meghatározó paraméterek? 2, Visszaáramló égéstermék sebességét meghatározó paraméterek? 3, A lángterjedési sebesség jelleggörgéje? 4, A lángterjedési sebesség görbét meghatározó határértékek? 5, A lángterjedési sebességet hogyan befolyásolja a p, t változása (rajz)? HIVATKOZÁSOK [1] GARY S. SETTLES: Schlieren and Shadowgraph Imaging in the Great Outdoors, Proceedings of PSFVIP- 2, Honolulu, USA, May 16-19, [2]
16 [3] [4] [5]
KALORIKUS GÉPEK MÉRÉSEI. - Schlieren, lángterjedési sebesség mérés- ENERGETIKAI GÉPEK ÉS RENDSZEREK TANSZÉK
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KALORIKUS GÉPEK MÉRÉSEI - Schlieren, lángterjedési sebesség mérés- ENERGETIKAI GÉPEK ÉS RENDSZEREK TANSZÉK 1 TÜZELÉSTECHNIKA Az égés levegőszükséglete Az
energetikai mérések termogrammetria Schlieren Infratelevízió energetikai gépek és rendszerek tanszék
energetikai mérések 2 termogrammetria Schlieren Infratelevízió energetikai gépek és rendszerek tanszék TERMOGRAMMETRIAI MÉRÉSEK A hőmérsékletmezők grafikus megjelenítését, kétdimenziós ábrázolását termogramnak
A diplomaterv keretében megvalósítandó feladatok összefoglalása
A diplomaterv keretében megvalósítandó feladatok összefoglalása Diplomaterv céljai: 1 Sclieren résoptikai módszer numerikus szimulációk validálására való felhasználhatóságának vizsgálata 2 Lamináris előkevert
Szabadentalpia nyomásfüggése
Égéselmélet Szabadentalpia nyomásfüggése G( p, T ) G( p Θ, T ) = p p Θ Vdp = p p Θ nrt p dp = nrt ln p p Θ Mi az a tűzoltó autó? A tűz helye a világban Égés, tűz Égés: kémiai jelenség a levegő oxigénjével
Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető
Optika gyakorlat. Geometriai optika: planparalel lemez, prizma, hullámvezető. példa: Fényterjedés planparalel lemezen keresztül A plánparalel lemezen történő fényterjedés hatására a fénysugár újta távolsággal
TU 7 NYOMÁSSZABÁLYZÓ ÁLLOMÁSOK ROBBANÁSVESZÉLYES TÉRSÉGÉNEK MEGHATÁROZÁSA ÉS BESOROLÁSA AZ MSZ EN 60079-10:2003 SZABVÁNY SZERINT.
TU 7 NYOMÁSSZABÁLYZÓ ÁLLOMÁSOK ROBBANÁSVESZÉLYES TÉRSÉGÉNEK MEGHATÁROZÁSA ÉS BESOROLÁSA AZ MSZ EN 60079-10:2003 SZABVÁNY SZERINT. Előterjesztette: Jóváhagyta: Doma Géza koordinációs főmérnök Posztós Endre
Gázégő üzemének ellenőrzése füstgázösszetétel alapján
MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR ENERGIA- ÉS MINŐSÉGÜGYI INTÉZET TÜZELÉSTANI ÉS HŐENERGIA INTÉZETI TANSZÉK Gázégő üzemének ellenőrzése füstgázösszetétel alapján Felkészülési tananyag a Tüzeléstan
zeléstechnikában elfoglalt szerepe
A földgf ldgáz z eltüzel zelésének egyetemes alapismeretei és s a modern tüzelt zeléstechnikában elfoglalt szerepe Dr. Palotás Árpád d Bence egyetemi tanár Épületenergetikai Napok - HUNGAROTHERM, Budapest,
Mechanika - Versenyfeladatok
Mechanika - Versenyfeladatok 1. A mellékelt ábrán látható egy jobbmenetű csavar és egy villáskulcs. A kulcsra ható F erővektor nyomatékot fejt ki a csavar forgatása céljából. Az erő támadópontja és az
Folyadékok és gázok áramlása
Folyadékok és gázok áramlása Hőkerék készítése házilag Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért
GEOMETRIAI OPTIKA I.
