Állapotváltozások: Állapotváltozások: Állapotváltozások: Állapotváltozások: Reális gázok: Gáztörvény ideális gázokra:
|
|
- Miklós Balázs
- 6 évvel ezelőtt
- Látták:
Átírás
1 Gáztövény ideális gázok: = nr vgy = R Ez z egyesített gáztövény (vgy ás néven) ideális gáz állotegyenlete. Az ideális gáz lényegében állot, s ne konkét nygi inőség (l. He ne ideális gáz, viszont kis nyoáson, gs hőésékleten szinte inden gáz ideálisn viselkedik.) A háo változós állotegyenlet háodienziós (tébeli) koodinátendszeben ábázolhtó. Az eedény: állotfelület (z dott gáz lehetséges állotink [,, egyidejű étékeinek] összessége) uljdonkéen végtelen sok izobá, izoszte vgy izoho összessége vgy ilyeneke bonthtó. A háo változós állotegyenlet háodienziós (tébeli) koodinátendszeben ábázolhtó. 4 együk észe: gázok állotváltozásánk tnulányozásko sk z állotjelzők étékeie, zok változásá fodítunk figyelet, és ne fogllkozunk zzl, hogy z állotváltozásokhoz ilyen enegiváltozások ksolódnk. Így l. ne vizsgáljuk, hogy ekko hőennyiség szükséges gáz hőésékletének eeléséhez, ennyi hő szbdul fel, h gáz hőéséklete sökken, ennyi unk szükséges gáz összenyoásához, Reális gázok: Áltlános tsztlt: tökéletes gázoknál tsztlt egyszeű egyenletek bizonyos köülények (ngy, kis ) között ne évényesek (z izote tozul, z egyenes elhjlik, = R egyenlőség ne áll fenn.) [Előszö vn vlilyen tsztlt, jd nnk ontos leíás, s ezt követ(het)i gyázt!] illetve ennyi unkát végez gáz, h kitejed. 5 6
2 Állotváltozások (eális gázok): Áltlános tsztlt: R Megoldás: Fejezzük ki (szászeűen), utssuk eg (l. lineizált ábán) z eltéés étékét. ökéletes gáz: =R, ebből /R = Reális gáz: /R, legyen /R = Z Z: koesszibilitási együtthtó (ivel z eltéések ngy koessziónál indig jelentkeznek) Ábázoljuk Z-t nyoás függvényében: hol ngyobb, hol kisebb, de hogy 0-hoz, úgy Z -hez. Z Boyle-hőéséklet: 0 0 Ezzel sk kiutttuk z eltéést, de ne ítuk le. 7 8 Menjünk tovább tökéletes gáz eális gáz vonlon. A - izoteák lsonybb -n egye tozulnk, jd eléünk egy olyn állothoz, hol gőz folydék htáfelület elosódik, eltűnik. Ez kitikus állot, z izoteán z ún. kitikus ont, i tetikilg egy inflexiós ont. A kitikus ont jellezői kitikus állotjelzők: : kitikus hőéséklet : kitikus nyoás : kitikus óltéfogt < < = = > > 9 0 eális gáz állotegyenletei Jó ötlet: ne keessünk új egyenletet, inkább ttsuk eg = R lkot, sk ódosítsuk. Az egyik tetiki ódsze viiál-együtthtók lklzás, ez viiál-egyenlet: = R( + B + C + ) vgy = R( + B / + C / + ) Ezzel z egyenletódosítássl ét dtok ontosn visszdhtók, de inden gáz, inden -n B és C étékeit eg kell éni kell! Étékelés: z egyenlet lkj egységes, konstnsok egéendő étékei ontosk, de függenek gáz inőségétől és étékeitől. iiál-egyenlet: = R( + B + C + ) vgy ylo-tétel (tetik): f(x) tetszőleges sokszo deiválhtó függvénye htványso df d f d f f x0 f x0 d x! d x! d x ehát Z int függvényée: dz d Z d Z Z Z 0 d! d! d dz d Z R R R d! R d
3 eális gáz állotegyenletei Jó ötlet: ne keessünk új egyenletet, inkább ttsuk eg = R lkot, sk ódosítsuk. A ásik jó ódsze: vn de Wls-egyenlet (több ehhez hsonló is vn, de ez legélszeűbb) idktikus lkj (et és koekiój jól látszik): b R Étékelés: két koekiós konstns ( és b) gázonként különböznek, de -től és -től jelentős ttoánybn függetlenek (tehát ne kell sok étéket éni és száon ttni). Ezét egyszeű! Mint látni fogjuk, konstnsok száétékei gázt lkotó olekulák tuljdonságivl gyázhtók, zokból levezethetők. Ezét szé! Néhány gáz vn de Wls-állndói Figyeljük eg: növekvő olizálhtóság és olekuléet htásá egye ngyobb koekió étéke! Molekul (d 6 b ol - ) b ( ol - ) He 0,046,8 H 0,45 6,5 H O 5,57 0,5 O,8,9 N,70 8,7 CH 4,0 4, C 6 H 6 (benzol) 8,8 9, 4 A kitikus állotjelzők és vn de Wls-állndók (, b) ksolt (ez ég indig foális): A kitikus ontbn szeinti első és ásodik deivált 0: 0 és R b R b R 6 4 b 0 8 7b 7bR R b R b 4 b R b b 5 ehát: = b = /(7b ) = 8/(7Rb) (kitikus állotjelzők z és b éteekkel) Z = / R = /8 (kitikus koesszibilitási együtthtó, nygi inőségtől független!) 6 A Boyle-hőésékleten: b R ZR Z 0 0 ZR b R Z R b ZR b R h = 0, kko Z = ZR Z R Polinoiális lk: Z R bz R ZR b Z R 0 7 A Boyle-hőésékleten: Z R bz R ZR b Z R 0 Iliit függvényként deiválv szeint állndó hőésékleten: Z Z Z R bz R bzr ZR Z Z R b ZR Null nyoáson (Z = ): 0 Z br Boyle RBoyle 0 Boyle br
4 Mxwell-szekesztés 9 0 Állotfelületek: vn de Wls-gáz ideális gáz gáz (MP) ( ol - ) (K) Boyle (K) Z Boyle / He 0,7 57 5,9,58 0,00 4,5 H,9 65,97 09,4 0,06, H O, , 66,6 0,0,57 O 5, ,6 4,5 0,86,66 N,9 90 6, 8,4 0,9,60 CH 4 4,60 98,6 90,6 5, 0,86,69 C 6 H 6 4, , 40, 0,68,8 vn de Wls-gáz 0,75,75 brk RK brk R A kététees állotegyenletek közül legjobbn közelíti vlóságot Z e / R b R A kitikus állotjelzők: b Z 0,7 4bR 4e b e Boyle-hőéséklet: Boyle 4 br 4 4
