SVM (közepesen mély bevezetés)

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "SVM (közepesen mély bevezetés)"

Átírás

1 SVM (közepesen mély bevezetés) Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Szabó Adrienn április 4.

2 Bevezetés Alapötlet Jelölések Maximum margin classier Optimalizálási feladat Tartalom Szupport vektor gépek Lagrange duális Lineáris SVM levezetés Soft maximum margin classier Nemlineáris SVM: a kernel trükk Gyakorlatiasabb oldal Kernelválasztás Paraméterválasztás Implementációk

3 SVM Az SVM (Suport Vector Machine) Vladimir N. Vapnik és Corinna Cortes többféle gépi tanulási feladatra alkalmazható modellje (1995). Alapváltozata lineáris kétosztályos szeparálásra képes, de kiterjeszthet egy- vagy többosztályos szeparálásra nemlineáris szeparálásra és nemlineáris regressziós feladatokra is.[1]

4 Motiváció Mit tud az SVM (amit mások nem ennyire)? jó általánosító képesség gyorsaság nagy dimenziós adatok kezelése akkor is (egészen) használható ha több a dimenzió mint az adatpont

5 SVM Alapötlet képekben Lineárisan nem szeparálható feladat, de jól magasabb dimenzióba küldjük, és ott igen

6 Szeparáló sík 3D-ben

7 Jelölések Egy tanítópont: ( x, y) ahol x R n, y {+1, 1} Az x pontok dimenziója: A tanítópontok darabszáma: A tanítóhalmaz: n l D = {( x i, y i ) x i R n, y i {+1, 1}} A szeparáló sík normálvektora: ω Nem egységhosszú! A szeparáló sík eltolása: Az f függvényt keressük amivel címkéket gyárthatunk az új x pontokhoz (amik nem voltak D-ben): b f : R n {+1, 1}

8 Maximális szeparálás A szeparáló sík minél messzebb legyen mindkét osztály pontjaitól, és pontosan középen a két osztály ponjtjai között. 1. ábra. A szürkék is megoldják a szeparálást, de a fekete jobb

9 Optimalizálási feladat általában Keressük a célfüggvényünk, φ : R n R széls értékét: min φ( x) x miközben a megengedett megoldások: g i ( x) 0 ahol g i : R n R lineáris függvények, 0-ra rendezve. Az optimális megoldás az az x lesz amire igaz bármely x esetén hogy φ( x ) φ( x). Ha φ is lineáris, akkor lineáris optimalizálási feladatunk van LP feladat. Ha φ kvadratikus (négyzetes, plusz esetleg lineáris tag is) QP feladat. Ha φ konvex akkor konvex optimalizálási feladat.

10 Az optimalizálási feladatunk A margót (margin) kell maximalizálni, ami a szupport-síkok távolsága.

11 Optimalizáljuk a szeparáló síkot I A φ( ω, b) célfüggvényünket kellene úgy meghatározni, hogy a maximális margót megkaphassuk az optimalizálással. A korlátokat az fogja jelenteni, hogy a szupport-síkok nem mehetnek túl a tanítópontokon ( ω x + b + k ill. ω x b k). Tegyük fel hogy az optimális margó mérete m, és az optimális szeparáló síkunk egyenlete: Ekkor így írhatjuk fel a margót: ω x = b (1) m = φ( ω, b ) = max φ( ω, b) (2) De mi legyen a φ függvényünk?

12 Optimalizáljuk a szeparáló síkot II

13 Optimalizáljuk a szeparáló síkot III A szupport-síkokra ezeket írhatjuk fel: ω x = b + k (3) ω x = b k (4) Legyen ( x p, +1) D és ( x q, 1) D egy-egy szupport vektor. Ekkor a különbségüket ω irányába vetítve m -ot kell kapnunk (ábra). m = x p x q cos γ = ω ( x p x q ) ω = (b + k) (b k) ω = 2k ω = ω x p ω x q ω

14 Optimalizáljuk a szeparáló síkot IV

15 Optimalizáljuk a szeparáló síkot V m = max 2k ω De inkább minimalizálnánk, ezért átírjuk: (5) m = max 2k ω ω 2 = min = min ω 2k 2k = min 1 ω ω 2k = min 1 ω ω 2 Az utolsó lépésben k = 1 -et választhatunk, mert a skálázásra invariáns az optimalizálásunk. Tehát a célfüggvényünk: φ( ω, b ) = 1 ω ω (6) 2

16 Optimalizáljuk a szeparáló síkot VI A korlátok így alakulnak: ω x i 1 + b minden ( x i, y i ) D -re, ahol y i = +1 ω ( x i ) 1 b minden ( x i, y i ) D -re, ahol y i = 1 Ami rövidebben így is írható: ω (y i x i ) 1 y i b minden ( x i, y i ) D -re (7) Így megvan a kvadratikus optimalizálási feladatunk.

17 Kvadratikus programozás (QP) A kvadratikus optimalizálási feladatok (QP, Quadratic programming) megoldására vannak ismert módszerek. Erre most nincs id részletesen, a lényeg hogy viszonylag egyszer en QP feladattá alakítható a fenti. Ennek a megoldásnak az a hátránya, hogy elég számításigényes ha sok tanítópontunk van (mindegyik megjelenik korlátként). Segít a helyzeten, ha a feladat duálisát nézzük. És ezt a duális felírást nevezzünk majd SVM-nek.

