5. mérés Mérés és kiértékelés számítógéppel

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "5. mérés Mérés és kiértékelés számítógéppel"

Átírás

1 Budaesti Műszaki és Gazdaságtudományi Egyetem Géészmérnöki Kar Mechatronika, Otika és Géészeti Informatika Tanszék 5. mérés Mérés és kiértékelés számítógéel Segédlet a Méréstechnika (BMEGEMIAMG1) Mérés, jelfeldolgozás, elektronika (BMEGEMIMG01) Műszertechnika (BMEGEFOAG02) tantárgyak laboratóriumi méréseihez Budaest, 2019

2 Mérés és kiértékelés számítógéel 5 1. A mérés célja A sorozatmérés fogalmának, valamint a számítógé segítségével végzett adatgyűjtés és kiértékelés megismerése. A Microsoft Office Excel alavető statisztikai függvényeinek alkalmazása a kiértékeléshez a gyártmány minősítése céljából. Sorozatmérés fogalma Sorozatmérés során adott számú munkadarabon kell ellenőrizni ugyanazt a méretet. Jelen esetben 30db csavaranya magasságát kell lemérni digitális kijelzésű tolómérővel. A sorozatmérés fogalma nem összekeverendő a mérési sorozat fogalmával. A mérési sorozat egyetlen munkadarabon, ugyanazon méret, ugyanazon körülmények közötti és ugyanazon eszközökkel történő ismételt mérését jelenti. 2. A mérés során használt eszközök és az elméleti háttér A mérnöki gyakorlatban a munkadarabok gyártási folyamatához hozzá tartozik a munkadarabok ellenőrzése és minősítése is. Tiikusan sorozatgyártásban készülő termékek esetén, nincs lehetőség egy gyártmány összes darabjának ellenőrzésére (l. csaszegek, csavaranyák stb.). Ekkor a gyártmányból szükséges mennyiségű, véletlenszerű mintát kell venni, és a minősítési feladatnak megfelelő statisztikai vizsgálatok alaján lehet minősíteni a gyártmányt. Jelen mérés során a következő mérőeszköz szükséges: Digitális kijelzésű tolómérő A fenti műszer használatát az általános irányelveket összefoglaló segédlet, a műszer megnevezésének megfelelő fejezet taglalja. Amennyiben a hallgató az adott mérőműszert ismeri, annak tartalmának áttekintésétől saját belátása szerint eltekinthet, azonban még ebben az esetben is erősen ajánlott az ismeretek felfrissítése. 5. mérés: Mérés és kiértékelés számítógéel 1.

3 a) A tűrésmező Gyártás során az alkatrészek méretei az ideális, előírt mérettől valamilyen mértékben mindig eltérnek. Ennek okai gyártási és szerelési ontatlanságok lehetnek. Ezért a tervezés során definiálni kell egy olyan, az előírt méret körüli tartományt, amelyen belül a munkadarab el tudja látni a funkcióját és szükséges ontossággal gyártható. Ez a tartomány a tűrés vagy tűrésmező, melynek előírása egyben meghatározza az alkatrész készítéséhez szükséges gyártási folyamatokat is. Tehát a gyártás során az elkészült méretek az előírt méret körüli, a használt technológiától függő tartományban fognak valamekkora valószínűséggel megjelenni. Ahogy a gyártásból adódnak bizonytalanságok, magát a mérést is terhelik hibák. Ezekkel a mérés tervezésekor számolni kell és figyelembe kell venni a kiértékeléskor, valamint az eredmény megadásakor. A mérnöki gyakorlatban előforduló mérések eredménye két tényezőből áll: a méret várható értékéből és a bizonytalanságból. Az M ( x ), vagy várható érték legjobb becslése a vizsgált értékek átlaga. A bizonytalanság alavetően kétfélekéen határozható meg: A tíusú és / vagy B tíusú becsléssel. A tíusú becslés esetén, az un. a osteriori ismeretek alaján, jellemzően a mért adatok statisztikai feldolgozásával határozható meg a mérési bizonytalanság. A mérnöki gyakorlatban a Gauss-féle normáleloszlást feltételezve a bizonytalanság becslése szórásbecslésre vezethető vissza. B tíusú becslés esetén un. a riori ismeretek, azaz korábban megszerzett információk, taasztalatok (l. katalógus adatok, műszerkönyvek) alaján becsülhető a bizonytalanság. Mivel becslésről van szó, az eredmény csak bizonyos valószínűséggel határozható meg, ami meghatározza a konfidenciaszintet. Az alkalmazott gyártási folyamatok akkor megfelelőek, ha megadott konfidenciaszint mellett, az ellenőrzött méret adatainak taasztalati szórása alaján meghatározott a sugarú konfidencia intervallum ( M ( x) a ) az előírt tűrésmezőn belül helyezkedik el. A P ( x a x x a) konfidenciaszint azt határozza meg, hogy mekkora valószínűséggel esik majd a méret az adott intervallumba. Az iarban a konfidenciaszint jellemzően 95%, vagy 99,73%. Például, utóbbi esetben ( 99,73% ) 1 millió db termékből db termék mérete a tűrésmezőn belülre, valamint 2700 termék mérete a tűrésmezőn kívülre esik és a hibaarány Pe=0,27% (2700 m, arts er million). Méréstechnikai ellenőrzéseknél a feladat adott konfidenciaszint mellett összehasonlítani a becsült várható értéket és bizonytalanságot az előírt mérettel és tűréssel. A Gauss-féle normál eloszlás 5. mérés: Mérés és kiértékelés számítógéel 2. i

