OPTIKA. Elektromágneses hullámok. Dr. Seres István

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "OPTIKA. Elektromágneses hullámok. Dr. Seres István"

Átírás

1 OPTIK D. Sees István

2 Faaday-féle indukiótövény Faaday féle indukió tövény: U i t d dt Lenz tövény: z indukált feszültség mindig olyan polaitású, hogy az általa létehozott áam akadályozza az őt létehozó hatást. Tehát a változó mágneses té maga köül elektomos övényteet kelt! Sees István

3 ltolási áam változó elektomos té maga köül ugyanúgy mágneses övényteet kelt, mint az elektomos áam. Áamsűűsége: j e D t t B I U B C R Sees István 3

4 Maxwell egyenletek D d dv Hds ds B d t Bd jd D d t z elektosztatikus té foásos, foásai a töltések. változó mágneses té által keltett elektomos té övényes. mágneses indukióvekto tee foásmentes (ninsenek szétválasztható mágneses töltések). z elektomos áam és a változó elektomos té által keltett mágneses té övényes. Sees István 4

5 Maxwell egyenletek ds Hds B d t jd D d t változó mágneses té által keltett elektomos té övényes. z elektomos áam és a változó elektomos té által keltett mágneses té övényes. Tehát a változó elektomos té maga köül változó mágneses övényteet kelt, az viszont maga köül változó elektomos övényteet, az viszont maga köül változó mágneses övényteet, stb zt úgy hívjuk, hogy elektomágneses hullám Sees István 5

6 Hullámoptika: fény tanszvezális elektomágneses hullám: Tejedési iány Sees István 6

7 Sees István 7 lektomos té enegiasűűsége Kondenzáto belsejében az egységnyi téfogata jutó enegia d CU V W w d C szigetelő d hol a kapaitás: Így d U d U d w

8 Mágneses té enegiasűűsége Áammal átját tekes belsejében az egységnyi téfogata jutó enegia w Így W V LI,ahol az önindukiós együttható: w N I L NI N H Sees István 8

9 lekto-mágneses té enegiasűűsége w H Ha elektomos és mágneses té is jelen van Vegyünk egy m oldalélű kokát, az elektomágneses té enegiája benne W = w V = w, mivel V = m 3. z egyik oldalán s alatt átáamló enegia: ( az elektomágneses hullám tej. sebessége) W w S w H t Sees István 9

10 Sees István Pointyng vekto b a " ha b," a b a w w t W S H H H S De a számtani és métani közép közötti szabály miatt H Mivel így H S azaz H, S

11 Hullámoptika: Poynting vekto (S): tejedési iánya meőleges egységnyi felületen időegység alatt átáamló elektomágneses enegia nimáió S S H Sees István

12 lektomágneses spektum = lf lnevezés Hullámhossz Fekvenia Váltóáam > 3 km < Hz Hangfekveniás váltóáam < 3 km > Hz Hosszúhullámok < 3 km > khz Hosszúhullám (LW) < km > 3 khz Középhullám (MW) < 65 m > 65 khz Rövidhullám (KW) < 8 m >,7 MHz Ultaövid hullám (URH) < m > 3 MHz Mikohullám 3 µm - 3 m GHz - THz Infavöös sugázás (IR) <, mm > 3 GHz Fény < 78 nm > 384 THz Vöös nm THz Naans 6-64 nm THz Sága 57-6 nm 5-56 THz Zöld nm 56-6 THz Kék nm THz Ibolya nm THz Ultaibolya sugázás (UV) < 38 nm > 789 THz öntgensugázás < nm > 3 PHz Gamma-sugázás < pm > 3 Hz Sees István

13 Látható fény tatomány Vöös nm THz Naans 6-64 nm THz Sága 57-6 nm 5-56 THz Zöld nm 56-6 THz Kék nm THz Ibolya nm THz Sees István 3

14 Hullámjelenségek: a fény sebessége polaizáió kettőstöés diszpezió intefeenia elhajlás Sees István 4

15 Folytatás a következő héten! Sees István 5

Elektromágneses hullámok OPTIKA. Dr. Seres István

Elektromágneses hullámok OPTIKA. Dr. Seres István lektomágneses hullámok OPTIK D. Sees István mehatonika szak. Faaday-féle indukiótövény Faaday féle indukió tövény: U i Φ tt dφ dt lektomágneses hullámok Lenz tövény: z indukált feszültség mindig olyan

Részletesebben

OPT TIKA. Hullámoptika. Dr. Seres István

OPT TIKA. Hullámoptika. Dr. Seres István OPT TIKA Dr. Seres István : A fény elektromágneses hullám r S S = r E r H Seres István 2 http://fft.szie.hu Elektromágneses spektrum c = λf Elnevezés Hullámhossz Frekvencia Váltóáram > 3000 km < 100 Hz

Részletesebben

A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere :

A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere : Villamosságtan A Coulomb-tövény : F QQ 4 ahol, Q = coulomb = C = a vákuum pemittivitása (dielektomos álladója) 4 9 k 9 elektomos téeősség : E F Q ponttöltés tee : E Q 4 Az elektosztatika I. alaptövénye

Részletesebben

A Coulomb-törvény : 4πε. ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) elektromos térerősség : ponttöltés tere : ( r)