18 Lagrange duális Optimalizálási feladatoknál viszonylag gyakori, hogy egy feladat átfogalmazásával, a duális néz pontból szebben (vagy csak máshogy) megoldható feladatot kapunk. A Lagrange duális lényege egy mondatban: Ha M darab korlátunk van, és f-nek keressük széls értékét (minden folytonos és deriválható, és a célfüggvény konvex) akkor az eredeti helyett a következ nek a megoldásával is megtaláljuk a megoldást: f( x) + M λ k g k ( x) = 0 k=1 ahol a gradiens vektort jelöli, és a λ k -k a Lagrange együtthatók, amik pozitívak.[1]

19 (*) Lagrange duális részletesebben I Ha keressük egy konvex függvény széls értékét, min x φ( x)-et g i ( x) 0, (i = 1... l) korlátokkal (primál feladat), akkor ebb l a következ Lagrange optimalizálási feladatot írhatjuk, amely egy képletbe fogja össze a korlátokat és a célfüggvényt: max min L( α, x) = max α,α i 0 x min α,α i 0 x ( φ( x) ) l α i g i ( x) Itt x a primál változó, α pedig a duál változó. A két, ellentétesirányú széls érték miatt ez szemléletesen azt jelenti hogy L( x, α) nyeregpontját keressük. Ha φ( x) konvex, akkor pontosan egy ilyen nyeregpont van. i=1 (8)

20 (*) Lagrange duális részletesebben II Bizonyítható, hogy az ( x, α ) megoldás akkor és csak akkor lesz az eredeti feladatunknak is széls értéke, ha teljesülnek a KKT (KarushKuhnTucker) feltételek: L x ( α, x ) = 0 (9) αi g i ( x ) = 0 (10) g i ( x ) 0 (11) αi 0 (12)

21 SVM: a max margin klasszikátor duálisa SVM: A maximális margó keresése Lagrange duálissal. Ennek az lesz az el nye hogy így szebben megoldható a feladat, illetve lehet vé válik majd a kernel trükk. Tegyük fel hogy van egy lineárisan szeparálható tanítóhalmazunk: D = {( x 1, y 1 ), ( x 2, y 2 ),... ( x l, y l )} R n {+1, 1} és a következ az optimalizálandó célfüggvényünk: 1 min φ( ω, b) = min ω ω (13) ω,b ω,b 2 a következ korlátokkal: g i ( ω, b) = y i ( ω x i b) 1 0 (i = 1... l) (14) (Ez eddig ugyanaz ami már volt a maximum margin klasszikátornál.)

22 (*) SVM levezetés I El ször így fog kinézni a Lagrange duálisunk, keressük a nyeregpontot: max min L( α, ω, b) (15) α,α i 0 ω,b ahol l L( α, ω, b) = φ( ω, b) α i g i ( ω, b) (16) i=1 = 1 l 2 ω ω α i (y i ( ω x i b) 1) (17) i=1 = 1 l 2 ω ω α i y i ω x i + b l l α i y i + α i (18) i=1 i=1 i=1

23 (*) SVM levezetés II Most tegyük fel, hogy ω, α és b az optimális megoldást adják. Ekkor a KKT feltételek: És ha minden igaz, akkor: L ω ( α, ω, b ) = 0 (19) L b ( α, ω, b ) = 0 (20) αi (y i ( ω x i b ) 1) = 0 (21) y i ( ω x i b ) 1 0 (22) αi 0 (23) max min L( α, ω, b) = α ω,b L( α, ω, b ) = φ( ω, b ) (24)

24 (*) SVM levezetés III Most jön az a trükk, hogy ω és b kiesnek majd, és csak az α marad majd, amire optimalizálni kell. Mivel a ω, b megoldás optimális, ezért L nyeregpontjának kell lennie. Az els KKT-t (19) használva L-t ω szerint deriváljuk (18)-t és ω -nál 0-vá tesszük: Ebb l következik: L ω ( α, ω, b) = ω ω = l α i y i x i = 0 (25) i=1 l α i y i x i (26) i=1

25 (*) SVM levezetés IV Most (18)-t b szerint deriváljuk, a második KKT-t (20)-t használva b -nál ez is 0 kell legyen: L b ( α, ω, b ) = l α i y i = 0 (27) Itt kiesett a b, de nem baj, ki tudjuk majd számolni ezt is az α i -kb l (kicsit kés bb). Végül (18)-be behelyettesítgetve ill. kiejtve ami nulla lett: L d ( α) = L( α, ω, b ) = i=1 l α i 1 2 i=1 l i=1 j=1 Ebbe a képletbe már belefér majd a kernel trükk... :) l α i α j y i y j x i x j (28)

26 A lineáris SVM formálisan A maximális margó megtalálásának duális alakja: l max L d( α) = max α i 1 l l α i α j y i y j x i x j (29) α α 2 i=1 A következ korlátokkal (i = 1... l): i=1 j=1 l α i y i = 0 (30) i=1 α i 0 (31)

27 A szupport vektorok Az egyik KKT feltétel (21) szerint: α i (y i ( ω x i b ) 1) = 0 Ebb l vagy az következik hogy αi = 0, vagy az hogy y i ( ω x i b ) 1 = 0. Tegyük fel hogy αj > 0 egy ( x j, y j ) D tanítópontra. Ekkor a feltétel szerint y i ( ω x i b ) = 1 : ω x j = b + 1 ha y j = +1 ω x j b 1 ha y j = 1 Vagyis ezek a tanítópontok pont rajta vannak az egyik szupport-síkon. (Ami meg nincs szupport síkon, annak az α értéke, vagyis Lagrange-együtthatója 0, mert ezek nem befolyásolják a margó méretét.)