4 tulajdonságai alaján ismert, hogy egy normális eloszlású valószínűségi változó adott P valószínűséggel (adott valószínűségi vagy konfidenciaszinten) a várható érték körüli ( x k ) tartományon belül lesz. Ez a tartomány a konfidencia intervallum és k az adott konfidenciaszint faktora. A 1. ábrán látható, hogy = 95% esetén k = 2, = 99,73% esetén k = 3, =99,9994 % esetén k=4, a bizonytalanság edig rendre 2σ, 3σ és 4σ. 1. ábra: Adott konfidenciaszintekhez tartozó bizonytalanságok b) Minőségkéességi indexek Gyártási folyamatokban, illetve a gyártóberendezéseken a megkívánt minőségszint tarthatóságáról a minőségkéesség rendszeres figyelése ad kéet. A minőségkéesség egy adott folyamat során elérhető és egyenletesen tartható minőségi szintet mutatja meg. Attól függően, hogy egy folyamat vagy egy gé minőségkéességét (Process Caability és Machine Caability) szükséges meghatározni, rendre a C vagy Cm minőségkéességi indexek, ún. ala indexek használatosak. Ezek számításakor a vizsgált mennyiség bizonytalanságának terjedelmét (Gauss-féle normál eloszlást feltételezve a szórás 2k-szorosát, ahol k az adott konfidenciaszint faktora) kell a tűrésmező nagyságához hasonlítani függetlenül attól, hogy a méret várható értéke eltér-e a névleges mérettől. Ezek számításakor a vizsgált mennyiség bizonytalanságának terjedelmét (Gauss-féle normál eloszlást feltételezve a szórás 2k-szorosát, ahol k az adott konfidenciaszint faktora) kell a tűrésmező nagyságához hasonlítani függetlenül attól, hogy a méret várható értéke eltér-e a névleges mérettől. Szimmetrikus tűrésmező esetén: C USL LSL 2k n 1 (és C m USL LSL ) 2k m n 1 ahol USL (Uer Secification Limit) az előírt tűrésmező felső határa, LSL (Lower Secification Limit) az előírt tűrésmező alsó határa, k konstans és n 1 korrigált taasztalati szórás. 5. mérés: Mérés és kiértékelés számítógéel 3.

5 A gyakorlatban C számítása esetén k 3. (Cm számítása esetén k 4 ) m Az ala indexeknél többet mondanak a folyamatról a korrigált indexek (Ck és Cmk az indexben szerelő k a korrekció szóra utal), amelyek a vizsgált méret várható értékének a névleges mérettől való eltolódását is figyelembe veszik. Szimmetrikus tűrésmező esetén: C k USL x x LSL min ; k n1 k n1 (és C mk USL x x LSL min ; ) km n1 km n1 Az 2. ábrán látható Ck a méret várható értéke, x függvényében ábrázolva. 2. ábra: Ck az függvényében A következő ábrákon [(a) (f)] az előírt tűrésmezőkre és számított konfidencia intervallumokra vonatkozó minőségkéességi indexek láthatók, ahol a k n1, a konfidencia intervallum sugara. Ha C 1 teljesül, vagyis a mérési adatok alaján számított konfidencia intervallum és az előírt tűrésmező terjedelme ugyanakkora, a gyártmány megfelelhet, de csak akkor, ha a vizsgált méret várható értéke és a névleges méret megegyeznek (ld. a ábra: megfelel, b és c ábrák: nem felelnek meg). Ha C 1, vagyis az előírt tűrésmező nagyobb, mint a számított konfidencia intervallum, akkor a várható érték szélesebb tartományon helyezkedhet el úgy, hogy a gyártmány megfeleljen az előírásnak. (ld. d ábra: megfelel, e ábra: nem felel meg). 5. mérés: Mérés és kiértékelés számítógéel 4.

6 Ha C 1, vagyis az előírt tűrésmező kisebb, mint a számított konfidencia intervallum, akkor a gyártmány semmilyen várható értéknél nem felelhet meg (ld. f ábra: nem felel meg). Összefoglalva: =, ha a vizsgált méret várható értéke és a névleges méret megegyezik <, ha a vizsgált méret várható értéke és a névleges méret eltér egymástól, így a Ck definíciójában szerelő két hányados közül a várható érték névleges mérettől való eltolódásának irányától függően az egyik számlálója csökken = 0, ha x USL vagy x LSL valamelyike teljesül < 0, ha a várható érték kívül esik az előírt tűrésmezőn, negatív értékeket vesz fel és a gyártmány (értelem szerint) nem felelhet meg 0 < <, akkor a gyártmány megfelelhet, de ez függ az eltolódás nagyságától. A gyakorlatban, tehát az ala minőségkéességi indexekkel szemben támasztott követelmény, hogy értékük legalább 1,00 legyen, de ez még nem garantálja a megfelelőséget, a korrigált indexekkel együtt kell vizsgálni. A C, Ck indexek használata az iari gyakorlatban annyira elterjedt, hogy a legtöbb helyen kizárólag ezeket a számokat használják a minőségkéesség-elemzés során. Ez különösen akkor helytelen, ha a folyamatok nem szabályozottak, mert ekkor a C, Ck indexek nem az egész folyamatra, hanem csak az adott mintára jellemzők. Ez akkor is jelentkezhet, ha a folyamat viszonylag stabil, de nem veszünk elég nagyszámú mintát. 5. mérés: Mérés és kiértékelés számítógéel 5.