A Coulomb-törvény : 4πε. ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) elektromos térerősség : ponttöltés tere : ( r) Villamosságtan A Coulomb-tövény : F 1 = 1 Q1Q 4π ahol, [ Q ] = coulomb = 1C = a vákuum pemittivitása (dielektomos álladója) 1 4π 9 { k} = = 9 1 elektomos téeősség : E ponttöltés tee : ( ) F E = Q = 1 Q

Részletesebben

Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai

Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai Rugalmas hullámok tejedése. A hullámegyenlet és speciális megoldásai Milyen hullámok alakulhatnak ki ugalmas közegben? Gázokban és folyadékokban csak longitudinális hullámok tejedhetnek. Szilád közegben

Részletesebben

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok Váltóáramú hálózatok, elektromágneses Váltóáramú hálózatok Maxwell egyenletek Elektromágneses Váltófeszültség (t) = B A w sinwt = sinwt maximális feszültség w= pf körfrekvencia 4 3 - - -3-4,5,,5,,5,3,35

Részletesebben

A teljes elektromágneses spektrum

A teljes elektromágneses spektrum A teljes elektromágneses spektrum Fizika 11. Rezgések és hullámok 2019. március 9. Fizika 11. (Rezgések és hullámok) A teljes elektromágneses spektrum 2019. március 9. 1 / 18 Tartalomjegyzék 1 A Maxwell-egyenletek

Részletesebben

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István Ma igazán feltöltődhettek! () D. Sees István Elektomágnesesség Töltések elektomos tee Kondenzátook fft.szie.hu 2 Sees.Istvan@gek.szie.hu Elektomágnesesség, elektomos alapjelenségek Dözselektomosság Ruha,

Részletesebben

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István Ma igazán feltöltődhettek! () D. Sees István Elektomágnesesség Pontszeű töltések elektomos tee Folytonos töltéseloszlások tee Elektomos té munkája Feszültség, potenciál Kondenzátook fft.szie.hu 2 Sees.Istvan@gek.szie.hu

Részletesebben

Fizika és 16 Előadás

Fizika és 16 Előadás Fizika 5. és 6 lőadás Önindukció, RL kö, kölcsönös indukció, mágneses té enegiája, tanszfomáto, mágnesség, Ampèe tövény általános alakja Mágneses adattáolás Az önindukció B ds µ o s j I j µ B oni l Szolenoidban

Részletesebben

Elektrosztatika (Vázlat)

Elektrosztatika (Vázlat) lektosztatika (Vázlat). Testek elektomos állapota. lektomos alapjelenségek 3. lektomosan töltött testek közötti kölcsönhatás 4. z elektosztatikus mezőt jellemző mennyiségek a) elektomos téeősség b) Fluxus

Részletesebben

A Maxwell-féle villamos feszültségtenzor

A Maxwell-féle villamos feszültségtenzor A Maxwell-féle villamos feszültségtenzo Veszely Octobe, Rétegezett síkkondenzátoban fellépő (mechanikai) feszültségek Figue : Keesztiányban étegezett síkkondenzáto Tekintsük a. ábán látható keesztiányban

Részletesebben

Időben változó elektromos erőtér, az eltolási áram

Időben változó elektromos erőtér, az eltolási áram őben változó elektomos eőté, az olási áam Ha az ábán látható, konenzátot tatalmazó áamköbe iőben változó feszültségű áamfoást kapcsolunk, akko az áamméő áamot mutat, annak ellenée, hogy az áamkö nem zát

Részletesebben

ELEKTROMÁGNESES REZGÉSEK. a 11. B-nek

ELEKTROMÁGNESES REZGÉSEK. a 11. B-nek ELEKTROMÁGNESES REZGÉSEK a 11. B-nek Elektromos Kondenzátor: töltés tárolására szolgáló eszköz (szó szerint összesűrít) Kapacitás (C): hány töltés fér el rajta 1 V-on A homogén elektromos mező energiát

Részletesebben

A NEM-IONIZÁLÓ SUGÁRZÁSOK. Elektromágneses sugárzások és jellemzőik

A NEM-IONIZÁLÓ SUGÁRZÁSOK. Elektromágneses sugárzások és jellemzőik A NEM-IONIZÁLÓ SUGÁRZÁSOK Fóti Zoltán 1 E tanulmány célja az iparban egyre szélesebb körben alkalmazott és mind többször hallott, sokak számára zavaros nem-ionizáló sugárzás fogalmának ismertetése, felosztása,

Részletesebben

9. ábra. A 25B-7 feladathoz

9. ábra. A 25B-7 feladathoz . gyakolat.1. Feladat: (HN 5B-7) Egy d vastagságú lemezben egyenletes ρ téfogatmenti töltés van. A lemez a ±y és ±z iányokban gyakolatilag végtelen (9. ába); az x tengely zéuspontját úgy választottuk meg,

Részletesebben

Talián Csaba Gábor Biofizikai Intézet 2012. április 17.