28 (*) Az eltolás Még nem mondtuk meg hogy a b -ot hogy számoljuk ki. Szerencsére csak a szupport vektorok számítanak. Válasszunk egyet, például a +1-es osztályból ( x sv +, +1)-t. Ekkor: b = ω x sv + 1 = l αi y i x i x sv + 1 (32) i=1

29 A döntési függvényünk A primál feladat az optimális szupport-síkokat határozta meg, amiket a szupport vektorok korlátoznak. A duális megoldásban pedig a szupport vektorokat kaptuk meg, amik a síkokat korlátozzák. De arra szeretnénk majd használni a klasszikátorunkat hogy mondja meg egy pontról hogy a szeparáló sík melyik oldalára esik. Így a lineáris SVM döntési függvénye: f( x) = sgn ( ω x b ) (33) ( l ) l = sgn αi y i x i x αi y i x i x sv (34) i=1 i=1

30 Soft maximum margin classier Eddig megköveteltük hogy a tanítópontok lineárisan szeparálhatóak legyenek. Ami sajnos nem mindig teljesíthet, gyakaran zajos az adat...

31 Soft maximum margin classier Kicsit lazítunk a feltételeken, bevezetjük a slack változókat, amikkel egy-egy tanítópont félreklasszikálhatóságát adjuk meg. Az össz-félreklasszikálhatóság-nak meg megadhatunk egy C súlyt (büntetést). Így az új korlátaink: y i( ω x i b) 1 ξ i ahol i = 1...l és ξ i 0 (35) A célfüggvény pedig igyekszik ezeket a slack változókat is minimalizálni a margó maximalizálása mellett: { } 1 l 2 ω 2 + C ξ i min ω, ξ,b i=1 (36)

32 Soft maximum margin classier duálisa Itt az a nagyszer ség áll fenn, hogy ha kiszámoljuk, a ξ i -k jól kiesnek a célfüggvényünkb l, és csak egy C fels korlát marad bel lük a Lagrange együtthatókhoz: max α L d( α) = max α l α i 1 2 i=1 A korlátok pedig (i = 1... l): l i=1 j=1 l α i α j y i y j x i x j (37) l α i y i = 0 (38) i=1 0 α i C (39)

33 Nemlineáris SVM: a kernel trükk Az eredeti pontokat magasabb dimenzióba transzformáljuk, remélve hogy ott már lineárisan szeparálhatóak az osztályok

34 A kernel trükk I Eddig (a primál megfogalmazásban) volt egy ilyen képletünk, ω és x közötti skaláris szorzattal: f( x) = sgn ( ω x b ) (40) És most szeretnénk a szeparálást egy magasabb dimenzióban eljátszani, vagyis az x-ek helyett ϕ( x)-et szeretnénk írni. f( x) = sgn ( ω ϕ( x) b ) (41)

35 A kernel trükk II A kernel-trükk lényege az, hogy ha van egy megfelel kernelünk: K( x, y) = (ϕ( x), ϕ( y)) (42) akkor igaziból nem is kell majd a ϕ-ket számolgatni, meg magasabb dimenzióba menni, mert a K( x, y) anélkül is számolható, és az SVM duális alakjában ez pont elég is.

36 A kernel trükk III A primál döntési függvényünkbe a ω duális reprezentációját ( ω = l i=1 α i y iϕ( x i )) helyettesítve: f( x) = sgn ( ω ϕ( x) b ) (43) ( l ) = sgn αi y i ϕ( x i ) ϕ( x) b (44) i=1 ( l ) = sgn αi y i K( x i, x) b i=1 Ha okosan választunk ϕ függvényt, akkor a döntési függvényünk ugyanolyan egyszer lesz mint a lineáris esetben; csak annyi lesz a különbség, hogy a skaláris szorzat helyett a kernelt kell írni. (45)

37 Kernel függvények I De egy K : R n R n R( x, y) függvény mikor olyan, hogy jó lesz kernelnek, vagyis mikor létezik hozzá ϕ úgy hogy K( x, y) = (ϕ( x), ϕ( y))? Bizonyítható, hogy akkor, ha pozitív denit: l i=1 j=1 l θ i θ j K( x i, x j ) 0 (46) A kernel-függvény tulajdonképpen a két vektor hasonlóságát méri.[6]

38 Kernel függvények II Kernel functions must be continuous, symmetric, and most preferably should have a positive (semi-) denite Gram matrix. Kernels which are said to satisfy the Mercer's theorem are positive semi-denite, meaning their kernel matrices have no non-negative Eigen values. The use of a positive denite kernel insures that the optimization problem will be convex and solution will be unique. However, many kernel functions which aren't strictly positive denite also have been shown to perform very well in practice (sigmoid kernel).[5]

39 Néhány kernel függvény Hogy melyiket érdemes választani az mindig az adott feladattól/adathalmaztól függ. (Ha nincs jobb ötletünk, kezdjük a Gauss-kernellel.) Polinomiális (homogén) K( x i, x j ) = ( x i x j ) d Polinomiális (inhomogén) K( x i, x j ) = ( x i x j + 1) d Gauss (RBF) K( x i, x j ) = exp( γ x i x j 2 ), ahol γ > 0, néha úgy paraméterezve hogy γ = 1/2σ 2 Hiperbolikus tangens K( x i, x j ) = tanh(κ x i x j + c) d, ahol κ > 0 és c < 0, plusz egyéb feltételek.

