SZE, Doktori Iskola. Számítógépes grafikai algoritmusok. Összeállította: Dr. Gáspár Csaba. Térgörbék

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "SZE, Doktori Iskola. Számítógépes grafikai algoritmusok. Összeállította: Dr. Gáspár Csaba. Térgörbék"

Átírás

1 SZE, Doori Isola. Számíógées graiai algorimso. Összeállíoa: Dr. Gásár Csaba Térgörbé Térgörbé megadása Görbüle és orzió Kísérő riéder meris deriválás Görbeilleszés: Bernsein-olinomo, Bézier-görbé Görbeilleszés: B-sline-o

2 SZE, Doori Isola. Számíógées graiai algorimso. Összeállíoa: Dr. Gásár Csaba Térgörbé megadása Egyenes araméeres veoregyenlee: x a e a: az egyenes egy rögzíe onja, e: irányveor Térgörbe: egy x : R R olyonos üggvény éréészlee. Maga a üggvény: a görbe egy rerezenánsa vagy araméerezése.

3 SZE, Doori Isola. Számíógées graiai algorimso. Összeállíoa: Dr. Gásár Csaba Példa ör egyenlee e, egységnyi osszúságú, egymásra merőleges veoro x : Rcos e Rsin Ez egy ör egyenlee az e, veoro síjában. Egy mási araméerezése: x : Rcos e Rsin

4 SZE, Doori Isola. Számíógées graiai algorimso. Összeállíoa: Dr. Gásár Csaba Példa nyolcaso j i x sin sin cos sin : j i x sin sin : Példa csavarvonal engeraláson j i x π sin cos : d R R Példa csavarvonal úaláson j i x π π π cos : d m d R m d R

5 SZE, Doori Isola. Számíógées graiai algorimso. Összeállíoa: Dr. Gásár Csaba Példa arimédeszi sirális x : R0 cos i sin j πn Példa logarimis sirális c x : R0e cos i sin j Példa ierbolis sirális c x : R0 cos i sin j

6 SZE, Doori Isola. Számíógées graiai algorimso. Összeállíoa: Dr. Gásár Csaba Görbüle és orzió Legyen x : R R egy elég sima érgörbe. Érinőveor a elyen: x. Érinőegyenes: λ x λ x Görbüle a elyen: κ : x x x

7 SZE, Doori Isola. Számíógées graiai algorimso. Összeállíoa: Dr. Gásár Csaba Példa: x : Rcos i Rsin j ör, aor x Rsin i Rcos j és x Rcos i Rsin j κ R sin cos i i sin i j cos sin cos R R R A görbüle jelenése: a simlóör sgarána reciroa. Görbülei sgár: κ R j i sin cos j j

8 SZE, Doori Isola. Számíógées graiai algorimso. Összeállíoa: Dr. Gásár Csaba Példa: x : i j arabola, aor x i j és x j κ i j j 4 / 4 / A legnagyobb görbüle a arabola csúcsában van, κ 0.

9 SZE, Doori Isola. Számíógées graiai algorimso. Összeállíoa: Dr. Gásár Csaba Torzió a elyen: τ : x x x x x Példa: x : Rcos i Rsin j ör, aor x Rsin i Rcos j, x Rcos i Rsin j x Rsin i Rcos j aor x x R, ezér τ 0. Álalában, a x a g b, azaz x sígörbe, aor orziója azonosan 0. A orzió az méri, ogy mennyire ér el a görbe egy sígörbéől.

10 SZE, Doori Isola. Számíógées graiai algorimso. Összeállíoa: Dr. Gásár Csaba Kísérő riéder A x görbe minden onjáoz rendeljün egy e,, g egységnyi normájú veorármas a öveezőé: e masson érinőirányba; legyen e -re merőleges, ésedig az x, x veoro síjába essé; g legyen mindeő előzőre merőleges. x x x Aor e, g, g e. x x x Az e,, g veorármas a görbe ísérő riéderéne nevezzü az x onban.

11 SZE, Doori Isola. Számíógées graiai algorimso. Összeállíoa: Dr. Gásár Csaba A érgörbe megjeleníésében a ísérő riéder segíe. Példa: legyen x egy görbe. Teinsü az alábbi elülee: F, : x R cos Rg sin Elég icsi R > 0 melle ez egy csőszerű elüle, melyne engelye az ado görbe. Ez érben megjeleníve, a görbe érbeli leása szemléleesebb.

12 SZE, Doori Isola. Számíógées graiai algorimso. Összeállíoa: Dr. Gásár Csaba meris deriválás Legyen :[ a, b] R elég sima üggvény, a 0 < <... < b az b a [a,b] inervallm egy evidiszáns elbonása, :, : 0, 0,,..., : Első derivál, előreléő séma: O A Taylor-ormlából i: ξ.!

13 SZE, Doori Isola. Számíógées graiai algorimso. Összeállíoa: Dr. Gásár Csaba Első derivál, cenrális séma: O Ui. ξ, és!! ξ.!! A é egyenlősége ivonva, az állíás adódi.

14 SZE, Doori Isola. Számíógées graiai algorimso. Összeállíoa: Dr. Gásár Csaba Másodi derivál, cenrális séma: O IV ξ Ui.!! 4! IV ξ!! 4! A é egyenlősége összeadva, az állíás adódi. 4 4, és

15 SZE, Doori Isola. Számíógées graiai algorimso. Összeállíoa: Dr. Gásár Csaba Harmadi derivál, cenrális séma: O 5 4 5! 4!!! V IV ξ 5 4 5! 4!!! V IV ξ V V ξ ξ V V ξ ξ Ebből az előző -szeresé ivonva, az állíás adódi.

16 SZE, Doori Isola. Számíógées graiai algorimso. Összeállíoa: Dr. Gásár Csaba Görbeilleszés: Bernsein-olinomo, Bézier-görbé Legyen : 0,,...,, és legyene 0,,..., R ozzárendel érée. Bernsein-olinom: B : [0,] 0. Ha,,...,, aor B. 0 Ui. eor B :. 0

17 SZE, Doori Isola. Számíógées graiai algorimso. Összeállíoa: Dr. Gásár Csaba. Ha 0,,...,, aor B. Legyen q q g : 0 : Deriválva szerin: 0 q q g. Szorozva -nel: 0 q q. Sec. :, : q : B 0.

18 SZE, Doori Isola. Számíógées graiai algorimso. Összeállíoa: Dr. Gásár Csaba. B B, B B 0, B B 0 0 0, B.

19 SZE, Doori Isola. Számíógées graiai algorimso. Összeállíoa: Dr. Gásár Csaba Görbeilleszés: : 0,,...,, és mindegyi -oz rendeljün egy x ono a síon, vagy a érben. Mindegyi omonensez észísün el egy Bernsein-olinomo: B : x 0 Aor a B görbe az ado x onooz illeszedő görbe. 5. Az illesze görbe eljes egészében az ado x 0,,..., ono onvex brában elyezedi el. Ui. a súlyo nemnegaíva, és összegü.

20 SZE, Doori Isola. Számíógées graiai algorimso. Összeállíoa: Dr. Gásár Csaba Görbeilleszés: B-sline-o Legyene adoa a,,..., számo vagy veoro. Másodoú B-sline-o: legyen [0,], és r : Ez elészíjü minden,, adaármasra. Szaaszonén érelmeze, szaaszonén másodoú olinomo an. Ha,,..., veoro, aor ez görbeilleszés.

21 SZE, Doori Isola. Számíógées graiai algorimso. Összeállíoa: Dr. Gásár Csaba Eze a olinomo egymásoz C -olyonosan csalaozna: r 0 r érée olyonos csalaozása Mivel edig 4 r, azér r 0 r derivála olyonos csalaozása

22 SZE, Doori Isola. Számíógées graiai algorimso. Összeállíoa: Dr. Gásár Csaba Harmadoú B-sline-o: legyen ] [0,, és 4 : r Ez elészíjü minden,,, adanégyesre. Szaaszonén érelmeze, szaaszonén armadoú olinomo an. Ha,...,, veoro, aor ez görbeilleszés.

23 SZE, Doori Isola. Számíógées graiai algorimso. Összeállíoa: Dr. Gásár Csaba Eze a olinomo egymásoz C -olyonosan csalaozna: r r érée olyonos csalaozása 9 9 r 8 8 r. és. derivála olyonos csalaozása

Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása

Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása Numerius módszere. Nemlieáris egyelee özelíő megoldása Egyelemegoldás iervallumelezéssel A Baach-ipo-ierációs módszer A Newo-módszer és válozaai Álaláosío Newo-módszer Egyelemegoldás iervallumelezéssel

Részletesebben

Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása

Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása umerius módszere. emlieáris egyelee özelíő megoldása Egyelemegoldás iervallumelezéssel Legye :[ a, b] R olyoos, a, b, és eressü az egyele egy [ a, b] -beli megoldásá. Bolzao éele: Legye olyoos a véges,

Részletesebben

ú Ó ű Ó Ó ű ű ű ű ű ű ú ú Í ú Ö ú Á Ö ú ú ú Í ű ű ű ű ú ű ú Í ű Ú Ö ű ú Í Í ú ű ú ű ú ú ú ú ű Í ú Í ű ú ű Í ű ú ú Ú ű Á Ü ű ú ú ű ű ú Í ú ú É Í Í ú ú ú Í ú Ó ú ű ű Í Í ű ű Á Í ú ú Í Ö ű Ú ű Ó ú ú ú Ö ú

Részletesebben

íí ú Í í Ó í í ó ó í ó Ü í ü í Í í í í ü í í í í í í í í í í ó í ó í ű í ó ü ó ó ü ű Ü Ú Í Ö ó ó ű í í í í ó Ő ó í í ó í ó í í í ü ü ó í ü ü ó í ü Ó í ó ó ó ú ó ü í ó ó í í í í í í í ó ü ü üí Ü Ü í Í ü

Részletesebben

Á Ő É É ó ó ó ó ó ú ó ű ó ú Í Í ó Ö Á ó ó ó ó Í ó ó ó ó Í ű ó ű ű ó É ó ű ó ó ű ó ű ó ó ú ü ü ó ó ó ó ü ú ó ú ó ú ú ó ú ó ó Ú ó ó ú ú ű ó ú Á ü ú Í Ú ű Ú Ö Í Á Á É Á Á Á É Ó ó ó ó ú ó ó ű ó ü ó ó ó ó ó

Részletesebben

Á Ö Ú Á É É Ő ú ü ú ú ű Ü Ö ü ÚÍ ü ü ú Ü Ü ú ú ú Ó ú ú ú ű ú ú ű É ú ü ü ü ü Ü ü ü Ü ű ű ű ű ú Á Á Á Á Á ú ű ü ű Ü ű ú ű ü ű ü ű Ö ú Ü ű ú Ü É ű ü Ü ü ú Ü ú ú ú ü Ü Ü ü ü ú Í ü ü ú ü Á ü Ü ű ű ű ü ű É

Részletesebben

Ü ü ü ű ü ű Í ű ü ü ü ű ü ü ü ü ü ü ü ü ü ü ű Í ü ü ü ü ü Í É Á Á Í É Á Á Á Á Á Á Á Á Ó ű Á ű É É Á Á Á Á Á ű ü Á Á Ó Ó ü ü ű ü ű ü ü ü Í ű Í ü Í Í ü ü Í ü ü ü ü ü ű ü ü ü ü Í Ó É Ü Í Á ü ű Í ü Í Á Á

Részletesebben

ö Ö ö ó í ó ó í ö Ö í ö í ü ó ö Ö ö ö Á ö ö ö ö Ö ö ö ö ö ó ó ó ö ö ö ü ü ö ö ü í í í í ú ö ö ö ö í ö ö ó í ö ó ö ú ö ü ü ü ö ö í üí ö ö ü ó ö úí ö ó ö ó í ö ó í ö í í í ü ö ó ó ó ó ó ö ö í í ü ó ö ö í

Részletesebben

Ö É Á Ú É É É É Í Ü Ü Ő É ö É ö á ö í ü ü á á á á í á í á ö á á á á á á á í á á ö á á ö á á á á Á ö á á á ö í á ö á ü ö á ö í ü ü á Ő í á ö í í Ü á ü ö ö ü á á á Í á í á á ü ö íí á á í á á á á á í ü ö

Részletesebben

ö ü ö Ö ö ö Ö Á ö ö ö ö Ö ü í ö í í ú ú í ö ü ű ü ú í ü ű ö ö í í ü í ü í ü ü ű Á Á í Ú í ú ú í ö ü ö ö ö ö ü ö í ü í ö ü í í í í í í É ú ú É ü ü ű ú ú ö ü ö ü í í ü ö ü ú ú í ü ö ü ö ö ö ö ö ö ö Á ö Ö

Részletesebben

Í Í Í Á É É Í Ó Ó Í Á Á É Á Á Ö É Á Ö Á Á Á Í É É ű Í ű É É Ű Á Á Ó Á Á ű ű É Í Á Á Í Í É É É Á Ó Á Á Ó ű Í Á Á ű ű ű ű Á ű Í ű ű É Í Í Í ű ű ű ű Í ű ű ű ű ű ű Í É ű ű ű ű ű ű ű ű ű ű ű ű É Í ű Í Í Í Ü

Részletesebben

ű ű Í ű Í Á ű ű Á É Á Á Á Á É Á Á É Ó ű Á Ő Ó É É É Á Í Á É Á Á Á Í Á É Á Ó Í Í ű ű ű Í Í ű Í ű Í Í ű Í Í ű ű ű Í ű ű ű ű ű Í ű ű Í Í ű Á Á ű ű ű ű Í ű Í ű ű ű ű ű Í Í ű Í ű ű Í Í Í É ű Í ű ű ű Í ű Í ű

Részletesebben

ú Ó Ö Ó ű Í Ó ú Í Ü Í Í Í Í ú Í Í Ú É Í Í Ü É Ü Ö Ü ú Í Í Í Í Í É Í Í Í Ó Í Í ú Í ú Í Í ú Ü Í Ü Í Í Í Í Ü Í Í ú Í Í Í ű Ú Í Í Í ú Í ú ú ú ú ú É Í Í Í Í ú Í Í Í Í Í Ü Í Ü ÜÍ ú ú Ú ú ú Í ű Í ú Í Ú Í ű Í

Részletesebben

ü ű ü ű Í ű ü ü ü ü ü ü ü ű ü ű ű ű ü ű ü ű ü ű ü ü ü ü ű ü Í ü Ü Á É Í Á Á Á É Á Á Á Á Á Á Á Ö Á Í ű Á É Á É É É Ú ű É É Ú Á Í Á Ő Á É Ú Á Á Á Á Á Ú Á Á ű É Ó Á É É Ú Ő Á ü ű ű ü ű ű ű ű ű ű ü ü Ú ű Í

Részletesebben

Ö ü Ö ü ü ü í í ü í ü ü ü Á í ü ü í ü í ü ü ű í Ö ü í í í ü ü ű í ú í ü ü í í Á Á ű ü í í í í í ű í í í í ú í ü í í í ü ű í ű ú í ü ü í ű í Á ü í ü ü í Á Ö ü ü ű ü í ü ú ü Á ú ű ü ü ü ű Á Ö ü ű Ö í í ü

Részletesebben

Á Á Á Ó É ö ó ő ó ő ő ő ó ó ó ú ő ö ü ő ó ó ó ó ó ő ó ü ö ö ó ü ő ó ű ó ö ó ó ó ö ő ö ó ó ü ő ö ő ő ü ő ő ő ő ő ó ű ú ó ő ő ö ő ő ü ő ő ő ú ö ö ü Ü ú ö Í ó Ú ó ö ó ő ó ő ű ó ú ú ő ü ő ő ú ö ő ö ú ó ö ó

Részletesebben

ö Ö ü ö ü ö Ö ü ú ü ö ö ö ü ü ü ó ó ó í ö í ö ü ö ö ö í ö ü ö ö ö ü í ó ö ó ö ö í í í ü í ó ü ö í ó ö ö ü ü ú ó ö ö ó ö í ü ű ö ó ú í ö ű ö ű í ö ú ó ó í ó í ö Ó í ú Í ö ü Ö ű ű Ö í ú ó ö í ú ű Ö ö ö ö

Részletesebben

Ö í Ö Ü Ü í í ü ü í í í Ó Í í í í Ó í í íí Ó íí ü ü í í Á íí í ü Ü Ó Ü í í í ü í ü í í í í ü ü í ü í í ü ü ü í í í í ü í í í í í Ö í í ü í í ü ü ü Ó Ó ü í í í í ü ü ü Ö ü ü Ö í í í í í Ö ü í í í ü í í

Részletesebben

Á Á Í Á Ú Á ő í í ö í í í ö ö ő ü ö í ö ü ö üí ő üí í ő ő ú ö í ö ú í í ő í í ö ú ű ö ú í í ú Í ö ú í í ő í Í ő í ö ú ű í Á Á Í Á ö ö í í í í í Ő É Ú Ú Í É Á ü ő ö ő í ö ö Á ö Í É ö ö É Ö É í ő Ö Ö Í Á

Részletesebben

A lecke célja: A tananyag felhasználója megismerje az anyagi pont mozgásának jellemzőit.

A lecke célja: A tananyag felhasználója megismerje az anyagi pont mozgásának jellemzőit. 1 modul: Kinemaika Kineika 11 lecke: Anagi pon mogása A lecke célja: A ananag felhasnálója megismerje a anagi pon mogásának jellemői Köveelmének: Ön akkor sajáíoa el megfelelően a ananago ha: meg udja

Részletesebben

A csavarvonalról és a csavarmenetről

A csavarvonalról és a csavarmenetről A csavarvonalról és a csavarmenetről A témáoz kapcsolódó korábbi dolgozatunk: Ricard I. A Gépészeti alapismeretek tantárgyban a csavarok mint gépelemek tanulmányozását a csavarvonal ismertetésével kezdjük.

Részletesebben

Többváltozós analízis gyakorlat, megoldások

Többváltozós analízis gyakorlat, megoldások Többváltozós analízis gakorlat, megoldások Általános iskolai matematikatanár szak 7/8. őszi félév. Differenciál- és integrálszámítás alkalmazásai. Határozzuk meg az alábbi differenciálegenletek összes,

Részletesebben

3. feladatsor: Görbe ívhossza, görbementi integrál (megoldás)

3. feladatsor: Görbe ívhossza, görbementi integrál (megoldás) Maemaika A3 gyakorla Energeika és Mecharonika BSc szakok, 6/7 avasz 3. feladasor: Görbe ívhossza, görbemeni inegrál megoldás. Mi az r 3 3 i + 6 5 5 j + 9 k görbe ívhossza a [, ] inervallumon? A megado

Részletesebben

Függvények vizsgálata

Függvények vizsgálata Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =

Részletesebben

Injektív függvények ( inverz függvény ).

Injektív függvények ( inverz függvény ). 04 október 6 3 Függvényábrázolások, Függvények kompozíciója ( összetett üggvény ), Bev Mat BME Injektív üggvények ( inverz üggvény ) 0 0 0 0 ( ) ( ) 5 5 5 5 Ábrázolás Függvénytranszormációval : 3 y y 5

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 6 VI TÉRGÖRbÉk 1 Alapvető ÖSSZEFÜGGÉSEk A térgörbe (1) alakú egyenletével írható le Ez a vektoregyenlet egyenértékű az (2) skaláris egyenletrendszerrel A térgörbe három nevezetes

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 30 Egy

Részletesebben

Tizenegyedik gyakorlat: Parciális dierenciálegyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc

Tizenegyedik gyakorlat: Parciális dierenciálegyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc Tizenegyedi gyaorlat: Parciális dierenciálegyenlete Dierenciálegyenlete, Földtudomány és Környezettan BSc A parciális dierenciálegyenlete elmélete még a özönséges egyenleteénél is jóval tágabb, így a félévben

Részletesebben

A A. A hidrosztatikai nyomás a folyadék súlyából származik, a folyadék részecskéi nyomják egymást.

A A. A hidrosztatikai nyomás a folyadék súlyából származik, a folyadék részecskéi nyomják egymást. . Ideális olyadék FOLYDÉKOK ÉS GÁZOK SZTTIKÁJ Nincsenek nyíróerők, a olyadékréegek szabadon elmozdulanak egymásoz kées. Emia a nyugó olyadék elszíne mindig ízszines, azaz merőleges az eredő erőre. Összenyomaalan

Részletesebben

Vektoranalízis Vektor értékű függvények

Vektoranalízis Vektor értékű függvények VS Vektor értékű üggvények VS A korábbi ejezetekben tanulmányoztuk azokat a üggvényeket, amelyek értékkészlete a valós számok halmazának egy részhalmaza. Ezek egyrészt az R R típusú egyváltozós, valós

Részletesebben

GÖRBEELMÉLET ELMÉLETI ÖSSZEFOGLALÓ ÉS FELADATOK

GÖRBEELMÉLET ELMÉLETI ÖSSZEFOGLALÓ ÉS FELADATOK GÖRBEELMÉLET ELMÉLETI ÖSSZEFOGLALÓ ÉS FELADATOK Ajánlo irodalom: 1. Szilasi József: Bevezeés a dierenciálgeomeriába modern szemléle, sok ismeree aralmazó ankönyv, érdekl d knek kiváló. Kurusa Árpád: Bevezeés

Részletesebben

Vektoranalízis Vektor értékű függvények

Vektoranalízis Vektor értékű függvények Vektoranalízis VS Vektoranalízis Vektor értékű üggvények A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK engedélyével használhatók el! Vektoranalízis VS A korábbi ejezetekben tanulmányoztuk

Részletesebben

A közönséges csavarvonal érintőjének képeiről

A közönséges csavarvonal érintőjének képeiről A közönséges csavarvonal érintőjének képeiről Már régóta rajzoljuk a táblára a közönséges csavarvonal vetületeinek és síkba teríté - sének ábráit, a Gépészeti alapismeretek tantárgy óráin. Úgy tűnik, itt

Részletesebben

ö ü ü ö ö í Ö Í ü ö ü ö ü Á Á í ö Í í Í ö í Í ö Í ü üí ü ö Í ű ö í í

ö ü ü ö ö í Ö Í ü ö ü ö ü Á Á í ö Í í Í ö í Í ö Í ü üí ü ö Í ű ö í í É Á É Á Ó Á É Ü Ú ö Ó ö ü ú ö ö ö ö ö ö ü ö ö Á Á É üí ö ö ü ü ö ö í Ö Í ü ö ü ö ü Á Á í ö Í í Í ö í Í ö Í ü üí ü ö Í ű ö í í ú ö Ó ö ö ö í ö ö ü ö í ö í í ö Í ö ö ö Í ö ö í Ó í ö í í í ö ö Í Ő í ö ö ö

Részletesebben

Az f ( xy, ) függvény y változó szerinti primitív függvénye G( x, f xydy= Gxy + C. Kétváltozós függvény integrálszámítása. Primitívfüggvény.

Az f ( xy, ) függvény y változó szerinti primitív függvénye G( x, f xydy= Gxy + C. Kétváltozós függvény integrálszámítása. Primitívfüggvény. Tartalomjegyzék Kétváltozós függvény integrálszámítása... Primitívfüggvény... Kettősintegrál... A kettősintegrál téglalap tartományon... A kettősintegrál létezésének szükséges feltétele... 3 Illusztráció...

Részletesebben

É í

É í É Ő É í í ő í ü í ü í Á Á Ü ö ü í í ú ő Ü ü ö í ö ö ü ö ő ü ö Í ö ű ü ü Ú ö í ú Ü ö ö ú Í ö Ü ú ü ö ö ö ö ő Ü ő ü ű í ü ö í í ü ö ő ő ő ö ö É Í É Í Á Ü ú ü ő í ű ő ö Í í ú í Ü Í ő Í Ú Ü ő í ű í Ü ű ő Ü

Részletesebben

Dierenciálgeometria feladatsor

Dierenciálgeometria feladatsor Dierenciálgeometria feladatsor 1. Görbék paraméterezése 1. Határozzuk meg az alábbi ponthalmazok egy paraméteres el állítását: a a, b középpontú, r sugarú kör a síkban; b y = mx + b egyenlettel leírt egyenes

Részletesebben

í ü ü ú í ü ú ú É Á í ű Á ú í ü í Ő Ű í Ó ű í ü í ű Ú ú É í ü í í

í ü ü ú í ü ú ú É Á í ű Á ú í ü í Ő Ű í Ó ű í ü í ű Ú ú É í ü í í Ő Ö ü Ö ú í Á í É ú í ü í ü ü ü í ü í ü í í ú í Ó ü í ü ü ú í ü ú ú É Á í ű Á ú í ü í Ő Ű í Ó ű í ü í ű Ú ú É í ü í í í í ü ű í ű í ű Ú í Á Á ű ú í í í ú Ő ü í í ü í Ú Ü É ü í ü í É í í Á í É ú ü í í í

Részletesebben

ó í ú ő ó ó ü ő í ú ó ü Ö Í ö ő ü ö ö ó ő ü Ü ö Ö ö ü ó ü ú ö Ö í í ő ö ü ú ü ü ó í ő ő ü í ü É ő ő Í ö ö ó ő ó ó ő ü ö ü ő ó ő ő ö Ö ő ü ő ő ő ü ö ö

ó í ú ő ó ó ü ő í ú ó ü Ö Í ö ő ü ö ö ó ő ü Ü ö Ö ö ü ó ü ú ö Ö í í ő ö ü ú ü ü ó í ő ő ü í ü É ő ő Í ö ö ó ő ó ó ő ü ö ü ő ó ő ő ö Ö ő ü ő ő ő ü ö ö ő ö ü ú Ö ő ü ü ő ő ó ő ő ö ö í ő ü ő ő í ü ó ü ő í ú ü ő ó ő ó ú ö ü ő ü ő ő ő ü ő ó ő ü ö Ö ő ü ö Ö ő ü ú ü ö ő Í ő Í ú Í ü ő ó ü ö ü ő ó ő ü ő ó ü ő ó ó í ú ő ó ó ü ő í ú ó ü Ö Í ö ő ü ö ö ó ő ü Ü ö

Részletesebben

É ű ű ú ú ú Ü ú Ö ű ü ü ü

É ű ű ú ú ú Ü ú Ö ű ü ü ü ű ű É ű ű ú ú ú Ü ú Ö ű ü ü ü Ü Ö ü ú ű ű ü ű ú Ú Ú ú ü ú ú ű ú ú ú ű ú ű ú ű ű ű ű ü Ü ú ú ű ü ű ü ű ű Ü É ü ú ű ü ú ü É Ő ű ü Ü ü ü ü ü ű Ü Ü ű ü Ü ü É ü Ü É Í É Ü Ö Ó Ö ú Ö Ú Ú Ü ú ú ú Ü ű ű ü ÉÉ ű

Részletesebben

Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához

Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához Dr. Nagy Gábor, Geometria Tanszék 2010. szeptember 16. Görbék paraméterezése 1. feladat. (A) Bizonyítsuk be a vektoriális szorzatra vonatkozó

Részletesebben

Síkgörbék. 1. Készítsünk elfogadható ábrát a G: t frac(1/t) leképezés gráfjáról. (frac a törtrész függvény, ez a Maple függvénynév is.

Síkgörbék. 1. Készítsünk elfogadható ábrát a G: t frac(1/t) leképezés gráfjáról. (frac a törtrész függvény, ez a Maple függvénynév is. Síkgörbék 1. Készítsünk elfogadható ábrát a G: t frac(1/t) leképezés gráfjáról. (frac a törtrész függvény, ez a Maple függvénynév is.) 2. (n szirmú virág.) Legyen r(t) = sin(nt), (0 t 2π). Ábrázoljuk polár

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,

Részletesebben

XL. Felvidéki Magyar Matematikaverseny Oláh György Emlékverseny Galánta 2016 Megoldások 1. évfolyam. + x = x x 12

XL. Felvidéki Magyar Matematikaverseny Oláh György Emlékverseny Galánta 2016 Megoldások 1. évfolyam. + x = x x 12 XL. Felvidéi Magyar Matematiaverseny Oláh György Emléverseny Galánta 016 Megoldáso 1. évfolyam 1. Oldju meg az egész számo halmazán az egyenletet. x 005 11 + x 004 1 = x 11 005 + x 1 004 Az egyenlet mindét

Részletesebben

1.) = grafikont kell ábrázolnunk. Megj.: 5 1+ A = 1 ill. B = 10 -szeresei. Ábrázolás Függvénytranszformációval :

1.) = grafikont kell ábrázolnunk. Megj.: 5 1+ A = 1 ill. B = 10 -szeresei. Ábrázolás Függvénytranszformációval : 0 október Függvényábrázolások, Összetett üggvény, Inverz üggvény Bev Mat BME ( Válogatás a eladatgyüjteményből ) ) 0 0 0 0 ( ) ( ) 5 5 5 5 Ábrázolás Függvénytranszormációval : y y 5 ( tengely mentén eltolás

Részletesebben

í ő ü ű ő ö ö Í Ő í ö Ö ő ü ö ő ö í ö ö ő ö ö ű ő ő ő ő ö ő ő ő ö ú ö ő ő ő ő ű ő ö ö ö ű ö ő ö í ö ű ő í ö ö ö ö í ű ő í ö ö í ö ö ö í ú ö ő ö í ű ő ö ö í í í ű ő ö í í ú í í ü í ö ő í ú í ő í ö ö ő í

Részletesebben

Riemanngeometria 1 c. gyakorlat A Riemann-terekkel kapcsolatos fogalmak, jelölések

Riemanngeometria 1 c. gyakorlat A Riemann-terekkel kapcsolatos fogalmak, jelölések A Riemann-terekkel kapcsolatos fogalmak, jelölések Az R m euklideszi tér természetes bázisának az e 1 = (1, 0,..., 0),..., e m = (0,..., 0, 1) vektorokból álló bázist mondjuk. Legyen M egy összefügg nyílt

Részletesebben

Fourier-sorok konvergenciájáról

Fourier-sorok konvergenciájáról Fourier-sorok konvergenciájáról A szereplő függvényekről mindenü felesszük, hogy szerin periodikusak. Az ilyen függvények megközelíésére (nem a polinomok, hanem) a rigonomerikus polinomok űnnek ermészees

Részletesebben

Serret-Frenet képletek

Serret-Frenet képletek Serret-Frenet képletek Vizsgáljuk meg az e n normális- és e b binormális egységvektorok változását. e n = αe t + βe n + γe b, e t e n e n = 1 e n e n = 0 β = 0 e n e t = e n e t illetve a α = 1/R. Ugyanakkor

Részletesebben

Á É É É É Í Ó ű Á Ú Í Í Í Á Í Í Í Í Í Á Í Ó Á Á É É É Ü É Á Á Í É Í É ó Í ő ó ü ő ő ü Í É ó Í ó ü ó ű ú ő ő ó ú Í ó ö ó Í ó ő ő ó ü ó ö ö ő ú ö ö Ü Á ő ő ő ő ő ő ö ő ó ó ó ő ó ű ű ő ő ő Í Í ü ó ó ő ö ő

Részletesebben

ö Ö í ő í í ö Ú Í ó ő ó ö Ö ő ü ö í Ü ő ó Ö Ö ő ü ö ó ó ó ö Í ö ö ö ő ö ő ő ö ő ö ö ö ó ó ó Ö ő ö ő ü ö ö ő ü Ö í í í ő ú ö ö ő Ö ő ú ü ő ó ó ó ö í ö ö ó ő ö ő ő ő ő í ő ú ö ő ü ü ő ö ö ő í ü ö ő ü ó ö

Részletesebben

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Polárkoordinátás és paraméteres megadású görbék. oktatási segédanyag

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Polárkoordinátás és paraméteres megadású görbék. oktatási segédanyag Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Polárkoordinátás és paraméteres megadású görbék oktatási segédanyag Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 01. Köszönetnyilvánítás Az

Részletesebben

í ö ö ö ö í ö ő ó ű ö ö ü ő ü ő ö ő ö í ö ő ö ö ö ő ó ú ö ö ö Ü ő í ő ö Ő í ű ő ö ö ö ö Ö Ö ö Ö ő ű ő ü ö ő ő ö ö ő ü ü í ú ö ö ö ö ú Ú ú ő ó ó ó í ó ö ő ő ö í ó ö ö ő ő ö ö í ó ú ő ő ö í ó ö í ó ö ü ó

Részletesebben

ű ö ú Í ö ö ö ö ö ű ű ö ö ö ö ű ö ö ö ö ú ű ű Í ö ö Ó ú Ú ö ű ö ö ö ö ö ö ö ö ö ö ú ö Ö ö ű Ő ú ö ű ú ö ö ö ö ö ö ö ö ö ű ű Í ö ű ú ö ű ö ú ö ű ö ö ö ö Í ű ö ö ö ű ö ö Ó ö ö Í ö ö ö Ú ö ö ö Í Í ö Í ö ö

Részletesebben

Második zárthelyi dolgozat megoldásai biomatematikából * A verzió

Második zárthelyi dolgozat megoldásai biomatematikából * A verzió Második zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mit értünk eponenciális üggvényen? Adjon példát alulról korlátos szigorúan monoton csökkenő eponenciális üggvényre.

Részletesebben

Á Ö Á ű ö ő Á Á ú ű ú ű ú ű ő ő ő ö ú ö ő ö ú ö ő ő ű ő ü Ó ú ő ú ű ö ü ö ö ü ő ü ö ö ú ő ö ü ű ö ö ű ö ú ú ü ö Í ő ö ő ö Í ö ö ő ő ű ö ö ü ő ü ő ö ü ű ö ú ö ű ö ő ü ö ö ú ö ö ő ü ö ő ö ű ö ö Í ű ö ő Í

Részletesebben

Á ö ö Á ü É ö í ü ü ö Ó ö ö í í ú ú í ö ö í ö Ó í í ö í ö Á ö Ó ö ü ö ú í ö í ö Á í ú ö ö ü Á ü ö ü í ö í í ö ö ö ü ü ü í í ü ö ö íü í ü ú ü ü í í Á í ö í ú í ö í í ü í í ü ü ö ű ü í í í ü í í í í í ú

Részletesebben

Dr. Tóth László, Kombinatorika (PTE TTK, 2007)

Dr. Tóth László, Kombinatorika (PTE TTK, 2007) A Fibonacci-sorozat általános tagjára vontozó éplet máséppen is levezethető A 149 Feladatbeli eljárás alalmas az x n+1 ax n + bx, n 1 másodrendű állandó együtthatós lineáris reurzióal adott sorozato n-edi

Részletesebben

ú ú Í ú ű Ú Ú ú Ú ú ű ű Ú Í ű Ú Ú É ú ű ú ú Ú Ú Í Ú ú Ú ű ú ú ú ú Ő Ú ű ú ú ú ű ű ű ű ú ű ű Í Ú Í Í ú ú ű ű ú ú ú ű ú Ú É ú ú ű ú ú Ú Í Ú Í Á ú ű ú ú ű Ú Ú Ú ú ú ú ú ú ű ű ű Ú É Ú ú ú Ú ú ú ű ú ű ű ú ú

Részletesebben

Transzformáció a főtengelyekre és a nem főtengelyekre vonatkoztatott. Az ellipszis a sík azon pontjainak mértani helye, amelyeknek két adott pontól

Transzformáció a főtengelyekre és a nem főtengelyekre vonatkoztatott. Az ellipszis a sík azon pontjainak mértani helye, amelyeknek két adott pontól Ellipsis.tex, February 9, 01 Az ellipszis Az ellipszis leírása Az ellipszis szerkesztése és tulajdonságai Az ellipszis kanonikus egyenlete A kör vetülete ellipszis Az ellipszis polárkoordinátás egyenlete

Részletesebben

Á ó í ó ó í ú í í ó ő ü ő ó ü ü ű í ő ü ó ő í ü ú ő ú ó ő ú ő í ő ő í ü ó ő ő ó ő ú ő ó ó ő ú ó ú ó ő ü ő ű í ű ű í ü ü ű ó ó ó ű ő í ű ő ő ő ü ó í ő ű ó í í ó ó ó ő ő ü ű ő ó ü ű Ü í ő ü ó ó Á ú ű í ő

Részletesebben

Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) 1. ábra

Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) 1. ábra Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) Egy korábbi dolgozatunkban címe: Két egyenes körhenger a merőlegesen metsződő tengelyű körhengerek áthatási feladatával foglalkoztunk. Most

Részletesebben

ú ó ü ó ü ü ő ő ő í ó í í ü ű ü ő ó ő í ó í ó ó ú ó ü í ó ő í ú ü ü ű ü ű ő í ó í ű ő ő ű ú ó ú í ű ő í ó ó ó í ú Í ü ó í ü í í ő ó ő í ó ú ó í ó í í ü í ü ü ú ü ú ü ü ű ü ü í ú í ő úí ő í ő í í ó ü ó

Részletesebben

ü ő ü ő ő ű ő ő ú ú ü ú ö ő ő Í ü ű ö ú Ö Ö ú Ö ú ú ö ő ő ö ú ü ü Ö ü Í ü ü Í ö Í ö ú ő ü ö Ú Í Ú Ü ö ö ő ő Í ű ö ő ö Í Í ű ő ő ő ő Í Ú ö ü ő Í Í ü Ú ö ö ü ü Í ő Í Í ő ő ö Ú Í Í ö Ü Ö Íő ö ö ö Í ű ű ö

Részletesebben

A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató Otatási Hivatal A 015/016 tanévi Országos Középisolai Tanulmányi Verseny másodi forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értéelési útmutató 1 Egy adott földterület felásását három munás

Részletesebben

Lineáris Algebra GEMAN 203-B. A három dimenziós tér vektorai, egyenesei, síkjai

Lineáris Algebra GEMAN 203-B. A három dimenziós tér vektorai, egyenesei, síkjai Matematika előadás elméleti kérdéseinél kérdezhető képletek Lineáris Algebra GEMAN 203-B A három dimenziós tér vektorai, egyenesei, síkjai a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b

Részletesebben

É É Á Á Ádm s Ádm Kft ű ü ö ü Á ű ú ü ö ú ű ü ű ö ü ö ö ú Ü ú ú Ü ü É ű Ú ü űí Ú Í ü ö ü ö ú ö ö ü ö ö ű ü ö Í Ü ö ü ü ö ű ö Ü ü Ü ö ö ö Á ö Ű ü ö Ü ú ö ú ö Í ü Ü Ü ú ü ü ö ö ö Ü ö Ü Í ű ü ö É ö Ü Í ö

Részletesebben

Ü Í ö ü ö Ö ó í ü ó ö ö í ö í ü ó ó ó í ö ó ö ö ö Ö ü ü í ü ó í í ó É í ó í ó ö í ó ó í ö ó í ó ó ó ú í í ó í ű ó í ó í ó ú í í ö ó ü ö ú ó í ó üí í ó í ó Í ó ö í ó í ó ü ó ó í ó ö ó ó ü í í í ü í í ó

Részletesebben

ú ű í Á ű í ű ü í í í Ö Ö Ö É í ú ú ú ú í ü Ö ű í í í í É í í í íí í í Ö í í í É í í í í í Ö í í Á í í í í í í ú í ü ü ű í ű í íü ü ű ü í í í ú ú ú ú ü ú ú í ú ú ú í ü í í í í ú Ö í ú ú í ű ű ű í É í ü

Részletesebben

Í Í Í Ú É ü Ú ü Ú ű ü ü Ö ü ü ü Í Í É Ö ü Ú Ö Ú ü Ö ü ü ü ü ü ű Ö Ö ü É ü ü Ö Í Ú ű Í É É ű É Í Í Í Í ü Ú É Ú Ö Í ü ü ü ü Ó ü Í ü Í Ó ü ü ű ü ű Í ü Ö ű ü Í ü Ú ü Ú ü ű ű Í ű Ú Ú Ú É ü ü ű ű Ü ű ü Ó ü Í

Részletesebben

ő í ö ü ö ő ő ü ö ü ő ő ö ö ö ü í ő ö ö ü í í í ü ő ő í í ú í ő

ő í ö ü ö ő ő ü ö ü ő ő ö ö ö ü í ő ö ö ü í í í ü ő ő í í ú í ő í ő í ö ü ö ő ő ü ö ü ő ő ö ö ö ü í ő ö ö ü í í í ü ő ő í í ú í ő í ő É ö ü ö ő ü ü ű ű ő í ö ö ű í ö ő ő ü ő ö ő ő ö í ö ő í üí ú í í ű ű ő ú ö ő ű ő í í ő ö ő ő ö ő í ú ö ö Í í ű í ú ü ö ö Ú ö í ő ö

Részletesebben

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási

Részletesebben

ü ü ü Í ű ű Í ű Í ü ű ü ü Í ü ü ü Í ű ü Í Í É É Á Á Á Í ü Á Á Á É Á ű Á Á Á Á Á É Á Í Á Á Á Í É É Á Ú Á Á Ú Á Á Ü Á É ü Ö Ú ű É ü ü ü ü Í ü ü ü ü Í ü Í ű ű ü ű ü ű ü ű ű ű ű ü ü ü ű ű ű ű ü ű Í ü ü ű ü

Részletesebben

ú É ú ú ú ú ú ú ú ú ű ű ú ú ú Í ű Í ű ű ú ú ú ú Í ú ú É Í Ő Í Í É Í ű ú ű ú ú ű ú ú ű ú ú ú ű ú Ó ú ú ű É É ű ű ű ú ű ű ű ú ű ú Í ú Í ú ű ű ű ú ű É ú ű ú ű ű ű ű ú ú ú Í ű ű ú ű ú ú ú ú ú ű ú Í ű ú ú ű

Részletesebben

í ú ü ú Ú É ü ú ú Ú í Ú É É í Ú í í ú ú í Ú ú ú í í í ú ú í Ú É í ű ü í í í í í í ü ü í ü ü Ú Ő ü ü í Ö ű í Ú Ü ü ü í ü í Ú í Ü ü Ü í í í ü Ö Ü ű ú Ü ű ú ü ü í í Ú Ú ű í ü í í Ü ü í ű í ű É ú ű ü ú í ú

Részletesebben

Ö Ö Ö í í ü í ű ú í ú

Ö Ö Ö í í ü í ű ú í ú Á Á Á Ú Í Á Á Á É É Á É Í Í É É ü Ú ű í ű í í í í Ö ű ű Ö ú ú Ö ú Ö Ö Ö í í ü í ű ú í ú ú Ö Á Á Á ű ú Á ű í í Ö ű í Ö ú ú Ö Ö ú Ö Ö Ö Ö ú ü í Ü í Ü ú Ü í Í í Ü í ü ü í í í ú Í ű ú Í Á ü ü í ü ü í í Ö ü

Részletesebben

í í ú ű í ú ő í ú í íí ű í ú ő ő ő Ó Ó í í Ú ú ú í ü ü í ú í ü Ö í ú ő ő ü í ő ő ő í ő ú í ű í í í ü ú í ő í í ü í ő Í Ó Í í ő í í í ű üí í í ü Ú Ő Ú ü ő í ő ü Í Ó Ú Ö í ú ő ű ő ő í ú í ű ü í í ő ő ú ú

Részletesebben

Ö í ó í í ö ú Ó É Ü ő ó í ó É Ü É Ó É ő í ö ű ü í ő ó ő ü ü ő ó ü í ő ő ó í ó ü ő í ö ű ó ő ő ő ü ő ó ő ő ő ő ő ő ó Í í ö íí ü í ö ű ó í ö ű ü ö í ö ű ü ű ö í ö ű ü ö ö í ö í ö ű ü ü í ö ű ó ű í ö ű ö

Részletesebben

1. Egyensúlyi pont, stabilitás

1. Egyensúlyi pont, stabilitás lméleti fizia. elméleti összefoglaló. gyensúlyi pont, stabilitás gyensúlyi pontna az olyan pontoat nevezzü, ahol a tömegpont gyorsulása 0. Ha a tömegpont egy ilyen pontban tartózodi, és nincs sebessége,

Részletesebben

É Ú Í ű ű É ű ű ű ű Í ű ű ű Ó Ú É Ő Ó Á Á Á Á Á Á Í Á Á Á É Á Í Á Á É Á Á ű Ő Á Ő ű Á Á Ú Á Á Á Á Á Ú Á Á Á Á Á Á Á Á Á Á Á Ú ű Á É Á ű Ú Ő Ú Á ű Í ű Í Á Í ű Í Í Í ű ű Á Ú ű Í Á Í ű ű ű Á ű ű Í ű Í Í Í

Részletesebben

í ö ö ú Ú ö ú ö Ú Í í Ü ú Ú í ö ü ö í Ú Ú ö ö í Ű Í ü Ö ű ü Í Í í ü ü ú ú í ú í í Í í ü ü ö Ú Ü í Ü Ü ö ö í ü Í Ő Ő ö Ü ö ű í í ü ű Ű Ú ű Ü í űí ö ű Ú ú ü ö ü Ő Ü ö Í Ü Íű Ő Á í í Í ű ö ö í í ö ü í ű Í

Részletesebben

Á ó ú Á Í Ú Ó Á É ö É Á ó ó ó ö ö ö ö ö ö ö ö ö ö ö ű ö í ó ú ö ö ű ö Á Á ó ú í ó ú ő ó Í ö ö É É Á Á Ö É Á ö ö ö í ö ö ö ö ö ö ó í ü ö ő ö ö ü ö ü ö Í ü ű ü ú ó ö ű ü ö ő ó í ó ű ö ő ó ö ö ü ó ó í ő ü

Részletesebben

Csavarokról és rokon témákról

Csavarokról és rokon témákról Csavarokról és rokon témákról A Gépészeti alapismeretek tantárgy tanítása / tanulása során megbeszéljük a csavarvonal és a csavarmenet származtatását, például mozgásgeometriai alapon. Azonban ez talán

Részletesebben

I. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL

I. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL A primitív függvény és a határozatlan integrál 5 I A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL Gyaorlato és feladato ( oldal) I Vizsgáld meg, hogy a övetező függvényene milyen halmazon van primitív

Részletesebben

ö ü ü ö Ő ü í ü í ü ö ö Ö ó ö ö ö ö ó ö ö ö í ü í Ő Ü ü ö í Á í ü ü ü ö ű ú ö ö ü í Ü Ő ü ü ó ó ó ó í í ó í ö ú ü ü Ö Ö ű ó í ó ó ü ú ü ü ö í ó Ő Ü ó

ö ü ü ö Ő ü í ü í ü ö ö Ö ó ö ö ö ö ó ö ö ö í ü í Ő Ü ü ö í Á í ü ü ü ö ű ú ö ö ü í Ü Ő ü ü ó ó ó ó í í ó í ö ú ü ü Ö Ö ű ó í ó ó ü ú ü ü ö í ó Ő Ü ó ö ö Á É ü Ő Ö í ü í ü í ó ó ó í í ó í ö ú ü ü ö ö ű ó í ó ó ü ú ü ü ö í ö ü ü ö Ő ü í ü í ü ö ö Ö ó ö ö ö ö ó ö ö ö í ü í Ő Ü ü ö í Á í ü ü ü ö ű ú ö ö ü í Ü Ő ü ü ó ó ó ó í í ó í ö ú ü ü Ö Ö ű ó í ó ó

Részletesebben

ö ü Ö ü ü ö Ü ü ö ö ö ü ö ö ö ö í ü ü ü ü ü í ö ü ü ö ü ü ö í í ú Á Á í ö ü ü ü í í ö ü í í ü í ö ü ö ű í íí ü ö ö ű Ö Ü í í í í ö ű ü ü ö ü ö ö ü ü ö Ö ü ú ö ö í ö ű ö ü í ö ű ö ö ü ö ü í í í ű ö í ö

Részletesebben

1. Analizis (A1) gyakorló feladatok megoldása

1. Analizis (A1) gyakorló feladatok megoldása Tartalomjegyzék. Analizis A) gyakorló feladatok megoldása.................... Egyenl tlenségek, matematikai indukció, számtani-mértani közép....... Számsorozatok............................... 5... Számorozatok................................

Részletesebben

í í Í ű í Ó ő í Í ü í Í ü Ö í É í ő ő í ü ő ü ü É Í ü í í ü ő ő í í í í í Ó Í í ü ő í ü Ó Ö ő ü í ü Í Ó Í Í ő Ó í í ü í Ö í ő í Í í Ö Í ő ű ő ő í í í ő í í ő ő í í ő í ő í ő Í ő Í í í Í ü ü ü í ő í í í

Részletesebben

ü í ö í ó ö ö Ö í ü ó ó í ö ö ö ö ö í í ü í ó ö ö í ó ű ö í í ú ó ó í ó ö ü í í ó ó ö ó ó

ü í ö í ó ö ö Ö í ü ó ó í ö ö ö ö ö í í ü í ó ö ö í ó ű ö í í ú ó ó í ó ö ü í í ó ó ö ó ó í Á ö ó ü Ó Ö ö í ü ü ú ö ó ü í ö í ó ö ö Ö í ü ó ó í ö ö ö ö ö í í ü í ó ö ö í ó ű ö í í ú ó ó í ó ö ü í í ó ó ö ó ó í í ú ó ö ö í ü ö í í ó ö ó ö ü ö ó ö ó ö ú ü ú ö Ö ü ö í í í ö í ö í ö Ö í ú ö í í

Részletesebben

Í Ü Ő Ő Ő Á Ó ó Á Ó Ú Á Á Á Á Ö Á Í Ü Á Á Í Ú ú ö Í Í ö ö ó ó ú ó ó ú ö ö Á Á Á ú ó ű ö ó ú ó ü ö ű ú Á ó ö Á ö ú ó ó ó ó ó ú ü ó ó ó ö Á ó ű ó ú Í Á ó ó Í Í ü Í ö ö ü Í ó ó ó Á ö Á ö ö ö Í ö ú Í ű ű ú

Részletesebben

É ü ó Ö ő ü ó ó ó ó ó ó ü í í ő ó ó Ö Ö ü ű ó ő ú ü ü ő ó í ó ő ő ü ü ü ü ő ó ő ü ő ű í ő ő ő ó ó ű ű ó ő ó ő ó ő í ő ó ó ó ő ő ő ő ő ó ű ű ő í ü ü í ó ü ó ü í ő ü ő ó ü ő ó í í ő ő ő ü í ó ü í ő ő í ó

Részletesebben

Ó ö ó í Á Á Ő ö ő í ő í ó Ó Ö Ó ü ő ő í ő í ő ő ő ő ü ő ó í ő ő ó ö ö ő ő ő ű ö í ő í ő ö ő ő ő í ö í ó ő Ó ö í ó ő ö ő ú í ő ó ő ő ö í ő ö ő ő ő ö ő ő ó ö í í ó í ó ő ő ő ő ó ö ő ő Ó ö í í ó ű ő ű ö ű

Részletesebben

Tehetetlenségi nyomatékok

Tehetetlenségi nyomatékok Tehetetlenségi nyomtékok 1 Htározzuk meg z m tömegű l hosszúságú homogén rúd tehetetlenségi nyomtékát rúd trtóegyenesét metsző tetszőleges egyenesre vontkozón, h rúd és z egyenes hjlásszöge α, rúd középpontjánk

Részletesebben

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja)

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja) Feladatok megoldásokkal a második gyakorlathoz függvények deriváltja Feladat Deriváljuk az f = 2 3 + 3 2 Felhasználva, hogy összeget tagonként deriválhatunk, továbbá, hogy függvény számszorosának deriváltja

Részletesebben

Differenciálgeometria feladatok

Differenciálgeometria feladatok Differenciálgeometri feldtok 1. sorozt 1. Egy sugrú kör csúszás nélkül gördül egy egyenes mentén. A kör egy rögzített kerületi pontj áltl leírt pályát cikloisnk nevezzük. () Írjuk fel ciklois egy c: R

Részletesebben

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai HÁZI FELADATOK. félév. konferencia A lineáris algebra alapjai Értékelés:. egység: önálló feladatmegoldás.8. Döntse el, párhuzamosak-e a következő vektorpárok: a) a( ; ; 7) b(; 5; ) b) c(; 9; 5) d(8; 6;

Részletesebben

ö É í ü í Ú ö ó ó ó ü ó í Ö í Ú í ö í í ó ű ö ű ö ű í ö Ö ű ü ö ü ö ű ü ó ü ó í ö ű ó í ó í ó ű í í ó í ü ű ü í ó í ü ú ó í í ó ü ü í í ó í ó í í ö í

ö É í ü í Ú ö ó ó ó ü ó í Ö í Ú í ö í í ó ű ö ű ö ű í ö Ö ű ü ö ü ö ű ü ó ü ó í ö ű ó í ó í ó ű í í ó í ü ű ü í ó í ü ú ó í í ó ü ü í í ó í ó í í ö í ö É í í ü ö ö ű ü ö ö ű ü ö ű ó ó ö ü ü ó ó ó í ö í ö Ű í ö í ö ö ű ü ü ó ú ü Ö ö ű ö ú ö ö ű ü ö ű ö ö ó ö í ö ö ű ü ó ö ü ü ö ö ü ü ü ű í ó ü ú ü ü ú ö ü í ú ü ö í É ű í ü í ű ó ó ú ú ú ó ú ü ü ű ú í

Részletesebben

GÖRBÉK ÉS FELÜLETEK. (előadásvázlat)

GÖRBÉK ÉS FELÜLETEK. (előadásvázlat) GÖRBÉK ÉS FELÜLETEK előadásvázla 8 . A görbék alakleírásának köveelménye A felhasználó és a számíógé CAD génye együesen szabják meg a modellező görbék álalánosíva: felüleek, esrmívek szükséges lajdonsága:

Részletesebben