Talián Csaba Gábor Biofizikai Intézet 2012. április 17. SUGÁRZÁSOK. ELEKTROMÁGNESES HULLÁMOK. Talián Csaba Gábor Biofizikai Intézet 2012. április 17. MI A SUGÁRZÁS? ENERGIA TERJEDÉSE A TÉRBEN RÉSZECSKÉK VAGY HULLÁMOK HALADÓ MOZGÁSA RÉVÉN Részecske: α-, β-sugárzás

Részletesebben

OPTIKA. Hullámoptika. Dr. Seres István

OPTIKA. Hullámoptika. Dr. Seres István Dr. Seres István : A fény elektromágneses hullám S S E H Seres István 2 http://fft.szie.hu Elektromágneses spektrum Elnevezés Hullámhossz Frekvencia Váltóáram > 3000 km < 100 Hz Hangfrekvenciás váltóáram

Részletesebben

Fizika 1 Elektrodinamika beugró/kis kérdések

Fizika 1 Elektrodinamika beugró/kis kérdések Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos

Részletesebben

Fizika és 14. Előadás

Fizika és 14. Előadás Fizika 11 13. és 14. Előadás Kapacitás C Q V fesz. méő Métékegység: F C, faad V Jelölés: Síkkondenzáto I. Láttuk, hogy nagy egyenletesen töltött sík tee: E σ ε o E ε σ o Síkkondenzáto II. E σ ε o σ Q A

Részletesebben

5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR

5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR 5 IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR A koábbiakban külön, egymástól függetlenül vizsgáltuk a nyugvó töltések elektomos teét és az időben állandó áam elektomos és mágneses teét Az elektomágneses té pontosabb

Részletesebben

Sugárzás és szórás. ahol az amplitúdófüggvény. d 3 x J(x )e ikˆxx. 1. Számoljuk ki a szórási hatáskeresztmetszetet egy

Sugárzás és szórás. ahol az amplitúdófüggvény. d 3 x J(x )e ikˆxx. 1. Számoljuk ki a szórási hatáskeresztmetszetet egy Sugázás és szóás I SZÓRÁSOK A Szóás dielektomos gömbön Számoljuk ki a szóási hatáskeesztmetszetet egy ε elatív dielektomos állandójú gömb esetén amennyiben a gömb R sugaa jóval kisebb mint a beeső fény

Részletesebben

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el. 1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus

Részletesebben

Az elektrosztatika törvényei anyag jelenlétében, dielektrikumok

Az elektrosztatika törvényei anyag jelenlétében, dielektrikumok TÓTH : ielektikumok (kibővített óavázlat) z elektosztatika tövényei anyag jelenlétében, dielektikumok z elektosztatika alaptövényeinek vizsgálata a kezdeti időkben levegőben tötént, és a különféle töltéselendezések

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

A Maxwell-egyenletrendszer:

A Maxwell-egyenletrendszer: Maxwell-egyenletendsze: Ez a XIX. sz. egyik legnagyobb hatású egyenletendszee, főleg azét, met ebből az egyenletendszeből vezették le az elektomágneses hullámok létezését.. mpèe-maxwell féle gejesztési

Részletesebben

Zaj és rezgésvédelem

Zaj és rezgésvédelem OMKT felsőfokú munkavédelmi szakiányú képzés Szekesztette: Mákus Miklós zaj- és ezgésvédelmi szakétő Lektoálta: Mákus Péte zaj- és ezgésvédelmi szakétő Budapest 2010. febuá Tatalomjegyzék Tatalomjegyzék...

Részletesebben

László István, Fizika A2 (Budapest, 2013) Előadás

László István, Fizika A2 (Budapest, 2013) Előadás László István, Fizika A (Budapest, 13) 1 14.A Maxwell-egenletek. Az elektromágneses hullámok Tartalmi kiemelés 1.Maxwell általánosította Ampère törvénét bevezetve az eltolási áramot. szerint ha a térben

Részletesebben

FIZIKA II. Az áram és a mágneses tér kapcsolata

FIZIKA II. Az áram és a mágneses tér kapcsolata Az áram és a mágneses tér kapcsolata Mágneses tér jellemzése: Mágneses térerősség: H (A/m) Mágneses indukció: B (T = Vs/m 2 ) B = μ 0 μ r H 2Seres.Istvan@gek.szie.hu Sztatikus terek Elektrosztatikus tér:

Részletesebben

Az atomok vonalas színképe

Az atomok vonalas színképe Az atomok vonalas színképe Színképelemzés, spektoszkópia R. Bunsen 8-899 G.R. Kichhoff 8-887 A legegyszebb (a legkönnyebb) atom a hidogén. A spektuma a láthatóban a következ A hidogén atom spektuma a látható

Részletesebben

Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter

Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter Infomáció megjelenítés Számítógépes ábázolás D. Iványi Péte Megvilágítás, ányékolás Realisztikus képhez ányékolás kell Modellezés összetett nagy számítási igenyű Megvilágítás, ányékolás OpenGL egyszeűsített

Részletesebben

Elektromágneses hullámok, a fény

Elektromágneses hullámok, a fény Elektromágneses hullámok, a fény Az elektromos töltéssel rendelkező testeknek a töltésük miatt fellépő kölcsönhatását az elektromos és mágneses tér segítségével írhatjuk le. A kölcsönhatás úgy működik,

Részletesebben

Hősugárzás. 2. Milyen kölcsönhatások lépnek fel sugárzás és anyag között?

