SVM (közepesen mély bevezetés)

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "SVM (közepesen mély bevezetés)"

Átírás

1 SVM (közepesen mély bevezetés) Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Szabó Adrienn április 4.

2 Bevezetés Alapötlet Jelölések Maximum margin classier Optimalizálási feladat Tartalom Szupport vektor gépek Lagrange duális Lineáris SVM levezetés Soft maximum margin classier Nemlineáris SVM: a kernel trükk Gyakorlatiasabb oldal Kernelválasztás Paraméterválasztás Implementációk

3 SVM Az SVM (Suport Vector Machine) Vladimir N. Vapnik és Corinna Cortes többféle gépi tanulási feladatra alkalmazható modellje (1995). Alapváltozata lineáris kétosztályos szeparálásra képes, de kiterjeszthet egy- vagy többosztályos szeparálásra nemlineáris szeparálásra és nemlineáris regressziós feladatokra is.[1]

4 Motiváció Mit tud az SVM (amit mások nem ennyire)? jó általánosító képesség gyorsaság nagy dimenziós adatok kezelése akkor is (egészen) használható ha több a dimenzió mint az adatpont

5 SVM Alapötlet képekben Lineárisan nem szeparálható feladat, de jól magasabb dimenzióba küldjük, és ott igen

6 Szeparáló sík 3D-ben

7 Jelölések Egy tanítópont: ( x, y) ahol x R n, y {+1, 1} Az x pontok dimenziója: A tanítópontok darabszáma: A tanítóhalmaz: n l D = {( x i, y i ) x i R n, y i {+1, 1}} A szeparáló sík normálvektora: ω Nem egységhosszú! A szeparáló sík eltolása: Az f függvényt keressük amivel címkéket gyárthatunk az új x pontokhoz (amik nem voltak D-ben): b f : R n {+1, 1}

8 Maximális szeparálás A szeparáló sík minél messzebb legyen mindkét osztály pontjaitól, és pontosan középen a két osztály ponjtjai között. 1. ábra. A szürkék is megoldják a szeparálást, de a fekete jobb

9 Optimalizálási feladat általában Keressük a célfüggvényünk, φ : R n R széls értékét: min φ( x) x miközben a megengedett megoldások: g i ( x) 0 ahol g i : R n R lineáris függvények, 0-ra rendezve. Az optimális megoldás az az x lesz amire igaz bármely x esetén hogy φ( x ) φ( x). Ha φ is lineáris, akkor lineáris optimalizálási feladatunk van LP feladat. Ha φ kvadratikus (négyzetes, plusz esetleg lineáris tag is) QP feladat. Ha φ konvex akkor konvex optimalizálási feladat.

10 Az optimalizálási feladatunk A margót (margin) kell maximalizálni, ami a szupport-síkok távolsága.

11 Optimalizáljuk a szeparáló síkot I A φ( ω, b) célfüggvényünket kellene úgy meghatározni, hogy a maximális margót megkaphassuk az optimalizálással. A korlátokat az fogja jelenteni, hogy a szupport-síkok nem mehetnek túl a tanítópontokon ( ω x + b + k ill. ω x b k). Tegyük fel hogy az optimális margó mérete m, és az optimális szeparáló síkunk egyenlete: Ekkor így írhatjuk fel a margót: ω x = b (1) m = φ( ω, b ) = max φ( ω, b) (2) De mi legyen a φ függvényünk?

12 Optimalizáljuk a szeparáló síkot II

13 Optimalizáljuk a szeparáló síkot III A szupport-síkokra ezeket írhatjuk fel: ω x = b + k (3) ω x = b k (4) Legyen ( x p, +1) D és ( x q, 1) D egy-egy szupport vektor. Ekkor a különbségüket ω irányába vetítve m -ot kell kapnunk (ábra). m = x p x q cos γ = ω ( x p x q ) ω = (b + k) (b k) ω = 2k ω = ω x p ω x q ω

14 Optimalizáljuk a szeparáló síkot IV

15 Optimalizáljuk a szeparáló síkot V m = max 2k ω De inkább minimalizálnánk, ezért átírjuk: (5) m = max 2k ω ω 2 = min = min ω 2k 2k = min 1 ω ω 2k = min 1 ω ω 2 Az utolsó lépésben k = 1 -et választhatunk, mert a skálázásra invariáns az optimalizálásunk. Tehát a célfüggvényünk: φ( ω, b ) = 1 ω ω (6) 2

16 Optimalizáljuk a szeparáló síkot VI A korlátok így alakulnak: ω x i 1 + b minden ( x i, y i ) D -re, ahol y i = +1 ω ( x i ) 1 b minden ( x i, y i ) D -re, ahol y i = 1 Ami rövidebben így is írható: ω (y i x i ) 1 y i b minden ( x i, y i ) D -re (7) Így megvan a kvadratikus optimalizálási feladatunk.

17 Kvadratikus programozás (QP) A kvadratikus optimalizálási feladatok (QP, Quadratic programming) megoldására vannak ismert módszerek. Erre most nincs id részletesen, a lényeg hogy viszonylag egyszer en QP feladattá alakítható a fenti. Ennek a megoldásnak az a hátránya, hogy elég számításigényes ha sok tanítópontunk van (mindegyik megjelenik korlátként). Segít a helyzeten, ha a feladat duálisát nézzük. És ezt a duális felírást nevezzünk majd SVM-nek.

