Szénhidrogének. paraffin szénhidrogének vagy nyílt láncú telített szénhidrogének Alkán. C n H 2n+2 n=1, 2, 3...

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Szénhidrogének. paraffin szénhidrogének vagy nyílt láncú telített szénhidrogének Alkán. C n H 2n+2 n=1, 2, 3..."

Átírás

1 Szénhidrogének 1

2 Szénhidrogének n 2n+2 n=1, 2, 3... n 2n n=2, 3, 4... n 2n-2 n=2, 3, 4... n 2n-6 n=6, 7, 8... paraffin szénhidrogének vagy nyílt láncú telített szénhidrogének Alkán Alkén (monoolefinek) és cikloparaffinok Alkin (acetilének), diének, ciklomonoolefinek Aromások (benzol és homológjai) 2

3 Alifás szénhidrogének 3

4 Paraffin szénhidrogének (Alkánok) n-alkánok izoalkánok NÓMENKLATÚRA 5-től: görög számnév + án IZOMÉRIA Konstitúciós izoméria: más kapcsolódási sorrend OMOLÓG SOROZATOT KÉPEZNEK egyetlen 2 csoporttal különbözik egymástól két analóg szerkezetű szomszédos tag kémiai tulajdonságok nagymértékben hasonlóak fizikai tulajdonságok fokozatosan változnak 4

5 5

6 6

7 Alkánok fizikai tulajdonságai 7

8 Fp (o) 0 van der Waals erők Fp (n-alkán) > Fp (izo-alkán) gáz 5 n folyadék Op. páros pár atlan transz láncvégi metilcsopor tok cisz láncvégi metilcsopor tok n 8

9 Alkánok kémiai tulajdonságai 9

10 Alkánok reakciói Parum affinis kevéssé poláris és polarizálható kötések 1.) Szubsztitúciós reakciók alogénezés (l 2 és Br 2 ) vagy hν 4 l 2 akt. 3 l + l l 4 Nitrálás 3 3 NO NO NO 2 10

11 11

12 Statisztikus eloszlás 12

13 13

14 2.) Oxidáció 2 n 2n+2 + (3n+1) O 2 2nO 2 + (2n+2) 2 O moláris égéshő: 157 kcal ( 2 ) Égéshő: standard állapotú kiindulási vegyület st. O 2 st. végtermék 14

15 3.) Izomerizáció l 3 3 All % 80% vö. égéshő adatok + 6,5 O 2 2 kcal/mol + 6,5 O 2-687,5 kcal/mol - 685,5 kcal/mol 4 O O 15

16 Konstitúciós izoméria - Szénatom rendűsége* 1.r. 2.r n-bután n-butil szek. butil 3 3.r izobutil 3 3 izobután 3 3 * a nem hidrogénatomot kötő kötések száma 3 terc. butil 16

17 O = I. r. 17

18 Alkánok szintézise Fischer-Tropsch szintézis: exoterm reakció Redukciós módszerek: n O + (2n+1) 2 katalizátor n 2n+2 + n 2 O 2 kat. Na 2 l Wurtz szintézis 2R X Zn 2 2R "naszcens hidrogénes redukció" 18

19 Alkánok szintézise R Br LiAl 4 R + LiBr + Al 3 R MgX + 2 O R + Mg(O)X R Li + 2 O R + LiO O Zn(am) 2 lemmensen redukció 2 N N 2 O N N O bázis Kizsnyer-Wolff- uang-minlon redukció 19

20 20

21 ikloalkánok 21

22 22

23 Gyűrűfeszültség ikloalkánok szerkezete ipotetikus planáris rendszerek Baeyer vegyértékszög-deformáció (anguláris/gyűrű feszülés) Pitzer anti-álláshoz képesti energiatöbblet (torziós feszülés) Nem planáris vegyületek van der Waals nemkötő atomok szterikus kölcsönhatása V-alakú boríték twist szék pszeudorotáció 23