Elméleti háttér GEOMETRIAI OPTIKA I. Törésmutató meghatározása a törési törvény alapján Snellius-Descartes törvény Az új közeg határához érkező fény egy része behatol az új közegbe, és eközben általában
Lencse típusok Sík domború 2x Homorúan domború Síkhomorú 2x homorú domb. Homorú
Jegyzeteim 1. lap Fotó elmélet 2015. október 9. 14:42 Lencse típusok Sík domború 2x Homorúan domború Síkhomorú 2x homorú domb. Homorú Kardinális elemek A lencse képalkotását meghatározó geometriai elemek,
TÉRFOGATÁRAM MÉRÉSE. Mérési feladatok
Készítette:....kurzus Dátum:...év...hó...nap TÉRFOGATÁRAM MÉRÉSE Mérési feladatok 1. Csővezetékben áramló levegő térfogatáramának mérése mérőperemmel 2. Csővezetékben áramló levegő térfogatáramának mérése
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók
Modern Fizika Labor. 2. Elemi töltés meghatározása
Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely
OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS
OPTIKA Geometriai optika Snellius Descartes-törvény A fényhullám a geometriai optika szempontjából párhuzamos fénysugarakból áll. A vákuumban haladó fénysugár a geometriai egyenes fizikai megfelelője.
25. Képalkotás. f = 20 cm. 30 cm x =? Képalkotás
25. Képalkotás 1. Ha egy gyujtolencse fókusztávolsága f és a tárgy távolsága a lencsétol t, akkor t és f viszonyától függ, hogy milyen kép keletkezik. Jellemezd a keletkezo képet a) t > 2 f, b) f < t
Alkalmazás a makrókanónikus sokaságra: A fotongáz
Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,
5. Laboratóriumi gyakorlat
5. Laboratóriumi gyakorlat HETEROGÉN KÉMIAI REAKCIÓ SEBESSÉGÉNEK VIZSGÁLATA A CO 2 -nak vízben történő oldódása és az azt követő egyensúlyra vezető kémiai reakció az alábbi reakcióegyenlettel írható le:
17. Diffúzió vizsgálata
Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.11.24. A beadás dátuma: 2011.12.04. A mérés száma és címe: 17. Diffúzió vizsgálata A mérést végezte: Németh Gergely Értékelés: Elméleti háttér Mi is
Tüzelőberendezések Általános Feltételek. Tüzeléstechnika
Tüzelőberendezések Általános Feltételek Tüzeléstechnika Tartalom Tüzelőberendezések funkciói és feladatai Tüzelőtér Tüzelőanyag ellátó rendszer Füstgáz tisztító és elvezető rendszer Tüzelőberendezések
Történeti áttekintés
A fény Történeti áttekintés Arkhimédész tükrök segítségével gyújtotta fel a római hajókat. A fény hullámtermészetét Cristian Huygens holland fizikus alapozta meg a 17. században. A fénysebességet először
1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:
1. előadás Gáztörvények Kapcsolódó irodalom: Fizikai-kémia I: Kémiai Termodinamika(24-26 old) Chemical principles: The quest for insight (Atkins-Jones) 6. fejezet Kapcsolódó multimédiás anyag: Youtube:
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek
Folyadékok és gázok áramlása
Folyadékok és gázok áramlása Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért felmelegedik. A folyadékok
DL drainback napkollektor rendszer vezérlése
DL drainback napkollektor rendszer vezérlése Tartalom Rendszer jellemzői Rendszer elemei Vezérlés kezelőfelülete Működési elv/ Állapotok Menüfunkciók Hibaelhárítás Technikai paraméterek DL drainback rendszer
Mérés: Millikan olajcsepp-kísérlete
Mérés: Millikan olajcsepp-kísérlete Mérés célja: 1909-ben ezt a mérést Robert Millikan végezte el először. Mérése során meg tudta határozni az elemi részecskék töltését. Ezért a felfedezéséért Nobel-díjat
1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:
Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál
A javítási-értékelési útmutatótól eltérő helyes megoldásokat is el kell fogadni.