18 Lagrange duális Optimalizálási feladatoknál viszonylag gyakori, hogy egy feladat átfogalmazásával, a duális néz pontból szebben (vagy csak máshogy) megoldható feladatot kapunk. A Lagrange duális lényege egy mondatban: Ha M darab korlátunk van, és f-nek keressük széls értékét (minden folytonos és deriválható, és a célfüggvény konvex) akkor az eredeti helyett a következ nek a megoldásával is megtaláljuk a megoldást: f( x) + M λ k g k ( x) = 0 k=1 ahol a gradiens vektort jelöli, és a λ k -k a Lagrange együtthatók, amik pozitívak.[1]

19 (*) Lagrange duális részletesebben I Ha keressük egy konvex függvény széls értékét, min x φ( x)-et g i ( x) 0, (i = 1... l) korlátokkal (primál feladat), akkor ebb l a következ Lagrange optimalizálási feladatot írhatjuk, amely egy képletbe fogja össze a korlátokat és a célfüggvényt: max min L( α, x) = max α,α i 0 x min α,α i 0 x ( φ( x) ) l α i g i ( x) Itt x a primál változó, α pedig a duál változó. A két, ellentétesirányú széls érték miatt ez szemléletesen azt jelenti hogy L( x, α) nyeregpontját keressük. Ha φ( x) konvex, akkor pontosan egy ilyen nyeregpont van. i=1 (8)

20 (*) Lagrange duális részletesebben II Bizonyítható, hogy az ( x, α ) megoldás akkor és csak akkor lesz az eredeti feladatunknak is széls értéke, ha teljesülnek a KKT (KarushKuhnTucker) feltételek: L x ( α, x ) = 0 (9) αi g i ( x ) = 0 (10) g i ( x ) 0 (11) αi 0 (12)

21 SVM: a max margin klasszikátor duálisa SVM: A maximális margó keresése Lagrange duálissal. Ennek az lesz az el nye hogy így szebben megoldható a feladat, illetve lehet vé válik majd a kernel trükk. Tegyük fel hogy van egy lineárisan szeparálható tanítóhalmazunk: D = {( x 1, y 1 ), ( x 2, y 2 ),... ( x l, y l )} R n {+1, 1} és a következ az optimalizálandó célfüggvényünk: 1 min φ( ω, b) = min ω ω (13) ω,b ω,b 2 a következ korlátokkal: g i ( ω, b) = y i ( ω x i b) 1 0 (i = 1... l) (14) (Ez eddig ugyanaz ami már volt a maximum margin klasszikátornál.)

22 (*) SVM levezetés I El ször így fog kinézni a Lagrange duálisunk, keressük a nyeregpontot: max min L( α, ω, b) (15) α,α i 0 ω,b ahol l L( α, ω, b) = φ( ω, b) α i g i ( ω, b) (16) i=1 = 1 l 2 ω ω α i (y i ( ω x i b) 1) (17) i=1 = 1 l 2 ω ω α i y i ω x i + b l l α i y i + α i (18) i=1 i=1 i=1

23 (*) SVM levezetés II Most tegyük fel, hogy ω, α és b az optimális megoldást adják. Ekkor a KKT feltételek: És ha minden igaz, akkor: L ω ( α, ω, b ) = 0 (19) L b ( α, ω, b ) = 0 (20) αi (y i ( ω x i b ) 1) = 0 (21) y i ( ω x i b ) 1 0 (22) αi 0 (23) max min L( α, ω, b) = α ω,b L( α, ω, b ) = φ( ω, b ) (24)

24 (*) SVM levezetés III Most jön az a trükk, hogy ω és b kiesnek majd, és csak az α marad majd, amire optimalizálni kell. Mivel a ω, b megoldás optimális, ezért L nyeregpontjának kell lennie. Az els KKT-t (19) használva L-t ω szerint deriváljuk (18)-t és ω -nál 0-vá tesszük: Ebb l következik: L ω ( α, ω, b) = ω ω = l α i y i x i = 0 (25) i=1 l α i y i x i (26) i=1

25 (*) SVM levezetés IV Most (18)-t b szerint deriváljuk, a második KKT-t (20)-t használva b -nál ez is 0 kell legyen: L b ( α, ω, b ) = l α i y i = 0 (27) Itt kiesett a b, de nem baj, ki tudjuk majd számolni ezt is az α i -kb l (kicsit kés bb). Végül (18)-be behelyettesítgetve ill. kiejtve ami nulla lett: L d ( α) = L( α, ω, b ) = i=1 l α i 1 2 i=1 l i=1 j=1 Ebbe a képletbe már belefér majd a kernel trükk... :) l α i α j y i y j x i x j (28)

26 A lineáris SVM formálisan A maximális margó megtalálásának duális alakja: l max L d( α) = max α i 1 l l α i α j y i y j x i x j (29) α α 2 i=1 A következ korlátokkal (i = 1... l): i=1 j=1 l α i y i = 0 (30) i=1 α i 0 (31)