24 kcal/mol Gy ű r ű f e sz ü l é s határérték Gyűrűtagszám 24

25 25

26 26

27 27

28 Z iklohexán félszék kád Ea+ E Z félszék csavart kád Ea(a e) csavart kád Ea(a e) Z E kb. 2 kcal szék kb. 5% kb. 95% szék Z 28

29 A 3-3 nemszomszédos szénatom által definiált síkokra merőleges kötésirányok: axiális A többi kötés e két sík között van: ekvatoriális Pszeudorotáció: a gyűrűs vegyületek konformerjei szögfeszültség nélkül alakulnak egymásba 29

30 30

31 31

32 32

33 33

34 Dekalin cisz transz 34

35 transz-transz-transz anelláció cisz-transz-transz anelláció D B A D B A R R D B A R D B A R

36 Dinamikus NMR spektroszkópia 36

37 37

38 38

39 Dinamikus NMR spektroszkópia A ciklohexán-d 11 hőmérsékletfüggő 1 NMR spektruma 39

40 Dinamikus NMR spektroszkópia 40

41 ikloalkánok előállítása 41

42 42

43 43

44 44

45 45

46 Kőolaj és földgáz /Petrolkémia/ A szénhidrogének feldolgozása és átalakítása 46

47 A Zsana-É-2. kút kitörése (1979) 47

48 Zsana FGT 48

49 Az oktánszám azt jelöli meg, hogy a vizsgálandó üzemanyag (benzin) milyen %-os összetételű izooktán /2,2,4-trimetilpentán/ és normál heptán-elegy komprimálhatóságával azonos. A normál heptán oktánszáma 0, a fent említett izooktáné 100. A gázolaj minőségének mérésére használatos a cetánszám fogalma. A cetán /normál szénláncú hexadekán/ kompressziós öngyulladási készsége jó, ellentétben az α-metilnaftalinéval. Ezért a két anyag különféle arányú elegyeit használják a Diesel olaj kompressziós öngyulladási készségének megállapítására. A kőolajban az egyes vegyületek nem a gyakorlati felhasználásuknak megfelelő arányban fordulnak elő, csupán lepárlással a kőolajtermékek iránt igényt nem lehet kielégíteni. Ezért van szükség feldolgozási módszerek alkalmazására. A két legfontosabb eljárás a reformálás és a krakkolás. 49

50 Reformálás Krakkolás 50

51 Forrás: Internet 51

52 Fontosabb származékok Kőolajpárlatok Benzin petroléter könnyű benzin ligroin nehéz benzin Petróleum (kerozin) Gázolaj (dízel- és fűtőolaj) Nehéz kenőolajok, folyékony és szilárd paraffin Fehér vazelin, sárga vazelin Pakura (goudron) mágikus sav izooktán 52

53 Alkének 53

54 Olefinek (Alkének) n 2n kettőskötés 2 3 Nómenklatúra: a kettőskötést is tartalmazó leghosszabb szénlánc - olefinkötés - elágazás soportok: alkenil 2 etenil (vinil) 2 2 prop-2-enil (allil) metiletenil alkilidén metilpropilidén E, Z izoméria 54

55 Biológiai jelentőség - konformációt rögzíti 3 S 2 N 3 OO metionin enzim 2 2 N 3 OO enzim - etén növényekben

56 56

57 57

58 Konfigurációs izomerek Geometriai izoméria alkének két sp 2 hibridállapotú centrum összekapcsolásával (akirális) E-Z R R 1 Konfigur ációs izomer ek, mer t R R 1 R R 1 58

59 ahn-ingold-prelog konvenciók l 17 3 l 6 17 l (E)-1-klór-2-metilbuta-1-én 59

60 E-Z izomerizáció nagy energia befektetést igényel 3 transz-buta-2-én 3 p orbitálok egy síkban vannak, optimális geometria a π kötéshez 3 3 p orbitálok merőlegesek egymásra, a legrosszabb geometr ia a π kötéshez 3 3 cisz-buta-2-én p orbitálok egy síkban vannak, optimális geometria a π kötéshez 60