5 PR / bpr R bpr b PR gáz 0,7464,546 0,699 He 0,90 H : gázt lkotó olekulák entikus tényezője 0,0 Ne-Xe 0,000 v O 0,0 log0 h 0,7 N 0,040 CO 0,8 Z 0,074 CH OH 0,556 5 Megfelelő állotok tétele: Bevezetjük edukált állotjelzőket: = / = / = / H eális gázok edukált téfogt és hőéséklete egegyezik, kko zonos edukált nyoást fejtenek ki. A tétel ne d egyenletet! 6 Ideális gáz: vn de Wls: Redlih-Kwong: ieteii: 8 ( ) / e Ideális gáz: töegű, v sebességgel ozgó olekulák v iulzusuk és ½v kinetikus enegiájuk vn olekulák éete elhnygolhtó szbd úthosszhoz kéest ( olekulák töegontok) egyetlen kölsönhtás vn: ugls ütközés (zz vonzó és tszító htás elhnygolhtó). 7 8 Ideális gáz: A fl htó nyoás ételezése: flb ütköző észeskék fl eőleges iányú iulzus (v x ) egváltozik: égeedény: M M vgy M (óltöeg), = <v > / sebességnégyzet-átlg négyzetgyöke (et kinetikus enegi ½v ). Összevetés = R egyenlettel: hőéséklet észeskék kinetikus enegiájávl ányos: M R Az ideális gázok állotegyenletének levezetése! 9 Mi helyzet eális gázokbn? ott is töegű, véletlenszeűen ozgó olekulák vnnk, de ugltlnul ütköznek. Mivel olekulák között vonzó és tszító kölsönhtások is vnnk: -t koigálni kell! A nyoáskoekió gázészeskék közötti vonzó- és tszító htásokból eed. helyett ( + / ). z nygi inőségtől függ, -től ne. Mivel ngy nyoáson olekulák éete szbd úthosszhoz és téfogthoz kéest á ne hnygolhtó el, ezét -t is koigálni kell! A téfogtkoekió: olekulák téfogtávl ányos, b konstns. helyett ( b) lesz. b is függ z nygi inőségtől, -től viszont ne. 0 5
6 Sebességeloszlási függvények: Elkézelhető lenne, hogy inden olekulánk zonos sebessége. e ne így vn! A tökéletes gáz kinetikus elélete lján Mxwell zt kt, hogy gázolekulák sebességének jól definiált eloszlás vn: ez Mxwell-féle sebességeloszlás. f v 4 M R / v e Mv / R A függvény (ill. göbe) infoáióttl: kezdőont végont xiu vn szietikus göbe ltti teület(észek) htás z M htás A különféle sebességek: Legvlószínűbb sebesség: R * M Átlgsebesség: 8R 4 *, 8 * M Sebességnégyzet-átlg négyzetgyöke: v / R M * 5, * A tnteeben gázolekulák átlgsebességei hngsebességhez (~ 00 /s) hsonlók. Éthető: ennek évén tejed hng. Jelenség -gdiens -tnszot iffúzió Konentáió- Anyg- Hővezetés Hőéséklet- Enegi- iszkozitás Sebesség- Iulzus- Elekolitvezetés Elektoos oteniál- öltés- A tnszotjelenségek elvileg indháo fázisbn egvlósulnk, bá néhány kivétel vn (gázbn, szilád fázisbn nins elektolitvezetés). Itt sk olekulák vnnk ozgásbn, endsze vgy koszkoikus észei ninsenek: se konvekióvl, se keve(ed)éssel ne száolunk. iffúzió: észesketnszot Hővezetés: enegitnszot Elektolitos vezetés: töltéstnszot iszkozitás: iulzustnszot A tnszotjelenségek közös fogli: gdiens: vlely éte (,, E...) ne egyenletes, inhoogén eloszlás tében, nnk leglább egy iány ( tengelye ) entén. fluxus: egy dott sjátság (, v...) vándolásánk jellezője nnk egységnyi felületen, egységnyi idő ltt áthldt ennyisége. Jele: J(nyg, töltés stb.). dn J nyg dz N: észeskesűűség (észeskék szá egységnyi téfogtbn) 6
7 dn [J]: (db) - s - nygfluxus J nyg []: s - diffúziós együtthtó dz dn/dz: (db) -4 konentáiógdiens Fik I. tövénye: z nygfluxus ányos konentáiógdienssel. A konentáiókülönbség ételezhető kéii oteniál különbségeként is (ivel μ függ -től), itt μ kiegyenlítődése (zz z egyensúly eléése) diffúzióvl töténik. Gykolti jelentősége: l. nygozgások tljbn. Konvekió és folyás: koszkoikus! [J]: J d - s - enegifluxus J enegi [κ]: J K - - s - hővezetési együtthtó dz d/dz: K - hőésékleti gdiens Fik I. tövényéhez hsonlón: z enegifluxus ányos d/dz hőésékletgdienssel (Fouie tövénye). Jó hővezetők: féek (Ag, Cu, Au, Al), gyéánt Jó hőszigetelők: vákuu, CO, ehelytoll, űnyg, f Egy gykolti jelentőség: házk (flk, üvegek) hőszigetelése. Megkülönböztetünk olekuláis hővezetést, koszkoikus (konvektív) hőálást és fotonok hodozt hősugázást. J iulzus z dvx dz x: folydék és z iulzus eedeti hldási iány z: súlódás évén z iulzus ebben z x-e eőleges z iánybn tnszotálódik. [J]: kg - s - iulzusfluxus [η]: kg - s - viszkozitás(i együtthtó) P (oise) = 0, kg - s - dv x /dz: s - iulzusgdiens iffúziós együtthtók: 0-4 s - Hővezetési együtthtók: 0,0-0, J K - - s - iszkozitások: kg - s - Közees szbd úthossz: k B σ: ütközési htáskeesztetszet A és htás λ- kéletben kiegyenlíti egyást. Ütközési fluxus: Z w : z ütközések szá egységnyi felületen, egységnyi idő ltt Z w / k B Effúzió: gáz z edényből kis lyukon át külső vákuub lssn távozik ( lyuks utógui leeeszt: ne dudefekt!). [A vákuu viszonylgos, lényeg z egyiányú effúzió.] Gh-féle effúziós tövény: z effúzió sebessége fodítv ányos oláis töeg négyzetével (koábbn óltöeg eghtáozás is hsználták): effúzió sebessége M A dó gáz töegének éésével folyt egyszeűen és jól követhető. Az effúzió sebessége z ütközési szá (Z w ) és A 0 lyuk felület szoztából közvetlenül dódik: Ao Ao N A effúzió sebessége Z wao / / k MR B 7
8 Eőtében (l. Föld gvitáiós eőteében) ngyobb dienziókbn (l. z toszféábn) á ne egyenletes, hne felfelé exoneniálisn sökken nyoás. Ezt könnyen levezethető és kiéhető ún. boetikus foul íj le: Mgh R 0 e Mesteséges gvitáiós eőtében (l. entifugábn) is előidézhető ez jelenség, s z így létejövő M óltöegtől is függő nyoás (zz konentáió) -eloszlás tesz lehetővé izotódúsítást. diffúziós együtthtó: hővezetési együtthtó: viszkozitási együtthtó: C, N A 8
Általános Kémia. Dr. Csonka Gábor 1. Gázok. Gázok. 2-1 Gáznyomás. Barométer. 6-2 Egyszerű gáztörvények. Manométer
Gázok -1 Gáznyoás - Egyszerű gáztörvények -3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet -4 tökéletes gáz egyenlet alkalazása -5 Gáz halazállapotú reakciók -6 Gázkeverékek
REÁLIS GÁZOK ÁLLAPOTEGYENLETEI FENOMENOLOGIKUS KÖZELÍTÉS
REÁLIS GÁZOK ÁLLAPOEGYENLEEI FENOMENOLOGIKUS KÖZELÍÉS Száos odell gondoljunk potenciálo! F eltérés z ideális gáz odelljétl: éret és kölcsönhtás Moszkópikus következény: száos állpotegyenlet (ld. RM-jegyzet
Elektromos polarizáció: Szokás bevezetni a tömegközéppont analógiájára a töltésközéppontot. Ennek definíciója: Qr. i i
0. Elektoos polaizáció, polaizáció vekto, elektoos indukció vekto. Elektoos fluxus. z elektoos ező foástövénye. Töltéseloszlások. Hatáfeltételek az elektosztatikában. Elektoos polaizáció: Szokás bevezetni
Az előadás vázlata: Állapotjelzők: Állapotjelzők: Állapotjelzők: Állapotjelzők: nagy közepes kicsi. Hőmérséklet, T tapasztalat (hideg, meleg).
Az előadás vázlata: I. A tökéletes gáz és állapotegyenlete. izoterm, izobár és izochor folyamatok. II. Tökéletes gázok elegyei, a móltört fogalma, a parciális nyomás, a Dalton-törvény. III. A reális gázok
Ez a kifejezés ekvivalens a termokémia részben már megismert standard reakció szabadentalpiával! A termodinamikai egyensúlyi állandó: egyensúlyi
ÜLÖNÖZ REACIÓ EGYENSÚLYI ÁLLANDÓ Egyensúlybn: r G + RT ln Az egyenlet els tgj különböz ódokon írhtó el stndrd állotok egválsztásától üggen Ezek szerint ásodik tg s így z állndó értéke is változik h különböz
X. MÁGNESES TÉR AZ ANYAGBAN
X. MÁGNESES TÉR AZ ANYAGBAN Bevezetés. Ha (a külső áaok által vákuuban létehozott) ágneses tébe anyagot helyezünk, a ágneses té egváltozik, és az anyag ágnesezettsége tesz szet. Az anyag ágnesezettségének
Sűrűségmérés. 1. Szilárd test sűrűségének mérése
Sűrűségérés. Szilárd test sűrűségének érése A sűrűség,, definíciój hoogén test esetén: test töege osztv test V térfogtávl: V A sűrűség SI értékegysége kg/, hsználtos ég kg/d, kg/l és g/c Ne hoogén testnél
Mágneses momentum, mágneses szuszceptibilitás
Mágneses oentu, ágneses szuszceptibilitás A olekuláknak (atooknak, ionoknak) elektronszerkezetüktől függően lehet állandóan eglévő, azaz peranens ágneses oentua (ha van bennük párosítatlan elektron, azaz
q=h(termékek) H(Kiindulási anyagok) (állandó p-n) q=u(termékek) U(Kiindulási anyagok) (állandó V-n)
ERMOKÉMIA A vzsgált általános folyaatok és teodnaka jellezésük agyjuk egy pllanata az egysze D- endszeeket, s tekntsük azokat a változásokat, elyeket kísé entalpa- (ll. bels enega-) változásokkal á koább
A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere :
Villamosságtan A Coulomb-tövény : F QQ 4 ahol, Q = coulomb = C = a vákuum pemittivitása (dielektomos álladója) 4 9 k 9 elektomos téeősség : E F Q ponttöltés tee : E Q 4 Az elektosztatika I. alaptövénye
Kinematikai alapfogalmak
Kineatikai alapfogalak a ozgások leíásáal foglalkozik töegpont, onatkoztatási endsze, pálya, pályagöbe, elozdulás ekto a sebesség, a gyosulás Egyenes Vonalú Egyenletes Mozgás áll. 35 3 5 5 5 4 a s [] 5
Fizikai Kémia. Instant Jegyzetek. Potenciális energia. Átmeneti állapot F P. Kiindulási állapot A+BC. Végállapot AB + C. Reakciókoordináta D R
Poteniális enegia Áteneti állaot O Reakiókooináta X F P D R égállaot E Kiinulási állaot elesen isszoiált állaot D. Gásá ilos, i anszék, Debeeni Egyete, 007. ataloegyzék:. ökéletes és eális gázok. teoinaika
VÁKUUMTECHNIKA. Bohátka Sándor és Langer Gábor
VÁKUUMTECHNIKA Bohátk Sándor és Lnger Gábor. A GÁZ MENNYISÉGÉT, ÁLLAPOTÁT MEGHATÁROZÓ FIZIKAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEIK. HALMAZÁLLAPOTOK.. A KINETIKUS GÁZELMÉLET ALAPJAI 3. TRANSZPORT JELENSÉGEK TÁMOP-4...C-//KONV-0-0005
Készítette: Kecskés Bertalan 2012
Készítette: Kecskés Betln 0 Atom foglm: Az tom z elemeknek zon legkisebb észe, mely még endelkezik z eleme jellemző tuljdonságokkl, és kémiilg tovább nem bonthtó. Az tom felépítése: Az tom áll tommgból
KISÉRLETI FIZIKA Elektrodinamika 4. (III. 4-8.) I + dq /dt = 0
ELTE I.Fizikus 004/005 II.félév Árm (I), mozgó töltések: KISÉRLETI FIZIKA Elektrodinmik 4. (III. 4-8.) I dq /dt = 0 (Időegység ltt kiármló töltés) Mértékegysége: I = A = C / s Típusi: = konduktív (vezetési)
Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai
Rugalmas hullámok tejedése. A hullámegyenlet és speciális megoldásai Milyen hullámok alakulhatnak ki ugalmas közegben? Gázokban és folyadékokban csak longitudinális hullámok tejedhetnek. Szilád közegben
Az előadás vázlata: Állapotjelzők: Állapotjelzők: Állapotjelzők: Állapotjelzők: nagy közepes kicsi. Hőmérséklet, T tapasztalat (hideg, meleg).
Az előadás vázlata: I. A tökéletes gáz és állapotegyenlete. izoterm, izobár és izochor folyamatok. II. Tökéletes gázok elegyei, a móltört fogalma, a parciális nyomás, a Dalton-törvény. III. A reális gázok
Elektrokémia 04. Cellareakció potenciálja, elektródreakció potenciálja, termodinamikai paraméterek meghatározása példa. Láng Győző
Elektokémi 04. Cellekció potenciálj, elektódekció potenciálj, temodinmiki pméteek meghtáozás péld Láng Győző Kémii Intézet, Fiziki Kémii Tnszék Eötvös Loánd Tudományegyetem Budpest Az elmélet lklmzás konkét
17. Szélsőérték-feladatok megoldása elemi úton
7. Szélsőéték-feldtok egoldás elei úton I. Eléleti összefoglló Függvény szélsőétéke Definíció: Az f: A B függvénynek x A helyen (bszolút) xiu vn, h inden x A esetén f(x) f(x ).A függvény (bszolút) xiu
Hatvani István fizikaverseny 2015-16. 1. forduló megoldások. 1. kategória
1. ktegóri 1.1.1. Adtok: ) Cseh László átlgsebessége b) Chd le Clos átlgsebessége Ezzel z átlgsebességgel Cseh László ideje ( ) ltt megtett távolság Így -re volt céltól. Jn Switkowski átlgsebessége Ezzel
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók
I./9 Kémiai egyensúly I./10 Egyensúlyi elektrokémia
Miként jut a rendszer egyensúlyba? I./9 Kéiai egyensúly I./ Egyensúlyi elektrokéia III./4 Molekulák ozgásban fizikai változások, ne reaktív rendszerek III./5-8 A kéiai reakciók sebessége, echanizusa, olekuláris
9. ábra. A 25B-7 feladathoz
. gyakolat.1. Feladat: (HN 5B-7) Egy d vastagságú lemezben egyenletes ρ téfogatmenti töltés van. A lemez a ±y és ±z iányokban gyakolatilag végtelen (9. ába); az x tengely zéuspontját úgy választottuk meg,
Mozgás centrális erőtérben
Mozgás centális eőtében 1. A centális eő Válasszunk egy olyan potenciális enegia függvényt, amely csak az oigótól való távolságtól függ: V = V(). A tömegponta ható eő a potenciális enegiája gaiensének
A Szakács Jenő Megyei Fizika Verseny I. forduló feladatainak megoldása 1
A Szkác Jenő Megyei Fizik Vereny I. forduló feldtink egoldá. 0, c 0,7 /, /, 0, /. c )? d? ) Az elő ut ebeége: c +,7 /. pont A áodik ut ebeége: c 0, /. 3 pont Az elő ut ozgáánk ideje: 0 t 30. pont,7 A áodik
ÜTKÖZÉSEK. v Ütközési normális:az ütközés
ÜTKÖZÉSK A egaadási tételek alkalazásának legjobb példái Definíciók ütközési sík n n Ütközési noális:az ütközés síkjáa eőleges Töegközépponti sebességek Centális ütközés: az ütközési noális átegy a két
VB NÉGYZÖG KEREZTETZET TERVEZÉE HAJLÍTÁRA Vseton keresztmetszet tervezése történet: kötött tervezéssel: keresztmetszet nygi és méretei ottk, megtervezenő mértékó nyomtékoz szükséges célmennyiség, sz tervezéssel:
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek
ÖSZVÉRSZERKEZETEK. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés a BME Szilárdságtani és Tartószerkezeti Tanszéken. Dr.
Dr. Kovás Nuik ÖSZVÉRSZERKEZETEK BE Silárdságtni és Trtóserkeeti Tnséken Dr. Kovás Nuik egyetemi doens BE, Hidk és Serkeetek Tnsék BE Silárdságtni és Trtóserkeeti Tnsék 01. Trtlom Dr. Kovás Nuik 1. Beveetés...
7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei
7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei Elsıfokú függvények: f : A R A R, A és f () = m, hol m; R m 0 Az elsıfokú függvény képe egyenes. (lásd késı) m: meredekség,
TENGELY szilárdsági ellenőrzése
MISKOLCI EGYETEM GÉP- ÉS TERMÉKTERVEZÉSI TASZÉK OKTATÁSI SEGÉDLET GÉPELEMEK c. tntárgyhoz TEGELY szilárdsági ellenőrzése Összeállított: Dr. Szente József egyetemi docens Miskolc, 010. A feldt megfoglmzás
A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
A gáz halmazállapot A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 0 Halmazállapotok, állapotjelzők Az anyagi rendszerek a részecskék közötti kölcsönhatásoktól és az állapotjelzőktől függően
4. előadás: A vetületek általános elmélete
4. elődás: A vetületek áltlános elmélete A vetítés mtemtiki elve Két mtemtikilg meghtározott felület prméteres egyenletei legyenek következők: x = f 1 (u, v), y = f 2 (u, v), I. z = f 3 (u, v). ξ = g 1
Szárítás. Szárítás. Élelmiszerek hidratúrája. Élelmiszerek hidratúrája. Ha nincs víz: nincs fehérjebomlás PROTEÁZ KÖTÖTT VÍZ
Élelierek hidrtúráj H nins íz: nins fehérjeolás FEHÉRJE + VÍZ PROTEÁZ MIOSVK Élelierek hidrtúráj BET íz ρ 3000 kg/ 3 t fp 00 C KÖTÖTT VÍZ SZBD VÍZ egyensúlyi nedességtrtlo göre leegő reltí pártrtl [%]
MAGYAR. A motor és a tápegység közötti kéteres kábel vezetékelésének utasításai. m mm 2. 0-20 2 x 0,75 0-50 2 x 1,50
A motor és tápegység közötti kéteres káel vezetékelésének utsítási Vezesse káelt tápegységtől z lkhoz. Megjegyzés: A megfelelő káelméreteket táláztn tlálj. A motor cstlkozttás: Lásd z dott termékkel kpott
Lineáris egyenletrendszerek
Lineáris egyenletrendszerek lineáris elsőfokú, z ismeretlenek ( i -k) elsőfokon szerepelnek. + + n n + + n n m + m +m n n m m n n mn n m (m n)(n )m A A: együtthtó mátri Megoldás: milyen értékeket vehetnek
Radioaktív nyomjelzés analitikai kémiai alkalmazásai
Rdioktív nyojelzés nlitiki kéii lklzási Izotóphígításos ódszerek A λn A ktivitás, n rdioktív gok ennyisége, bolási állndój. A fjlgos ktivitás kezdetben ( ): λn n N N z inktív hordozó ennyisége. N ennyiségű
Els gyakorlat. vagy más jelöléssel
Els gykorlt Egyszer egyenletek, EHL PDE A gykorlt elején megismerkedünk prciális dierenciálegyenletek (mostntól: PDE-k) lpfoglmivl. A félév során sokt fog szerepelni z ún. multiindex jelöl, melynek lényege,
VIII. Szélsőérték számítás
Foglmk VIII. Szélsőéték számítás Az elem úton meghtáozhtó függvények jellemző: () ételmezés ttomány és étékkészlet megdás (b) zéushelyek (hol y ) és y tengelypontok (hol ) meghtáozás (c) folytonosság vzsgált
III. Differenciálszámítás
III. Diffeenciálszámítás A diffeenciálszámítás számunka elsősoban aa való hogy megállaítsuk hogyan változnak a (fizikai) kémiában nagy számban előfoló (többváltozós) függvények. A diffeenciálszámítás megadja
Összeállította: dr. Leitold Adrien egyetemi docens
Lineáris egyenletrendszerek Összeállított: dr. Leitold Adrien egyetemi docens 2008.09.08. Leontieff-modellek Leontieff-modellek: input-output modellek gzdság leírásár legyen n féle, egymássl összefüggésben
Ptolemaios-tétele, Casey-tétel, feladatok
Kutov ntl Ptolemios, sey, feldtok Kutov ntl (Kposvár) Ptolemios-tétele, sey-tétel, feldtok Ptolemios-tétel: H egy konvex négyszög szemközti oldli és, ill. és d; átlói e és f, kkor + d e f. Egyenlőség kkor
Kémiai egyensúly. Fizikai kémia előadások 6. Turányi Tamás ELTE Kémiai Intézet. ν j sztöchiometriai együttható
émiai egyensúly Fizikai kémia előadások 6. Tuányi Tamás ELTE émiai Intézet Sztöchiometiai együttható ν sztöchiometiai együttható általános kémiai eakció: (a temokémiában használtuk előszö) ν A 0 ν A eaktánsa
Hősugárzás. 2. Milyen kölcsönhatások lépnek fel sugárzás és anyag között?
Hősugázás. Milyen hőtejedési fomát nevezünk hőmésékleti sugázásnak? Minden test bocsát ki elektomágneses hullámok fomájában enegiát a hőméséklete által meghatáozott intenzitással ( az anyag a molekulái
t 2 Hőcsere folyamatok ( Műv-I. 248-284.o. ) Minden hővel kapcsolatos művelet veszteséges - nincs tökéletes hőszigetelő anyag,
Hősee folyamaok ( Műv-I. 48-84.o. ) A ménöki gyakola endkívül gyakoi feladaa: - a közegek ( folyadékok, gázok ) Minden hővel kapsolaos művele veszeséges - nins ökélees hőszigeelő anyag, hűése melegíése
2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás Hőáramlás (konvekció) olyan folyamat,
2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás. 2.1. Hőáramlás (konvekció) olyan folyamat, amelynek során a hő a hordozóközeg áramlásával kerül
Radioaktív nyomjelzés a fizikai kémiában
Rdioktív nyojelzés fiziki kéiábn Rdioktív nyojelzés fiziki kéiábn Oldékonyság eghtározás Hevesy: PbS oldékonyságánk eghtározás Pb ( NO 3 ) 0 PbS fjlgos ktivitás ugynnnyi szilárd ill. oldott állpotbn: /=áll.
Vektortér fogalma vektortér lineáris tér x, y x, y x, y, z x, y x + y) y; 7.)
Dr. Vincze Szilvi Trtlomjegyzék.) Vektortér foglm.) Lineáris kombináció, lineáris függetlenség és lineáris függőség foglm 3.) Generátorrendszer, dimenzió, bázis 4.) Altér, rng, komptibilitás Vektortér
SCHWARTZ 2009 Emlékverseny A TRIÓDA díj-ért kitűzött feladat megoldása ADY Endre Líceum Nagyvárad, Románia 2009. november 7.
SCHWARTZ 009 Emlékveseny A TRIÓA díj-ét kitűzött feldt megoldás AY Ende Líceum Ngyvád, Románi 009. novembe 7. Az elekton fjlgos töltésének meghtáozás mgneton módszeel A szező áltl jánlott teljes megoldás,
Megjegyzések a mesterséges holdak háromfrekvenciás Doppler-mérésének hibaelemzéséhez
H E L L E R MÁRTA DR. FERENCZ CSABA Megjegyzések esteséges holdk háofekvencás Dopple-éésének hbelezéséhez ETO 62.396.962.33.8.46: 629.783: 88.3.6 Mnt z á előző ckkünkből [] s set, kuttás bn és esteséges
TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI III.
TÖKOMPONENS RENDSZEREK FÁZISEGYENSÚLYI III. OLDTOK EGYENSÚLYI: KORLÁTOZOTT OLDÓDÁS z elegyedés oldódás nem feltétlenül korlát, zz nem megy végbe teljes összetétel-trtománybn! H z oldódás korlátozott, kkor
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.
Műszaki folyamatok közgazdasági elemzése Előadásvázlat október 10. Monopólium
űszki folymtok közgzdsági elemzése Elődásvázlt 3 októer onoólium A tökéletesen versenyző válllt számár ici ár dottság, így teljes evétele termékmennyiség esetén TR () = ínálti monoólium: egyetlen termelő
Molekulák mozgásban a kémiai kinetika a környezetben
Energiatartalék Molekulák mozgásban a kémiai kinetika a környezetben A termodinamika és a kinetika A termodinamika a lehetőség θ θ θ G = H T S A kinetika a valóság: 1. A fizikai rész: - a reaktánsoknak
Fizika-Biofizika I. DIFFÚZIÓ OZMÓZIS Október 22. Vig Andrea PTE ÁOK Biofizikai Intézet
Fizika-Biofizika I. DIFFÚZIÓ OZMÓZIS 2013. Október 22. Vig Andrea PTE ÁOK Biofizikai Intézet DIFFÚZIÓ 1. KÍSÉRLET Fizika-Biofizika I. - DIFFÚZIÓ 1. kísérlet: cseppentsünk tintát egy üveg vízbe 1. megfigyelés:
A vasbeton vázszerkezet, mint a villámvédelmi rendszer része
Vsbeton pillér vázs épületek villámvédelme I. Írt: Krupp Attil Az épületek jelentős rze vsbeton pillérvázs épület formájábn létesül, melyeknél vázszerkezetet rzben vgy egzben villámvédelmi célr is fel
Óravázlatok: Matematika 2. Tartományintegrálok
Órvázltok: Mtemtik 2. rtományintegrálok Brth Ferenc zegedi udományegyetem, Elméleti Fiziki nszék készültség: April 23, 23 http://www.jte.u-szeged.hu/ brthf/oktts.htm) ontents 1. A kettős integrál 1 1.1.
Radioaktív nyomjelzés analitikai kémiai alkalmazásai
Rdioktív nyojelzés nlitiki kéii lklzási A rdioizotópos nyojelzős ódszerek csoportosítás gykorlti szepontok szerint Fiziki kéii ódszerek, pl.: oldékonyság eghtározás, diffúzió vizsgált, fázisok közötti
Fázisok. Fizikai kémia előadások 3. Turányi Tamás ELTE Kémiai Intézet. Fázisok
Fázisok Fizikai kéia előadások 3. Turányi Taás ELTE Kéiai Intézet Fázisok DEF egy rendszer hoogén, ha () nincsenek benne akroszkoikus határfelülettel elválasztott részek és () az intenzív állaotjelzők
OPTIMALIZÁLÁS LAGRANGE-FÉLE MULTIPLIKÁTOR SEGÍTSÉGÉVEL
OPTIMALIZÁLÁS LAGRANGE-FÉLE MULTIPLIKÁTOR SEGÍTSÉGÉVEL HAJDER LEVENTE 1. Bevezetés A Lgrnge-féle multiplikátoros eljárást Joseph Louis Lgrnge (1736-1813) olsz csillgász-mtemtikus (eredeti nevén Giuseppe
5. Pontrendszerek mechanikája. A kontinuumok Euler-féle leírása. Tömegmérleg. Bernoulli-egyenlet. Hidrosztatika. Felhajtóerő és Arhimédesz törvénye.
5 Pontrenszerek echankája kontnuuok Euler-féle leírása Töegérleg Bernoull-egyenlet Hrosztatka Felhajtóerő és rhéesz törvénye Töegpontrenszerek Töegpontok eghatározott halaza, ng ugyanazok a pontok tartoznak
III. Változás. I./9 Kémiai egyensúly I./10 Egyensúlyi elektrokémia
III. Változás Miként jut a rendszer egyensúlyba? I./9 Kémiai egyensúly I./10 Egyensúlyi elektrokémia III./4 Molekulák mozgásban fizikai változások, nem reaktív rendszerek III./5-7 A kémiai reakciók sebessége,
Mátrixok és determinánsok
Informtik lpji Mátriok és erminánsok számok egyfjt tábláztát mátrink hívjuk. mátriok hsználhtóság igen sokrétő kezdve mtemtikávl, folyttv számítástechnikán és fizikán keresztül, egészen z elektrotechnikáig.
(Nem jogalkotási aktusok) HATÁROZATOK
2013.4.9. Az Európi Unió Hivtlos Lpj L 100/1 II (Nem joglkotási ktusok) HATÁROZATOK A BIZOTTSÁG VÉGREHAJTÁSI HATÁROZATA (2013. márius 26.) z ipri kiosátásokról szóló 2010/75/EU európi prlmenti és tnási
A Coulomb-törvény : 4πε. ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) elektromos térerősség : ponttöltés tere : ( r)
Villamosságtan A Coulomb-tövény : F 1 = 1 Q1Q 4π ahol, [ Q ] = coulomb = 1C = a vákuum pemittivitása (dielektomos álladója) 1 4π 9 { k} = = 9 1 elektomos téeősség : E ponttöltés tee : ( ) F E = Q = 1 Q
Használati utasítás. Használat előtt olvassa el. Olvassa el, ha további információkra van szüksége. Számítógép-vezérelte varrógép ELŐKÉSZÜLETEK
Hsználti utsítás Számítógép-vezérelte vrrógép ELŐKÉSZÜLETEK Hsznált előtt olvss el. A VARRÁS ALAPJAI RÖGZÍTŐ ÖLTÉSEK Olvss el, h továi informáiókr vn szüksége. FÜGGELÉK Fontos iztonsági előírások A gép
Az előadás vázlata:
18..19. Az előadás vázlata: I. eokéiai egyenletek. A eakcióhő teodinaikai definíciója. II. A standad állapot. Standad képződési entalpia. III. ess-tétel. IV. Reakcióentalpia száítása képződési entalpia
Tartalom Fogalmak Törvények Képletek Lexikon 0,2 0,4 0,6 0,8 1,0 0,2 0,4 0,6 0,8 1,0
Fizikkönyv ifj Zátonyi Sándor, 16 Trtlom Foglmk Törvények Képletek Lexikon Mozgá lejtőn Láttuk, hogy tetek lejtőn gyoruló mozgát végeznek A következőkben vizgáljuk meg rézleteen ezt mozgát! Egyene lejtőre
Tiszta anyagok fázisátmenetei
Tiszta anyagok fázisátenetei Fizikai kéia előadások 4. Turányi Taás ELTE Kéiai Intézet Fázisok DEF egy rendszer hoogén, ha () nincsenek benne akroszkoikus határfelülettel elválasztott részek és () az intenzív
kristályos szilárdtest kristályszerkezet
szohőmésékleten legtö elem szilád hlmzállpotú z tomok közelítőleg ögzített pozíiókn legegyszeű eset: kistályos sziládtest kistályszekezet miét tnulmányozzuk kistályszekezetet? sziládtestek leíásá egyé
Kinematika: A mechanikának az a része, amely a testek mozgását vizsgálja a kiváltó okok (erők) tanulmányozása nélkül.
01.03.16. RADNAY László Tnársegéd Debreceni Egyetem Műszki Kr Építőmérnöki Tnszék E-mil: rdnylszlo@gmil.com Mobil: +36 0 416 59 14 Definíciók: Kinemtik: A mechnikánk z része, mely testek mozgását vizsgálj
Kovács Judit ELEKTRO TEC HNIKA-ELEKTRONIKA 137
ELEKTROTECHNIKA-ELEKTRONIKA Kovács Judit A LINEÁRIS EGYENLETRENDSZEREK GAUSS-FÉLE ELIMINÁCIÓVAL TÖRTÉNŐ MEGOLDÁSÁNAK SZEREPE A VILLAMOSMÉRNÖK SZAKOS HALLGATÓK MATEMATIKA OKTATÁSÁBAN ON THE ROLE OF GAUSSIAN
6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás
SZÉHENYI ISTVÁN EGYETE GÉPSZERKEZETTN ÉS EHNIK TNSZÉK 6. EHNIK-STTIK GYKORLT Kidolgozta: Tiesz Péte egy. ts. Négy eő egyensúlya ulmann-szekesztés Ritte-számítás 6.. Példa Egy létát egy veembe letámasztunk
Jegyzőkönyv. Termoelektromos hűtőelemek vizsgálatáról (4)
Jegyzőkönyv ermoelektromos hűtőelemek vizsgáltáról (4) Készítette: üzes Dániel Mérés ideje: 8-11-6, szerd 14-18 ór Jegyzőkönyv elkészülte: 8-1-1 A mérés célj A termoelektromos hűtőelemek vizsgáltávl kicsit
Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek
Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok
ELŐKÉSZÜLETEK HÍMZÉS FÜGGELÉK. Számítógép-vezérelte hímzőgép. Használati utasítás
ELŐKÉSZÜLETEK HÍMZÉS FÜGGELÉK Számítógép-vezérelte hímzőgép Hsználti utsítás FONTOS BIZTONSÁGI ELŐÍRÁSOK A gép hsznált előtt, kérjük, olvss el iztonsági előírásokt. VESZÉLY - Ármütés elkerülése érdekéen:
A vezeték legmélyebb pontjának meghatározása
A ezeték legméle pontjánk megtározás Elődó: Htiois Alen E 58. Vándorgűlés Szeged,. szeptemer 5. Vízszintes és ferde felfüggesztés - ezeték legméle pontj m / > < B Trtlom. Lángöre és prol függének A C m
Kifáradás kisfeladat: Feladatlap
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Jáű- és hjáseleek I. (KOJHA56) Kifáás kisfel: Fellp Ssz.:.. Név:... Nepun kó.:. ADATVÁLASZTÉK (A Gépeleek I. Felok c. jegyze.4 fejezeében lálhó) A lk B lk
A Hardy-Weinberg egyensúly
Hrdy-Weinerg egyensúly Evolúciót úgy definiáltuk, hogy ouláción z llélgykoriságok megváltozás. Egy ideális ouláció olyn, hogy n evolúció nincs. Ismérvei megmuttják, hogy mely folymtos vezethetnek evolúcióhoz.
Az ABCD köré írható kör egyenlete: ( x- 3) + ( y- 5) = 85. ahol O az origó. OB(; 912). Legyen y = 0, egyenletrendszer gyökei adják.
5 egyes feldtok Az dott körök k : x + ( y- ) = és k : ( x- ) + y = K (; 0), r, K (; 0), r K K = 0 > +, két körnek nincs közös pontj Legyen (; ) Az egyenlô hosszú érintôszkszokr felírhtjuk következô egyenletet:
Folyadékok. Molekulák: Gázok Folyadékok Szilárd anyagok. másodrendű kölcsönhatás növekszik. cseppfolyósíthatók hűtéssel és/vagy nyomással
Folyadékok Molekulák: másodrendű kölcsönhatás növekszik Gázok Folyadékok Szilárd anyagok cseppfolyósíthatók hűtéssel és/vagy nyomással Folyadékok Molekulák közti összetartó erők: Másodlagos kötőerők: apoláris
FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István
Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:
Numerikus módszerek 2.
Numerikus módszerek 2. 12. elődás: Numerikus integrálás I. Krebsz Ann ELTE IK 2015. május 5. Trtlomjegyzék 1 Numerikus integrálás 2 Newton Cotes típusú kvdrtúr formulák 3 Hibformulák 4 Összetett formulák
OPTIKA. Elektromágneses hullámok. Dr. Seres István
OPTIK D. Sees István Faaday-féle indukiótövény Faaday féle indukió tövény: U i t d dt Lenz tövény: z indukált feszültség mindig olyan polaitású, hogy az általa létehozott áam akadályozza az őt létehozó
Fizikai kémia 2. A hidrogénszerű atomok. A hidrogénszerű atomok Az atomok szerkezetének kvantummechanikai leírása
6.7.. Fiziki kéi.. Az took szekezetének kvntuechniki leíás. Bekesi Ottó ZTE Fiziki Kéii és Anygtudoányi Tnszéke 5 A hidogénszeű took A hidogénszeű took egy Z+ gól, és köülötte göi fogó ozgást végző egyetlen
Fogaskerekek III. Általános fogazat
Fogskeekek III. Áltlános fogt Elei, kopenált fogtok esetén: vlint: ostóköök gödülőköökkel egybeesnek áltlános fogt főbb jelleői: A tengelytáv: -ól -enő, A kpcsolósög α-ólα -e nő, A ostókö dés gödülőkö
Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek
Eponenciális és logritmikus egyenletek, Eponenciális és logritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális egyenletek 60 ) = ; b) = ; c) = ; d) = 0; e) = ; f) = ; g) = ; h) =- 7
di dt A newtoni klasszikus mechanikában a mozgó test tömege időben állandó, így:
IMPULZUS, MUNKA, ENERGIA A ozgáok leíáa, a jelenégek ételezée zepontjából fonto fogalak. Ipulzu ( lendület), ipulzu egaadá Az ipulzu definíciója: I Az ipulzu ektoennyiég, a ebeég iányába utat. Newton II.
A Maxwell-féle villamos feszültségtenzor
A Maxwell-féle villamos feszültségtenzo Veszely Octobe, Rétegezett síkkondenzátoban fellépő (mechanikai) feszültségek Figue : Keesztiányban étegezett síkkondenzáto Tekintsük a. ábán látható keesztiányban
A torokgerendás fedélszerkezet erőjátékáról 1. rész
A torokgerendás fedélszerkezet erőjátékáról. rész Bevezetés Az idő múlik, kívánlmk és lehetőségek változnk. Tegnp még logrléccel számoltunk, m már elektronikus számoló - és számítógéppel. Sok teendőnk
Biofizika szeminárium. Diffúzió, ozmózis
Biofizika szeminárium Diffúzió, ozmózis I. DIFFÚZIÓ ORVOSI BIOFIZIKA tankönyv: III./2 fejezet Részecskék mozgása Brown-mozgás Robert Brown o kísérlet: pollenszuszpenzió mikroszkópos vizsgálata o megfigyelés:
Az α értékének változtatásakor tanulmányozzuk az y-x görbe alakját. 2 ahol K=10
9.4. Táblázatkezelés.. Folyadék gőz egyensúly kétkomponensű rendszerben Az illékonyabb komponens koncentrációja (móltörtje) nagyobb a gőzfázisban, mint a folyadékfázisban. Móltört a folyadékfázisban x;
Reológia Mérési technikák
Reológia Mérési technikák Reológia Testek (és folyadékok) külső erőhatásra bekövetkező deformációját, mozgását írja le. A deformációt irreverzibilisnek nevezzük, ha a az erőhatás megszűnése után a test
2010. március 27. Megoldások 1/6. 1. A jégtömb tömege: kg. = m 10 m = 8,56 10 kg. 4 pont m. tengervíz
00. ácius 7. Megoldások /6.. jégtöb töege: kg 6 6 jég = ρ jég jég jég = 90 9000 0 0 = 8,56 0 kg. Kiszoított víz téfogata: 6 jég 8,56 0 kg Vk = = = 8, 5 0. ρ kg tengevíz 07,4 Vízszint-eelkedés: Vk 8, 5
5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR
5 IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR A koábbiakban külön, egymástól függetlenül vizsgáltuk a nyugvó töltések elektomos teét és az időben állandó áam elektomos és mágneses teét Az elektomágneses té pontosabb
BIOKOMPATIBILIS ANYAGOK.
1 BIOKOMPATIBILIS ANYAGOK. 1Bevezetés. Biokomptbilis nygok különböző funkcionális testrészek pótlásár ill. plsztiki célokt szolgáló lkos, meghtározott méretű, nygok ill. eszközök, melyek trtósn vgy meghtározott
Egyházashollós Önkormányzata Képviselőtestületének 9/ 2004. (IX.17) ÖR számú rendelete a helyi hulladékgazdálkodási tervről
Egyházshollós Önkormányzt Képviselőtestületének 9/ 24. (IX.7) ÖR számú rendelete helyi hulldékgzdálkodási tervről Egyházshollós Önkormányztánk Képviselőtestülete z önkormányzti törvény (99. évi LXV. tv.)
A szállítócsigák néhány elméleti kérdése
A szállítócsigák néhány eléleti kédése DR BEKŐJÁOS GATE Géptani Intézet Bevezetés A szállítócsigák néhány eléleti kédése A tanulány tágya az egyik legégebben alkalazott folyaatos üzeűanyagozgató gép a
Versenyautó futóművek. Járműdinamikai érdekességek a versenyautók világából
Versenyutó futóművek Járműdinmiki érdekességek versenyutók világából Trtlom Bevezetés Alpfoglmk A gumibroncs Futómű geometri Átterhelődések Futómű kinemtik 2 Trtlom 2 Bevezetés Bevezetés Alpfoglmk A gumibroncs
5 = nr. nrt V. p = p p T T. R p TISZTA FÁZISOK TERMODINAMIKAI FÜGGVÉNYEI IDEÁLIS GÁZOK. Állapotegyenletbl levezethet mennyiségek. Az állapotegyenlet:
IZA FÁZIOK ERMODINAMIKAI FÜGGÉNYEI IDEÁLI GÁZOK Állaotegyenletbl levezethet ennyiségek Az állaotegyenlet: Moláris térfogat egváltozása: R R R R eroinaikai függvények Bels energia onoatoos ieális gázra