A 27/2012 (VIII. 27.) NGM rendelet (25/2014 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 35 582 01 Gáz- és hőtermelő berendezés-szerelő
Mikroszkóp vizsgálata Folyadék törésmutatójának mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 8. MÉRÉS Mikroszkóp vizsgálata Folyadék törésmutatójának mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 12. Szerda délelőtti csoport
Fényhullámhossz és diszperzió mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 9. MÉRÉS Fényhullámhossz és diszperzió mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 19. Szerda délelőtti csoport 1. A mérés célja
Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)
Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok
A javítási-értékelési útmutatótól eltérő helyes megoldásokat is el kell fogadni.
A 27/2012. (VIII. 27.) NGM rendelet (25/2014. (VIII.26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 35 582 01 Gáz- és hőtermelő
Méréstechnika. Hőmérséklet mérése
Méréstechnika Hőmérséklet mérése Hőmérséklet: A hőmérséklet a termikus kölcsönhatáshoz tartozó állapotjelző. A hőmérséklet azt jelzi, hogy egy test hőtartalma milyen szintű. Amennyiben két eltérő hőmérsékletű
2.9.1. TABLETTÁK ÉS KAPSZULÁK SZÉTESÉSE
2.9.1 Tabletták és kapszulák szétesése Ph.Hg.VIII. Ph.Eur.6.3-1 01/2009:20901 2.9.1. TABLETTÁK ÉS KAPSZULÁK SZÉTESÉSE A szétesésvizsgálattal azt határozzuk meg, hogy az alábbiakban leírt kísérleti körülmények
Optikai alapmérések. Mivel több mérésről van szó, egyesével írom le és értékelem ki őket. 1. Törésmutató meghatározása a törési törvény alapján
Optikai alapmérések Mérést végezte: Enyingi Vera Atala Mérőtárs neve: Fábián Gábor (7. mérőpár) Mérés időpontja: 2010. október 15. (12:00-14:00) Jegyzőkönyv leadásának időpontja: 2010. október 22. A mérés
Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése
Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése (Mérési jegyzőkönyv) Hagymási Imre 2007. március 19. (hétfő délelőtti csoport) 1. Mikroszkóp vizsgálata 1.1. A mérés
Feladatlap X. osztály
Feladatlap X. osztály 1. feladat Válaszd ki a helyes választ. Két test fajhője közt a következő összefüggés áll fenn: c 1 > c 2, ha: 1. ugyanabból az anyagból vannak és a tömegük közti összefüggés m 1
1.1 Hasonlítsa össze a valós ill. ideális folyadékokat legfontosabb sajátosságaik alapján!
Kérem, þ jellel jelölje be képzését! AKM VBK Környezetmérnök BSc AT0 Ipari termék- és formatervező BSc AM0 Mechatronikus BSc AM Mechatronikus BSc ÁRAMLÁSTAN. FAKULTATÍV ZH 203.04.04. KF8 Név:. NEPTUN kód:
Geometriai Optika (sugároptika)
Geometriai Optika (sugároptika) - Egyszerû optikai eszközök, ahogy már ismerjük õket - Mi van ha egymás után tesszük: leképezések egymásutánja (bonyolult) - Gyakorlatilag fontos eset: paraxiális közelítés
Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53
Reakciókinetika 9-1 A reakciók sebessége 9-2 A reakciósebesség mérése 9-3 A koncentráció hatása: a sebességtörvény 9-4 Nulladrendű reakció 9-5 Elsőrendű reakció 9-6 Másodrendű reakció 9-7 A reakciókinetika
Fizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz
Fizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz A házi feladatok beadhatóak vagy papír alapon (ez a preferált), vagy e-mail formájában is az rkinhazi@gmail.com címre. E-mail esetén ügyeljetek a
A gradiens törésmutatójú közeg I.
10. Előadás A gradiens törésmutatójú közeg I. Az ugrásszerű törésmutató változással szemben a TracePro-ban lehetőség van folytonosan változó törésmutatójú közeg definiálására. Ilyen érdekes típusú közegek
A II. kategória Fizika OKTV mérési feladatainak megoldása
Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett
Optika gyakorlat 1. Fermat-elv, fénytörés, reexió sík és görbült határfelületen. Fermat-elv
Optika gyakorlat 1. Fermat-elv, fénytörés, reexió sík és görbült határfelületen Kivonat Geometriai optika: közelítés, amely a fényterjedést, közeghatáron való áthaladást geometriai alakzatok görbék segítségével
5.1. ábra. Ábra a 36A-2 feladathoz
5. Gyakorlat 36A-2 Ahogyan a 5. ábrán látható, egy fénysugár 5 o beesési szöggel esik síktükörre és a 3 m távolságban levő skálára verődik vissza. Milyen messzire mozdul el a fényfolt, ha a tükröt 2 o
A fény visszaverődése
I. Bevezető - A fény tulajdonságai kölcsönhatásokra képes egyenes vonalban terjed terjedési sebessége függ a közeg anyagától (vákuumban 300.000 km/s; gyémántban 150.000 km/s) hullám tulajdonságai vannak
A mikroszkóp vizsgálata Lencse görbületi sugarának mérése Newton-gyűrűkkel Folyadék törésmutatójának mérése Abbe-féle refraktométerrel
A mikroszkóp vizsgálata Lencse görbületi sugarának mérése Newton-gyűrűkkel Folyadék törésmutatójának mérése Abbe-féle refraktométerrel Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina
2. mérés Áramlási veszteségek mérése
. mérés Áramlási veszteségek mérése A mérésről készült rövid videó az itt látható QR-kód segítségével: vagy az alábbi linken érhető el: http://www.uni-miskolc.hu/gepelemek/tantargyaink/00b_gepeszmernoki_alapismeretek/.meres.mp4
Az úszás biomechanikája
Az úszás biomechanikája Alapvető összetevők Izomerő Kondíció állóképesség Mozgáskoordináció kivitelezés + Nem levegő, mint közeg + Izmok nem gravitációval szembeni mozgása + Levegővétel Az úszóra ható
Elektrotechnika. Ballagi Áron
Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:
Biofizika szeminárium. Diffúzió, ozmózis
Biofizika szeminárium Diffúzió, ozmózis I. DIFFÚZIÓ ORVOSI BIOFIZIKA tankönyv: III./2 fejezet Részecskék mozgása Brown-mozgás Robert Brown o kísérlet: pollenszuszpenzió mikroszkópos vizsgálata o megfigyelés:
Az Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
Az α értékének változtatásakor tanulmányozzuk az y-x görbe alakját. 2 ahol K=10
9.4. Táblázatkezelés.. Folyadék gőz egyensúly kétkomponensű rendszerben Az illékonyabb komponens koncentrációja (móltörtje) nagyobb a gőzfázisban, mint a folyadékfázisban. Móltört a folyadékfázisban x;
Mekkora az égés utáni elegy térfogatszázalékos összetétele
1) PB-gázelegy levegőre 1 vonatkoztatott sűrűsége: 1,77. Hányszoros térfogatú levegőben égessük, ha 1.1. sztöchiometrikus mennyiségben adjuk a levegőt? 1.2. 100 % levegőfelesleget alkalmazunk? Mekkora
Lánghegesztés és lángvágás
Dr. Németh György főiskolai docens Lánghegesztés és lángvágás 1 Lánghegesztés Acetilén (C 2 H 2 ) - oxigén 1:1 keveréke 3092 C 0 magas lánghőmérséklet nagy terjedési sebesség nagy hőtartalom jelentéktelen
1.1 Emisszió, reflexió, transzmisszió
1.1 Emisszió, reflexió, transzmisszió A hőkamera által észlelt hosszú hullámú sugárzás - amit a hőkamera a látómezejében érzékel - a felület emissziójának, reflexiójának és transzmissziójának függvénye.
Fényhullámhossz és diszperzió mérése
Fényhullámhossz és diszperzió mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 11/09/011 Beadás ideje: 11/16/011 1 1. A mérés rövid leírása
Porrobbanás elleni védelem. Villamos berendezések kiválasztása
Porrobbanás elleni védelem Villamos berendezések kiválasztása Villamos berendezések kiválasztása Por fajtája Robbanásveszélyes atmoszféra fellépésének valószínűsége 31 Por fajtája Por minimális gyújtási
Tömegpontok mozgása egyenes mentén, hajítások
2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel
Hang terjedési sebességének meghatározása állóhullámok vizsgálata Kundt csőben
Hang terjedési sebességének meghatározása állóhullámok vizsgálata Kundt csőben Akusztikai állóhullámok levegőben vagy egyéb gázban történő vizsgálatához és azok hullámhosszának meghatározására alkalmas
Osztályozó vizsga anyagok. Fizika
Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes
Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye
Folyadékok áramlása Folyadékok Folyékony halmazállapot nyíróerő hatására folytonosan deformálódik (folyik) Folyadék Gáz Plazma Talián Csaba Gábor PTE ÁOK, Biofizikai Intézet 2012.09.12. Folyadék Rövidtávú
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 16 XVI A DIFFERENCIÁLSZÁmÍTÁS ALkALmAZÁSAI 1 Érintő ÉS NORmÁLIS EGYENES, L HOSPITAL-SZAbÁLY Az görbe abszcisszájú pontjához tartozó érintőjének egyenlete (1), normálisának egyenlete
TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI II. Ismerjük fel, hogy többkomponens fázisegyensúlyokban a folyadék fázisnak kitüntetett szerepe van!
TÖKOMPONENS RENDSZEREK FÁZISEGYENSÚLYI II Ismerjük fel hogy többkomonens fázisegyensúlyokban a folyadék fázisnak kitüntetett szeree van! Eddig: egymásban korátlanul oldódó folyadékok folyadék-gz egyensúlyai
Áramlástechnikai mérések
Áramlástehnikai mérések Mérés Prandtl- ső segítségével. Előző tanulmányaikból ismert: A kontinuitás elve: A A Ahol: - a közeg sebessége az. pontban - a közeg sebessége a. pontban A, A - keresztmetszetek
Elektromágneses hullámok - Interferencia
Bevezetés a modern fizika fejezeteibe 2. (d) Elektromágneses hullámok - Interferencia Utolsó módosítás: 2012 október 18. 1 Interferencia (1) Mi történik két elektromágneses hullám találkozásakor? Az elektromágneses
1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1
1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy
Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27
Az egyensúly 6'-1 6'-2 6'-3 6'-4 6'-5 Dinamikus egyensúly Az egyensúlyi állandó Az egyensúlyi állandókkal kapcsolatos összefüggések Az egyensúlyi állandó számértékének jelentősége A reakció hányados, Q:
Hőtechnikai berendezéskezelő Ipari olaj- és gáztüzelőberendezés T 1/5
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
Áramlástan feladatgyűjtemény. 3. gyakorlat Hidrosztatika, kontinuitás
Áramlástan feladatgyűjtemény Az energetikai mérnöki BSc és gépészmérnöki BSc képzések Áramlástan című tárgyához 3. gyakorlat Hidrosztatika, kontinuitás Összeállította: Lukács Eszter Dr. Istók Balázs Dr.
OPTIKA. Gömbtükrök képalkotása, leképezési hibák. Dr. Seres István
OPTIKA Gömbtükrök képalkotása, Dr. Seres István Tükrök http://www.mozaik.info.hu/mozaweb/feny/fy_ft11.htm Seres István 2 http://fft.szie.hu Gömbtükrök Domború tükör képalkotása Jellegzetes sugármenetek
Szá molá si feládáttí pusok á Ko zgázdásá gtán I. (BMEGT30A003) tá rgy zá rthelyi dolgozátá hoz
Szá molá si feládáttí pusok á Ko zgázdásá gtán I. (BMEGT30A003) tá rgy zá rthelyi dolgozátá hoz 1. feladattípus a megadott adatok alapján lineáris keresleti, vagy kínálati függvény meghatározása 1.1. feladat
Q 1 D Q 2 (D x) 2 (1.1)
. Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol
. T É M A K Ö R Ö K É S K Í S É R L E T E K
T É M A K Ö R Ö K ÉS K Í S É R L E T E K Fizika 2018. Egyenes vonalú mozgások A Mikola-csőben lévő buborék mozgását tanulmányozva igazolja az egyenes vonalú egyenletes mozgásra vonatkozó összefüggést!
Gáztörvények tesztek
Gáztörvények tesztek. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik gázmennyiség jellemzői,,, a másiké,,. A két tartályt összenyitjuk. Melyik állítás igaz?
Gáztörvények tesztek. 2. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik
Gáztörvények tesztek. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik gázmennyiség jellemzői,,, a másiké,,. A két tartályt összenyitjuk. Melyik állítás igaz?
Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)
1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú
azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra
4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra
A PLAZMASUGARAS ÉS VÍZSUGARAS TECHNOLÓGIA VIZSGÁLATA SZERKEZETI ACÉL VÁGÁSAKOR
A PLAZMASUGARAS ÉS VÍZSUGARAS TECHNOLÓGIA VIZSGÁLATA SZERKEZETI ACÉL VÁGÁSAKOR Készítette: TÓTH ESZTER A5W9CK Műszaki menedzser BSc. TUDOMÁNYOS DIÁKKÖRI DOLGOZAT CÉLJA Plazmasugaras és vízsugaras technológia
Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz
Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas
9. Fényhullámhossz és diszperzió mérése jegyzőkönyv
9. Fényhullámhossz és diszperzió mérése jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 008. 11. 1. Leadás dátuma: 008. 11. 19. 1 1. A mérési összeállítás A méréseket speciális szögmérő eszközzel
Közgazdaságtan alapjai. Dr. Karajz Sándor Gazdaságelméleti Intézet
Közgazdaságtan alapjai Dr. Karajz Sándor Gazdaságelméleti 10. Előadás Makrogazdasági kínálat és egyensúly Az előadás célja A makrogazdasági kínálat levezetése a következő feladatunk. Ezt a munkapiaci összefüggések
F-1 típusú deflagrációzár (robbanászár) -Gépkönyv-
Az F- típusú deflagrációzár rendeltetése A Földfém Kft. által gyártott F- típusú deflagrációzárak kielégítik az MSZ EN 2874:200 számú szabványban rögzített robbanászárakkal szemben támasztott követelményeket.
MÉRÉSI JEGYZİKÖNYV. A mérési jegyzıkönyvet javító oktató tölti ki! Mechatronikai mérnök Msc tananyagfejlesztés TÁMOP
MÉRÉSI JEGYZİKÖNYV Katalizátor hatásfok Tanév/félév Mérés dátuma Mérés helye Jegyzıkönyvkészítı e-mail cím Neptun kód Mérésvezetı oktató Beadás idıpontja Mechatronikai mérnök Msc tananyagfejlesztés TÁMOP-4.1.2.A/1-11/1-2011-0042
11. Előadás Gradiens törésmutatójú közeg II.
11. Előadás Gradiens törésmutatójú közeg II. A következőkben két különleges, gradiens törésmutatójú lencsével fogunk foglalkozni, az úgynevezett Luneburg-féle lencsékkel. Annak is két típusával: a Maxwell-féle
- abszolút törésmutató - relatív törésmutató (más közegre vonatkoztatott törésmutató)
OPTIKAI MÉRÉSEK A TÖRÉSMUTATÓ Törésmutató fenomenologikus definíció geometriai optika eszköztára (pl. fénysugár) sini c0 n 1 = = = ( n1,0 ) c sin r c 0, c 1 = fény terjedési sebessége vákuumban, illetve
Háromsugaras infrasorompó 8 választható frekvenciával HASZNÁLATI UTASÍTÁS
Háromsugaras infrasorompó 8 választható frekvenciával HASZNÁLATI UTASÍTÁS 1. Műszaki adatok Érzékelési távolság 50m 75m 100m 150m 200m 250m 150m 225m 300m 450m 600m 750m Érzékelő sugarak
Elektrooptikai effektus
Elektrooptikai effektus Alapelv: A Pockels effektus az a jelenség, amikor egy eredendően kettőstörő anyag kettőstörő tulajdonsága megváltozik az alkalmazott elektromos tér hatására, és a változás lineáris
Hőtan I. főtétele tesztek
Hőtan I. főtétele tesztek. álassza ki a hamis állítást! a) A termodinamika I. főtétele a belső energia változása, a hőmennyiség és a munka között állaít meg összefüggést. b) A termodinamika I. főtétele
OPTIKA. Ma sok mindenre fény derül! /Geometriai optika alapjai/ Dr. Seres István
Ma sok mindenre fény derül! / alapjai/ Dr. Seres István Legkisebb idő Fermat elve A fény a legrövidebb idejű pályán mozog. I. következmény: A fény a homogén közegben egyenes vonalban terjed t s c minimális,
Az elektron hullámtermészete. Készítette Kiss László
Az elektron hullámtermészete Készítette Kiss László Az elektron részecske jellemzői Az elektront Joseph John Thomson fedezte fel 1897-ben. 1906-ban Nobel díj! Az elektronoknak, az elektromos és mágneses
ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VEGYIPAR ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ
VEGYIPAR ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ 1. feladat 8 pont A mérőműszerek felépítése A mérőműszer mely részére vonatkozik az alábbi állítás? Írja
1. ábra. 24B-19 feladat
. gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,
Optika gyakorlat 1. Fermat-elv, fénytörés, reflexió sík és görbült határfelületen
Optika gyakorlat 1. Fermat-elv, fénytörés, reflexió sík és görbült határfelületen Kivonat Geometriai optika: közelítés, amely a fényterjedést, közeghatáron való áthaladást geometriai alakzatok görbék segítségével
Jelölt válaszai Prof. Mizsei János Opponens megjegyzéseire és kérdéseire
Jelölt válaszai Prof. Mizsei János Opponens megjegyzéseire és kérdéseire Köszönöm Mizsei János Professzor Úrnak a dolgozat rendkívül részletes áttanulmányozását. 1) Az oldalszámokhoz kapcsolódó megjegyzéseket
3. Gyakorlat Áramlástani feladatok és megoldásuk
3 Gyakorlat Áramlástani feladatok és megoldásuk 681 Feladat Adja meg Kelvin és Fahrenheit fokban a T = + 73 = 318 K o K T C, T = 9 5 + 3 = 113Fo F T C 68 Feladat Adja meg Kelvin és Celsius fokban a ( T
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő, a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő
Optika gyakorlat 5. Gyakorló feladatok
Optika gyakorlat 5. Gyakorló feladatok. példa: Leképezés - Fruzsika játszik Fruzsika több nagy darab ívelt üveget tart maga elé. Határozd meg, hogy milyen típusú objektívek (gyűjtő/szóró) ezek, és milyen
1. ábra Tükrös visszaverődés 2. ábra Szórt visszaverődés 3. ábra Gombostű kísérlet
A kísérlet célkitűzései: A fény visszaverődésének kísérleti vizsgálata, a fényvisszaverődés törvényének megismerése, síktükrök képalkotásának vizsgálata. Eszközszükséglet: szivacslap A/4 írólap vonalzó,