61 1,33 A o o 1,54 A átlagos kötési energia 145,8 kcal/mol kötési energia 82,6 kcal/mol π kötés ~ 60 kcal/mol 61

62 Relatív stabilitás: hidrogénezési entalpiák (kcal/mol) , , ,3-28,6-27,

63 1. Diszubsztituált kettős kötés stabilabb, mint a monoszubsztituált 2. a transz-izomer stabilisabb, mint a cisz 3. a többszörösen szubsztituált olefinkötést tartalmazó vegyület stabilisabb oka: a) hiperkonjugáció (σ - π konjugáció) kevésbé fontos b) több sp 3 - sp 2 kötés és kevesebb sp 3 - sp 3 kötés a szubsztituáltabb olefinben 63

64 Alkének előállítása 64

65 65

66 Elimination α X Y X α Y β X Y X Y α elimination β elimination 1,2-elimination 1,3 elimination 1,4 elimination carbene olefin 1,3-diradical cyclopropane 1,3-diene Reaction examples l l Ph l α α β I N N Br Br Br 2 Br NaO NaO 3 Mg Zn l 2 2 l Ph 66 1,n-Eliminations (n = 1 4) of two atoms or groups X and Y, which are bound to sp 3 -hybridized atoms.

67 Zajcev termék 67

68 68

69 69

70 70

71 71

72 E 2 reakció sztereokémiája: anti elimináció sztereospecifikus Ph S, 2R Br Ph Ph EtO Br 3 Ph 1S,2R EtO gyors 3 Ph Ph transz ( E ) α-metil-sztilbén Ph R, 2R Br Ph Ph Ph EtO Br 3 EtO 1R,2R 3 Ph Ph cisz ( Z ) α-metil-sztilbén 72

73 ofmann vs Zajcev L - b L a b ofmann - a L L = N( 3 ) 3 L = Br Zajcev 73

74 Regiospecifikus elimináció Br 3 KO regioizomerek 3 3 Br KO 74

75 Monomolekuláris elimináció 75

76 E 1 L E 1 cb L E1cb N N NN O N N N N N N N 76

77 Acid catalysed elimination reaction of alcohols with E1 mechanism Primary alcohols: cc. 2 SO 4, 180 Secondary alcohols: 85% 3 PO 4, 160 Tertiary alcohols: 20% 2 SO 4, 85 77

78 További alkén szintézismódszerek 78

79 Wittig reakció R R O + ( 6 5 ) 3 P R' R' R R R' R' + ( 6 5 ) 3 P O aldehid v. keton foszfónium-ilid alkén trifenilfoszfin-oxid R' ( 6 5 ) 3 P + trifenilfoszfin R' X S N 2 X 6 5 R' 6 5 P 6 5 R' R Li alkil-halogenid 6 5 R' 6 5 R P 6 5 P 6 5 R' 6 5 R' R' a foszfónium-ilid rezonáns határszerkezetei 79

80 R O R + R' R' P( 6 5 ) 3 Ad N R R O R' R' P( 6 5 ) 3 R R O R' R' P( 6 5 ) 3 ( 6 5 ) 3 P O + R R' R R' 80

81 Első ipari alkalmazás természetes vegyület szintetikus úton történő előállítására Wittig G.; Pommer.: DBP , 1956 Wittig G.; Pommer.: hem. Abstr. 1959, 53,

82 ii) Olefin metatézis (cserebomlás) M R 1 + R R 1 2 R2 + catalyst 82

83 Schrock catalyst Grubbs catalysts y = yclohexyl F 3 F 3 O N Mo O Ph l l P(y) 3 Ru P(y) 3 Ph N R l l N R Ph Ru P(y) 3 R = F 3 F 3 1 st generation 2 nd generation 83

84 iii) The eck Reaction catalytic system reaction conditions R 1 X + R 2 Pd(0) base R 1 R 2 + base X substrate reactant solvent product by-product R 1 = R 2 = aryl, vinyl EWG, EDG X = l, Br, I, OTf, OTs, N 2 + aryl Pd(0) mediated coupling of an or halide or sulfonate with an alkene vinyl 84

85 3. Redukció R R syn-addition szin-addíció Ni 2 B 2 Lindlar Pd/aO 3 2 R cis Olefin R R R Li/EtN 2 anti-addition anti-addíció R trans Olefin R 85

86 Olefinek kémiai tulajdonságai 86

87 Olefinek Addíciós reakciók (egy molekula egy másikhoz addicionálódik, és nem hasad ki semmi) Elektrofil addíció Ad E Alkén X 2 X X X 2 X Kétlépéses reakciók X X v = k 2 [alkén][x 2 ] alkén v = k 2 [alkén][x] k 2 (relatív) Et 2 = 2 1 = Me 2 = Me π és 1 σ kötésből két σ kötés; általában exoterm 87

88 Sztereokémia: Anti-addíció (X = l, Br) 3 Br Br 3 3 Br Br Br + Br Br δ Br δ δ Br... Br δ Br Br Br Br Br Br Br 3 2 Br Br 3 δ Br δ Br Br 3 Br 88

89 a b Y X d e Y II/B. A N Y A N II/B. X a b Y d e a b Y Y d Y A a d N e b e II/B. X X A N II/A. Y A N II/A. a b X d e I/B. kt X I/A. X a A E -komplex A E b d e I/B. X A E I/A. X A E a b a b X X d e d e Y A N II/B. a b X kt sztereoszelektív és regioszelektív -komplex Y Y A N A N Y d e II/A. II/A. sztereospecifikus és regioszelektív I/B. I/B. sztereoszelektív és regioszelektív a b a b X X Y Y d e d e Y II/B. Y II/B. A N A N a b X d e kt X A E X A E a b X d e Y kt Y A N II/B. A N II/B. a b a b Y Y X X d e d e Olefinre nézve: sztereoszelektív (mivel két termék képződhet) és regioszelektív π-komplexre nézve: sztereospecifikus és lehet regioszelektív 89

90 Y A N II/B. X a b Y d e a b d e I/B. X A E I/A. X A E a b a b X X d e d e Y A N II/B. a b X kt sztereoszelektív és regioszelektív Y Y A N A N Y d e II/A. II/A. sztereospecifikus és regioszelektív -komplex I/B. sztereoszelektív és regioszelektív X A E a b X d e Y kt Y A N II/B. A N II/B. a b a b Y Y X X d e d e 90

91 a b Y X d e Y II/B. A N Y a b d Y A N a e b II/B. X X d e kt I/B. X A E Y A N II/A. Y A N II/A. a b X d e I/A. X A E -komplex a b d e I/B. a b X a b X Y Y d e d e Y II/B. Y II/B. A N A N a b X d e kt X A E 91

92 Francis kísérlet (1925). Az ionos mechanizmus indirekt azzal támasztható alá, hogy sem magas hőmérsékletre, sem ultraibolya fényre nincs szükség a reakcióhoz (ellentétben a paraffinek gyökös mechanizmusú halogénezésével). A brómmolekula első lépésben elektrofilként való részvételére pedig abból lehet következtetni, hogy a reakciót metanolos lítium-klorid oldatban végezve (az olefinhez brómot adva) a termékként képződő dibrómszármazék mellett bróm-klór-származék, sőt bróm-metoxi származék is keletkezik, de diklórszármazék vagy dimetoxiszármazék nem. A klór a reakcióelegyben csak negatív kloridionok alakjában van jelen. Abból, hogy a reakcióban diklórszármazék nem képződik, arra lehet következtetni, hogy mindkét halogénatom nem kapcsolódhat anion alakjában az olefinmolekulához, az egyiknek kation formájában kell rész vennie az addícióban. Pillératomjukon különbözőképpen szubsztituált (és ennek következtében eltérő nukleofilitással rendelkező) olefinek azonos körülmények között kivitelezett brómozási reakciói eltérő sebességgel mennek végbe. Ebből az következik, hogy az olefin a reakcióban nukleofilként vesz részt, tehát a brómmolekula az elektrofil, ennek is a kationos (Br + ) része, amely a brómmolekulából heterolízissel képződik. A transz-termék kizárólagos megjelenése pedig a két lépésben történő elektrofil addíciós reakciót (sztereospecifikus transz-addíció) támasztja alá. 92

