Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása"

Átírás

1 Numerius módszere. Nemlieáris egyelee özelíő megoldása Egyelemegoldás iervallumelezéssel A Baach-ipo-ierációs módszer A Newo-módszer és válozaai Álaláosío Newo-módszer

2 Egyelemegoldás iervallumelezéssel Legye :[ a, b] R olyoos, a 0, b 0, és eressü az 0 egyele egy [ a, b] -beli megoldásá. Bolzao éele: Legye olyoos a véges, zár [a,b] iervallumo. Tegyü el, hogy a és b ülöböző előjelűe, pl. a 0, b 0. Aor -e va legalább egy zérushelye ebbe az iervallumba. Felezzü sziszemaiusa az [ a, b] iervallumo úgy, hogy a é él-iervallumból midig az eijü, melyre a végpooo elve üggvéyérée ülöböző előjelűe. Jelölje az - edi lépésbe yer résziervallum özéppojá. Aor az így deiiál soroza a ei egyele egyi gyöéhez overgál. A overgecia sebessége legalább egy / vóciesű mérai soroza overgeciájáa sebessége.

3 Egyelemegoldás iervallumelezéssel Az iervallumelezés algorimusa szemléleese: ibabecslés. Legye 0 : a b, aor yilvá b a 3

4 Numerius módszere. Nemlieáris egyelee özelíő megoldása Egyelemegoldás iervallumelezéssel A Baach-ipo-ierációs módszer A Newo-módszer és válozaai Álaláosío Newo-módszer 4

5 A Baach-ipo-ierációs módszer Legye Baach-ér, : egy leépezés, és eressü az egyele egy megoldásá ez az üggvéy egy ipojáa evezzü. Baach-éle ipoéel: Legye Baach-ér, : oració -e, azaz alalmas 0 számra y y eljesül mide, y melle. Aor -e egyeleegy ipoja va, és ez előáll az alábbi ierációs soroza limeszeé: 0 esz., : 0,,,... A valós üggvéye speciális esee. a : R R olya, hogy ma ', aor oració, mer a Lagrage-özépérééel mia y ' y ma ' y 5

6 6 Bizoyíás: Ké egymás öveő ag elérése:... 0 Ez elhaszálva megmuaju, hogy az soroza Cauchy-soroza -be: Ezér a soroza overges,. Megmuaju, hogy a limesz ipoja -e. A reurzív deiíció szeri: A bal oldal yilvá -hez ar. A jobb oldal olyoossága mia -hez. Ie =. Végül igazolju, hogy csa egy ipo va. a, y é ülöböző ipo vola, aor 0 y y y y vola, ami leheele.

7 A Baach-ipo-ierációs módszer, példá:. Oldju meg az cos egyelee. Az : cos üggvéy oració, mer ' si. Ezér egyeleegy ipo léezi, és pl. az 0 : 0, : cos soroza ide overgál. A soroza első éháy eleme 4 izedesjegy poossággal: , , , 0.456, , 0.450, 0.450, 0.450, 0.450,.... Legyee BM NN, N g R adoa, és oldju meg az B g egyelee. a B, aor az : B g leépezés oració, mer y B g By g B y Ezér eor egyeleegy ipo léezi, és pl. az 0 : 0, : B g veorsoroza ide overgál. 7

8 Numerius módszere. Nemlieáris egyelee özelíő megoldása Egyelemegoldás iervallumelezéssel A Baach-ipo-ierációs módszer A Newo-módszer és válozaai Álaláosío Newo-módszer 8

9 A Newo-módszer egyválozós üggvéyere Legye : a, b R ado üggvéy. Keressü az 0 egyele egy a, b -beli megoldásá. A Newo-módszer: a a megoldás egy özelíése, aor legye a öveező özelíés az -beli ériő egyees zérushelye. Az ériő egyelee: y ', ie: 0,,,... 0 a, b : ezdei özelíés 9

10 A Newo-módszer egyválozós üggvéyere A módszer szemlélees jeleése : poos megoldás: a észer olyoosa diereciálhaó, -e va gyöe a,b-, és erre 0 eljesül, aor a Newo-módszer vadraiusa overgál mide, az poos megoldáshoz elég özeli 0 ezdei özelíés eseé, azaz alalmas C 0 szám melle: C 0

11 Bizoyíás: A Lagrage-özépérééel haszálju észer is: s Mivel 0, azér a deriválüggvéy egy egész zár öryezeébe is zérusól ülöböző marad. I pedig: mi ma mi ma C

12 A Newo-módszer, példa: Legye A rögzíe poziív szám, és Eor az : A. ' 0 egyele egyele poziív megoldása: A. Kiidulva egy eszőleges 0 0 ezdei özelíésből pl. 0 : A, a Newo módszer: : A A A soroza agyo gyorsa A -hoz ar.

13 A Newo-módszer, példa: Legye A rögzíe poziív szám, és Eor az : A. ' 0 egyele egyele poziív megoldása: A. Kiidulva egy eszőleges 0 0 ezdei özelíésből pl. 0 : A, a Newo módszer: : A A A soroza agyo gyorsa A -hoz ar. Megjegyzés: hasolóa lehe bármely egész ievős gyövoás özelíésére a Newomódszer haszáli. 3

14 A Newo-módszer válozaai Probléma: a derivál számíása. A szelőmódszer: i '. Legyee ehá 0, ezdő özelíése, és : a észer olyoosa diereciálhaó, -e va gyöe a,b-, és erre 0 eljesül, aor a szelőmódszer mide, az poos megoldáshoz elég özeli 0, ezdei özelíése eseé legalább egy mérai soroza sebességével overgál, azaz alalmas C 0, 0 melle: C 4

15 A Newo-módszer válozaai A Seese-módszer: Legye az : R R észer olyoosa diereciálhaó üggvéye poosa egy zérushelye. Tegyü el, hogy 0. Aor mide, özelíésből iidulva, az 0 -hoz elég özel levő valós ezdei : 0,,,... soroza vadraiusa overgál -hoz. 5

16 6 Bizoyíás: A Lagrage-özépérééel haszálju: ' ' ezér ' ' s w s s Mivel 0, azér a deriválüggvéy egy egész zár öryezeébe is zérusól ülöböző marad. I pedig: mi ma mi ma C s