27 A szupport vektorok Az egyik KKT feltétel (21) szerint: α i (y i ( ω x i b ) 1) = 0 Ebb l vagy az következik hogy αi = 0, vagy az hogy y i ( ω x i b ) 1 = 0. Tegyük fel hogy αj > 0 egy ( x j, y j ) D tanítópontra. Ekkor a feltétel szerint y i ( ω x i b ) = 1 : ω x j = b + 1 ha y j = +1 ω x j b 1 ha y j = 1 Vagyis ezek a tanítópontok pont rajta vannak az egyik szupport-síkon. (Ami meg nincs szupport síkon, annak az α értéke, vagyis Lagrange-együtthatója 0, mert ezek nem befolyásolják a margó méretét.)

28 (*) Az eltolás Még nem mondtuk meg hogy a b -ot hogy számoljuk ki. Szerencsére csak a szupport vektorok számítanak. Válasszunk egyet, például a +1-es osztályból ( x sv +, +1)-t. Ekkor: b = ω x sv + 1 = l αi y i x i x sv + 1 (32) i=1

29 A döntési függvényünk A primál feladat az optimális szupport-síkokat határozta meg, amiket a szupport vektorok korlátoznak. A duális megoldásban pedig a szupport vektorokat kaptuk meg, amik a síkokat korlátozzák. De arra szeretnénk majd használni a klasszikátorunkat hogy mondja meg egy pontról hogy a szeparáló sík melyik oldalára esik. Így a lineáris SVM döntési függvénye: f( x) = sgn ( ω x b ) (33) ( l ) l = sgn αi y i x i x αi y i x i x sv (34) i=1 i=1

30 Soft maximum margin classier Eddig megköveteltük hogy a tanítópontok lineárisan szeparálhatóak legyenek. Ami sajnos nem mindig teljesíthet, gyakaran zajos az adat...

31 Soft maximum margin classier Kicsit lazítunk a feltételeken, bevezetjük a slack változókat, amikkel egy-egy tanítópont félreklasszikálhatóságát adjuk meg. Az össz-félreklasszikálhatóság-nak meg megadhatunk egy C súlyt (büntetést). Így az új korlátaink: y i( ω x i b) 1 ξ i ahol i = 1...l és ξ i 0 (35) A célfüggvény pedig igyekszik ezeket a slack változókat is minimalizálni a margó maximalizálása mellett: { } 1 l 2 ω 2 + C ξ i min ω, ξ,b i=1 (36)

32 Soft maximum margin classier duálisa Itt az a nagyszer ség áll fenn, hogy ha kiszámoljuk, a ξ i -k jól kiesnek a célfüggvényünkb l, és csak egy C fels korlát marad bel lük a Lagrange együtthatókhoz: max α L d( α) = max α l α i 1 2 i=1 A korlátok pedig (i = 1... l): l i=1 j=1 l α i α j y i y j x i x j (37) l α i y i = 0 (38) i=1 0 α i C (39)

33 Nemlineáris SVM: a kernel trükk Az eredeti pontokat magasabb dimenzióba transzformáljuk, remélve hogy ott már lineárisan szeparálhatóak az osztályok

34 A kernel trükk I Eddig (a primál megfogalmazásban) volt egy ilyen képletünk, ω és x közötti skaláris szorzattal: f( x) = sgn ( ω x b ) (40) És most szeretnénk a szeparálást egy magasabb dimenzióban eljátszani, vagyis az x-ek helyett ϕ( x)-et szeretnénk írni. f( x) = sgn ( ω ϕ( x) b ) (41)

35 A kernel trükk II A kernel-trükk lényege az, hogy ha van egy megfelel kernelünk: K( x, y) = (ϕ( x), ϕ( y)) (42) akkor igaziból nem is kell majd a ϕ-ket számolgatni, meg magasabb dimenzióba menni, mert a K( x, y) anélkül is számolható, és az SVM duális alakjában ez pont elég is.

36 A kernel trükk III A primál döntési függvényünkbe a ω duális reprezentációját ( ω = l i=1 α i y iϕ( x i )) helyettesítve: f( x) = sgn ( ω ϕ( x) b ) (43) ( l ) = sgn αi y i ϕ( x i ) ϕ( x) b (44) i=1 ( l ) = sgn αi y i K( x i, x) b i=1 Ha okosan választunk ϕ függvényt, akkor a döntési függvényünk ugyanolyan egyszer lesz mint a lineáris esetben; csak annyi lesz a különbség, hogy a skaláris szorzat helyett a kernelt kell írni. (45)

37 Kernel függvények I De egy K : R n R n R( x, y) függvény mikor olyan, hogy jó lesz kernelnek, vagyis mikor létezik hozzá ϕ úgy hogy K( x, y) = (ϕ( x), ϕ( y))? Bizonyítható, hogy akkor, ha pozitív denit: l i=1 j=1 l θ i θ j K( x i, x j ) 0 (46) A kernel-függvény tulajdonképpen a két vektor hasonlóságát méri.[6]