40 Paraméterválasztás Az SVM teljesítménye függ a választott kernelt l, a C puhasági paramétert l, és az adott kernel-függvény paraméterekt l is. Például Gauss-kernel esetén a γ paraméter és a C legjobb kombinációját egy grid-kereséssel szokás meghatározni, exponenciálisan növ értékekkel, pl: C {2 5, 2 3,..., 2 13, 2 15 } γ {2 15, 2 13,..., 2 1, 2 3 } Minden paraméter-párt CV-val kiértékelünk, és a legjobbat kiválasztjuk. Aztán a teljes tanítóhalmazt és a választott paramétereket használva építjük fel a klasszikáló modellünket.

41 Implementációk LIBLINEAR LIBLINEAR is a linear classier for data with millions of instances and features LIBSVM LIBSVM is an integrated software for support vector classication, regression and distribution estimation SVMlight SVMlight is an implementation of Vapnik's Support Vector Machine for the problem of pattern recognition, for regression, and for learning a ranking function. WEKA Ez azért kényelmes mert sok más klasszikátor is van benne; amúgy a LIBSVM-et wrappeli.

42 Special Thanks Különleges köszönet Fekete Zsoltnak és Pálovics Robinak

43 Hivatkozások I Wikipedia, Support vector machine, :35 Wikipedia, Optimization problem, :51 Wikipedia, Mathematical optimization, :03 Lutz Hamel, Knowledge discovery with support vector machines, John Wiley & Sons, Inc., Hoboken, New Jersey, 2009 César Roberto de Souza, Science, computing and machine learning. Blog, http: //crsouza.blogspot.hu/2010/03/kernel-functions-for-machine-learning.html, :47

44 Hivatkozások II Altrichter Márta, Horváth Gábor, Pataki Béla, Strausz György, Takács Gábor, Valyon József, Mesterséges Intelligencia Elektronikus Almanach, 6. fejezet - Kernel módszerek, :32

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Harry Markowitz 1990-ben kapott Közgazdasági Nobel díjat a portfolió optimalizálási modelljéért. Ld. http://en.wikipedia.org/wiki/harry_markowitz Ennek a legegyszer

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,

Részletesebben

Nemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással

Nemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással pontos dualitással Imre McMaster University Advanced Optimization Lab ELTE TTK Operációkutatási Tanszék Folytonos optimalizálás szeminárium 2004. július 6. 1 2 3 Kvadratikus egyenlőtlenségrendszerek Primál

Részletesebben

EuroOffice Optimalizáló (Solver)

EuroOffice Optimalizáló (Solver) 1. oldal EuroOffice Optimalizáló (Solver) Az EuroOffice Optimalizáló egy OpenOffice.org bővítmény, ami gyors algoritmusokat kínál lineáris programozási és szállítási feladatok megoldására. Szimplex módszer

Részletesebben

Mátrixjátékok tiszta nyeregponttal

Mátrixjátékok tiszta nyeregponttal 1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják

Részletesebben

Panorámakép készítése

Panorámakép készítése Panorámakép készítése Képregisztráció, 2009. Hantos Norbert Blaskovics Viktor Összefoglalás Panoráma (image stitching, planar mosaicing): átfedő képek összeillesztése Lépések: Előfeldolgozás (pl. intenzitáskorrekciók)

Részletesebben

Érzékenységvizsgálat

Érzékenységvizsgálat Érzékenységvizsgálat Alkalmazott operációkutatás 5. elıadás 008/009. tanév 008. október 0. Érzékenységvizsgálat x 0 A x b z= c T x max Kapacitások, együtthatók, célfüggvény együtthatók változnak => optimális

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518

Részletesebben

Gyártórendszerek modellezése: MILP modell PNS feladatokhoz

Gyártórendszerek modellezése: MILP modell PNS feladatokhoz Gyártórendszerek modellezése MILP modell PNS feladatokhoz 1 Pannon Egyetem M szaki Informatikai Kar Számítástudomány Alkalmazása Tanszék Utolsó frissítés: 2008. november 16. 1 hegyhati@dcs.uni-pannon.hu

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény

Részletesebben

Érdekes informatika feladatok

Érdekes informatika feladatok A keres,kkel és adatbázissal ellátott lengyel honlap számos díjat kapott: Spirit of Delphi '98, Delphi Community Award, Poland on the Internet, Golden Bagel Award stb. Az itt megtalálható komponenseket

Részletesebben

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

Konvex optimalizálás feladatok

Konvex optimalizálás feladatok (1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy

Részletesebben

Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió.

Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió. YBL - SGYMMAT202XXX Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 007/008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció i stratégiák Szemantikus hálók / Keretrendszerek

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma Egyes logisztikai feladatok megoldása lineáris programozás segítségével - bútorgyári termelési probléma - szállítási probléma Egy bútorgyár polcot, asztalt és szekrényt gyárt faforgácslapból. A kereskedelemben

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

értékel függvény: rátermettségi függvény (tness function)

értékel függvény: rátermettségi függvény (tness function) Genetikus algoritmusok globális optimalizálás sok lehetséges megoldás közül keressük a legjobbat értékel függvény: rátermettségi függvény (tness function) populáció kiválasztjuk a legrátermettebb egyedeket

Részletesebben

KOOPERÁCIÓ ÉS GÉPI TANULÁS LABORATÓRIUM

KOOPERÁCIÓ ÉS GÉPI TANULÁS LABORATÓRIUM KOOPERÁCIÓ ÉS GÉPI TANULÁS LABORATÓRIUM Kernel módszerek idősor előrejelzés Mérési útmutató Készítette: Engedy István (engedy@mit.bme.hu) Méréstechnika és Információs Rendszerek Tanszék Budapesti Műszaki

Részletesebben

DR. NAGY TAMÁS. egyetemi docens. Miskolci Egyetem Alkalmazott Matematikai Tanszék

DR. NAGY TAMÁS. egyetemi docens. Miskolci Egyetem Alkalmazott Matematikai Tanszék FELTÉTELES OPTIMALIZÁLÁS DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-4...B-0//KONV-00-000 jel½u projekt részeként az Európai Unió támogatásával,

Részletesebben

Bevezetés az operációkutatásba A lineáris programozás alapjai

Bevezetés az operációkutatásba A lineáris programozás alapjai Bevezetés az operációkutatásba A lineáris programozás alapjai Alkalmazott operációkutatás 1. elıadás 2008/2009. tanév 2008. szeptember 12. Mi az operációkutatás (operations research)? Kialakulása: II.

Részletesebben

Számítási feladatok a Számítógépi geometria órához

Számítási feladatok a Számítógépi geometria órához Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát

Részletesebben

KOPI. Fordítási plágiumok keresése MTA SZTAKI DSD. Pataki Máté MSZNY 2011. Department of Distributed Systems

KOPI. Fordítási plágiumok keresése MTA SZTAKI DSD. Pataki Máté MSZNY 2011. Department of Distributed Systems KOPI MTA SZTAKI Department of Distributed Systems Fordítási plágiumok keresése MSZNY 2011 Pataki Máté Probléma 1. Sok a diák 2. Hasznos anyagok az interneten 3. Digitális szakdolgozatok 4. Jó nyelvtudás

Részletesebben

4. Kartell két vállalat esetén

4. Kartell két vállalat esetén 4. Kartell két vállalat esetén 34 4. Kartell két vállalat esetén Ebben a fejezetben azzal az esettel foglalkozunk, amikor a piacot két vállalat uralja és ezek összejátszanak. A vállalatok együttműködését

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

Kereső algoritmusok a diszkrét optimalizálás problémájához

Kereső algoritmusok a diszkrét optimalizálás problémájához Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások

Részletesebben

Általános algoritmustervezési módszerek

Általános algoritmustervezési módszerek Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás

Részletesebben

Diszkrét, egészértékű és 0/1 LP feladatok

Diszkrét, egészértékű és 0/1 LP feladatok Diszkrét, egészértékű és 0/1 LP feladatok In English Integer Programming - IP Zero/One (boolean) programming 2007.03.12 Dr. Bajalinov Erik, NyF MII 1 Diszkrét és egészértékű változókat tartalmazó feladatok

Részletesebben

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Hamilton rendszerek, Lyapunov függvények és Stabilitás Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Sokszor nem lehetséges, hogy a tanult linearizációs módszerrel meghatározzuk

Részletesebben

A DÖNTÉSELMÉLET ELEMEI

A DÖNTÉSELMÉLET ELEMEI A DÖNTÉSELMÉLET ELEMEI Irodalom: Temesi J., A döntéselmélet alapjai, Aula, 2002, Budapest Lawrence, J.A., Pasternack, B.A., Applied management science, John Wiley & Sons Inc. 2002 Stevenson, W. J., Operation

Részletesebben

Nemlineáris optimalizálás Dr. Házy, Attila

Nemlineáris optimalizálás Dr. Házy, Attila Nemlineáris optimalizálás Dr. Házy, Attila Nemlineáris optimalizálás Dr. Házy, Attila Miskolci Egyetem Kelet-Magyarországi Informatika Tananyag Tárház Kivonat Kivonat Nemzeti Fejlesztési Ügynökség http://ujszechenyiterv.gov.hu/

Részletesebben

Teljesen elosztott adatbányászat alprojekt

Teljesen elosztott adatbányászat alprojekt Teljesen elosztott adatbányászat alprojekt Hegedűs István, Ormándi Róbert, Jelasity Márk Big Data jelenség Big Data jelenség Exponenciális növekedés a(z): okos eszközök használatában, és a szenzor- és

Részletesebben

Differenciál és integrálszámítás diszkréten

Differenciál és integrálszámítás diszkréten Differenciál és integrálszámítás diszkréten Páles Zsolt Debreceni Egyetem, Matematikai Intézet MAFIÓK, Békéscsaba, 010. augusztus 4-6. Páles Zsolt (Debreceni Egyetem) Diff. és int.-számítás diszkréten

Részletesebben

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0.

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0. L'Hospital-szabály 25. március 5.. Alapfeladatok ln 2. Feladat: Határozzuk meg a határértéket! 3 2 9 Megoldás: Amint a korábbi határértékes feladatokban, els ként most is a határérték típusát kell megvizsgálnunk.