17 Numerius módszere. Nemlieáris egyelee özelíő megoldása Egyelemegoldás iervallumelezéssel A Baach-ipo-ierációs módszer A Newo-módszer és válozaai Álaláosío Newo-módszer 7

18 Diereciálás Baach-ere öz érelmeze leépezésere Legyee,Y Baach-ere. Az F : Y leépezés az poba diereciálhaó, deriválja pedig az A: Y olyoos lieáris leépezés, ha a 0 egy alalmas öryezeéből válaszo h veorora eljesül, hogy F h F Ah o h o h ahol o h olya iejezés, hogy 0 h 0. h A derivál lieáris leépezés még így is jelöljü: F vagy DF. Példa: N F : R R, F : A, ahol AM NN öadjugál mári. Aor: F h A h, h A, A, h Ah, h F A, h O h ezér N F' AR. 8

19 Álaláosío Newo-módszer A Newo-módszer az F 0 egyelere: 0,,,... DF F Máséppe elírva: w 0,,,... ahol a w javíó ag az alábbi lieáris egyele megoldása: DF w F a F észer olyoosa diereciálhaó, F-e va gyöe -be, és DF reguláris azaz iverálhaó, és az iverze is olyoos, aor a Newo-módszer vadraiusa overgál mide, az poos megoldáshoz elég özeli 0 ezdei özelíés eseé, ehá alalmas C 0 melle: C 9

20 0 Álaláosío Newo-módszer, példa Máriiverzió. Legye N N A M egy reguláris mári. Teszőleges N N M reguláris márira jelölje: A F : Aor N N N N F M M :, és az 0 F egyele egyele megoldása: A. Alalmazzu a máriegyelere a Newo-módszer. Az F leépezés deriváljá számíva: A I A I A F a mos elég is ormájú eszőleges máriormába, aor. Felhaszálva a B eseé eálló B B B B I B I egyelősége, melyből B B I B I öveezi: o F A o A o I A I F ahoa W W DF DF

21 Álaláosío Newo-módszer, példa Így a Newo-módszer algorimusa: : DF I A A A. A özelíés hibájára: A A I A A I A. Ugyaaor I A agyo gyorsa ar 0-hoz ha a ezdei özelíés elég jó vol, mer: I A I A I A I A A A I A, ahoa I A I A

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele soro. Bevezetés és defiíció Bevezetését próbálju meg az + + 4 + + +... végtele összege értelmet adi. Mivel végtele soszor em tudu összeadi, emiatt csa az első tagot adju össze: legye s = + +

Részletesebben

5. Differenciálegyenlet rendszerek

5. Differenciálegyenlet rendszerek 5 Differenciálegyenle rendszerek Elsőrendű explici differenciálegyenle rendszer álalános alakja: d = f (, x, x,, x n ) d = f (, x, x,, x n ) (5) n d = f n (, x, x,, x n ) ömörebben: d = f(, x) Definíció:

Részletesebben

A Secretary problem. Optimális választás megtalálása.

A Secretary problem. Optimális választás megtalálása. A Secretary problem. Optmáls választás megtalálása. A Szdbád problémáa va egy szté lasszusa tethető talá természetesebb vszot ehezebb változata. Ez a övetező Secretary problem -a evezett érdés: Egy állásra

Részletesebben

É Ü ö Ü ú Ú ű Ó Ó ű ö Ó Ó ú ű Ü Ö Ó Ó ö Ó Ő ű Ó Ó ú Ü Ü Ó Ó Ó Ü Ó Í Í ö ö ö ö ö ú ú ö ű ú ö ö ö ú ö ú ű ö ö ű ö ö ö ű ö ö ö ú ö ö ú ö ö ö ö ö ú ö ö ö ö ú ö ú ö ö ö ö ö ö ú ö ö ö ö Í ö Ö ö ú ö ö ö ö Ó Í

Részletesebben

ü ő ő ü ő ő ö ö ő ö í ü ő í ö ö í ő ö ő ű ú ő í ü ő ö ő Í ö ö ő ö ö ő ő ö ő í Í í ü ö ő í ü ü ú ü ö ö ő ü ő ö ő í ü ő í ö ö ő ő ő í í ő í ő ő Á Ó Í í í ő ű ú ő í í ő ő Í ő í ő í í Í í ő í ő í ő ő íí ő

Részletesebben

Í Ő É Ó É é Ö Á Á Á Ó é Ó é ö é Ö ű ö é ö ű ö é ö é é é é é é é é é é é é é é é é é é ü é é é Í é é é é ü é ö ü é ü é é ö ö é ú é é ü é é ü é é ü é ü é é é ú é Ó é é ú é ü é é ö é ö é Á Á Á Ó é Ó Í é ö

Részletesebben

ö í Ö Ó ü í ü ö Ö ö ü ü ö ö ö ö Ö ü ö ö Ö ü Ű Ö ö ü ú ű ö ö í ö ö í ü ö ö í í ö Á É ö Ö í ö Ö ü ö Ö ö ö ö ö ö ü í ü ö í ü ö ö ö Ö ü ö í ü í ö ö ö Ö ü ö Ö í í ö Ö ü ö Ö í ü ö Á É ö Ö í ü ö í ö ű ö ö ű ö

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

Tuzson Zoltán A Sturm-módszer és alkalmazása

Tuzson Zoltán A Sturm-módszer és alkalmazása Tuzso Zoltá A turm-módszer és alalmazása zámtala szélsérté probléma megoldása, vag egeltleség bzoítása ago gara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölder-féle egeltleség, derválta

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

É ű ű Í ű ű ű É ű Í Ü É Í Á Ó Á É Á Á Á É Á Á Ó Á Á ű Ő Á É É ű É É É ű ű Á É Á Á Í Á Á Á É Á É É ű ű ű ű Í ű Í Í ű ű ű Í ű É ű É ű Á ű Í ű Á ű ű Á ÉÍ É É ű ű ű ű Í ű Í Í ű Á Í Í ű Í Í É ű É Í Í ű ű ű