7 c) Gyakorisági - diagram A gyakoriság-diagram, vagy más néven hisztogram a mért adatokat adott elv szerint csoortokba (osztályokba, intervallumokba) rendezi, és az egyes csoortokhoz a hozzájuk tartozó elemek darabszámával arányos értékeket rendel. A méréstechnikában a csoortok leggyakrabban egyenközűek, de más tudományterületeken más csoorthatárok is jellemzőek lehetnek. Mivel a mért adatok n darabszámának növelésével az egyes csoortokba eső elemek darabszáma is nő, a hisztogramban a qr / n relatív gyakoriságot szokás jelölni, ahol qr a gyakoriság. Vizsgáljunk egy n db adatból álló x1 xi xn adatsort. Ennek terjedelme: R xn x1. Legyen összesen m db osztály. Ekkor az egyenközű osztályozáshoz a terjedelmet x R / m nagyságú csoortokra kell osztani. A csoortokat meghatározó intervallumok y1 yr ym felső határai tehát yr x1 r x összefüggés alaján adódnak. A qr gyakoriság azt mutatja meg, hogy az r-edik csoortban hány darab elem található, tehát, hogy hány xi elemre teljesül, hogy y r 1 x i y. r Az, hogy a csoortok melyik irányból nyitottak vagy zártak, egyéni döntés kérdése, amit az eredmények értékelésekor figyelembe kell venni. Jelen mérés során a kiértékelés a Microsoft Office Excel rogram GYAKORISÁG függvényével történik, így az intervallumok a függvény működéséből adódóan felül zártak és alul nyitottak. A Microsoft Office Excel segítségével történő adatfeldolgozásban használt függvények Az adatfeldolgozáshoz a Microsoft Office Excel számos beéített függvénnyel rendelkezik. A mérés kiértékelése során az ÁTLAG, GYAKORISÁG, MAXIMUM, MINIMUM és SZÓRÁS függvényeket szükséges használni. Ezek közül a GYAKORISÁG függvény alkalmazása okozhat nehézséget, mivel ez egy ún. tömbkélet, melynek használatát - a jelen útmutató alaján - a laboratóriumi gyakorlat előtt célszerű begyakorolni! A GYAKORISÁG függvény használata A függvény a gyakorisági vagy emirikus eloszlás értékét függőleges tömbként adja eredményként. A gyakorisági eloszlás adott értékhalmazból és adott számú osztálynál (intervallumnál) az egyes intervallumokban előforduló értékek számát méri. A gyakoriság függvény tömböt ad eredményként, ezért tömbkéletként kell megadni. 5. mérés: Mérés és kiértékelés számítógéel 6.

8 Adattömb: Azon adatokat tartalmazó tömb, vagy azon adatokra való hivatkozás, amelyek gyakorisági eloszlását meg kell határozni. Ha az adattömb üres, a GYAKORISÁG nulla értékeket tartalmazó tömböt ad eredményként. A digitális kijelzésű tolómérővel mért adatok kerülnek ebbe a tömbbe. Csoorttömb: Azon intervallumokat tartalmazó tömb, vagy azon intervallumokra való hivatkozás, amelyekbe az adattömbbeni értékeket csoortosítani kell. Ha a csoorttömb üres, akkor a GYAKORISÁG az adattömb elemeinek számát adja eredményként. A kiértékelés során a csoorthatárok kerülnek ebbe a tömbbe. A függvény a csoorttömbben megadott értékek alaján felül zárt, alul nyitott csoortokat hoz létre, majd az ezekbe eső elemek darabszámát számítja ki. A csoorttömb r-edik eleme így az r-edik intervallum felső határa. A függvény egy r elemű csoorttömbhöz ( r 1) db gyakoriságértéket ad. Az ( r 1) -edik gyakoriságérték az r-edik intervallumhatárnál nagyobb elemek darabszámát adja meg. A kiértékeléskor m db osztály esetén tehát elegendő ( m 1) db intervallumhatárt megadni, és a GYAKORISÁG függvényt m db cellára használni. A gyakoriságértékek meghatározása után érdemes ellenőrizni, hogy az összes, n db elem megszámolásra került-e. Erre két lehetőség is adódik. Ha az egyes osztályokhoz tartozó qr gyakoriságértékek összege m qr n, r1 akkor biztosan minden adat bekerült valamelyik csoortba. A SZUMMA függvény használata nélkül, a GYAKORISÁG függvény fent említett tulajdonsága is használható ellenőrzésre. A csoorttömb legnagyobb elemének az m-edik intervallumhatárt választva a függvény az ( m 1) -edik gyakoriságértéknek az m-edik határnál, nagyobb elemek számát kell adnia, ami szükségszerűen nulla, y x mx x R x ( x x ) x a legnagyobb elem. mert m n 1 n 5. mérés: Mérés és kiértékelés számítógéel 7.