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Keverési modellek. Színkeverés Beton/aszfalt keverés Benzin keverés Gázkeverékek koncentrációjának a meghatározása

Keverési modellek. Színkeverés Beton/aszfalt keverés Benzin keverés Gázkeverékek koncentrációjának a meghatározása Illés Tibor Keverési modellek Színkeverés Beton/aszfalt keverés Benzin keverés Gázkeverékek koncentrációjának a meghatározása Keverési modellek matematikai jellemzői Nemlineáris sokszor nem konvex optimalizálási

Részletesebben

1. feladatsor, megoldások. y y = 0. y h = C e x

1. feladatsor, megoldások. y y = 0. y h = C e x 1. feladatsor, megoldások 1. Ez egy elsőrendű diffegyenlet, először a homogén egyenlet megoldását keressük meg, majd partikuláris megoldást keresünk: y y = 0 Ez pl. egy szétválasztható egyenlet, melynek

Részletesebben

Debreceni Egyetem Informatikai Kar. Fazekas István. Neurális hálózatok

Debreceni Egyetem Informatikai Kar. Fazekas István. Neurális hálózatok Debreceni Egyetem Informatikai Kar Fazekas István Neurális hálózatok Debrecen, 2013 Szerző: Dr. Fazekas István egyetemi tanár Bíráló: Dr. Karácsony Zsolt egyetemi docens A tananyag a TÁMOP-4.1.2.A/1-11/1-2011-0103

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

Gépi tanulás a gyakorlatban. Bevezetés

Gépi tanulás a gyakorlatban. Bevezetés Gépi tanulás a gyakorlatban Bevezetés Motiváció Nagyon gyakran találkozunk gépi tanuló alkalmazásokkal Spam detekció Karakter felismerés Fotó címkézés Szociális háló elemzés Piaci szegmentáció analízis

Részletesebben

Pannon Egyetem Vegyészmérnöki és Anyagtudományok Doktori Iskola

Pannon Egyetem Vegyészmérnöki és Anyagtudományok Doktori Iskola Pannon Egyetem Vegyészmérnöki és Anyagtudományok Doktori Iskola Doktori (Ph.D.) értekezés tézisei Számítási intelligencia alapú regressziós technikák és Készítette Kenesei Tamás Péter Témavezető: Dr. habil.

Részletesebben

SAT probléma kielégíthetőségének vizsgálata. masszív parallel. mesterséges neurális hálózat alkalmazásával

SAT probléma kielégíthetőségének vizsgálata. masszív parallel. mesterséges neurális hálózat alkalmazásával SAT probléma kielégíthetőségének vizsgálata masszív parallel mesterséges neurális hálózat alkalmazásával Tajti Tibor, Bíró Csaba, Kusper Gábor {gkusper, birocs, tajti}@aries.ektf.hu Eszterházy Károly Főiskola

Részletesebben

1. Előadás: Az alapfeladat. 1. Az optimalizálás alapfeladata és alapfogalmai

1. Előadás: Az alapfeladat. 1. Az optimalizálás alapfeladata és alapfogalmai Optimalizálási eljárások MSc hallgatók számára 1. Előadás: Az alapfeladat Előadó: Hajnal Péter 2015. tavasz L.V. Kantorovics (1912-1986) Az optimalizálás a matematika legkülönfélébb területeinek találkozási

Részletesebben

Exponenciális, logaritmikus függvények

Exponenciális, logaritmikus függvények Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Néhány fontosabb folytonosidejű jel

Néhány fontosabb folytonosidejű jel Jelek és rendszerek MEMO_2 Néhány fontosabb folytonosidejű jel Ugrásfüggvény Bármely választással: Egységugrás vagy Heaviside-féle függvény Ideális kapcsoló. Signum függvény, előjel függvény. MEMO_2 1

Részletesebben

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető . Laboratóriumi gyakorlat A EMISZO. A gyakorlat célja A termisztorok működésének bemutatása, valamint főbb paramétereik meghatározása. Az ellenállás-hőmérséklet = f és feszültség-áram U = f ( I ) jelleggörbék

Részletesebben

összeadjuk 0-t kapunk. Képletben:

összeadjuk 0-t kapunk. Képletben: 814 A ferde kifejtés tétele Ha egy determináns valamely sorának elemeit egy másik sor elemeihez tartozó adjungáltakkal szorozzuk meg és a szorzatokat összeadjuk 0-t kapunk Képletben: n a ij A kj = 0, ha

Részletesebben

Feltételes és feltétel nélküli optimalizálás Microsoft O ce EXCEL szoftver segítségével

Feltételes és feltétel nélküli optimalizálás Microsoft O ce EXCEL szoftver segítségével Feltételes és feltétel nélküli optimalizálás Microsoft O ce EXCEL szoftver segítségével Az Excel Solver programcsomagjának bemutatásaként két feltételes és egy feltétel nélküli optimalizálási feladatot

Részletesebben

Növényvédő szerek A 500 0 0 0 0 65000 B 0 0 50 500 500 60000 C 50 25 0 50 50 12000 D 0 25 5 50 0 6000

Növényvédő szerek A 500 0 0 0 0 65000 B 0 0 50 500 500 60000 C 50 25 0 50 50 12000 D 0 25 5 50 0 6000 A feladat megoldása során az Excel 2010 használata a javasolt. A feladat elvégzése során a következőket fogjuk gyakorolni: Termelési és optimalizálási feladatok megoldása. Mátrixműveletek alkalmazása.