Hősugárzás. 2. Milyen kölcsönhatások lépnek fel sugárzás és anyag között? Hősugázás. Milyen hőtejedési fomát nevezünk hőmésékleti sugázásnak? Minden test bocsát ki elektomágneses hullámok fomájában enegiát a hőméséklete által meghatáozott intenzitással ( az anyag a molekulái

Részletesebben

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag

Részletesebben

A magnetosztatika törvényei anyag jelenlétében

A magnetosztatika törvényei anyag jelenlétében TÓTH A.: Mágnesség anyagban (kibővített óavázlat) 1 A magnetosztatika tövényei anyag jelenlétében Eddig: a mágneses jelenségeket levegőben vizsgáltuk. Kimutatható, hogy vákuumban gyakolatilag ugyanolyanok

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 NÉV: Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, 2017. december 05. Neptun kód: Aláírás: g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus /

Részletesebben

OPTIKA. Hullámoptika Diszperzió, interferencia. Dr. Seres István

OPTIKA. Hullámoptika Diszperzió, interferencia. Dr. Seres István OPTIKA Diszperzió, interferencia Dr. Seres István : A fény elektromágneses hullám A fehér fény összetevői: Seres István 2 http://fft.szie.hu : A fény elektromágneses hullám: Diszperzió: Különböző hullámhosszúságú

Részletesebben

1. TRANSZPORTFOLYAMATOK

1. TRANSZPORTFOLYAMATOK 1. TRNSZPORTFOLYMTOK 1.1. halmazállapot és az anyagszekezet kapcsolata. folyadékállapot általános jellemzése - a szilád, folyadék és gáz halmazállapotok jellemzése (téfogat, alak, endezettség, észecskék

Részletesebben

Pótlap nem használható!

Pótlap nem használható! 1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. november 29. Neptun kód:... Pótlap nem használható! g=10 m/s 2 ; εε 0 = 8.85 10 12 F/m; μμ 0 = 4ππ 10 7 Vs/Am; cc = 3

Részletesebben

FIZIKA I Villamosságtan

FIZIKA I Villamosságtan FZKA Viamosságtan D. ványi Miósné egyetemi taná 8. óa Készüt az ERFO-DD-Hu-- szeződésszámú pojet támogatásáva, 4. PTE PMMK Műszai nfomatia Tanszé EA-V/ . Foytonossági fetétee-ét mágneses anyag hatáfeüetén

Részletesebben

Matematikai ismétlés: Differenciálás

Matematikai ismétlés: Differenciálás Matematikai ismétlés: Diffeenciálás A skalá- és vektoteek diffeenciálásával kapcsolatban szokás bevezetni a nabla-opeátot: = xx = yy zz A nabla egy vektoopeáto, amellyel hatása egy skalá vagy vektomezőe

Részletesebben

ELEKTROMÁGNESSÉG. (A jelen segédanyag, az előadás és a számonkérés alapja:) Hevesi Imre: Elektromosságtan, Nemzeti Tankönyvkiadó, Budapest, 2007

ELEKTROMÁGNESSÉG. (A jelen segédanyag, az előadás és a számonkérés alapja:) Hevesi Imre: Elektromosságtan, Nemzeti Tankönyvkiadó, Budapest, 2007 ELEKTROMÁGNESSÉG (A jelen segédanyag, az előadás és a számonkéés alapja:) Hevesi Ime: Elektomosságtan, Nemzeti Tankönyvkiadó, Budapest, 7 ELEKTROMOSSÁGTAN A. Elektosztatikai té vákuumban. Az elektomos

Részletesebben

Az elektrosztatika törvényei anyag jelenlétében, dielektrikumok

Az elektrosztatika törvényei anyag jelenlétében, dielektrikumok TÓTH.: Dielektikumok (kibővített óavázlat) 1 z elektosztatika tövényei anyag jelenlétében, dielektikumok z elektosztatika alatövényeinek vizsgálata a kezdeti időkben levegőben tötént, és a különféle töltéselendezések

Részletesebben

1 2 3 4 5 6 7 112 8 9 10 11 12 13 [Nm] 400 375 350 325 300 275 250 225 200 175 150 125 114 kw 92 kw 74 kw [155 PS] [125 PS] [100 PS] kw [PS] 140 [190] 130 [176] 120 [163] 110 [149] 100 [136] 90 [122] 80

Részletesebben

Bordács Sándor doktorjelölt. anyagtudományban. nyban. Dr. Kézsmárki István Prof. Yohinori Tokura Prof. Ryo Shimano

Bordács Sándor doktorjelölt. anyagtudományban. nyban. Dr. Kézsmárki István Prof. Yohinori Tokura Prof. Ryo Shimano Bordács Sándor doktorjelölt Túl l a távoli t infrán: THz spektroszkópia pia az anyagtudományban nyban Dr. Kézsmárki István Prof. Yohinori Tokura Prof. Ryo Shimano Terahertz sugárz rzás THz tartomány: frekvencia:

Részletesebben

11. Alacsonyfrekvenciás elektromos- és mágneses terek vizsgálata

11. Alacsonyfrekvenciás elektromos- és mágneses terek vizsgálata 11. Alacsonyfrekvenciás elektromos- és mágneses terek vizsgálata A MÉRÉS CÉLJA: Elektromos berendezések keltette elektromos- és mágneses terek vizsgálata, a sugáregészségügyi jellemzők megismerése. Alacsonyfrekvenciás

Részletesebben

IVÁNYI AMÁLIA HARDVEREK VILLAMOSSÁGTANI ALAPJAI

IVÁNYI AMÁLIA HARDVEREK VILLAMOSSÁGTANI ALAPJAI IVÁNYI AMÁLIA HARDVEREK VILLAMOSSÁGTANI ALAPJAI POLLACK PRESS, PÉCS HARDVEREK VILLAMOSSÁGTANI ALAPJAI Lektoálta D. Kuczmann Miklós, okl. villamosménök egyetemi taná Széchenyi István Egyetem, Győ A feladatokat

Részletesebben

1 2 3 4 5 A B 6 7 8 9 [Nm] 370 350 330 310 290 270 250 [kw] [PS] 110 150 100 136 90 122 80 109 70 95 230 210 60 82 190 170 150 50 40 68 54 130 110 90 140 PS 100 PS 125 PS 30 20 41 27 70 1000 1500 2000

Részletesebben

1 2 3 4 5 7 9 A B 10 11 12 13 14 15 16 17 18 19 [Nm] 370 350 330 310 290 270 250 230 210 190 170 150 130 110 90 140 PS 100 PS 125 PS 70 1000 1500 2000 2500 3000 3500 4000 RPM [kw] [PS] 110 150 100 136

Részletesebben

1 2 3 4 5 6 7 A B 8 9 10 11 [Nm] 370 [kw] [PS] 110 150 350 330 310 100 136 90 122 290 270 80 109 250 70 95 230 210 60 82 190 50 68 170 150 40 54 130 110 90 140 PS 125 PS 100 PS 30 20 41 27 70 1000 1500

Részletesebben

2 3 4 5 6 7 8 9 A B A B 11 12 13 [Nm] 370 350 330 310 290 270 250 230 210 190 [kw] [PS] 110 150 100 136 90 122 80 109 70 95 60 82 50 68 170 150 40 54 130 110 90 140 PS 85 PS 110 PS 70 1000 1500 2000 2500

Részletesebben

Elektromosság. Alapvető jelenségek és törvények. a.) Coulomb törvény. Sztatikus elektromosság

Elektromosság. Alapvető jelenségek és törvények. a.) Coulomb törvény. Sztatikus elektromosság Eektomos tötés: (enjamin Fankin) megmaadó fizikai mennyiség Eektomosság pozitív vagy negatív egysége: couomb [C] apvető jeenségek és tövények eemi tötés:.6x -9 [C] nyugvó eektomos tötés: mozgó eektomos

Részletesebben

(Gauss-törvény), ebből következik, hogy ρössz = ɛ 0 div E (Gauss-Osztrogradszkij-tételből) r 3. (d 2 + ρ 2 ) 3/2

(Gauss-törvény), ebből következik, hogy ρössz = ɛ 0 div E (Gauss-Osztrogradszkij-tételből) r 3. (d 2 + ρ 2 ) 3/2 . Elektosztatika. Alapképletek (a) E a = össz (Gauss-tövény), ebből következik, hogy ρössz = ɛ 0 iv E (Gauss-Osztogaszkij-tételből) ɛ 0 (b) D = ɛ 0 E + P, P = p V, ez spec. esetben P = χɛ 0E. Tehát D =

Részletesebben

LÁMPATESTEK TERVEZÉSE ESZTERGOMI FERENC MŰSZAKI IGAZGATÓ

LÁMPATESTEK TERVEZÉSE ESZTERGOMI FERENC MŰSZAKI IGAZGATÓ LÁMPATESTEK TERVEZÉSE ESZTERGOMI FERENC MŰSZAKI IGAZGATÓ HOFEKA kft. Lámpatestek Nagyfeszültségű távvezeték szerelvények Hofeka.hu A lámpatest olyan készülék, amely biztosítja a fényforrás tartós működtetéséhez

Részletesebben

XV. Tornyai Sándor Országos Fizikai Feladatmegoldó Verseny a református középiskolák számára Hódmezővásárhely, 2011. április 1-3. 9.

XV. Tornyai Sándor Országos Fizikai Feladatmegoldó Verseny a református középiskolák számára Hódmezővásárhely, 2011. április 1-3. 9. A vesenydolgozatok megíásáa 3 óa áll a diákok endelkezésée, minden tágyi segédeszköz tesztek teljes és hibátlan megoldása 20 pontot é, a tesztfeladat esetén a választást meg kell indokolni. 1. 4 db játék

Részletesebben

Elektromos állapot. Görög tudomány, Thales ηλεκτρν=borostyán (elektron) Elektromos állapot alapjelenségei. Elektroszkóp

Elektromos állapot. Görög tudomány, Thales ηλεκτρν=borostyán (elektron) Elektromos állapot alapjelenségei. Elektroszkóp Elektomos állapot Göög tudomány, Thales ηλεκτρνboostyán (elekton) Elektomos állapot alapjelenségei Kétféle elektomos állapot pozitív üveg negatív ebonit Elektoszkóp Tapasztalatok Testek alapállapota semleges

Részletesebben

Kapd fel a csomagod, üdvözöld a kalauzt és szállj fel!

Kapd fel a csomagod, üdvözöld a kalauzt és szállj fel! E K Pm B m T R E E V S? M m? V m m m? I E m! K m! E 2 4 0S V ( 4 5m K P Z S F m x m 15 S Vm (3m m V ) 158 K 110V 12m 14 M 46M K 6 1Ö K 40 1E ExB m 5 F P ( 1m 5 ) 1 S 1 D W O m ( ) F m A T R Km A Vm A J

Részletesebben

rnök k informatikusoknak 1. FBNxE-1

rnök k informatikusoknak 1. FBNxE-1 Fizika ménm nök k infomatikusoknak. FBNxE- Mechanika 7. előadás D. Geetovszky Zsolt. októbe. Ismétl tlés Centifugális és Coiolis eő (a Föld mint fogó von. endsze) Fluidumok mechanikája folyadékok szabad

Részletesebben

Kiadás: MOVIMOT utánszerelő készlet 2001.11. Kiegészítés az üzemeltetési utasításhoz 10538062 / HU

Kiadás: MOVIMOT utánszerelő készlet 2001.11. Kiegészítés az üzemeltetési utasításhoz 10538062 / HU MOVIMOT utánszerelő készlet Kiadás: 2001.11. Kiegészítés az üzemeltetési utasításhoz 10538062 / HU 1 Fontos tudnivalók 1 Fontos tudnivalók Ez a kiegészítés nem helyettesíti a részletes üzemeltetési utasítást!

Részletesebben

Elektromágneses hullámok

Elektromágneses hullámok Bevezetés a modern fizika fejezeteibe 2. (a) Elektromágneses hullámok Utolsó módosítás: 2015. október 3. 1 A Maxwell-egyenletek (1) (2) (3) (4) E: elektromos térerősség D: elektromos eltolás H: mágneses

Részletesebben

Optoelektronikai Kommunikáció. Az elektromágneses spektrum

Optoelektronikai Kommunikáció. Az elektromágneses spektrum Optoelektronikai Kommunikáció (OK-2) Budapesti Mûszaki Fõiskola Kandó Kálmán Villamosmérnöki Fõiskolai Kar Számítógéptechnikai Intézete Székesfehérvár 2002. 1 Budapesti Mûszaki Fõiskola Kandó Kálmán Villamosmérnöki

Részletesebben

AZ ELEKTROMÁGNESES HULLÁMOK. Készítette: Porkoláb Tamás

AZ ELEKTROMÁGNESES HULLÁMOK. Készítette: Porkoláb Tamás AZ ELEKTROMÁGNESES HULLÁMOK Hasznosak? Veszélyesek? AZ ELEKTROMÁGNESES HULLÁMOK Az elektromágneses hullámokkal kapcsolatban a legtöbb úttörő kísérletet Heinrich Hertz (1857-1894) német fizikus végezte.

Részletesebben

Az elektromágneses spektrum

Az elektromágneses spektrum IR Az elektromágneses spektrum V Hamis színes felvételek Elektromágnes hullámok Jellemzők: Amplitúdó Hullámhossz E ~ A 2 / λ 2 Információ ~ 1/λ UV Összeállította: Juhász Tibor 2008 Függ a közegtől Légüres

Részletesebben

Budapest, 2008. október 8. 9. elektromágneses összeférhetõségi- és rádióspektrum ügyek (ERM). Földi mozgószolgálat. rádióberendezések. 3.

Budapest, 2008. október 8. 9. elektromágneses összeférhetõségi- és rádióspektrum ügyek (ERM). Földi mozgószolgálat. rádióberendezések. 3. Nemzeti Akkreditáló Testület RÉSZLETEZÕ OKIRAT a NAT-1-1410/ 2008 számú akkreditálási ügyirathoz A Széchenyi István Egyetem Rádiofrekvenciás Vizsgáló Laboratórium (9026 Gyõr, Egyetem tér 1.) akkreditált

Részletesebben

XIX. A FÉNY ELHAJLÁSA

XIX. A FÉNY ELHAJLÁSA Pálinkás József: Fizika. XX. A FÉNY ELHAJLÁSA Bevezetés A fény elhajlásán vagy diffakcióján azt a jelenséget étjük, amiko a fény(hullámok) útjukba keülő tágyak vagy nyílások mögötti tében eltéülnek, vagy

Részletesebben

4. STACIONÁRIUS MÁGNESES TÉR

4. STACIONÁRIUS MÁGNESES TÉR 4. STACONÁRUS MÁGNESES TÉR Az időben állandó sebességgel mozgó töltések keltette áam nemcsak elektomos, de mágneses teet is kelt. 4.1. A mágneses té jelenléte 4.1.1. A mágneses dipólus A tapasztalat azt

Részletesebben

Fizika 1 Elektrodinamika belépő kérdések

Fizika 1 Elektrodinamika belépő kérdések Fizika 1 Elektrodinamika belépő kérdések 1) Maxwell-egyenletek lokális (differenciális) alakja rot H = j+ D rot = B div B=0 div D=ρ H D : mágneses térerősség : elektromos megosztás B : mágneses indukció

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény;   Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;

Részletesebben

Elektrotechnika. Ballagi Áron

Elektrotechnika. Ballagi Áron Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:

Részletesebben

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció

Részletesebben

1. Elektrosztatika A megdörzsölt üvegrudat a fémpohárhoz érintve az elektromos állapot átadódik

1. Elektrosztatika A megdörzsölt üvegrudat a fémpohárhoz érintve az elektromos állapot átadódik . Elektosztatika Elektomos alapjelenségek: Bizonyos testek (boostyánkő, üveg, ebonit) megdözsölve apó tágyakat magukhoz vonzanak. tapasztalat szeint két, bőel megdözsölt apó üvegdaab között taszítás, egy

Részletesebben

Egy irodahelyiség elektromos sugárzásának bemérése és az alkalmazott technológia rövid leírása

Egy irodahelyiség elektromos sugárzásának bemérése és az alkalmazott technológia rövid leírása Egy irodahelyiség elektromos sugárzásának bemérése és az alkalmazott technológia rövid leírása Az elektroszmog -ról "A köztudatba újabban beleivódott az "elektroszmog" kifejezés, amely negatív irányba