9 3. A mért értékek kiértékelésének menete Excel2016-ban A mért adatokat a digitális kijelzésű tolómérő segítségével vigye be egymás alá, egy választott oszloba! Határozza meg: a minimális értéket, a maximális értékeket, a terjedelmet, az átlagot és a szórást. A korrigált taasztalati szórás számítása Office Excel 2010-től kezdve a SZÓRÁSA függvénnyel valósítható meg, korábbi verziókban a SZÓRÁS függvény használatos A taasztalati szórás számítása Office Excel 2010-től kezdve a SZÓRÁSPA függvénnyel valósítható meg, korábbi verziókban a SZÓRÁSP függvény használatos Ossza fel a terjedelmet m =10 db, egyenközű intervallumra. Az intervallumok felső határait rendezze egymás alá (az Általános irányelveket összefoglaló segédlet alaján) és az alábbi kélettel számítsa ki: yr x1 r x, ahol x1 a legkisebb elem, R a mért adatok terjedelme, m az osztályközök száma és r 1.. m az adott osztályköz indexe. Az egyes intervallumokhoz tartozó gyakoriság értékeket a GYAKORISÁG függvénnyel határozza meg! Ennek meghívásakor megjelenik a Függvényargumentumok ablak, melyben az adattömböt az n db mért értékkel, a csoorttömböt edig az m-1 db intervallum felső határaival töltse fel! Az első intervallumra számított eredmény a Kész gomb megnyomásával azonnal megjelenik. Jelöljön ki m db cellát a kéletet tartalmazó cellával együtt, nyomja meg az F2 billentyűt, majd a CRTL+SHIFT+ENTER billentyűkombinációt. * A r q gyakoriságértékekből számítsa ki a q / n relatív gyakoriságértékeket! Az így kézett adatokból készítsen hisztogramot (gyakoriság diagramot)! r * A tömbrész módosítása nem lehetséges, így csuán az egész eredménytömböt kijelölve vagyunk kéesek azt törölni, vagy módosítani, egyes cellákat nem. A következőkben a mérés elvégzéséhez szükséges rövid összefoglalás következik. Ajánlott a leírtakban lévő sorrend betartása. 5. mérés: Mérés és kiértékelés számítógéel 8.

10 4. A mérési feladat 1. A mérés célja Gyártmány minősítése sorozatméréssel és statisztikai araméterek számításával 2. A mérés során használandó eszközök Digitális kijelzésű tolómérő USB csatoló PC, Office Excel A végrehajtandó feladatok A csavaranyák magasságának lemérése (30db) Az adatok rögzítése és feldolgozása A mérési eredmény megadása, a gyártmány minősítése és a folyamatkéességi indexek számítása 4. A mérésadatgyűjtő rendszer összeállítása Ismerkedjen meg a munkaállomáson található mérőeszközök kezelésével! Rögzítse a jegyzőkönyvben a mérőeszközök szükséges adatait. Indítsa el az Excelt! 5. Az adatok rögzítése és feldolgozása Készítse el az adatgyűjtésre és az adatok kiértékelésére szolgáló Excel táblát (ha szükséges használja a minta jegyzőkönyvet)! Mérje le a munkahelyen található 30 db, véletlenszerűen kiválasztott csavaranya magasságát és rögzítse az adatokat az Excel táblában! (Minden munkadarabot egyszer kell lemérni) Számítsa ki a szükséges statisztikai aramétereket, majd készítse el a gyakoriság diagramot m = 10 egyenközű intervallum alaján! Törekedjen arra, hogy a nyomtatás elférjen egy oldalon! Ehhez a nyomtatást megelőzően használja a nyomtatási ké menüontot! 6. A mérési eredmény megadása, a gyártmány minősítése és a folyamatkéességi indexek számítása A mérések alaján adja meg a gyártmány méretét 99,73%-os valószínűségi szinten! Hasonlítsa össze a kaott eredményt a névleges mérettel és minősítse a gyártmányt! 5. mérés: Mérés és kiértékelés számítógéel 9.

11 Számítsa ki a C, és Ck folyamatkéességi indexeket, majd segítségükkel mutassa meg, hogy az előírt tűrésmező és a számított konfidencia intervallum milyen viszonyban állnak egymással! Amennyiben a gyártmány nem felelt meg az előírt méretnek, tegyen javaslatot a módosításra! Számolja ki az új javasolt méretre vonatkozó folyamatkéességi indexeket, majd igazolja, hogy az új méret valóban megfelel! A jegyzőkönyv nyomtatott oldalain történő utólagos tollal (rajz esetén szigorúan ceruzával) történő kiegészítés / módosítás megengedett! Kerüljük a felesleges festék / aír azarlást! A jegyzőkönyvet a laborfoglalkozás végén a laborvezetőnek adja át, miután meggyőződött arról, hogy megfelel a jegyzőkönyvvel szemben támasztott formai és tartalmi követelményeknek! 5. mérés: Mérés és kiértékelés számítógéel 10.

5. mérés Mérés és kiértékelés számítógéppel

5. mérés Mérés és kiértékelés számítógéppel Budaesti Műszaki és Gazdaságtudományi Egyetem Géészmérnöki Kar Mechatronika, Otika és Géészeti Informatika Tanszék 5. mérés Mérés és kiértékelés számítógéel Segédlet a Méréstechnika (BMEGEMIAMG1) Mérés,

Részletesebben

5. mérés Mérés és kiértékelés számítógéppel

5. mérés Mérés és kiértékelés számítógéppel Budaesti Műszaki és Gazdaságtudományi Egyetem Géészmérnöki Kar Mechatronika, Otika és Géészeti Informatika Tanszék 5. mérés Mérés és kiértékelés számítógéel Segédlet a Méréstechnika (BMEGEMIAMG1) Mérés,

Részletesebben

3. mérés Sorozatmérés digitális kijelzésű mérőórával

3. mérés Sorozatmérés digitális kijelzésű mérőórával Budaesti Műszaki és Gazdaságtudományi Egyetem Géészmérnöki Kar Mechatronika, Otika és Géészeti Informatika Tanszék 3. mérés Sorozatmérés digitális kijelzésű mérőórával Segédlet a Méréstechnika (BMEGEMIAMG1)

Részletesebben

Microsoft Excel 2010. Gyakoriság

Microsoft Excel 2010. Gyakoriság Microsoft Excel 2010 Gyakoriság Osztályközös gyakorisági tábla Nagy számú mérési adatokat csoportokba (osztályokba) rendezése -> könnyebb áttekintés Osztályokban szereplő adatok száma: osztályokhoz tartozó

Részletesebben

Sorozatmérés digitális mérőórával 3.

Sorozatmérés digitális mérőórával 3. Mechatronika, Optika és Gépészeti Informatika Tanszék kiadva: 2012.02.12. Sorozatmérés digitális mérőórával 3. A mérések helyszíne: D. épület 523-as terem. Az aktuális mérési segédletek a MOGI Tanszék

Részletesebben

Minőségmenedzsment (módszerek) BEDZSULA BÁLINT

Minőségmenedzsment (módszerek) BEDZSULA BÁLINT Minőségmenedzsment (módszerek) BEDZSULA BÁLINT Bedzsula Bálint gyakornok Menedzsment és Vállalatgazdaságtan Tanszék Q. épület A.314. bedzsula@mvt.bme.hu http://doodle.com/bedzsula.mvt Az előző előadás

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika

Részletesebben

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett

Részletesebben

Méréstechnika II. Mérési jegyzőkönyvek FSZ képzésben részt vevők részére. Hosszméréstechnikai és Minőségügyi Labor Mérési jegyzőkönyv

Méréstechnika II. Mérési jegyzőkönyvek FSZ képzésben részt vevők részére. Hosszméréstechnikai és Minőségügyi Labor Mérési jegyzőkönyv Méréstechnika II. ek FSZ képzésben részt vevők részére Összeállította: Horváthné Drégelyi-Kiss Ágota Kis Ferenc Lektorálta: Galla Jánosné 009 Tartalomjegyzék. gyakorlat Mérőhasábok, mérési eredmény megadása.

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

Kísérlettervezés alapfogalmak

Kísérlettervezés alapfogalmak Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

Számítógépes döntéstámogatás. Statisztikai elemzés

Számítógépes döntéstámogatás. Statisztikai elemzés SZDT-03 p. 1/22 Számítógépes döntéstámogatás Statisztikai elemzés Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-03 p. 2/22 Rendelkezésre

Részletesebben

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus

Részletesebben

SZÁMÍTÓGÉPES ADATFELDOLGOZÁS

SZÁMÍTÓGÉPES ADATFELDOLGOZÁS SZÁMÍTÓGÉPES ADATFELDOLGOZÁS A TÁBLÁZATKEZELŐK Irodai munka megkönnyítése Hatékony a nyilvántartások, gazdasági, pénzügyi elemzések, mérési kiértékelések, beszámolók stb. készítésében. Alkalmazható továbbá

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

Kísérlettervezés alapfogalmak

Kísérlettervezés alapfogalmak Kísérlettervezés alapfogalmak Rendszermodellezés Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement

Részletesebben

Méretlánc átrendezés elmélete

Méretlánc átrendezés elmélete 1. Méretlánc átrendezés elmélete Méretlánc átrendezés elmélete Egyes esetekben szükség lehet, hogy arra, hogy a méretláncot átrendezzük. Ezeknek legtöbbször az az oka, hogy a rajzon feltüntetett méretet

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

III. Képességvizsgálatok

III. Képességvizsgálatok Képességvizsgálatok 7 A folyamatképesség vizsgálata A 3 fejezetben láttuk, hogy ahhoz, hogy egy folyamat jellemzıjét a múltbeli viselkedése alapján egy jövıbeni idıpontra kiszámíthassuk (pontosabban, hogy

Részletesebben

STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba

STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba Egymintás u-próba STATISZTIKA 2. Előadás Középérték-összehasonlító tesztek Tesztelhetjük, hogy a valószínűségi változónk értéke megegyezik-e egy konkrét értékkel. Megválaszthatjuk a konfidencia intervallum

Részletesebben

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési

Részletesebben

Kockázatalapú változó paraméterű szabályozó kártya kidolgozása a mérési bizonytalanság figyelembevételével

Kockázatalapú változó paraméterű szabályozó kártya kidolgozása a mérési bizonytalanság figyelembevételével Kockázatalapú változó paraméterű szabályozó kártya kidolgozása a mérési bizonytalanság figyelembevételével Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése

Részletesebben

KÖVETKEZTETŐ STATISZTIKA

KÖVETKEZTETŐ STATISZTIKA ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Statisztikai módszerek 7. gyakorlat

Statisztikai módszerek 7. gyakorlat Statisztikai módszerek 7. gyakorlat A tanult nem paraméteres próbák: PRÓBA NEVE Illeszkedés-vizsgálat Χ 2 próbával Homogenitás-vizsgálat Χ 2 próbával Normalitás-vizsgálataΧ 2 próbával MIRE SZOLGÁL? A val.-i

Részletesebben

6. Előadás. Vereb György, DE OEC BSI, október 12.

6. Előadás. Vereb György, DE OEC BSI, október 12. 6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető! BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak

Részletesebben

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision

Részletesebben

Gépipari minőségellenőr Gépipari minőségellenőr

Gépipari minőségellenőr Gépipari minőségellenőr A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi

Részletesebben

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

Normális eloszlás tesztje

Normális eloszlás tesztje Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra

Részletesebben

Legnagyobb anyagterjedelem feltétele

Legnagyobb anyagterjedelem feltétele Legnagyobb anyagterjedelem feltétele 1. Legnagyobb anyagterjedelem feltétele A legnagyobb anyagterjedelem feltétele (szabványban ilyen néven szerepel) vagy más néven a legnagyobb anyagterjedelem elve illesztett

Részletesebben

Iskolai jelentés. 10. évfolyam szövegértés

Iskolai jelentés. 10. évfolyam szövegértés 2008 Iskolai jelentés 10. évfolyam szövegértés Az elmúlt évhez hasonlóan 2008-ban iskolánk is részt vett az országos kompetenciamérésben, diákjaink matematika és szövegértés teszteket, illetve egy tanulói

Részletesebben

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László Gyakorló feladatok Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László I/. A vizsgaidőszak második napján a hallgatók %-ának az E épületben, %-ának a D épületben,

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

Gyártástechnológia alapjai Méréstechnika rész. Előadások (2.) 2011.

Gyártástechnológia alapjai Méréstechnika rész. Előadások (2.) 2011. Gyártástechnológia alapjai Méréstechnika rész Előadások (2.) 2011. 1 Méréstechnika előadás 2. 1. Mérési hibák 2. A hiba rendszáma 3. A mérési bizonytalanság 2 Mérési folyamat A mérési folyamat négy fő

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba

Részletesebben

Első egyéni feladat (Minta)

Első egyéni feladat (Minta) Első egyéni feladat (Minta) 1. Készítsen olyan programot, amely segítségével a felhasználó 3 különböző jelet tud generálni, amelyeknek bemenő adatait egyedileg lehet változtatni. Legyen mód a jelgenerátorok

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

Kockázatok és mérési bizonytalanság kezelése a termelésmenedzsment területén

Kockázatok és mérési bizonytalanság kezelése a termelésmenedzsment területén Kockázatok és mérési bizonytalanság kezelése a termelésmenedzsment területén Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és ködtetése konvergencia program Projekt

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

Andó Mátyás Felületi érdesség matyi.misi.eu. Felületi érdesség. 1. ábra. Felületi érdességi jelek

Andó Mátyás Felületi érdesség matyi.misi.eu. Felületi érdesség. 1. ábra. Felületi érdességi jelek 1. Felületi érdesség használata Felületi érdesség A műszaki rajzokon a geometria méretek tűrése mellett a felületeket is jellemzik. A felületek jellemzésére leginkább a felületi érdességet használják.

Részletesebben

D/A konverter statikus hibáinak mérése

D/A konverter statikus hibáinak mérése D/A konverter statikus hibáinak mérése Segédlet a Járműfedélzeti rendszerek II. tantárgy laboratóriumi méréshez Dr. Bécsi Tamás, Dr. Aradi Szilárd, Fehér Árpád 2016. szeptember A méréshez szükséges eszközök

Részletesebben

Minőség-képességi index (Process capability)

Minőség-képességi index (Process capability) Minőség-képességi index (Process capability) Folyamatképesség 68 12. példa Egy gyártási folyamatban a minőségi jellemző becsült várható értéke µ250.727 egység, a variancia négyzetgyökének becslése σ 1.286

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

STATISZTIKA. A Föld pályája a Nap körül. Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)

STATISZTIKA. A Föld pályája a Nap körül. Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687) STATISZTIKA 10. Előadás Megbízhatósági tartományok (Konfidencia intervallumok) Sir Isaac Newton, 1643-1727 Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel

Részletesebben

Rácsvonalak parancsot. Válasszuk az Elsődleges függőleges rácsvonalak parancs Segédrácsok parancsát!

Rácsvonalak parancsot. Válasszuk az Elsődleges függőleges rácsvonalak parancs Segédrácsok parancsát! Konduktometriás titrálás kiértékelése Excel program segítségével (Office 2007) Alapszint 1. A mérési adatokat írjuk be a táblázat egymás melletti oszlopaiba. Az első oszlopba kerül a fogyás, a másodikba

Részletesebben

MINŐSÉGÜGYI STATISZTIKAI MÓDSZEREK. Dr. Drégelyi-Kiss Ágota ÓE BGK

MINŐSÉGÜGYI STATISZTIKAI MÓDSZEREK. Dr. Drégelyi-Kiss Ágota ÓE BGK MINŐSÉGÜGYI STATISZTIKAI MÓDSZEREK Dr. Drégelyi-Kiss Ágota ÓE BGK e-mail: dregelyi.agota@bgk.uni-obuda.hu 1 STATISZTIKA CÉLJA Sokaság Következtetés bizonytalansága Véletlenszerű és reprezentatív mintavétel

Részletesebben

1/8. Iskolai jelentés. 10.évfolyam matematika

1/8. Iskolai jelentés. 10.évfolyam matematika 1/8 2009 Iskolai jelentés 10.évfolyam matematika 2/8 Matematikai kompetenciaterület A fejlesztés célja A kidolgozásra kerülő programcsomagok az alább felsorolt készségek, képességek közül a számlálás,

Részletesebben

A mérés. A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell

A mérés. A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell A mérés A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell törekedni, minél közelebb kerülni a mérés során a valós mennyiség megismeréséhez. Mérési

Részletesebben

Elemi statisztika fizikusoknak

Elemi statisztika fizikusoknak 1. oldal Elemi statisztika fizikusoknak Pollner Péter Biológiai Fizika Tanszék pollner@elte.hu Az adatok leírása, megismerése és összehasonlítása 2-1 Áttekintés 2-2 Gyakoriság eloszlások 2-3 Az adatok

Részletesebben

Piri Dávid. Mérőállomás célkövető üzemmódjának pontossági vizsgálata

Piri Dávid. Mérőállomás célkövető üzemmódjának pontossági vizsgálata Piri Dávid Mérőállomás célkövető üzemmódjának pontossági vizsgálata Feladat ismertetése Mozgásvizsgálat robot mérőállomásokkal Automatikus irányzás Célkövetés Pozíció folyamatos rögzítése Célkövető üzemmód

Részletesebben

Kockázatkezelés a rezgésdiagnosztikában többváltozós szabályozó kártya segítségével

Kockázatkezelés a rezgésdiagnosztikában többváltozós szabályozó kártya segítségével Kockázatkezelés a rezgésdiagnosztikában többváltozós szabályozó kártya segítségével Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése konvergencia program

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

DETERMINATION OF SHEAR STRENGTH OF SOLID WASTES BASED ON CPT TEST RESULTS

DETERMINATION OF SHEAR STRENGTH OF SOLID WASTES BASED ON CPT TEST RESULTS Műszaki Földtudományi Közlemények, 83. kötet, 1. szám (2012), pp. 271 276. HULLADÉKOK TEHERBÍRÁSÁNAK MEGHATÁROZÁSA CPT-EREDMÉNYEK ALAPJÁN DETERMINATION OF SHEAR STRENGTH OF SOLID WASTES BASED ON CPT TEST

Részletesebben

Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév

Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév 1. A várható érték és a szórás transzformációja 1. Ha egy valószínűségi változóhoz hozzáadunk ötöt, mínusz ötöt, egy b konstanst,

Részletesebben

Hanthy László Tel.: 06 20 9420052

Hanthy László Tel.: 06 20 9420052 Hanthy László Tel.: 06 20 9420052 Néhány probléma a gyártási folyamatok statisztikai szabályzásával kapcsolatban Miben kellene segíteni az SPC alkalmazóit? Hanthy László T: 06(20)9420052 Megválaszolandó

Részletesebben

Statistical Process Control (SPC), Statisztikai Folyamatszabályozás

Statistical Process Control (SPC), Statisztikai Folyamatszabályozás Statistical Process Control (), Statisztikai Folyamatszabályozás 1 2 2 A statisztikai folyamatszabályozás () koncepcióját először Dr Walter Shewhart fejlesztette ki a Bell laboratóriumokban, az 1920-as

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Anyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek

Anyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek Anyagvizsgálati módszerek Mérési adatok feldolgozása Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Statisztika 1/ 22 Mérési eredmények felhasználása Tulajdonságok hierarchikus

Részletesebben

STATISZTIKA. ( x) 2. Eloszlásf. 9. gyakorlat. Konfidencia intervallumok. átlag. 45% 40% 35% 30% 25% 20% 15% 10% 5% 0% (cm)

STATISZTIKA. ( x) 2. Eloszlásf. 9. gyakorlat. Konfidencia intervallumok. átlag. 45% 40% 35% 30% 25% 20% 15% 10% 5% 0% (cm) Normális eloszlás sűrűségfüggvénye STATISZTIKA 9. gyakorlat Konfidencia intervallumok f σ π ( µ ) σ ( ) = e /56 p 45% 4% 35% 3% 5% % 5% % 5% Normális eloszlás sűrűségfüggvénye % 46 47 48 49 5 5 5 53 54

Részletesebben

Kontrol kártyák használata a laboratóriumi gyakorlatban

Kontrol kártyák használata a laboratóriumi gyakorlatban Kontrol kártyák használata a laboratóriumi gyakorlatban Rikker Tamás tudományos igazgató WESSLING Közhasznú Nonprofit Kft. 2013. január 17. Kis történelem 1920-as években, a Bell Laboratórium telefonjainak

Részletesebben

A leíró statisztikák

A leíró statisztikák A leíró statisztikák A leíró statisztikák fogalma, haszna Gyakori igény az, hogy egy adathalmazt elemei egyenkénti felsorolása helyett néhány jellemző tulajdonságának megadásával jellemezzünk. Ezeket az

Részletesebben

A Statisztika alapjai

A Statisztika alapjai A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati

Részletesebben

4. A méréses ellenırzı kártyák szerkesztése

4. A méréses ellenırzı kártyák szerkesztése 4. A méréses ellenırzı kártyák szerkesztése A kártyákat háromféle módon alkalmazhatjuk. Az elızetes adatfelvétel során a fı feladat az eloszlás paramétereinek (µ és σ ) becslése a további ellenırzésekhez.

Részletesebben

y ij = µ + α i + e ij

y ij = µ + α i + e ij Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai

Részletesebben

Biometria gyakorló feladatok BsC hallgatók számára

Biometria gyakorló feladatok BsC hallgatók számára Biometria gyakorló feladatok BsC hallgatók számára 1. Egy üzem alkalmazottainak megoszlása az elért teljesítmény %-a szerint a következı: Norma teljesítmény % Dolgozók száma 60-80 30 81-90 70 91-100 90

Részletesebben

TÖBBFOGMÉRET MÉRÉS KISFELADAT

TÖBBFOGMÉRET MÉRÉS KISFELADAT Dr. Lovas László TÖBBFOGMÉRET MÉRÉS KISFELADAT Segédlet a Jármű- és hajtáselemek II. tantárgyhoz BME Közlekedésmérnöki és Járműmérnöki Kar Járműelemek és Jármű-szerkezetanalízis Tanszék Kézirat 2013 TÖBBFOGMÉRET

Részletesebben

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015 A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel

Részletesebben

Felületminőség. 11. előadás

Felületminőség. 11. előadás Felületminőség 11. előadás A felületminőség alapfogalmai Mértani felületnek nevezzük a munkadarab rajzán az ábrával és méretekkel, vagy az elkészítési technológiával meghatározott felületet, ha ez utóbbinál

Részletesebben

MATEMATIKA ÉRETTSÉGI május 8. EMELT SZINT

MATEMATIKA ÉRETTSÉGI május 8. EMELT SZINT MATEMATIKA ÉRETTSÉGI 007. május 8. EMELT SZINT 1) Oldja meg a valós számok halmazán az alábbi egyenletet! x x 4 log 9 10 sin x x 6 I. (11 pont) sin 1 lg1 0 log 9 9 x x 4 Így az 10 10 egyenletet kell megoldani,

Részletesebben

A hallgató neve Minta Elemér A NEPTUN kódja αβγδεζ A tantárgy neve Fizika I. vagy Fizika II. A képzés típusa Élelmiszermérnök BSc/Szőlész-borász

A hallgató neve Minta Elemér A NEPTUN kódja αβγδεζ A tantárgy neve Fizika I. vagy Fizika II. A képzés típusa Élelmiszermérnök BSc/Szőlész-borász A hallgató neve Minta Elemér A NEPTUN kódja αβγδεζ A tantárgy neve Fizika I. vagy Fizika II. A képzés típusa Élelmiszermérnök BSc/Szőlész-borász /Biomérnök A gyakorlat ideje pl. Hétfő 18-20 Ez egy fiú

Részletesebben

Bevezetés a hipotézisvizsgálatokba

Bevezetés a hipotézisvizsgálatokba Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria Bódis Emőke 2016. 04. 25. J J 9 Korrelációanalízis Regresszióanalízis: hogyan változik egy vizsgált változó értéke egy másik változó változásának függvényében. Korrelációs

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Kvantálás Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010. szeptember 15. Áttekintés

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

Q 1 D Q 2 (D x) 2 (1.1)

Q 1 D Q 2 (D x) 2 (1.1) . Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol

Részletesebben

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok Eloszlás-független módszerek (folytatás) 14. elıadás (7-8. lecke) Illeszkedés-vizsgálat 7. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok elemzésére Illeszkedés-vizsgálat Gyakorisági sorok

Részletesebben

Minőségirányítási rendszerek 9. előadás

Minőségirányítási rendszerek 9. előadás Minőségirányítási rendszerek 9. előadás 013.05.03. MÉRŐESZKÖZÖK MÉRÉSTECHNIKAI TULAJDONSÁGAI Mérőeszköz rendszeres hibája (Systematic Error of Measurement) alatt ugyanannak az értéknek megismételhetőségi

Részletesebben

NULLADIK MATEMATIKA ZÁRTHELYI

NULLADIK MATEMATIKA ZÁRTHELYI A NULLADIK MATEMATIKA ZÁRTHELYI 20-09-2 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával

Részletesebben

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni? 1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen

Részletesebben