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

Sztöchiometriai egyenletrendszerek minimális számú aktív változót tartalmazó megoldásainak meghatározása a P-gráf módszertan alkalmazásával

Sztöchiometriai egyenletrendszerek minimális számú aktív változót tartalmazó megoldásainak meghatározása a P-gráf módszertan alkalmazásával Sztöchiometriai egyenletrendszerek minimális számú aktív változót tartalmazó megoldásainak meghatározása a P-gráf módszertan alkalmazásával * Pannon Egyetem, M szaki Informatikai Kar, Számítástudomány

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség

Részletesebben

Hálózati WAN forgalom optimalizálása

Hálózati WAN forgalom optimalizálása Hálózati WAN forgalom optimalizálása 2013.11.07 HBONE Workshop Aranyi Ákos NIIF Intézet Bevezetés: Probléma: Kis sávszélesség Nem megfelelő használat: Vírusok,férgek Rosszul beállított szerverek Túl sok

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

First Prev Next Last Go Back Full Screen Close Quit. Matematika I Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html

Részletesebben

DIPLOMAMUNKA. Szilágyi Attila

DIPLOMAMUNKA. Szilágyi Attila DIPLOMAMUNKA Szilágyi Attila Debrecen 2010 1 Debreceni Egyetem Informatika Kar INTERAKTÍV INFORMÁCIÓS PANEL KÉPFELDOLGOZÓ ALGORITMUSAI Témavezet : Dr. Fazekas Attila egyetemi docens Készítette: Szilágyi

Részletesebben

Az érzékenységvizsgálat jelentősége

Az érzékenységvizsgálat jelentősége Az érzékenységvizsgálat jelentősége (Tanulmány) Egyéb olyan fontos szempontok mellett, mint a stabilitás, rugalmasság, társadalmi elfogadottság, stb., az ipari menedzser fő célja, hogy növelje cége nyereségét.

Részletesebben

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában 9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában Bevezet : A témakörben els - és másodfokú egyenl tlenségek megoldásának

Részletesebben

11. DETERMINÁNSOK. 11.1 Mátrix fogalma, műveletek mátrixokkal

11. DETERMINÁNSOK. 11.1 Mátrix fogalma, műveletek mátrixokkal 11 DETERMINÁNSOK 111 Mátrix fogalma, műveletek mátrixokkal Bevezetés A közgazdaságtanban gyakoriak az olyan rendszerek melyek jellemzéséhez több adat szükséges Például egy k vállalatból álló csoport minden

Részletesebben

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben? . Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs

Részletesebben

Valasek Gábor valasek@inf.elte.hu

Valasek Gábor valasek@inf.elte.hu Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.

Részletesebben

Programozási segédlet

Programozási segédlet Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen

Részletesebben

Mesterséges intelligencia 3. laborgyakorlat

Mesterséges intelligencia 3. laborgyakorlat Mesterséges intelligencia 3. laborgyakorlat Kétszemélyes játékok - Minimax A következő típusú játékok megoldásával foglalkozunk: (a) kétszemélyes, (b) determinisztikus, (c) zéróösszegű, (d) teljes információjú.

Részletesebben

MIKROÖKONÓMIA I. Készítette: K hegyi Gergely és Horn Dániel. Szakmai felel s: K hegyi Gergely. 2010. június

MIKROÖKONÓMIA I. Készítette: K hegyi Gergely és Horn Dániel. Szakmai felel s: K hegyi Gergely. 2010. június MIKROÖKONÓMIA I Készült a TÁMOP-412-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

Szakdolgozat. Miskolci Egyetem. Nemlineáris programozás. Készítette: Horváth Gábor Programtervező informatikus hallgató

Szakdolgozat. Miskolci Egyetem. Nemlineáris programozás. Készítette: Horváth Gábor Programtervező informatikus hallgató Szakdolgozat Miskolci Egyetem Nemlineáris programozás Készítette: Horváth Gábor Programtervező informatikus hallgató Témavezető: Dr. Nagy Tamás egyetemi docens, Alkalmazott Matematikai Tanszék Miskolc,

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel

Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel Navigáci ció és s mozgástervez stervezés Algoritmusok és alkalmazásaik Osváth Róbert Sorbán Sámuel Feladat Adottak: pálya (C), játékos, játékos ismerethalmaza, kezdőpont, célpont. Pálya szerkezete: akadályokkal

Részletesebben

Programozási tételek. Dr. Iványi Péter

Programozási tételek. Dr. Iványi Péter Programozási tételek Dr. Iványi Péter 1 Programozási tételek A programozási tételek olyan általános algoritmusok, melyekkel programozás során gyakran találkozunk. Az algoritmusok általában számsorozatokkal,

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív

Részletesebben

Lineáris programozási feladat megoldása Microsoft O ce EXCEL szoftverrel

Lineáris programozási feladat megoldása Microsoft O ce EXCEL szoftverrel Lineáris programozási feladat megoldása Microsoft O ce EXCEL szoftverrel 1. A lineáris programozási probléma de niálása Solverrel A Solver használatát három lineáris programozási feladaton keresztül fogjuk

Részletesebben

A DÖNTÉSELMÉLET ELEMEI

A DÖNTÉSELMÉLET ELEMEI A DÖNTÉSELMÉLET ELEMEI Irodalom: Temesi J., A döntéselmélet alapjai, Aula, 2002, Budapest Lawrence, J.A., Pasternack, B.A., Applied management science, John Wiley & Sons Inc. 2002 Stevenson, W. J., Operation

Részletesebben

Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok

Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok Zrínyi Miklós Gimnázium Művészet és tudomány napja Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok 10/9/2009 Dr. Viharos Zsolt János Elsősorban volt Zrínyis diák Tudományos főmunkatárs

Részletesebben

Geometria 1 normál szint

Geometria 1 normál szint Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!