Részletesebben

Í Ü ű É ü ú Ó Ó É Ü Ó Í Ü Ü ű Á É Á É Ü Ü É É É É Í Á É É Í Ó Ü ü Ő É Ő É É É É É É É É É É É É Á É Ú Á Ú É Á Ú É Ó ü ű É Á É Ü ű É Ü É É É Ü ű Ü ű É Ü Ú É Á Á Á É Ü Ü Ü É Ó Á Ő É Í É É É É Í Í ű ü ü Ó

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

ü ý Ó ć Ĺ ü ü ú Ö ü ü ü ü ú ź ü ź ö ö ź ü ü Ó ö Í ö ö ý ö Í Ĺ Í ł ü ń ö ú Ö ü ü ü ý ö ö ü ú Ö ł ü ü Ö ü ú Ö É Ĺ ö ú ú ü ű ź ü ú Í Íö ú ü ű Ĺ ć Íě Ż ú Ö ü ü Í Í ú Ö ü ü Í ü ý ü ü ń ü ę ö ö ö ü ć ú Ó ú ü

Részletesebben

ÁRFOLYAMRENDSZER-HITELESSÉG ÉS KAMATLÁB-VÁLTOZÉKONYSÁG*

ÁRFOLYAMRENDSZER-HITELESSÉG ÉS KAMATLÁB-VÁLTOZÉKONYSÁG* ÁRFOLYAMRENDSZER-HITELESSÉG ÉS KAMATLÁB-VÁLTOZÉKONYSÁG* DARVAS ZSOLT E anulmányban a forin árfolyamsávjána hielességé vizsgálju olyan rezsimválós modellel, amelynél a rezsim laens válozója Marov-lánco

Részletesebben

Radiális szivattyú járókerék fő méreteinek meghatározása előírt Q-H üzemi ponthoz

Radiális szivattyú járókerék fő méreteinek meghatározása előírt Q-H üzemi ponthoz Radiális szivattyú járóeré fő méreteie meghatározása előírt - üzemi pothoz iret hajtás eseté szóa jövő asziromotor fordlatszámo % üzemi szlip feltételezésével: 90, 55, 970, 78 /mi Midegyi fordlatszámhoz

Részletesebben

Á é ó ö ó é é é é ö é é ó é é ó ö ö ő é é é ó é é é é ü é ö é é ó é ő ú ó é ü é é ó é í ü ő é ö í é é ü ő é ö ű ú é é é é ü é ű ü ö ö ó ő ú ó é é ő é é é é ö é ü É é ű é é í ö é ü é ü ő í é ó é ő ó é é

Részletesebben

1.0. BEVEZETÉS, ALAPFOGALMAK

1.0. BEVEZETÉS, ALAPFOGALMAK .0. BEVEZEÉS, ALAPFOGALAK A agyéreű (aroszous) ese helyzeálozásáa, azaz echaa ozgásáa öréye ár a 7. századba felseré. A Newo-axóába összegze öréye a ozgásjeleségee agyo oosa írjá le. Segíségüel a esre

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

AZ ÉPÍTÉSZEK MATEMATIKÁJA, I

AZ ÉPÍTÉSZEK MATEMATIKÁJA, I BARABÁS BÉLA FÜLÖP OTTÍLIA AZ ÉPÍTÉSZEK MATEMATIKÁJA, I Ismertető Tartalomjegyzék Pályázati támogatás Godozó Szakmai vezető Lektor Techikai szerkesztő Copyright Barabás Béla, Fülöp Ottília, BME takoyvtar.math.bme.hu

Részletesebben

é ö é Ö é ü é é ö ö ö ü é é ö ú ö é é é Ő ö é ü é ö é é ü é é ü é é é ű é ö é é é é é é é ö ö í é ü é ö ü ö ö é í é é é ö ü é é é é ü ö é é é é é é é é é é é é é é é ö é Í ö í ö é Í í ö é Í é í é é é é

Részletesebben

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma 94 Műveletek II MŰVELETEK A művelet fogalma Az elmúlt éveke már regeteg művelettel találkoztatok matematikai taulmáyaitok sorá Először a természetes számok összeadásával találkozhattatok, már I első osztálya,

Részletesebben

Piaci részesedések eloszlásának előrejelzése Markovmodellel a biztosítási piacon Kovács Norbert 1

Piaci részesedések eloszlásának előrejelzése Markovmodellel a biztosítási piacon Kovács Norbert 1 Piaci részesedések eloszlásáak előreelzése Markomodellel a bizosíási iaco Koács Norber Abszrak: A iaci ersey kérdésköréel foglalkozó szakirodalom számos módszer aál a iaci erő közee és közele mérésére.

Részletesebben

Tartalomjegyzék. 2. Probléma megfogalmazása...8. 3. Informatikai módszer...8 3.1. Alkalmazás bemutatása...8. 4. Eredmények...12. 5. További célok...

Tartalomjegyzék. 2. Probléma megfogalmazása...8. 3. Informatikai módszer...8 3.1. Alkalmazás bemutatása...8. 4. Eredmények...12. 5. További célok... Tartalomjegyzék 1. Bevezető... 1.1. A Fiboacci számok és az araymetszési álladó... 1.. Biet-formula...3 1.3. Az araymetszési álladó a geometriába...5. Probléma megfogalmazása...8 3. Iformatikai módszer...8

Részletesebben

Járatszerkesztési feladatok

Járatszerkesztési feladatok Járatszeresztési feladato 1 Járatszeresztési feladato DR. BENKŐJÁNOS Agrártudomáyi Egyetem GödöllőMezőgazdasági Géptai Itézet A járat alatt a logisztiába általába a járműve meghatározott több állomást

Részletesebben

Valószínûség számítás

Valószínûség számítás Valószíûség számítás Adrea Glashütter Feller Diáa Valószíűségszámítás Bevezetés a pézügyi számításoba I. Bevezetés a pézügyi számításoba A péz időértéével apcsolatos számításo A péz időértéée számítása:

Részletesebben

Valós számok 5. I. Valós számok. I.1. Természetes, egész és racionális számok

Valós számok 5. I. Valós számok. I.1. Természetes, egész és racionális számok Valós számok 5 I Valós számok I Természetes, egész és racioális számok I Feladatok (8 oldal) Fogalmazz meg és bizoyíts be egy-egy oszthatósági kritériumot a -vel, -mal, 5-tel, 7-tel, 9-cel, -gyel való

Részletesebben

hogy alkalmas konstrukcióval megadható-e olyan sztochasztikus folyamat, melynek ezek

hogy alkalmas konstrukcióval megadható-e olyan sztochasztikus folyamat, melynek ezek Wieer folyamatok A következő két feladat azt mutatja, hogy az az eseméy, hogy egy sztochasztikus folyamat folytoos trajektóriájú-e vagy sem em határozható meg a folyamat véges dimeziós eloszlásai segítségével,

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

3. Valószínűségszámítás

3. Valószínűségszámítás Biometria az orvosi gyaorlatba 3. Valószíűségszámítás 3. Valószíűségszámítás 3.. Bevezetés 3.. Kombiatoria 3... Permutáció 3... Variáció 3..3. Kombiáció 3 3.3. Biomiális együttható tulajdoságai 3 3.4.

Részletesebben

1. Az ezekhez tartozó. egyenlet megoldásai: k 360. forgásszögek a. Két különböz egységvektor van, amelyek els koordinátája

1. Az ezekhez tartozó. egyenlet megoldásai: k 360. forgásszögek a. Két különböz egységvektor van, amelyek els koordinátája 8. modu: EGYSERBB TRIGONOMETRIKUS EGYENLETEK, EGYENLTLENSÉGEK 5 III. Trigonometrius egyenete Azoat az egyeneteet és egyentenségeet, ameyeben az ismereten vaamiyen szögfüggvénye szerepe, trigonometrius

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

Í Í í É íé ű í Á É í í É í ú Í É Á í í í í É í í í í ú í í É ú ú í ű í ú í ú ú ú í ű í í í ú í í ű ú í í ú ú ú í ű í í í í í í í í íí í í í É ű ű ű í í É í É ú í í í ú í í ú í ú í í í É ú í ú ú í ú í í

Részletesebben

A Venn-Euler- diagram és a logikai szita

A Venn-Euler- diagram és a logikai szita A Ve-Euler- diagram és a logikai szita Ebbe a részbe a Ve-Euler diagramról, a logikai szitáról, és a két témakör kapcsolatáról íruk, számos jellemző, megoldott feladattal szemléltetve a leírtakat. Az ábrákak

Részletesebben

ő Í ő íí í ú ő í ü ő ő ő ü ü Ö Ü Í ü ü ő í í ő ő í ő ő ő ű í ú ű í ő ő ő ő í Ö Ö í Á Ü É í í ő Ö Ö Ö ő ő ő É ő Ó ú ú ú í ő Á ő ő ű í ú ü ű í ő ő ő ő Í ő ő ő ő Í ő ő ő ő Í É í í í Í Ú ű ő í Ü í ő ú í Í

Részletesebben

ő ľ ľü ľ ľ ü Ü Ü ľ ő ľ Ő ń ľü ľ íľ ő ő źů ő í í ü ö ü ľ ź ő ö ü ő ľő ő ö ü źů ź ź í ö ľ ź ő ľ ü ö ö ź ő đí ź ľ ő ö ű í í ö ü ö í í ú ü í ź ő ő í ú í ő Ó ő ü ú í í ú í ú ő ú ľ ő ü ő ü ű ő ő í ü ö ő í ą

Részletesebben

ő Í é ő Ö Á ö ő Í é ő ö é é í é ü é ú é ű Í ú ö é ű í é ő í ő é ő í é ő Í é ő ő Í í í é é é é í ü ő é ú ö é ö í é é é é é ö é ű é é é é é é é é é é ö é ö é é é í é ú é é é é í é é ő é é í é é í í ú é ú

Részletesebben

Á Á É Á Á É ö ó ő ő ó ó ó é ö é ö ú ó ó ó é ö é é ő ö ú é ö ő é é ő é ó É ő ó é Ü ö é ó é é é é é ó óö é ő ő é ó é é é ó óö é é ö é é ő é ű ó é ö é ő ú ö é é ö ö é ő ö ö Í ö é ö ö é ü Í ö é é é ó é é ő

Részletesebben

Finanszírozás, garanciák

Finanszírozás, garanciák 29..9. Fiaszíozás, gaaciák D. Fakas Szilvesze egyeemi doces SZE Gazdálkodásudomáyi Taszék fakassz@sze.hu hp://d.fakasszilvesze.hu/ Fiaszíozás émaköei. A péz idıééke, jövıéék és jeleéék, speciális pézáamlások

Részletesebben

II. FEJEZET SZÁMLÁLÁSI FELADATOK. A KOMBINATORIKA ELEMEI II.1. Valószínűségszámítási feladatok

II. FEJEZET SZÁMLÁLÁSI FELADATOK. A KOMBINATORIKA ELEMEI II.1. Valószínűségszámítási feladatok 6 Szálálási feldto. A oitori eleei II. FEJEZET SZÁMLÁLÁSI FELADATOK. A KOMBINATORIKA ELEMEI II.. Vlószíűségszáítási feldto A lsszius vlószíűségszáítás éháy lpfoglát ár VI. osztály tultáto. Eszerit, h K

Részletesebben

MATEMATIKA I. FEKETE MÁRIA. PÉCSI TUDOMÁNYEGYETEM POLLACK MIHÁLY MŰSZAKI KAR MATEMATIKA TANSZÉK feketemt@witch.pmmf.hu

MATEMATIKA I. FEKETE MÁRIA. PÉCSI TUDOMÁNYEGYETEM POLLACK MIHÁLY MŰSZAKI KAR MATEMATIKA TANSZÉK feketemt@witch.pmmf.hu MATEMATIKA I. FEKETE MÁRIA PÉCSI TUDOMÁNYEGYETEM POLLACK MIHÁLY MŰSZAKI KAR MATEMATIKA TANSZÉK feketemt@witch.pmmf.hu 007 PMMANB3 Matematika I. RÉSZLETES TANTÁRGYPROGRAM Hét Ea/Gyak./Lab.. 3 óra előadás

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok A szürkített hátterű feladatrészek em tartozak az éritett témakörhöz, azoba szolgálhatak fotos iformációval az éritett feladatrészek

Részletesebben

A hőérzetről. A szubjektív érzés kialakulását döntően a következő hat paraméter befolyásolja:

A hőérzetről. A szubjektív érzés kialakulását döntően a következő hat paraméter befolyásolja: A hőérzeről A szubjekív érzés kialakulásá dönően a kövekező ha paraméer befolyásolja: a levegő hőmérséklee, annak érbeli, időbeli eloszlása, válozása, a környező felüleek közepes sugárzási hőmérséklee,

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

A Gauss elimináció ... ... ... ... M [ ]...

A Gauss elimináció ... ... ... ... M [ ]... A Guss elimiáció Tekitsük egy lieáris egyeletredszert, mely m egyeletet és ismeretlet trtlmz: A feti egyeletredszer együtthtómátri és kibővített mátri: A Guss elimiációs módszer tetszőleges lieáris egyeletredszer

Részletesebben

A természetes számok halmaza (N)

A természetes számok halmaza (N) A természetes számo halmaza (N) A természetes számoat étféleéppe vezethetjü be: ) A Peao-féle axiómaredszerrel ) Evivalecia osztályo segítségével ) A természetes számo axiomatius értelmezése. A Peao-axiómá

Részletesebben

É Á Ö É Í Á Á Ő Í É Ü Á Á É É Á Ö É Í Á Ő Í É Ü Ú Á Á Í Á Á Ü É Á Á Á É Ú í ő őí ő ő ú ö í ő í ü ő ö í ő í ü ú Í í ü Í ű í ő Í í ü ö Ö ő ö í ő í ü ú í ü Í í ú ő ü ü ö ü ő Ú ü Ú ő ű í ú ü ü ő ő ő ő ö ú

Részletesebben

A BIZOTTSÁG MUNKADOKUMENTUMA

A BIZOTTSÁG MUNKADOKUMENTUMA AZ EURÓPAI UNIÓ TANÁCSA Brüsszel, 2007. május 23. (25.05) (OR. en) Inézményközi dokumenum: 2006/0039 (CNS) 9851/07 ADD 2 FIN 239 RESPR 5 CADREFIN 32 FELJEGYZÉS AZ I/A NAPIRENDI PONTHOZ 2. KIEGÉSZÍTÉS Küldi:

Részletesebben

I. FEJEZET SOROZATOK, SZÁMTANI ÉS MÉRTANI HALADVÁNYOK. I.1. Sorozatok

I. FEJEZET SOROZATOK, SZÁMTANI ÉS MÉRTANI HALADVÁNYOK. I.1. Sorozatok Soozato 5 I. FEJEZET SOROZATOK, SZÁMTANI ÉS MÉRTANI HALADVÁNYOK I.. Soozato A legtöbb embe szóicsébe szeepel a soozat szó. Ez azt jeleti, hog edelezi valamile soozatfogalommal. Megéti, ha a miet sújtó

Részletesebben

Izolált rendszer falai: sem munkavégzés, sem a rendszer állapotának munkavégzés nélküli megváltoztatása nem lehetséges.

Izolált rendszer falai: sem munkavégzés, sem a rendszer állapotának munkavégzés nélküli megváltoztatása nem lehetséges. ERMODINMIK I. FÉELE els eergia: megmaraó meyiség egy izolált reszerbe (eergiamegmaraás törvéye) mikroszkóikus kifejezését láttuk Izolált reszer falai: sem mukavégzés sem a reszer állaotáak mukavégzés élküli

Részletesebben

Í Ó É ö ű ö ű ú Ú ú ö ú ű ű ü í ö ö í ö í í í í ö í í ö ÍÍ Í Í Í í ü í í ü ú í í ú í Éí ü ö ü Í í ö í í í ü í ú í í ü í í ö ű í Í í í ú í í ö ö í í í Ü ü í ö í í ú í í ú í í í í í ö É í í í ú Í í ú í í

Részletesebben

ó í í Ö í í ó ó Ö Ö ű É í í ü üé É ü É ü Á Éí ó É É ü Éü É ü ü ü ü ó ű ü í ü ü ó ó Ö Ü í ü ü ü ü ű É ó ó ú Í Á ű í í Ő Í í ó í Ú í ó í ú í ú ó í ü ü ü ü ü ó ü ü ü ü í ó ó ó ü í ó ó ó í Í í í ó í í í í

Részletesebben

Á ó Á Ü É Ú Í Á í ó ó ó ó ó ó ö őí ó ó ü ű í ó ő ú ö ő ó ó í ó í ó ó ő í í í Í ó ó ó ö ó ó í ó í ö í ó ű í Íő ó ó ó ő í ó ő í ó ó ő í ö ó ü ö ó í ü í í ű ó ö ó í ó ö ö ö í ő í ó ó É É í ő ő í í ü ö í í

Részletesebben

Csernicskó István Hires Kornélia A kárpátaljai magyarok lokális, regionális és nemzeti identitásáról

Csernicskó István Hires Kornélia A kárpátaljai magyarok lokális, regionális és nemzeti identitásáról 8 Sztakó Péter 00 Eticitás Körösszakálo. Szakdolgozat. DENIA (Debrecei Néprajzi Itézet Adattára) Vermeule, Has Govers, Cora (ed.) 99 The Atropology of Ethicity. Beyod Ethic Groups ad Boudaries. Amsterdam:

Részletesebben

ő ýľ ú ľ ľ ľ ú ľ Ś Ü ő ł ő ń Ö ľ ő ü Ę ľ ľ í ľ Á ľ ő í ö ö ő ć ń ő ő ő ö ö ö ö ö ľ ľ ű ö ö ő í ü ľ ö ú Ö ľ ö í ü í ľ ľ ľ ö őö źł ľ ö ü ő ő ü ö ő ľ ú ľ ő í ő í Ö ö í í ő Í ę ý í ö ö í í ľ Ą Ą ú ľ ľ ő ü

Részletesebben

Ö ő ü ő Í ó ő ü ó ó ó ó ó ő ő ü ő ó ó ő ő ü ó ó ő í ó ó ó ó ó ü ü ó í ő ő ő ü í í ő í í ó í í ó ő ő ú ó ó ő ú Í í í ó í í ó ő í ő ő ü í í ü í ó í ő ü ő ó í ó í í ü ő í í í ó í í í í í ó ü í ő ó ú ő ó ő

Részletesebben

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag VIK, Műszaki Iformatika ANALÍZIS Numerikus sorok Oktatási segédayag A Villamosméröki és Iformatikai Kar műszaki iformatikus hallgatóiak tartott előadásai alapjá összeállította: Fritz Józsefé dr. Kóya Iloa

Részletesebben

A szita formula és alkalmazásai. Gyakran találkozunk az alábbi kérdéssel, sokszor egy összetett feladat részfeladataként.

A szita formula és alkalmazásai. Gyakran találkozunk az alábbi kérdéssel, sokszor egy összetett feladat részfeladataként. A szta formula és alalmazása. Gyaran találozun az alább érdéssel, soszor egy összetett feladat részfeladataént. Tentsün bzonyos A 1,...,A n eseményeet, és számítsu anna a valószínűségét, hogy legalább

Részletesebben

ÉPÜLETGÉPÉSZ TECHNIKUS SZAKKÉPESÍTÉS SZÁMÁRA KÉPLETGYŐJTEMÉNY 1.0 VERZIÓ PÉCS 2012. SZERKESZTETTE: NÉMETH SZABOLCS

ÉPÜLETGÉPÉSZ TECHNIKUS SZAKKÉPESÍTÉS SZÁMÁRA KÉPLETGYŐJTEMÉNY 1.0 VERZIÓ PÉCS 2012. SZERKESZTETTE: NÉMETH SZABOLCS ÉPÜLETGÉPÉSZ TECHIKUS SZKKÉPESÍTÉS SZÁMÁR KÉPLETGYŐJTEMÉY.0 ERZIÓ PÉCS 0. SZERKESZTETTE: ÉMETH SZBOLCS Éüegéésze Kéegyőjeény ://energeia.s.u II Szereszee: ée Szabocs Éüegéésze Kéegyőjeény KÉPLETGYŐJTEMÉY.

Részletesebben

É Á í Í í Í í ú í ű ö Í í í í ö í í ö í Í í í ü Í É í í Ű ö ü ö ö í Í ö í í ö í í í ö í ö ö ö ö ö ü ö ö í ö ö ö ű ö ú ö Í í í í ö Á Í í í í í Í ú Í í í í ö í ű ö ű ű í ű Í ú í ö í í í ö ö Í ö Í í í í í

Részletesebben

Ó Ö Á É Á É Ő Ü É Í í ü ü é é ő ő ö í é ő í ő ü é őé ő ö é ő é é ő é ö é é ö é í í é é í ő ü é ö ö é é í ü é é é őé é ö é é í é é é í é é ő é é é é ö é é í é í é é ö é ü é é é É é éöí é ő Í ő é ö é ü é

Részletesebben

Ö ő ü ő ü Í ü ú Í ú ő ő ő Á Á É Í ú ü ő ő Í ü ő ü ü Í ő ő ü Í ú ő ú ű ő ő ú Í ú ú ő ő ő ü ü ú ő ő ü Ö ő ü ü ü ő Á Á Á Ü É Á Á ú Í Í ő ű ő ú ő ü ő ü ű ő ü ű ü ű ő ő ü ü ű Í ő ü ő ü ő ü ú ü ű ű ü ű ü ű ü

Részletesebben

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1 Drótos G.: Fejezete az elméleti mechaniából 4. rész 4. Kis rezgése 4.. gyensúlyi pont, stabilitás gyensúlyi pontna az olyan r pontoat nevezzü valamely oordináta-rendszerben, ahol a vizsgált tömegpont gyorsulása

Részletesebben

OTDK-dolgozat. Váry Miklós BA

OTDK-dolgozat. Váry Miklós BA OTDK-dolgoza Váry iklós BA 203 EDOGÉ KORRUPCIÓ EGY EOKLASSZIKUS ODELLBE EDOGEOUS CORRUPTIO I A EOCLASSICAL ODEL Kézira lezárása: 202. április 6. TARTALOJEGYZÉK. BEVEZETÉS... 2. A KORRUPCIÓ BEVEZETÉSE EGY

Részletesebben

ö í Á í ó ö ö ö é ó Ö í Ó Ö é Ö ő ó ó é ö é é é ő é ő ó Ó é é é é ő é ü ó ó ó é ö é ö é ű é Ö ő ó ó é ü é ó ö ú ó Í ű ö é é ő é ó ó ó é ö í é é ű ö ő ö í é ő ű ííó Ö Í ó Í ű é ű í ó í ö ő ííó ö ö Ö é ő

Részletesebben

Dinamikus optimalizálás és a Leontief-modell

Dinamikus optimalizálás és a Leontief-modell MÛHELY Közgazdasági Szemle, LVI. évf., 29. január (84 92. o.) DOBOS IMRE Dinamikus opimalizálás és a Leonief-modell A anulmány a variációszámíás gazdasági alkalmazásaiból ismere hárma. Mind három alkalmazás

Részletesebben

é ö é Á é é é ö é é ú ö é é ő é ő ő é ö é í ű ő ö ö é ü ű ő ő ő Ú É ö É Ú é é ö é ö é Íé Ú ú ö é é é ő ő é ú ö é ö é é é ú ü é ő é é ö é é Á é ű ö ű é é é ú é É Ú Á É É Á ö é Á é ő ö é ő É é ű ú é é Á

Részletesebben

Ágoston Kolos Csaba. Hogyan hat a bizonytalanság és a. vev kör nagysága együttesen az árakra?

Ágoston Kolos Csaba. Hogyan hat a bizonytalanság és a. vev kör nagysága együttesen az árakra? Ágoston Kolos Csaba Hogyan hat a bizonytalanság és a vev ör nagysága együttesen az árara? Operációutatás Tanszé Témavezet : Kovács Erzsébet Copyright c Ágoston Kolos Csaba, 2004 Budapesti CORVINUS Egyetem

Részletesebben

Í Í í ú É íí íí í ú Ú É í Ó ú ü í Í É í í ü ü É í í ü í ü ü í ü Ú ü ü Ú í É í ü í íí í Ú ú íí íí Ú É í ü Ó í ü ű ú ú ú Ú ú ü ű ú Ü í ü Ú ü ü í í ü í ú í ü í Ú ű í ú ü ü ú Ú ü Ú ű í ú ú í ü í í ü ű ü ú

Részletesebben

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és A Valószíűségszámítás II. előadássorozat egyedik témája. A NAGY SZÁMOK TÖRVÉNYE Eze előadás témája a agy számok erős és gyege törvéye. Kissé leegyszerűsítve fogalmazva a agy számok törvéye azt modja ki,

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

VII. INFORMÁCIÓ-MEGOSZTÁS A BANKOK KÖZÖTT: KINEK JÓ A TELJES LISTA? *

VII. INFORMÁCIÓ-MEGOSZTÁS A BANKOK KÖZÖTT: KINEK JÓ A TELJES LISTA? * VII. INFOMÁCIÓ-MEOSZTÁS A BANKOK KÖZÖTT: KINEK JÓ A TELJES LISTA? Maor Ivá. Bevezeé Az uóbb évebe zama va boaozo arról hog em lee-e előöebb md a bao md azo laoág ügfele zámára ha em a a roz adóoról álláa

Részletesebben

festményeken és nem utolsó sorban az emberi test különböz arányaiban. A következ képek magukért beszélnek:

festményeken és nem utolsó sorban az emberi test különböz arányaiban. A következ képek magukért beszélnek: Az araymetszés és a Fiboacci számok mideütt Tuzso Zoltá Araymetszésrl beszélük, amikor egy meyiséget, illetve egy adott szakaszt úgy osztuk két részre, hogy a kisebbik rész úgy aráylik a agyobbikhoz, mit

Részletesebben

ö á é á á á á ö é ő á é é í é ü é í á é ő é í ő á á á á ö é é í á á á á á é ő á á é é ő é á é é ő é é á ő á á í é é é ö ö ö ö é é á í ö í é é éé ö á á á ö á á á é ú é é ö ü ő á é é ű ö é Ó Á Ó é é é É

Részletesebben

A tôkemérés néhány alapproblémája

A tôkemérés néhány alapproblémája A ôkemérés néhány alapproblémája Hül Anónia, a KOPINT-TÁRKI Konjunkúrakuaó Inéze Zr. udományos anácsadója E-mail: anonia.hul@kopinarki.hu A reálőke és ezen belül a őkeszolgála mérése a nemzei számlák módszerani

Részletesebben

é é ö ö ő ü é é ü é é é é é ü é é ü é é é ő é é ő é ö ö ő é ő é ó ő é é ö é ö ö ó é ő í é üí ü ő é é é é é é ó ó ó é é ö é ö é é é ő é é ó í ó ó ü é é ó ó é ő ö ű é é é é ő ö ö é ó Í í é é ö í ó é é ó

Részletesebben

Zsembery Levente VOLATILITÁS KOCKÁZAT ÉS VOLATILITÁS KERESKEDÉS

Zsembery Levente VOLATILITÁS KOCKÁZAT ÉS VOLATILITÁS KERESKEDÉS Zsembery Levene VOLATILITÁS KOCKÁZAT ÉS VOLATILITÁS KERESKEDÉS PÉNZÜGYI INTÉZET BEFEKTETÉSEK TANSZÉK TÉMAVEZETŐ: DR. SZÁZ JÁNOS Zsembery Levene BUDAPESTI KÖZGAZDASÁGTUDOMÁNYI ÉS ÁLLAMIGAZGATÁSI EGYETEM

Részletesebben

2D grafikai algoritmusok

2D grafikai algoritmusok D grafiai algoritmuso A quadtree/octtree algoritmus A floodfill algoritmus Belső vag ülső pont? Baricentrius oordinátá Körüljárási irán eldöntése Animáció A quadtree/octtree algoritmus Legen Ω 0 R eg négzet,

Részletesebben

ú Á Ó Ú Í Á Ú Ó É É Á É É ű úé ű Í Á É Ö Ö Ö Í Á É Ú ú ú Á Ö É ű É ú É É ű Ö ú ű ű É ű ű É ú Á ű ú Ö ű ú ú É É É É É É É É É ú É É Ö É É Í É É É ú É Í Í É Á É É É ú ú ú ú ú ú É ú Á ű ú ű ú ú ú ú ú ű ú

Részletesebben

Volumetrikus elven működő gépek, hidraulikus hajtások (17. és 18. fejezet)

Volumetrikus elven működő gépek, hidraulikus hajtások (17. és 18. fejezet) oluetriku elve űködő gépek hidrauliku hajtáok (17 é 18 fejezet) 1 Függőlege tegelyű ukaheger dugattyúja 700 kg töegű terhet tart aelyet legfeljebb 6 / ebeéggel zabad üllyeztei A heger belő átérője 50 a

Részletesebben

Piaci mikrostruktúra és likviditás

Piaci mikrostruktúra és likviditás . KILENCEDIK ÉVFOLYAM 6. SZÁM 539 MICHALETZKY MÁRTON Piaci mikrosrkúra és likvidiás A anlmány hármas céllal íródo. Egyrész röviden ismerei a iaci mikrosrkúra szakerüleé, legfonosabb kaási kérdései és alafogalmai,

Részletesebben

INFOKOMMUNIKÁCIÓ távoktatási segédletek-

INFOKOMMUNIKÁCIÓ távoktatási segédletek- INFOKOMMUNIKÁCIÓ ávokaási segédleek- Készíee: a GDF Redszerechikai Iéze Iformaikai Alkalmazások Taszék mukaközössége. TAGJAI: DR. HÁZMAN ISTVÁN DR. ZSIGMOND GYULA SPISÁK ANDOR PUSKÁS ISTVÁN LSI KÖNYVKIADÓ

Részletesebben

(Nem jogalkotási aktusok) IRÁNYMUTATÁSOK

(Nem jogalkotási aktusok) IRÁNYMUTATÁSOK 2011.8.23. Az Európai Unió Hivaalos Lapja L 217/1 II (Nem jogalkoási akusok) IRÁNYMUTATÁSOK AZ EURÓPAI KÖZPONTI BANK IRÁNYMUTATÁSA (2011. június 30.) az euróra vonakozó adagyűjésről és a 2. Készpénzinformációs

Részletesebben

( r) t. Feladatok 1. Egy betét névleges kamatlába évi 20%, melyhez negyedévenkénti kamatjóváírás tartozik. Mekkora hozamot jelent ez éves szinten?

( r) t. Feladatok 1. Egy betét névleges kamatlába évi 20%, melyhez negyedévenkénti kamatjóváírás tartozik. Mekkora hozamot jelent ez éves szinten? Feladaok 1. Egy beé névleges kamalába évi 20%, melyhez negyedévenkéni kamajóváírás arozik. Mekkora hozamo jelen ez éves szinen? 21,5% a) A névleges kamalába időarányosan szokák számíani, ehá úgy veszik,

Részletesebben

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok Kiegészítő részelőadás. Algebrai és transzcendens számo, nevezetes onstanso Dr. Kallós Gábor 04 05 A valós számo ategorizálása Eml. (óori felismerés): nem minden szám írható fel törtszámént (racionálisént)

Részletesebben

A Laplace transzformáció és egyes alkalmazásai

A Laplace transzformáció és egyes alkalmazásai A aplac razormáció é gy alkalmazáai A PTE PMMFK villamomérök zako lvző agozao allgaói zámára kéziraké özállíoa Ki Mikló őikolai adjuku 3 Irodalomjgyzék: Bako Ivá: Elkrocika I-II (KKVMF Budap 969 Duca J:

Részletesebben

ö ö ú ó ĺó ó ő ő Ü ö ó ö ö ö ó ó í ű ö ö í ő Ü í ő ó ö ő ő Ü ú í ő ó í ú ő í Ü ó í É ő ö ó ĺ ő ü É ő ö ű ú ü ĺ ő í ö í ĺ ó ú ő ó í í ö ő Ü ö ő ő ö ő ĺ ö ó í ő ő ö í Ü ü ö ö ű ť É ő ö ó ó ú ő ĺó ó ó ó ó

Részletesebben

REZONANCIÁRA HANGOLVA

REZONANCIÁRA HANGOLVA REZONANCIÁRA HANGOLVA r. Bagány Mihály, r Kodácsy János, Nagy Péer 3, r. Pinér Isván 4 Jelen anulmányunkban egy igen onos izikai jelensége a rezonanciá járjuk körül. Az elsı három részben sajá munkáink

Részletesebben

Ö Ó Ö Í Á Ö Á Ö Í Ö Ö Ö Ó É Í Ö Ö Á Ö Ó Ö Ö Ö Ö É Ö Ö Á Ö Ó Á Á Í Ö Ö Í Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö É Ö Ö Ö Ö Ó Ö Ö É Ö Ö Ö Ö Ó Ö Ö Ö Ó Á Ö Á Á Í Í Ú Ó Á Á Á É Á Í Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö É Í Á Á Á Á

Részletesebben

Ancon feszítõrúd rendszer

Ancon feszítõrúd rendszer Ancon feszíõrúd rendszer Ancon 500 feszíőrúd rendszer Az összeköő, feszíő rudazaoka egyre gyakrabban használják épíészei, lászó szerkezei elemkén is. Nagy erhelheősége melle az Ancon rendszer eljesíi a

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek emel szin Javíási-érékelési úmuaó ÉETTSÉGI VIZSG 0. okóber. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ EMEI EŐFOÁSOK MINISZTÉIUM Elekronikai

Részletesebben

cukorbeteg kedvencének kezelése

cukorbeteg kedvencének kezelése Caninsulin VePen Soha nem vol ilyen egyszerû cukorbeeg kedvencének kezelése Ha kedvence cukorbeeg Elôször lehe, hogy lesújoa a cukorbeegség diagnózisa, de gondoljon csak bele, mi is jelen ez: sikerül beazonosíani

Részletesebben

1. Gyors folyamatok szabályozása

1. Gyors folyamatok szabályozása . Gyor olyamatok zabályozáa Gyor zabályozá redzerekrl akkor bezélük, ha az ráyított olyamat dálladó máoder, agy az alatt agyágredek. gyor olyamatok eetébe a holtd általába az ráyítá algortmu megalóítááál

Részletesebben

Mechanikai munka, energia, teljesítmény (Vázlat)

Mechanikai munka, energia, teljesítmény (Vázlat) Mechanikai unka, energia, eljesíény (Vázla). Mechanikai unka fogala. A echanikai unkavégzés fajái a) Eelési unka b) Nehézségi erő unkája c) Gyorsíási unka d) Súrlódási erő unkája e) Rugóerő unkája 3. Mechanikai

Részletesebben

Á Á ö ú í í Í É í ö í í Í í ö Á Á ő í ü ü öí ő í ö í ő í í Á Á í ő ü Í í Á É í ÍÍ í ö ő ú Á ő ő ő Í ő í ő ü ű Í Í ő í ö ú ü ö í ü Ü ú í íí ú ő í É ö ő Í É ú íé Í ü Í ő É í ú ö ö ö ő öí ö ö ő É Í ú ű ő

Részletesebben

AUTOMATIKA. Dr. Tóth János

AUTOMATIKA. Dr. Tóth János UTOMTIK UTOMTIK Dr. Tóh János TERC Kf. udapes, 3 Dr. Tóh János, 3 3 Kézira lezárva:. november 9. ISN 978-963-9968-57-8 Kiadja a TERC Kereskedelmi és Szolgálaó Kf. Szakkönyvkiadó Üzleága, az 795-ben alapío

Részletesebben

Sapientia Erdélyi Magyar Tudományegyetem Műszaki és Humántudományok Kar Marosvásárhely

Sapientia Erdélyi Magyar Tudományegyetem Műszaki és Humántudományok Kar Marosvásárhely Spieni Erdélyi Mgyr Tudományegyeem Műszi és Humánudományo Kr Mrosvásárhely Roboprogrmozási nyelv ervezése és ejleszése négy szbdságoú roborchieúrár Készíee: Demeer Zolán Sz: Számíásechni Évolym: V. Tudományos

Részletesebben

JANUÁR SZIA, IDŐUTAS! ÚJÉ

JANUÁR SZIA, IDŐUTAS! ÚJÉ JANUÁR SZIA, IDŐUTAS! E NAPTÁR SEGÍTSÉGÉVEL SOSEM FOGOD ELFELEJTENI, MIOR VANNA A FONTOS IDŐPONTO A MÚLTBAN ÉS A JÖVŐBEN. Z T, RES NG E VÍZ ARSA A F ZDETE E V ÚJÉ 0 ÉRDE ESS ÉG MR. PEABODY ÉS SHERMAN VÁROSI

Részletesebben