38 Kernel függvények II Kernel functions must be continuous, symmetric, and most preferably should have a positive (semi-) denite Gram matrix. Kernels which are said to satisfy the Mercer's theorem are positive semi-denite, meaning their kernel matrices have no non-negative Eigen values. The use of a positive denite kernel insures that the optimization problem will be convex and solution will be unique. However, many kernel functions which aren't strictly positive denite also have been shown to perform very well in practice (sigmoid kernel).[5]

39 Néhány kernel függvény Hogy melyiket érdemes választani az mindig az adott feladattól/adathalmaztól függ. (Ha nincs jobb ötletünk, kezdjük a Gauss-kernellel.) Polinomiális (homogén) K( x i, x j ) = ( x i x j ) d Polinomiális (inhomogén) K( x i, x j ) = ( x i x j + 1) d Gauss (RBF) K( x i, x j ) = exp( γ x i x j 2 ), ahol γ > 0, néha úgy paraméterezve hogy γ = 1/2σ 2 Hiperbolikus tangens K( x i, x j ) = tanh(κ x i x j + c) d, ahol κ > 0 és c < 0, plusz egyéb feltételek.

40 Paraméterválasztás Az SVM teljesítménye függ a választott kernelt l, a C puhasági paramétert l, és az adott kernel-függvény paraméterekt l is. Például Gauss-kernel esetén a γ paraméter és a C legjobb kombinációját egy grid-kereséssel szokás meghatározni, exponenciálisan növ értékekkel, pl: C {2 5, 2 3,..., 2 13, 2 15 } γ {2 15, 2 13,..., 2 1, 2 3 } Minden paraméter-párt CV-val kiértékelünk, és a legjobbat kiválasztjuk. Aztán a teljes tanítóhalmazt és a választott paramétereket használva építjük fel a klasszikáló modellünket.

41 Implementációk LIBLINEAR LIBLINEAR is a linear classier for data with millions of instances and features LIBSVM LIBSVM is an integrated software for support vector classication, regression and distribution estimation SVMlight SVMlight is an implementation of Vapnik's Support Vector Machine for the problem of pattern recognition, for regression, and for learning a ranking function. WEKA Ez azért kényelmes mert sok más klasszikátor is van benne; amúgy a LIBSVM-et wrappeli.

42 Special Thanks Különleges köszönet Fekete Zsoltnak és Pálovics Robinak

43 Hivatkozások I Wikipedia, Support vector machine, :35 Wikipedia, Optimization problem, :51 Wikipedia, Mathematical optimization, :03 Lutz Hamel, Knowledge discovery with support vector machines, John Wiley & Sons, Inc., Hoboken, New Jersey, 2009 César Roberto de Souza, Science, computing and machine learning. Blog, http: //crsouza.blogspot.hu/2010/03/kernel-functions-for-machine-learning.html, :47

44 Hivatkozások II Altrichter Márta, Horváth Gábor, Pataki Béla, Strausz György, Takács Gábor, Valyon József, Mesterséges Intelligencia Elektronikus Almanach, 6. fejezet - Kernel módszerek, :32

Ütemezési modellek. Az ütemezési problémák osztályozása

Ütemezési modellek. Az ütemezési problémák osztályozása Ütemezési modellek Az ütemezési problémák osztályozása Az ütemezési problémákban adott m darab gép és n számú munka, amelyeket az 1,..., n számokkal fogunk sorszámozni. A feladat az, hogy ütemezzük az

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Harry Markowitz 1990-ben kapott Közgazdasági Nobel díjat a portfolió optimalizálási modelljéért. Ld. http://en.wikipedia.org/wiki/harry_markowitz Ennek a legegyszer

Részletesebben

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31. Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Nemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással

Nemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással pontos dualitással Imre McMaster University Advanced Optimization Lab ELTE TTK Operációkutatási Tanszék Folytonos optimalizálás szeminárium 2004. július 6. 1 2 3 Kvadratikus egyenlőtlenségrendszerek Primál

Részletesebben

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,

Részletesebben

EuroOffice Optimalizáló (Solver)

EuroOffice Optimalizáló (Solver) 1. oldal EuroOffice Optimalizáló (Solver) Az EuroOffice Optimalizáló egy OpenOffice.org bővítmény, ami gyors algoritmusokat kínál lineáris programozási és szállítási feladatok megoldására. Szimplex módszer

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

Panorámakép készítése

Panorámakép készítése Panorámakép készítése Képregisztráció, 2009. Hantos Norbert Blaskovics Viktor Összefoglalás Panoráma (image stitching, planar mosaicing): átfedő képek összeillesztése Lépések: Előfeldolgozás (pl. intenzitáskorrekciók)

Részletesebben

Lineáris különböz ségek

Lineáris különböz ségek Ivanyos Gábor MTA SZTAKI 2010 december 13 A feladat Titok: u = (µ 1,..., µ n ) n dimenziós vektor Z n 3 -b l Z 3 = az egész számok modulo 3 Gombnyomásra kapunk: véletlen v i = (a i1,..., a in ) vektorokat,

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2011/12 tanév, II. félév Losonczi László (DE) A Markowitz modell 2011/12 tanév,

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai

10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai Optimalizálási eljárások MSc hallgatók számára 10. Előadás Előadó: Hajnal Péter Jegyzetelő: T. Szabó Tamás 2011. április 20. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai A feltétel nélküli optimalizálásnál

Részletesebben

Érzékenységvizsgálat

Érzékenységvizsgálat Érzékenységvizsgálat Alkalmazott operációkutatás 5. elıadás 008/009. tanév 008. október 0. Érzékenységvizsgálat x 0 A x b z= c T x max Kapacitások, együtthatók, célfüggvény együtthatók változnak => optimális

Részletesebben

Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet

Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet / Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet / Tartalom 3/ kernelek segítségével Felügyelt és félig-felügyelt tanulás felügyelt: D =

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Mátrixjátékok tiszta nyeregponttal

Mátrixjátékok tiszta nyeregponttal 1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják

Részletesebben

Gauss elimináció, LU felbontás

Gauss elimináció, LU felbontás Közelítő és szimbolikus számítások 3. gyakorlat Gauss elimináció, LU felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 EGYENLETRENDSZEREK 1. Egyenletrendszerek

Részletesebben

1. Parciális függvény, parciális derivált (ismétlés)

1. Parciális függvény, parciális derivált (ismétlés) Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt

Részletesebben

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518

Részletesebben

I. LABOR -Mesterséges neuron

I. LABOR -Mesterséges neuron I. LABOR -Mesterséges neuron A GYAKORLAT CÉLJA: A mesterséges neuron struktúrájának az ismertetése, neuronhálókkal kapcsolatos elemek, alapfogalmak bemutatása, aktivációs függvénytípusok szemléltetése,

Részletesebben

Differenciálegyenletek megoldása próbafüggvény-módszerrel

Differenciálegyenletek megoldása próbafüggvény-módszerrel Differenciálegyenletek megoldása próbafüggvény-módszerrel Ez még nem a végleges változat, utoljára módosítva: 2012. április 9.19:38. Elsőrendű egyenletek Legyen adott egy elsőrendű lineáris állandó együtthatós

Részletesebben

Matematikai geodéziai számítások 5.

Matematikai geodéziai számítások 5. Matematikai geodéziai számítások 5 Hibaterjedési feladatok Dr Bácsatyai László Matematikai geodéziai számítások 5: Hibaterjedési feladatok Dr Bácsatyai László Lektor: Dr Benedek Judit Ez a modul a TÁMOP

Részletesebben

Név KP Blokk neve KP. Logisztika I. 6 LOG 12 Dr. Kovács Zoltán Logisztika II. 6 Logisztika Dr. Kovács Zoltán

Név KP Blokk neve KP. Logisztika I. 6 LOG 12 Dr. Kovács Zoltán Logisztika II. 6 Logisztika Dr. Kovács Zoltán Név KP Blokk neve KP Felelıs vizsgáztató Kombinatorikus módszerek és algoritmusok 5 MAT 10 Dr. Tuza Zsolt Diszkrét és folytonos dinamikai rendszerek matematikai alapjai 5 Matematika Dr. Hartung Ferenc

Részletesebben

A szimplex tábla. p. 1

A szimplex tábla. p. 1 A szimplex tábla Végződtetés: optimalitás és nem korlátos megoldások A szimplex algoritmus lépései A degeneráció fogalma Komplexitás (elméleti és gyakorlati) A szimplex tábla Példák megoldása a szimplex

Részletesebben

Gyártórendszerek modellezése: MILP modell PNS feladatokhoz

Gyártórendszerek modellezése: MILP modell PNS feladatokhoz Gyártórendszerek modellezése MILP modell PNS feladatokhoz 1 Pannon Egyetem M szaki Informatikai Kar Számítástudomány Alkalmazása Tanszék Utolsó frissítés: 2008. november 16. 1 hegyhati@dcs.uni-pannon.hu

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

Érdekes informatika feladatok

Érdekes informatika feladatok A keres,kkel és adatbázissal ellátott lengyel honlap számos díjat kapott: Spirit of Delphi '98, Delphi Community Award, Poland on the Internet, Golden Bagel Award stb. Az itt megtalálható komponenseket

Részletesebben

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény

Részletesebben

Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió.

Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió. YBL - SGYMMAT202XXX Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,

Részletesebben

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió 6. Előadás Megyesi László: Lineáris algebra, 37. 41. oldal. Gondolkodnivalók Lineáris függetlenség 1. Gondolkodnivaló Legyen V valós számtest feletti vektortér. Igazolja, hogy ha a v 1, v 2,..., v n V

Részletesebben

HORNUNG TAMÁS * Diszkrét egyenletes közelítés: a lineáris programozás egy alkalmazása

HORNUNG TAMÁS * Diszkrét egyenletes közelítés: a lineáris programozás egy alkalmazása Bevezetés HORNUNG TAMÁS * Diszkrét egyenletes közelítés: a lineáris programozás egy alkalmazása Discrete smooth approximation: an application of linear programming The best discrete approximation can be

Részletesebben

Statisztikai eljárások a mintafelismerésben és a gépi tanulásban

Statisztikai eljárások a mintafelismerésben és a gépi tanulásban Statisztikai eljárások a mintafelismerésben és a gépi tanulásban Varga Domonkos (I.évf. PhD hallgató) 2014 május A prezentáció felépítése 1) Alapfogalmak 2) A gépi tanulás, mintafelismerés alkalmazási

Részletesebben

Kombinált képkeresés offline osztályozás segítségével

Kombinált képkeresés offline osztályozás segítségével TDK dolgozat - 2013 Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Távközlési és Médiainformatikai Tanszék Kombinált képkeresés offline osztályozás segítségével TDK

Részletesebben

I. Fejezetek a klasszikus analízisből 3

I. Fejezetek a klasszikus analízisből 3 Tartalomjegyzék Előszó 1 I. Fejezetek a klasszikus analízisből 3 1. Topológia R n -ben 5 2. Lebesgue-integrál, L p - terek, paraméteres integrál 9 2.1. Lebesgue-integrál, L p terek................... 9

Részletesebben

Mesterséges Intelligencia Elektronikus Almanach. MI Almanach projektismertetı rendezvény április 29., BME, I. ép., IB.017., 9h-12h.

Mesterséges Intelligencia Elektronikus Almanach. MI Almanach projektismertetı rendezvény április 29., BME, I. ép., IB.017., 9h-12h. Mesterséges Intelligencia Elektronikus Almanach Neurális hálózatokh 1 BME 1990: Miért neurális hálók? - az érdeklıdésünk terébe kerül a neurális hálózatok témakör - fıbb okok: - adaptív rendszerek - felismerési

Részletesebben

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma Egyes logisztikai feladatok megoldása lineáris programozás segítségével - bútorgyári termelési probléma - szállítási probléma Egy bútorgyár polcot, asztalt és szekrényt gyárt faforgácslapból. A kereskedelemben

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

Bázistranszformáció és alkalmazásai

Bázistranszformáció és alkalmazásai Bázistranszformáció és alkalmazásai Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Elmélet Gyakorlati végrehajtás 2 Vektor bevitele a bázisba Rangszámítás Lineáris egyenletrendszer

Részletesebben

értékel függvény: rátermettségi függvény (tness function)

értékel függvény: rátermettségi függvény (tness function) Genetikus algoritmusok globális optimalizálás sok lehetséges megoldás közül keressük a legjobbat értékel függvény: rátermettségi függvény (tness function) populáció kiválasztjuk a legrátermettebb egyedeket

Részletesebben

ARCHIMEDES MATEMATIKA VERSENY

ARCHIMEDES MATEMATIKA VERSENY Koszinusztétel Tétel: Bármely háromszögben az egyik oldal négyzetét megkapjuk, ha a másik két oldal négyzetének összegéből kivonjuk e két oldal és az általuk közbezárt szög koszinuszának kétszeres szorzatát.

Részletesebben

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

Kollektív tanulás milliós hálózatokban. Jelasity Márk

Kollektív tanulás milliós hálózatokban. Jelasity Márk Kollektív tanulás milliós hálózatokban Jelasity Márk 2 3 Motiváció Okostelefon platform robbanásszerű terjedése és Szenzorok és gazdag kontextus jelenléte, ami Kollaboratív adatbányászati alkalmazások

Részletesebben

Konvex optimalizálás feladatok

Konvex optimalizálás feladatok (1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy

Részletesebben

KOOPERÁCIÓ ÉS GÉPI TANULÁS LABORATÓRIUM

KOOPERÁCIÓ ÉS GÉPI TANULÁS LABORATÓRIUM KOOPERÁCIÓ ÉS GÉPI TANULÁS LABORATÓRIUM Kernel módszerek idősor előrejelzés Mérési útmutató Készítette: Engedy István (engedy@mit.bme.hu) Méréstechnika és Információs Rendszerek Tanszék Budapesti Műszaki

Részletesebben

Operációkutatás II. Tantárgyi útmutató

Operációkutatás II. Tantárgyi útmutató Módszertani Intézeti Tanszék Gazdinfo Nappali Operációkutatás II. Tantárgyi útmutató 2015/16 tanév II. félév 1/4 Tantárgy megnevezése: Operációkutatás II. Tantárgy kódja: OPKT2KOMEMM Tanterv szerinti óraszám:

Részletesebben

Algoritmusok és adatszerkezetek 2.

Algoritmusok és adatszerkezetek 2. Algoritmusok és adatszerkezetek 2. Varga Balázs gyakorlata alapján Készítette: Nagy Krisztián 1. gyakorlat Nyílt címzéses hash-elés A nyílt címzésű hash táblákban a láncolással ellentétben egy indexen

Részletesebben

Határozott integrál és alkalmazásai

Határozott integrál és alkalmazásai Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,

Részletesebben

Bevezetés a programozásba. 5. Előadás: Tömbök

Bevezetés a programozásba. 5. Előadás: Tömbök Bevezetés a programozásba 5. Előadás: Tömbök ISMÉTLÉS Specifikáció Előfeltétel: milyen körülmények között követelünk helyes működést Utófeltétel: mit várunk a kimenettől, mi az összefüggés a kimenet és

Részletesebben

1/ gyakorlat. Hiperbolikus programozási feladat megoldása. Pécsi Tudományegyetem PTI

1/ gyakorlat. Hiperbolikus programozási feladat megoldása. Pécsi Tudományegyetem PTI 1/12 Operációkutatás 5. gyakorlat Hiperbolikus programozási feladat megoldása Pécsi Tudományegyetem PTI 2/12 Ha az Hiperbolikus programozási feladat feltételek teljesülése mellett a A x b x 0 z(x) = c

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 007/008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció i stratégiák Szemantikus hálók / Keretrendszerek

Részletesebben

DR. NAGY TAMÁS. egyetemi docens. Miskolci Egyetem Alkalmazott Matematikai Tanszék

DR. NAGY TAMÁS. egyetemi docens. Miskolci Egyetem Alkalmazott Matematikai Tanszék FELTÉTELES OPTIMALIZÁLÁS DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-4...B-0//KONV-00-000 jel½u projekt részeként az Európai Unió támogatásával,

Részletesebben

Matematikai modellezés

Matematikai modellezés Matematikai modellezés Bevezető A diasorozat a Döntési modellek című könyvhöz készült. Készítette: Dr. Ábrahám István Döntési folyamatok matematikai modellezése Az emberi tevékenységben meghatározó szerepe

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

YBL - SGYMMAT2012XA Matematika II.

YBL - SGYMMAT2012XA Matematika II. YBL - SGYMMAT2012XA Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

Számítógép és programozás 2

Számítógép és programozás 2 Számítógép és programozás 2 6. Előadás Problémaosztályok http://digitus.itk.ppke.hu/~flugi/ Emlékeztető A specifikáció egy előfeltételből és utófeltételből álló leírása a feladatnak Léteznek olyan feladatok,

Részletesebben

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

Számítási feladatok a Számítógépi geometria órához

Számítási feladatok a Számítógépi geometria órához Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát

Részletesebben

KOPI. Fordítási plágiumok keresése MTA SZTAKI DSD. Pataki Máté MSZNY 2011. Department of Distributed Systems

KOPI. Fordítási plágiumok keresése MTA SZTAKI DSD. Pataki Máté MSZNY 2011. Department of Distributed Systems KOPI MTA SZTAKI Department of Distributed Systems Fordítási plágiumok keresése MSZNY 2011 Pataki Máté Probléma 1. Sok a diák 2. Hasznos anyagok az interneten 3. Digitális szakdolgozatok 4. Jó nyelvtudás

Részletesebben

1. Előadás Lineáris programozás

1. Előadás Lineáris programozás 1. Előadás Lineáris programozás Salamon Júlia Előadás II. éves gazdaság informatikus hallgatók számára Operációkutatás Az operációkutatás az alkalmazott matematika az az ága, ami bizonyos folyamatok és

Részletesebben

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2)

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2) Legyen adott a P átmenetvalószín ség mátrix és a ϕ 0 kezdeti eloszlás Kérdés, hogy miként lehetne meghatározni az egyes állapotokban való tartózkodás valószín ségét az n-edik lépés múlva Deniáljuk az n-lépéses

Részletesebben

1. feladatsor, megoldások. y y = 0. y h = C e x

1. feladatsor, megoldások. y y = 0. y h = C e x 1. feladatsor, megoldások 1. Ez egy elsőrendű diffegyenlet, először a homogén egyenlet megoldását keressük meg, majd partikuláris megoldást keresünk: y y = 0 Ez pl. egy szétválasztható egyenlet, melynek

Részletesebben

Felügyelt önálló tanulás - Analízis III.

Felügyelt önálló tanulás - Analízis III. Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:

Részletesebben

4. Kartell két vállalat esetén

4. Kartell két vállalat esetén 4. Kartell két vállalat esetén 34 4. Kartell két vállalat esetén Ebben a fejezetben azzal az esettel foglalkozunk, amikor a piacot két vállalat uralja és ezek összejátszanak. A vállalatok együttműködését

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI /. Legyen adott az alábbi LP-feladat: x + 4x + x 9 x + x x + x + x 6 x, x, x x + x +

Részletesebben

Kereső algoritmusok a diszkrét optimalizálás problémájához

Kereső algoritmusok a diszkrét optimalizálás problémájához Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások

Részletesebben

Általános algoritmustervezési módszerek

Általános algoritmustervezési módszerek Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,

Részletesebben

Shor kvantum-algoritmusa diszkrét logaritmusra

Shor kvantum-algoritmusa diszkrét logaritmusra Ivanyos Gábor MTA SZTAKI Debrecen, 20 január 2. Tartalom és kvantum-áramkörök 2 A diszkrét log probléma Kvantum bit Állapot: a B = C 2 komplex euklideszi tér egy egységvektora: az a 0 + b szuperpozíció

Részletesebben

Passzív és aktív képosztályozás a gépi és emberi tanulás összehasonlításánál

Passzív és aktív képosztályozás a gépi és emberi tanulás összehasonlításánál TDK DOLGOZAT 2015 Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Távközlési és Médiainformatikai Tanszék Passzív és aktív képosztályozás a gépi és emberi tanulás összehasonlításánál

Részletesebben

Exponenciális, logaritmikus függvények

Exponenciális, logaritmikus függvények Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)

Részletesebben

Lagrange-féle multiplikátor módszer és alkalmazása

Lagrange-féle multiplikátor módszer és alkalmazása Eötvös Loránd Tudományegyetem Természettudományi Kar Nemesné Jónás Nikolett Lagrange-féle multiplikátor módszer és alkalmazása Matematika BSc, Matematikai elemz szakirány Témavezet : Szekeres Béla János,

Részletesebben

Teljesen elosztott adatbányászat alprojekt

Teljesen elosztott adatbányászat alprojekt Teljesen elosztott adatbányászat alprojekt Hegedűs István, Ormándi Róbert, Jelasity Márk Big Data jelenség Big Data jelenség Exponenciális növekedés a(z): okos eszközök használatában, és a szenzor- és

Részletesebben

Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése

Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Dr. Kallós Gábor 2014 2015 1 Az Ordó jelölés Azt mondjuk, hogy az f(n) függvény eleme az Ordó(g(n)) halmaznak, ha van olyan c konstans (c

Részletesebben

A DÖNTÉSELMÉLET ELEMEI

A DÖNTÉSELMÉLET ELEMEI A DÖNTÉSELMÉLET ELEMEI Irodalom: Temesi J., A döntéselmélet alapjai, Aula, 2002, Budapest Lawrence, J.A., Pasternack, B.A., Applied management science, John Wiley & Sons Inc. 2002 Stevenson, W. J., Operation

Részletesebben

összeadjuk 0-t kapunk. Képletben:

összeadjuk 0-t kapunk. Képletben: 814 A ferde kifejtés tétele Ha egy determináns valamely sorának elemeit egy másik sor elemeihez tartozó adjungáltakkal szorozzuk meg és a szorzatokat összeadjuk 0-t kapunk Képletben: n a ij A kj = 0, ha

Részletesebben

Bevezetés az operációkutatásba A lineáris programozás alapjai

Bevezetés az operációkutatásba A lineáris programozás alapjai Bevezetés az operációkutatásba A lineáris programozás alapjai Alkalmazott operációkutatás 1. elıadás 2008/2009. tanév 2008. szeptember 12. Mi az operációkutatás (operations research)? Kialakulása: II.

Részletesebben

Tartalom Keresés és rendezés. Vektoralgoritmusok. 1. fejezet. Keresés adatvektorban. A programozás alapjai I.

Tartalom Keresés és rendezés. Vektoralgoritmusok. 1. fejezet. Keresés adatvektorban. A programozás alapjai I. Keresés Rendezés Feladat Keresés Rendezés Feladat Tartalom Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán

Részletesebben

Számítógépes döntéstámogatás. Genetikus algoritmusok

Számítógépes döntéstámogatás. Genetikus algoritmusok BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as

Részletesebben

Nemlineáris optimalizálás Dr. Házy, Attila

Nemlineáris optimalizálás Dr. Házy, Attila Nemlineáris optimalizálás Dr. Házy, Attila Nemlineáris optimalizálás Dr. Házy, Attila Miskolci Egyetem Kelet-Magyarországi Informatika Tananyag Tárház Kivonat Kivonat Nemzeti Fejlesztési Ügynökség http://ujszechenyiterv.gov.hu/

Részletesebben

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0.

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0. L'Hospital-szabály 25. március 5.. Alapfeladatok ln 2. Feladat: Határozzuk meg a határértéket! 3 2 9 Megoldás: Amint a korábbi határértékes feladatokban, els ként most is a határérték típusát kell megvizsgálnunk.

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

Least squares szupport vektor gépek adatbányászati alkalmazása

Least squares szupport vektor gépek adatbányászati alkalmazása Least squares szupport vektor gépek adatbányászati alkalmazása VALYON JÓZSEF, HORVÁTH GÁBOR Budapesti Mûszaki és Gazdaságtudományi Egyetem, Méréstechnika és Információs Rendszerek Tanszék {valyon, horvath}@mit.bme.hu

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

Keresés és rendezés. A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán

Keresés és rendezés. A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán Keresés Rendezés Feladat Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán 2016. november 7. Farkas B., Fiala

Részletesebben

Függvények határértéke, folytonossága

Függvények határértéke, folytonossága Függvények határértéke, folytonossága 25. február 22.. Alapfeladatok. Feladat: Határozzuk meg az f() = 23 4 5 3 + 9 a végtelenben és a mínusz végtelenben! függvény határértékét Megoldás: Vizsgáljuk el

Részletesebben

Matematikai geodéziai számítások 5.

Matematikai geodéziai számítások 5. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr Bácsatyai László Matematikai geodéziai számítások 5 MGS5 modul Hibaterjedési feladatok SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév

Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév Matematika gyógyszerészhallgatók számára A kollokvium főtételei 2015-2016 tanév A1. Függvénytani alapfogalmak. Kölcsönösen egyértelmű függvények és inverzei. Alkalmazások. Alapfogalmak: függvény, kölcsönösen

Részletesebben

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott

Részletesebben