Részletesebben

OPTIKA. Fotometria. Dr. Seres István

OPTIKA. Fotometria. Dr. Seres István OPTIKA Dr. Seres István Segédmennyiségek: Síkszög: ívhossz/sugár i r Kör középponti szöge: 2 (radián) Térszög: terület/sugár a négyzeten A sr (szteradián = sr) 2 r Gömb középponti térszöge: 4 (szteradián)

Részletesebben

Az elektron hullámtermészete. Készítette Kiss László

Az elektron hullámtermészete. Készítette Kiss László Az elektron hullámtermészete Készítette Kiss László Az elektron részecske jellemzői Az elektront Joseph John Thomson fedezte fel 1897-ben. 1906-ban Nobel díj! Az elektronoknak, az elektromos és mágneses

Részletesebben

Geometriai és hullámoptika. Utolsó módosítás: május 10..

Geometriai és hullámoptika. Utolsó módosítás: május 10.. Geometriai és hullámoptika Utolsó módosítás: 2016. május 10.. 1 Mi a fény? Részecske vagy hullám? Isaac Newton (1642-1727) Pierre de Fermat (1601-1665) Christiaan Huygens (1629-1695) Thomas Young (1773-1829)

Részletesebben

BSC fizika tananyag MBE. Mechatronika szak. Kísérleti jegyzet

BSC fizika tananyag MBE. Mechatronika szak. Kísérleti jegyzet SC fizika tananyag ME Mechatonika szak Kíséleti jegyzet Készítette: Sölei József . Elektosztatika.. Elektosztatikai alapjelenségek vákuumban. z elektomos töltés. Coulomb Tövény z elektosztatika a nyugvó

Részletesebben

2 51 3 4 5 6 7 8 9 10 11 12 13 14 15 [Nm] 350 330 310 290 270 250 230 210 190 170 150 130 110 90 70 130 PS 110 PS 85 PS [kw] [PS] 100 136 90 122 80 109 70 95 60 82 50 68 40 54 30 41 20 27 10 14 [Nm] 400

Részletesebben

1. Elektrosztatika A megdörzsölt üvegrudat a fémpohárhoz érintve az elektromos állapot átadódik

1. Elektrosztatika A megdörzsölt üvegrudat a fémpohárhoz érintve az elektromos állapot átadódik . Elektosztatika Elektomos alapjelenségek: Bizonyos testek (boostyánkő, üveg, ebonit) megdözsölve apó tágyakat magukhoz vonzanak. tapasztalat szeint két, bőel megdözsölt apó üvegdaab között taszítás, egy

Részletesebben

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája. 11. Transzportfolyamatok termodinamikai vonatkozásai 1 Melyik állítás HMIS a felsoroltak közül? mechanikában minden súrlódásmentes folyamat irreverzibilis. disszipatív folyamatok irreverzibilisek. hőmennyiség

Részletesebben

HARDVEREK VILLAMOSSÁGTANI ALAPJAI

HARDVEREK VILLAMOSSÁGTANI ALAPJAI HARDVEREK VILLAMOSSÁGTANI ALAPJAI Lektoálta D. Kuczmann Miklós, okl. villamosménök egyetemi taná Széchenyi István Egyetem, Győ A feladatokat ellenőizte Macsa Dániel, okl. villamosménök Széchenyi István

Részletesebben

OPTIKA. Fotometria. Dr. Seres István

OPTIKA. Fotometria. Dr. Seres István OPTIKA Dr. Seres István Segédmennyiségek: Síkszög: ívhossz/sugár Kör középponti szöge: 2 (radián) Térszög: terület/sugár a négyzeten sr A 2 r (szteradián = sr) i r Gömb középponti térszöge: 4 (szteradián)

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény;  Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;

Részletesebben

Definíció (hullám, hullámmozgás):

Definíció (hullám, hullámmozgás): Hullámmozgás Példák: Követ dobva a vízbe a víz felszíne hullámzani kezd. Hajó úszik a vízen, akkor hullámokat kelt. Hullámokat egy kifeszített kötélen is kelthetünk. Ha a kötés egyik végét egy falhoz kötjük,

Részletesebben

Az optika tudományterületei

Az optika tudományterületei Az optika tudományterületei Optika FIZIKA BSc, III/1. 1. / 17 Erdei Gábor Elektromágneses spektrum http://infothread.org/science/physics/electromagnetic%20spectrum.jpg Optika FIZIKA BSc, III/1. 2. / 17

Részletesebben

E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic

E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic Abszorpciós spektroszkópia Abszorpciós spektrofotometria 29.2.2. Az abszorpciós spektroszkópia a fényabszorpció jelenségét használja fel híg oldatok minőségi és mennyiségi vizsgálatára. Abszorpció Az elektromágneses

Részletesebben

RÉSZLETEZŐ OKIRAT (2) a NAH /2017 nyilvántartási számú akkreditált státuszhoz

RÉSZLETEZŐ OKIRAT (2) a NAH /2017 nyilvántartási számú akkreditált státuszhoz RÉSZLETEZŐ OKIRAT (2) a NAH-2-0313/2017 nyilvántartási számú akkreditált státuszhoz 1) Az akkreditált szervezet neve és címe: TooLIMPEX Metrológia Kft. Kalibráló laboratórium 1171 Budapest, Pányva u. 6.

Részletesebben

3. GYAKORLATI ELEKTROMOSSÁGTAN

3. GYAKORLATI ELEKTROMOSSÁGTAN 3. GYKORLI ELEKROMOSSÁGN 1. lapfogalmak z elektomos töltés z anyagi testek általában elektomosan semlegesek, de egyszeű fizikai módszeel (pl. dözselektomosság) pozitív vagy negatív töltésűvé tehetők. z

Részletesebben

Fizika minta feladatsor

Fizika minta feladatsor Fizika minta feladatsor 10. évf. vizsgára 1. A test egyenes vonalúan egyenletesen mozog, ha A) a testre ható összes erő eredője nullával egyenlő B) a testre állandó értékű erő hat C) a testre erő hat,

Részletesebben

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt

Részletesebben

ALKALMAZHATÓ-E A BIOT SAVART-TÖRVÉNY NEM ZÁRÓDÓ»ÁRAMKÖRÖKRE«I. RÉSZ Gnädig Péter ELTE Fizikai Intézet

ALKALMAZHATÓ-E A BIOT SAVART-TÖRVÉNY NEM ZÁRÓDÓ»ÁRAMKÖRÖKRE«I. RÉSZ Gnädig Péter ELTE Fizikai Intézet A FZKA TANÍTÁSA ALKALMAZHATÓ-E A BOT SAVART-TÖRVÉNY NEM ZÁRÓDÓ»ÁRAMKÖRÖKRE«. RÉSZ Gnädig Péte ELTE Fizikai ntézet Ha a címben feltett kédése az lenne aválasz, hogy nem, akko ez az íás itt aká be is fejezôdhetne.

Részletesebben

KISÉRLETI FIZIKA Elektrodinamika 4. (III. 4-8.) I + dq /dt = 0

KISÉRLETI FIZIKA Elektrodinamika 4. (III. 4-8.) I + dq /dt = 0 ELTE I.Fizikus 004/005 II.félév Árm (I), mozgó töltések: KISÉRLETI FIZIKA Elektrodinmik 4. (III. 4-8.) I dq /dt = 0 (Időegység ltt kiármló töltés) Mértékegysége: I = A = C / s Típusi: = konduktív (vezetési)

Részletesebben

Roncsolásmentes részleges kisülés diagnosztika

Roncsolásmentes részleges kisülés diagnosztika Roncsolásmentes részleges kisülés diagnosztika Tevékenységeink 1. Roncsolásmentes helyszíni diagnosztikai vizsgálatok Generátorok Transzformátorok Túlfeszültséglevezetők Mérőváltók Kábelek (olajpapír és

Részletesebben

Mozgás centrális erőtérben

Mozgás centrális erőtérben Mozgás centális eőtében 1. A centális eő Válasszunk egy olyan potenciális enegia függvényt, amely csak az oigótól való távolságtól függ: V = V(). A tömegponta ható eő a potenciális enegiája gaiensének

Részletesebben

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT /2014 nyilvántartási számú akkreditált státuszhoz

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT /2014 nyilvántartási számú akkreditált státuszhoz Nemzeti kkreditáló Testület RÉSZLETEZŐ OKIRT a NT--016/ nyilvántartási sú akkreditált státuszhoz z EROPLEX Közép-Európai Légijármű Műszaki Központ Kft. Kalibráló Labor (1185 Budapest, Liszt Ferenc Nemzetközi

Részletesebben

2010. május 4. Az alap-jelenség egy térben értelmezett függvény, f(x). Itt x a tér-koordináta, f pedig egy

2010. május 4. Az alap-jelenség egy térben értelmezett függvény, f(x). Itt x a tér-koordináta, f pedig egy Környezeti sugárzások Csanád Máté 2010. május 4. 1. Bevezetés a hullámok elméletébe 1.1. Motiváció Zajszennyezés: hanghullámok Elektroszmog: elektromágneses hullámok Radioaktivitás: részecskék és elektromágneses

Részletesebben

RÉSZLETEZŐ OKIRAT (1) a NAH-0162/2018 nyilvántartási számú akkreditált státuszhoz

RÉSZLETEZŐ OKIRAT (1) a NAH-0162/2018 nyilvántartási számú akkreditált státuszhoz RÉSZLETEZŐ OKIRAT (1) a NAH-0162/2018 nyilvántartási számú akkreditált státuszhoz 1) Az akkreditált szervezet neve és címe: AEROPLEX Közép-Európai Kft. Kalibráló Labor 1185 Budapest Liszt Ferenc Nemzetközi

Részletesebben

MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAH /2014 nyilvántartási számú (4) akkreditált státuszhoz

MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAH /2014 nyilvántartási számú (4) akkreditált státuszhoz MÓDOSÍTOTT RÉSZLETEZŐ OKIRT (1) a NH016/ nyilvántartási számú (4) akkreditált státuszhoz EROPLEX KözépEurópai Légijármű Műszaki Központ Kft. Kalibráló Labor (1185 Budapest, Liszt Ferenc Nemzetközi repülőtér)

Részletesebben

FORD RANGER Ranger_2013.5_Cover_V2.indd 1 20/12/2012 14:57

FORD RANGER Ranger_2013.5_Cover_V2.indd 1 20/12/2012 14:57 FORD RANGER 1 2 3 4 5 1.8 m3 6 7 8 9 10 11 3 7 8 5 1 2 4 6 9 10 12 13 3500kg 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 28 29 29 30 [Nm] 475 450 425 400 375 350 325 [kw] [PS] 180 245 165 224 150 204

Részletesebben