Részletesebben

KIEGÉSZÍTŽ FELADATOK. Készlet Bud. Kap. Pápa Sopr. Veszp. Kecsk. 310 4 6 8 10 5 Pécs 260 6 4 5 6 3 Szomb. 280 9 5 4 3 5 Igény 220 200 80 180 160

KIEGÉSZÍTŽ FELADATOK. Készlet Bud. Kap. Pápa Sopr. Veszp. Kecsk. 310 4 6 8 10 5 Pécs 260 6 4 5 6 3 Szomb. 280 9 5 4 3 5 Igény 220 200 80 180 160 KIEGÉSZÍTŽ FELADATOK (Szállítási probléma) Árut kell elszállítani három telephelyr l (Kecskemét, Pécs, Szombathely) öt területi raktárba, melyek Budapesten, Kaposváron, Pápán, Sopronban és Veszprémben

Részletesebben

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki.

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. Számítás:. Olvassuk be két pont koordinátáit: (, y) és (2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. 2. Olvassuk be két darab két dimenziós vektor komponenseit: (a, ay) és (b, by). Határozzuk

Részletesebben

Ellenőrzés. Variáns számítás. Érzékenység vizsgálat

Ellenőrzés. Variáns számítás. Érzékenység vizsgálat Ellenőrzés Variáns számítás Érzékenység vizsgálat Készítette: Dr Árahám István Az ellenőrzés A matematikai modell megoldása, a szimple tálák kitöltése közen könnyen elkövethetünk számolási hiát A kiindlási

Részletesebben

Analízisfeladat-gyűjtemény IV.

Analízisfeladat-gyűjtemény IV. Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította

Részletesebben

Térbeli transzformációk, a tér leképezése síkra

Térbeli transzformációk, a tér leképezése síkra Térbeli transzformációk, a tér leképezése síkra Homogén koordináták bevezetése térben A tér minden P pontjához kölcsönösen egyértelműen egy valós (x, y, z) számhármast rendeltünk hozzá. (Descartes-féle

Részletesebben

M-Fájlok létrehozása MATLAB-ban

M-Fájlok létrehozása MATLAB-ban M-Fájlok létrehozása MATLAB-ban 1 Mi az M-fájl Annak ellenére, hogy a MATLAB rendkívül kifinomult és fejlett számológépként használható, igazi nagysága mégis abban rejlik, hogy be tud olvasni és végrehajtani

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

KOPI. KOPI A fordítási plágiumok keresője MTA SZTAKI DSD. Pataki Máté Kovács László. Department of Distributed Systems

KOPI. KOPI A fordítási plágiumok keresője MTA SZTAKI DSD. Pataki Máté Kovács László. Department of Distributed Systems KOPI MTA SZTAKI Department of Distributed Systems KOPI A fordítási plágiumok keresője Pataki Máté Kovács László MTA SZTAKI MTA SZTAKI Elosztott Rendszerek Osztály 1995. óta létezik 12 teljes állású munkatárs,

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363 1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 20/2011 Az Előadások Témái 226/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus

Részletesebben

LINEÁRIS ALGEBRA ALKALMAZÁSA A KRITIKUS INFRASTRUKTÚRA KOCKÁZATÁNAK KEZELÉSÉBEN

LINEÁRIS ALGEBRA ALKALMAZÁSA A KRITIKUS INFRASTRUKTÚRA KOCKÁZATÁNAK KEZELÉSÉBEN VIII. Évfolyam 4. szám - 203. december Gyarmati József gyarmati.jozsef@uni-nke.hu LINEÁRIS ALGEBRA ALKALMAZÁSA A KRITIKUS INFRASTRUKTÚRA KOCKÁZATÁNAK KEZELÉSÉBEN Absztrakt A kockázatok becslése meghatározó

Részletesebben

(1939. január 3. 2008. június 11.)

(1939. január 3. 2008. június 11.) Alkalmazott Matematikai Lapok 26 (2009), 143-149. STAHL JÁNOS (1939. január 3. 2008. június 11.) Amikor Stahl János jellegzetes alakját felidézzük a kés bb született olvasó számára, akkor fel kell idéznünk

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

"A tízezer mérföldes utazás is egyetlen lépéssel kezdődik."

A tízezer mérföldes utazás is egyetlen lépéssel kezdődik. "A tízezert mérföldes utazás is egyetlen lépéssel kezdődik dik." A BINB INSYS Előadók: Kornafeld Ádám SYS PROJEKT Ádám MTA SZTAKI kadam@sztaki.hu Kovács Attila ELTE IK attila@compalg.inf.elte.hu Társszerzők:

Részletesebben

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását!

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! Feladatok Differenciálegyenletek II. témakörhöz 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! (a) (b) 2. Tekintsük az differenciálegyenletet. y y = e x.

Részletesebben

Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba

Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba I. előadás Előadó: Dr. Égertné dr. Molnár Éva Informatika Tanszék A 602 szoba Tárggyal kapcsolatos anyagok megtalálhatók: http://www.sze.hu/~egertne Konzultációs idő: (páros tan. hét) csütörtök 10-11 30

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben