Dinamikus programozás
|
|
- Zsombor Vörös
- 8 évvel ezelőtt
- Látták:
Átírás
1 12. ábra: A téglák kiválasztása a portok mellett Könyvészet c-bricxcc/ LEGO Mindstorms EV3 Felhasználói útmutató ( LEGO MINDSTORMS EV3 Home Edition súgó Kovács Lehel István Dinamikus programozás I. rész 1801-ben Karácsonyra, Thomas Jefferson, az Amerikai Egyesült Államok akkori elnöke levelet kapott egyik matematikus barátjától, Robert Patterson-tól, aki egy általa tökéletesnek nevezett titkosítási rendszerről számolt be. Jefferson nyilván nem tudta fel /2
2 törni a tökéletes rendszert, és az ezt követő 200 évben mások sem, viszont a közelmúltban egy Lawren Smithline nevű matematikusnak, számítógépes programok segítségével, sikerült. Mi a közös ebben a történetben, a felhőkarcolók liftjeinek ütemezési problémáiban, a vonalkód-generálásban, a nagy halháborúban, és a sakk-végjátékokban. E területek mindenikén alkalmazták már a dinamikus programozást optimalizálási problémák megoldására. 1. ábra A dinamikus programozás néhány alkalmazási területe A dinamikus programozást mint optimalizálási módszert Richard Bellman javasolta a múlt század közepén, és az óta számos tudományterületen nyert jelentős alkalmazást. A dinamikus programozásos feladatokat többféleképpen is osztályozhatjuk: diszkrét/folytonos, determinisztikus/sztochasztikus, véges/végtelen horizontú, stb. Középiskolában általában diszkrét, determinisztikus, véges horizontú problémákat vizsgálnak. Milyen feladatok oldhatók meg dinamikus programozással? Számos programozási feladat megoldása feltételezi a feladatnak hasonló, egyszerűbb részfeladataira való lebontását. A cél általában az, hogy a részfeladatok megoldásaiból építsük fel az eredeti feladat megoldását (vagy megoldásait). Feladatokat bontunk le, és megoldásokból építkezünk. A bontás és építés ellentétes irányú műveletek. A bontás a triviális részfeladatok (megoldásuk a feladat input adataiból triviálisan adódik) szintjéig történik, az építkezés pedig erről a szintről indul. Gyakori eset, hogy a feladat többféleképpen is lebontható részfeladataira. A különböző lebontások szerkezetei meghatározzák a rájuk épülő megoldások felépítését. Bár a hangsúly a megoldások felépítésén van, az építkezési irányokat a bontási vonalak határozzák meg. Egy apa-feladat megoldásai azon fiú-részfeladatok megoldásaiból építhetők fel, amelyek az illető apa-feladat közvetlen lebontásából adódnak. Úgy is fogalmazhatnánk, hogy ahhoz, hogy le tudjuk programozni a megoldás-építés folyamatát, át kell, /2 29
3 hogy lássuk a feladat szerkezetét (ez általában azt feltételezi, hogy legalább gondolatban lebontjuk a feladatot részfeladataira). A dinamikus programozással megoldható feladatok egyik jellemzője, hogy a lebontásukból származó különböző részfeladatok száma a bemenet méretének polinom függvénye. Ez, általában, abból adódik, hogy a lebontásból származó exponenciálisan sok részfeladat közül számottevően sok azonos. Amennyiben optimalizálási problémáról van szó, akkor egy másik követelmény az, hogy a feladatra igaz legyen az optimalizálás alapelve, miszerint az optimális megoldás optimális részmegoldásokból épül fel. Ez garanciát jelent arra vonatkozón, hogy az optimális megoldás felépíthető a részfeladatok optimális megoldásaiból. Ez azért annyira lényeges, mert ily módon elegendő minden részfeladatnak csak az optimális megoldását (az ezt képviselő optimum-értéket) tárolni, ami csupán polinom-sok értéket jelent. A tárolás (rendszerint egy-, két-, vagy többdimenziós tömbben) stratégiailag is fontos, mert ezzel elkerülhető a részfeladatok többszöri megoldása (amennyiben, a megoldási folyamat alatt többször is találkoznánk ugyanazzal a részfeladattal). Természetesen, az optimális megoldás felépítése azt is feltételezi, hogy azoptimális részmegoldásokból optimális módon építkezzünk (akkor lesz optimális épületünk, ha optimális anyagokat optimális módon építünk össze). Az optimális építkezés módját matematikailag egy rekurzív képlettel szokás megadni, amelyen belül az optimalizálás egy minimum vagy maximum függvényben fogalmazódik meg. A fentiekkel összhangban a dinamikus programozás lentről-felfelé (egyszerűtől a bonyolult felé) építkezést jelent: kiindulva a triviálisan egyszerű részfeladatok nyilvánvaló optimális megoldásaiból, felépítjük lépésről-lépésre az egyre bonyolultabb részfeladatok optimális megoldásait, végül az eredeti feladatét. Ez általában annyit jelent, hogy az optimum-értékeket tároló tömb triviális részfeladatokat képviselő, implicite kitöltött celláitól elindulva egyre több szomszédos cellát töltünk ki (a rekurzív képlet alapján), míg végül ki tudjuk tölteni az eredeti feladatot képviselő cellát is. Ha minden egyes cellában nemcsak az optimum-értéket tároljuk, hanem kódoljuk az optimális döntést is, amely ezt szolgáltatta, akkor az optimum-értékek tömbjéből egy az egyben visszaolvasható lesz az optimális döntéssorozat is, amely az optimális megoldást eredményezte. Akkor is részfeladatokként egy értékkel van dolgunk, ha olyan feladatot oldunk meg, amelyben a megoldások száma érdekel. Tehát egy másik feladatcsalád, amely dinamikus programozással megoldható: a megszámlálási feladatok. Itt is feltétel, hogy az eredeti feladat polinom-sok hasonló, egyszerűbb részfeladatra legyen lebontható. Ez esetben, mivelhogy nem optimalizálásról van szó, a rekurzív képlet nem fog minimum vagy maximum függvényt tartalmazni. Recept dinamikus programozásos feladatmegoldáshoz Az előbbi gondolatsor egy 5 lépéses dinamikus programozásos feladat-megoldási módszert sugall. Szemléltetésül tekintsük azt a feladatot, amikor egy virágüzlet kirakatában van m váza (1, 2,, m sorrendben) és ezekbe úgy kell elhelyezni az 1, 2,, n virágokat (ebben a sorrendben; n m), hogy az esztétikai összhatás maximális legyen. (Az e[1..n,1..m] tömb e[i,j] cellája azt tárolja, hogy az i virág a j vázában milyen esztétikai hatást kelt; az üresen maradt vázák esztétikai hatása nulla) (Nemzetközi Informatika Olimpiász, Törökország, 1999) /2
4 e ábra Példa 3 virágra és 5 vázára. Az optimális megoldás: 1. váza üres; 2. vázába 1. virág; 3. váza üres; 4. vázába 2. virág; 5. vázába 3. virág. A maximális esztétikai összhatás: Meghatározzuk a részfeladatok általános alakját. Ha egy adott példára, gondolatban, lefutatjuk a részfeladatokra bontás folyamatát, akkor ez segíthet érzékelni, hogy mi az általános alak (egy paraméteres alak, amely általánosan jellemzi a lebontásból adódó összes részfeladatot). Elgondolkodhatunk azon is, hogy mely paraméterértékekre kapunk triviálisan egyszerű részfeladatokat, illetve mely értékek eredményezik az eredeti feladatot. Milyen irányú paraméter-értékváltozás jelenti a lentről-felfelé építkezést? Általános alak: az 1...i virágok optimális elhelyezése az 1...j vázákba (0 i n, i j mn+i). Az i. virágnem kerülhet az i. vázánál előbbre, illetve az (m-(n-i))-edik vázánál hátrább (hogy maradjon hely a fennmaradt n-i virágnak is) Optimum-érték: az optimális elhelyezés keltette esztétikai összhatás értéke. Optimális megoldás: az optimális elhelyezés módja. Triviális részfeladatok: i=0 (nulla virág elhelyezése bármennyi vázába); i=j (ugyanannyi a virág, mint a váza). Eredeti feladat: i=n, j=m. Lentről felfelé irány: i és j növekednek. 2. Hol tároljuk a részfeladatok optimális megoldásait képviselő optimum értékeket? Általában, ahány független paramétert tartalmaz az általános alak, annyi dimenziós tömbre lesz szükségünk. Mely cellák fogják tárolni a triviális részfeladatok optimum-értékeit, és melyik az eredeti feladatét? Optimum-értékek tömbje: c[0...n,0...m] 2-dimenziós tömb satírozott területe (i=1...n, j=i...m-n+i). (lásd 3. ábra) Triviális részfeladatokat képviselő cellák: c[0,j], j=0, m-n; c[i,i], i=0..n. Eredeti feladatot képviselő cella: c[n,m]. 3. Meghatározunk egy általános rekurzív képletet, amely matematikailag leírja az optimális építkezés módját: az optimumok tömbje valamely apa-cellája, mely közvetlen fiú-cellák értékeitől, milyen módon függ(het)? Segíthet átlátni a képletet, ha érzékeljük egy általános apa-feladat megoldása feltételezte lentről-felfelé döntéssorozat utolsó döntését, azt, amely a lebontásából adódó közvetlen fiú-részfeladatokra támaszkodik. Utolsó döntés az (i,j) feladatot illetően: (1) az i. virág a j. vázába kerül, vagy (2) a j. váza üresen marad. Az első változat esetében a fiú-részfeladat: (i-1,j-1) (1...i /2 31
5 virágok optimális elhelyezése az 1...j-1 vázákba). A második esetben az (i,j-1) fiúrészfeladhoz jutunk: 1...i virágok optimális elhelyezése az 1...j-1 vázákba. A képlet optimalizálási ága: c[i,j] = max{c[i-1,j-1] + e[i,j]; c[i,j-1]}, i=1...n, j=i+1...m-n+i. A képlet triviális ágai: c[0,j] = 0; c[i,i] = c[i-1,i-1] + e[i,i], i=1...n. 4. Megírjuk az iteratív algoritmust, amely a rekurzív képlet alapján ( lentrőlfelfelé irányba) feltölti az optimum-értékek tömbjét. minden j 0 m-n végezd c[0,j] 0 minden i 1 n végezd c[i,i] c[i-1,i-1] + e[i,i] minden i 1 n végezd minden j i+1 m-n+i végezd ha c[i-1,j-1] + e[i,j] > c[i,j-1] akkor c[i,j] c[i-1,i-1] + e[i,j] különben c[i,j] c[i,i-1] vége ha 5. Az optimum-tömbből kiolvassuk ( fentről-lefelé irányba) az optimális döntéssorozatot (amely az optimális megoldást eredményezi). 3. ábra A feltöltött c tömb, amelyből visszaolvasható (mohó módon) az optimális döntéssorozat (világosszürke: triviális szegély ; sötétszürke: célcella) Mivel a dinamikus programozásos feladatok igen sokszínűek lehetnek, miként lehetne mégis úgy összeválogatni néhány példafeladatot, hogy azok egy viszonylag átfogó képet nyújtsanak? Erről szól majd a következő rész. Kátai Zoltán, Sapientia-EMTE, Matematika-informatika Tanszék /2
Programozási módszertan. Mohó algoritmusok
PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás
Általános algoritmustervezési módszerek
Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás
Dinamikus programozás - Szerelőszalag ütemezése
Dinamikus programozás - Szerelőszalag ütemezése A dinamikus programozás minden egyes részfeladatot és annak minden részfeladatát pontosan egyszer oldja meg, az eredményt egy táblázatban tárolja, és ezáltal
Programozási módszertan. Dinamikus programozás: A leghosszabb közös részsorozat
PM-07 p. 1/13 Programozási módszertan Dinamikus programozás: A leghosszabb közös részsorozat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-07
Optimalizációs stratégiák 1.
Optimalizációs stratégiák 1. Nyers erő, Oszd meg és uralkodj, Feljegyzéses, Dinamikus, Mohó előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János
Programozás alapjai. 6. gyakorlat Futásidő, rekurzió, feladatmegoldás
Programozás alapjai 6. gyakorlat Futásidő, rekurzió, feladatmegoldás Háziellenőrzés Egészítsd ki úgy a simplemaths.c programot, hogy megfelelően működjön. A program feladata az inputon soronként megadott
Algoritmizálás, adatmodellezés tanítása 8. előadás
Algoritmizálás, adatmodellezés tanítása 8. előadás Elágazás és korlátozás A backtrack alkalmas-e optimális megoldás keresésére? Van költség, és a legkisebb költségű megoldást szeretnénk előállítani. Van
Dinamikus programozás II.
Dinamikus programozás II. Dinamikus programozás stratégiája A dinamikus programozás stratégiája 1. Az [optimális] megoldás szerkezetének tanulmányozása. 2. Részproblémákra és összetevőkre bontás úgy, hogy:
Programozási módszertan. Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat
PM-04 p. 1/18 Programozási módszertan Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu
Assignment problem Hozzárendelési feladat (Szállítási feladat speciális esete)
Assignment problem Hozzárendelési feladat (Szállítási feladat speciális esete) C költség mátrix költség Munkákat hozzá kell rendelni gépekhez: egy munka-egy gép c(i,j) mennyi be kerül i-dik munka j-dik
További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás
További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás Készítette: Dr. Ábrahám István Hiperbolikus programozás Gazdasági problémák optimalizálásakor gyakori, hogy
Optimumkeresés számítógépen
C Optimumkeresés számítógépen Az optimumok megtalálása mind a gazdasági életben, mind az élet sok más területén nagy jelentőségű. A matematikában számos módszert dolgoztak ki erre a célra, például a függvények
A 2007/2008 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása. II. (programozás) kategória
Oktatási Hivatal A 2007/2008 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása II. (programozás) kategória Kérjük a tisztelt tanár kollégákat, hogy a dolgozatokat az egységes
egy szisztolikus példa
Automatikus párhuzamosítás egy szisztolikus példa Áttekintés Bevezetés Példa konkrét szisztolikus algoritmus Automatikus párhuzamosítási módszer ötlet Áttekintés Bevezetés Példa konkrét szisztolikus algoritmus
2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 8. Előadás Bevezetés Egy olyan LP-t, amelyben mindegyik változó egészértékű, tiszta egészértékű
Visszalépéses keresés
Visszalépéses keresés Backtracking előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Alapvető működése Továbbfejlesztési
Felvételi tematika INFORMATIKA
Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.
A 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató INFORMTIK II. (programozás) kategória Kérjük a tisztelt tanár kollégákat, hogy a dolgozatokat
Struktúra nélküli adatszerkezetek
Struktúra nélküli adatszerkezetek Homogén adatszerkezetek (minden adatelem azonos típusú) osztályozása Struktúra nélküli (Nincs kapcsolat az adatelemek között.) Halmaz Multihalmaz Asszociatív 20:24 1 A
Programozási módszertan. Dinamikus programozás: szerelőszalag ütemezése Mátrixok véges sorozatainak szorzása
PM-06 p. 1/28 Programozási módszertan Dinamikus programozás: szerelőszalag ütemezése Mátrixok véges sorozatainak szorzása Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu
Totális Unimodularitás és LP dualitás. Tapolcai János
Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni
Partíció probléma rekurzíómemorizálással
Partíció probléma rekurzíómemorizálással A partíciószám rekurzív algoritmusa Ω(2 n ) műveletet végez, pedig a megoldandó részfeladatatok száma sokkal kisebb O(n 2 ). A probléma, hogy bizonyos már megoldott
Fibonacci számok. Dinamikus programozással
Fibonacci számok Fibonacci 1202-ben vetette fel a kérdést: hány nyúlpár születik n év múlva, ha feltételezzük, hogy az első hónapban csak egyetlen újszülött nyúl-pár van; minden nyúlpár, amikor szaporodik
Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.
Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése
Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Dr. Kallós Gábor 2014 2015 1 Az Ordó jelölés Azt mondjuk, hogy az f(n) függvény eleme az Ordó(g(n)) halmaznak, ha van olyan c konstans (c
Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék
Ütemezési problémák Kis Tamás 1 1 MTA SZTAKI valamint ELTE, Operációkutatási Tanszék ELTE Problémamegoldó Szeminárium, 2012. ősz Kivonat Alapfogalmak Mit is értünk ütemezésen? Gépütemezés 1 L max 1 rm
INFORMATIKA javítókulcs 2016
INFORMATIKA javítókulcs 2016 ELMÉLETI TÉTEL: Járd körbe a tömb fogalmát (Pascal vagy C/C++): definíció, egy-, két-, több-dimenziós tömbök, kezdőértékadás definíciókor, tömb típusú paraméterek átadása alprogramoknak.
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Algoritmuselmélet 2. előadás
Algoritmuselmélet 2. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 12. ALGORITMUSELMÉLET 2. ELŐADÁS 1 Buborék-rendezés
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Dombi József Szegedi Tudományegyetem Bevezetés - ID3 (Iterative Dichotomiser 3) Az ID algoritmusok egy elemhalmaz felhasználásával
Matematikai modellezés
Matematikai modellezés Bevezető A diasorozat a Döntési modellek című könyvhöz készült. Készítette: Dr. Ábrahám István Döntési folyamatok matematikai modellezése Az emberi tevékenységben meghatározó szerepe
Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel
Navigáci ció és s mozgástervez stervezés Algoritmusok és alkalmazásaik Osváth Róbert Sorbán Sámuel Feladat Adottak: pálya (C), játékos, játékos ismerethalmaza, kezdőpont, célpont. Pálya szerkezete: akadályokkal
Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és
Összetett programozási tételek
Összetett programozási tételek 3. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 19. Sergyán (OE NIK) AAO 03 2011. szeptember
Algoritmusokfelülnézetből. 1. ELŐADÁS Sapientia-EMTE
Algoritmusokfelülnézetből 1. ELŐADÁS Sapientia-EMTE 2015-16 Algoritmus Az algoritmus kifejezés a bagdadi arab tudós, al-hvárizmi(780-845) nevének eltorzított, rosszul latinra fordított változatából ered.
Excel III. Haladó ismeretek
Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. Excel III. Haladó ismeretek Haladó szerkesztési ismeretek Az Excel számolótábla méretei Munkafüzet lap felosztása Sorok,
Érdekes informatika feladatok
A keres,kkel és adatbázissal ellátott lengyel honlap számos díjat kapott: Spirit of Delphi '98, Delphi Community Award, Poland on the Internet, Golden Bagel Award stb. Az itt megtalálható komponenseket
A 2015/2016 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal 2015/2016 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató INFORMTIK II. (programozás) kategória Kérjük a tisztelt tanár kollégákat, hogy a dolgozatokat
Egyszerű programozási tételek
Egyszerű programozási tételek 2. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 15. Sergyán (OE NIK) AAO 02 2011. szeptember 15.
Algoritmuselmélet. Bonyolultságelmélet. Katona Gyula Y.
Algoritmuselmélet Bonyolultságelmélet Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
Az MS Excel táblázatkezelés modul részletes tematika listája
Az MS Excel táblázatkezelés modul részletes tematika listája A táblázatkezelés alapjai A táblázat szerkesztése A táblázat formázása A táblázat formázása Számítások a táblázatban Oldalbeállítás és nyomtatás
Approximációs algoritmusok
Approximációs algoritmusok Nehéz (pl. NP teljes) problémák optimális megoldásának meghatározására nem tudunk (garantáltan) polinom idejű algoritmust adni. Lehetőségek: -exponenciális futási idejű algoritmus
Branch-and-Bound. 1. Az egészértéketű programozás. a korlátozás és szétválasztás módszere Bevezető Definíció. 11.
11. gyakorlat Branch-and-Bound a korlátozás és szétválasztás módszere 1. Az egészértéketű programozás 1.1. Bevezető Bizonyos feladatok modellezése kapcsán előfordulhat olyan eset, hogy a megoldás során
Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y.
Algoritmuselmélet Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem
Rendezések. Összehasonlító rendezések
Rendezések Összehasonlító rendezések Remdezés - Alapfeladat: Egy A nevű N elemű sorozat elemeinek nagyság szerinti sorrendbe rendezése - Feltételezzük: o A sorozat elemei olyanok, amelyekre a >, relációk
Konjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
A félév során előkerülő témakörök
A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok
Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,
Algoritmizálás, adatmodellezés tanítása 7. előadás
Algoritmizálás, adatmodellezés tanítása 7. előadás Oszd meg és uralkodj! Több részfeladatra bontás, amelyek hasonlóan oldhatók meg, lépései: a triviális eset (amikor nincs rekurzív hívás) felosztás (megadjuk
C++ programozási nyelv
C++ programozási nyelv Gyakorlat - 13. hét Nyugat-Magyarországi Egyetem Faipari Mérnöki Kar Informatikai Intézet Soós Sándor 2004. december A C++ programozási nyelv Soós Sándor 1/10 Tartalomjegyzék Objektumok
Gépi tanulás és Mintafelismerés
Gépi tanulás és Mintafelismerés jegyzet Csató Lehel Matematika-Informatika Tanszék BabesBolyai Tudományegyetem, Kolozsvár 2007 Aug. 20 2 1. fejezet Bevezet A mesterséges intelligencia azon módszereit,
Döntéselőkészítés. VII. előadás. Döntéselőkészítés. Egyszerű Kőnig-feladat (házasság feladat)
VII. előadás Legyenek adottak Egyszerű Kőnig-feladat (házasság feladat) I, I 2,, I i,, I m személyek és a J, J 2,, J j,, J n munkák. Azt, hogy melyik személy melyik munkához ért ( melyik munkára van kvalifikálva)
Vektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
A 2008/2009 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása. INFORMATIKÁBÓL II. (programozás) kategóriában
Oktatási Hivatal A 2008/2009 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása INFORMATIKÁBÓL II. (programozás) kategóriában Kérjük a tisztelt tanár kollégákat, hogy a
Algoritmusok és adatszerkezetek I. 3. előadás
Algoritmusok és adatszerkezetek I. 3. előadás Kupac A kupac olyan véges elemsokaság, amely rendelkezik az alábbi tulajdonságokkal: 1. Minden elemnek legfeljebb két rákövetkezője (leszármazottja) lehet.
A Szállítási feladat megoldása
A Szállítási feladat megoldása Virtuális vállalat 201-2014 1. félév 4. gyakorlat Dr. Kulcsár Gyula A Szállítási feladat Adott meghatározott számú beszállító (source) a szállítható mennyiségekkel (transportation
A 2016/2017 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal A 2016/2017 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató INFORMATIKA II. (programozás) kategória Kérjük a tisztelt tanár kollégákat, hogy a
Vektorterek. Több esetben találkozhattunk olyan struktúrával, ahol az. szabadvektorok esetében, vagy a függvények körében, vagy a. vektortér fogalma.
Vektorterek Több esetben találkozhattunk olyan struktúrával, ahol az összeadás és a (valós) számmal való szorzás értelmezett, pl. a szabadvektorok esetében, vagy a függvények körében, vagy a mátrixok esetében.
Programozás I. 1. előadás: Algoritmusok alapjai. Sergyán Szabolcs
Programozás I. 1. előadás: Algoritmusok alapjai Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember 7. Sergyán
Programozás alapjai II. (7. ea) C++ Speciális adatszerkezetek. Tömbök. Kiegészítő anyag: speciális adatszerkezetek
Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1
Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA
SZDT-03 p. 1/24 Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás
definiálunk. Legyen egy konfiguráció, ahol és. A következő három esetet különböztetjük meg. 1. Ha, akkor 2. Ha, akkor, ahol, ha, és egyébként.
Számításelmélet Kiszámítási problémának nevezünk egy olyan, a matematika nyelvén megfogalmazott kérdést, amire számítógéppel szeretnénk megadni a választ. (A matematika nyelvén precízen megfogalmazott
A 2017/2018 tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatai. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal A 217/218 tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatai 1. feladat: Csatornák (24 pont) INFORMATIKA II. (programozás) kategória Egy város csomópontjait csatornahálózat
SZÁMÍTÁSOK A TÁBLÁZATBAN
SZÁMÍTÁSOK A TÁBLÁZATBAN Az Excelben az egyszerű adatok bevitelén kívül számításokat is végezhetünk. Ezeket a cellákba beírt képletek segítségével oldjuk meg. A képlet: olyan egyenlet, amely a munkalapon
C programozási nyelv Pointerek, tömbök, pointer aritmetika
C programozási nyelv Pointerek, tömbök, pointer aritmetika Dr. Schuster György 2011. június 16. C programozási nyelv Pointerek, tömbök, pointer aritmetika 2011. június 16. 1 / 15 Pointerek (mutatók) Pointerek
A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/
Operációkutatás I. 2018/2019-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y.
Algoritmuselmélet Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem
Dinamikus programozás vagy Oszd meg, és uralkodj!
Dinamikus programozás Oszd meg, és uralkodj! Mohó stratégia Melyiket válasszuk? Dinamikus programozás vagy Oszd meg, és uralkodj! Háromszögfeladat rekurzívan: c nj := a nj ha 1 j n c ij := a ij + max{c
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.
2018, Diszkrét matematika
Diszkrét matematika 3. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számtartományok: természetes
Áttekintés LP és geometria Többcélú LP LP és egy dinamikus modell 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 6. Előadás Áttekintés Kezdjük újra a klasszikus erőforrás allokációs problémával (katonák,
A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
CSORDÁS JÁNOS: ALAPFÜGGVÉNYEK MICROSOFT OFFICE EXCEL-BEN BUDAPEST, DECEMBER 31. Alapfüggvények a Microsoft Office Excel-ben
1 CSORDÁS JÁNOS: ALAPFÜGGVÉNYEK MICROSOFT OFFICE EXCEL-BEN BUDAPEST, 2013. DECEMBER 31. Budapest-Fasori Evangélikus Gimnázium Csordás János 2013. v2. ALAPFÜGGVÉNYEK MICROSOFT OFFICE EXCEL-BEN I. Egyszerű
17. előadás: Vektorok a térben
17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett
Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 7. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát (vonat
BBTE Matek-Infó verseny mintatételsor Informatika írásbeli vizsga
BABEȘ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR A. tételsor (30 pont) 1. (5p) Tekintsük a következő alprogramot: Alprogram f(a): Ha a!= 0, akkor visszatérít: a + f(a - 1) különben visszatérít
1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008
Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 007/008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció i stratégiák Szemantikus hálók / Keretrendszerek
Deníciók és tételek a beugró vizsgára
Deníciók és tételek a beugró vizsgára (a szóbeli viszgázás jogáért) Utolsó módosítás: 2008. december 2. 2 Bevezetés Számítási problémának nevezünk egy olyan, a matematika nyelvén megfogalmazott kérdést,
Logikai áramkörök. Informatika alapjai-5 Logikai áramkörök 1/6
Informatika alapjai-5 Logikai áramkörök 1/6 Logikai áramkörök Az analóg rendszerekben például hangerősítő, TV, rádió analóg áramkörök, a digitális rendszerekben digitális vagy logikai áramkörök működnek.
Optimalizációs stratégiák 2.
Optimalizációs stratégiák 2. Visszalépéses keresés, szétválasztás és korlátozás előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai
Rekurzió. Működése, programtranszformációk. Programozás II. előadás. Szénási Sándor.
Rekurzió Működése, programtranszformációk előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Rekurzió Rekurzió alapjai Rekurzív
Algoritmizálás. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar
Algoritmizálás Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar horvath@inf.u-szeged.hu 0.1. Az algoritmikus tudás szintjei Ismeri (a megoldó algoritmust) Érti Le tudja pontosan
Speciális adatszerkezetek. Programozás alapjai II. (8. ea) C++ Tömbök. Tömbök/2. N dimenziós tömb. Nagyméretű ritka tömbök
Programozás alapjai II. (8. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT Speciális adatszerkezetek A helyes adatábrázolás választása, a helyes adatszerkezet
15. A VERSENYRENDEZÉS
15. A VERSENYRENDEZÉS A versenyrendezés (tournament sort) a maximum-kiválasztó rendezések közé tartozik, ugyanis az elemek közül újra és újra kiválasztja (eltávolítja és kiírja) a legnagyobbat. Az eljárás
Programozás I. Gyakorlás egydimenziós tömbökkel Többdimenziós tömbök Gyakorló feladatok V 1.0 ÓE-NIK-AII,
Programozás I. Gyakorlás egydimenziós tömbökkel Többdimenziós tömbök Gyakorló feladatok V 1.0 ÓE-NIK-AII, 2016 1 Hallgatói Tájékoztató A jelen bemutatóban található adatok, tudnivalók és információk a
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen
Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA
SZDT-04 p. 1/30 Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás
ANYAGÁRAMLÁS ÉS MŰSZAKI LOGISZTIKA
ANYAGÁRAMLÁS ÉS MŰSZAKI LOGISZTIKA Raktár készletek, raktározási folyamato ELŐADÁS I. é. Szabó László tanársegéd BME Közlekedésmérnöki és Járműmérnöki Kar Anyagmozgatási és Logisztikai Rendszerek Tanszék
Felvételi vizsga mintatételsor Informatika írásbeli vizsga
BABEȘ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR A. tételsor (30 pont) Felvételi vizsga mintatételsor Informatika írásbeli vizsga 1. (5p) Egy x biten tárolt egész adattípus (x szigorúan pozitív
VERSENYFELHÍVÁS. A verseny célja:
VERSENYFELHÍVÁS A Hajdúböszörményi Bocskai István Gimnázium, a Kecskeméti Bányai Júlia Gimnázium valamint a Nyugat-magyarországi Egyetem Informatikai és Gazdasági Intézete a Soproni Széchenyi István Gimnáziummal
Programozás C nyelven 6. ELŐADÁS. Sapientia EMTE
Programozás C nyelven 6. ELŐADÁS Sapientia EMTE 2015-16 ELJÁRÁSOK: void-függvények Olvassu k be szá ot a bille tyűzetről, és írassuk ki a égyzeteiket a képer yőre. int main(){ int n, i, szam; cin >> n;
2018, Diszkrét matematika
Diszkrét matematika 4. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számtartományok: racionális
2000 Szentendre, Bükköspart 74 WWW.MEVISOR.HU. MeviMR 3XC magnetorezisztív járműérzékelő szenzor
MeviMR 3XC Magnetorezisztív járműérzékelő szenzor MeviMR3XC járműérzékelő szenzor - 3 dimenzióban érzékeli a közelében megjelenő vastömeget. - Könnyű telepíthetőség. Nincs szükség az aszfalt felvágására,
A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató
Oktatási Hivatal A 0/04 tanévi Országos Középiskolai Tanulmányi erseny második forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 57 olyan háromjegyű szám, amelynek számjegyei
Információs Technológia
Információs Technológia Rekurzió, Fa adatszerkezet Fodor Attila Pannon Egyetem Műszaki Informatika Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2010. november 18. Rekurzió Rekurzió
AZ ALGORITMUS. az eredményt szolgáltatja
ALGORITMUSOK AZ ALGORITMUS Az algoritmus problémamegoldásra szolgáló elemi lépések olyan sorozata, amely a következő jellemzőkkel bír: Véges: véges számú lépés után befejeződik, és eredményt szolgáltat
Diszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
BACKTRACKING Visszalépéses keresés
BACKTRACKING Visszalépéses keresés I. rész A wiki.prog.hu weboldal az alábbi leírással vezeti fel a visszalépéses keresés algoritmus bemutatását: A visszalépéses keresés (Backtracking) olyan esetekben