93 X: l, Br ( 3 O + + l /Br ) Regiokémia: Markovnyikov szabály 1870 Markovnyikov adduktum X R X R P X R R (A a legkevésbé, X a leginkább szubsztituált szénhez!) Karbokation stabilitás: 3 > 2 > 1 93

94 94

95 95

96 96

97 A Markovnyikov-szabály érvényes: R 3 O OSO 3 O 2 R I X l R 3 X R 3 OSO 3 R l 2 l O O R l 2 I Anti-Markovnyikov orientáció: 1. R 2 B R' R' R R' B R' 2 O, O 2 O 2 R O 97

98 2. Gyökös reakció Ad R Br In Br Anti-Markovnyikov 3 2 Br 3 2 Br 3 2 Br Br Br Br főter mék 3 3 Br mellékter mék Gyökstabilitás: 3 o > 2 o > 1 o (vö. kötés disszociációs energia) Így F nem, mert kötés dissz. energia túl nagy I nem, mer t I nem elég r eaktív 98

99 brómgyök képződés: R O O R 2 RO RO + Br RO + Br 3 2 Br Br Br 3 2 Br Br 1-brómpropán ~80% propén 3 2 Br Br Br Br 2-brómpropán ~20% + Br hν Br 2 + Br -Br Br ciklohexén allil-típusú gyök 3-brómciklohexén 99

100 O O N Br hν 2 2 Br + N O O propén N-brómszukcinimid allil-bromid szukcinimid Alacsony Br 2 koncentráció esetén (N-brómszukcinimid esetén) az addíció háttérbe szorul, az addíciós termék könnyen visszaalakul a kiindulási olefinné. Magasabb Br 2 koncentrációnál az addíciós reakció kerül előtérbe az elsőként támadó bróm-gyök reakcióját követően a második bróm-gyök egy másik brómmolekulából származik, amelyhez viszont magasabb brómkoncentráció szükséges. Br + + Br 2 Br Br Br + Br 100

101 Gyökös polimerizáció In 2 2 In In Stabilizálódás, pl.: In ( 2 2 ) n ( 2 2 ) 2 In n In ( 2 2 ) n ( 2 2 ) 2 In n 101

102 102

103 O O Mn O O K O O K Mn O O O O Os O O O O Os O O 103

104 Br Br Br + Br O O O O O + O R R epoxide 104

105 Sharpless aszimmetrikus epoxidálás O O O 2 Et O 2 Et L (+)-DET (6-12 mol%), R x O tert-buoo (standard) or Ph( 3 ) 2 OO, Ti(OiPr) 4 (5-10 mol%), 3 Å molecular sieves, 2 l 2 O R x O R x O D-(-)-DET, ROO,Ti(OiPr) 4, 3 Å molecular sieves, 2 l 2 O R x O 105

106 Aszimmetrikus szintézis Optikailag aktív vegyület nem képződhet, ha minden reagens és körülmény szimmetrikus Optikailag aktív vegyület nyerhető: - egy sztereoizomerből kiindulva // rezolválás - aszimmetrikus elem jelenlétében aszimmetrikus szintézis a) optikailag aktív szubsztrátbólvagy aszimmetrikus indukcióval: b) optikailag aktív reagensből c) optikailag aktív katalizátorral vagy oldószerrel - sztereoszelektív szintézis: egy sztereoizomer a főtermék - sztereospecifikus reakció: egy bizonyos izomerből az egyik sztereoizomer képződik 106

107 O O OEt Z R R 1 R 2 OEt O O (2S,3S)-(-)-Diethyltartarat R 2 Molekularsieb O O O S R 2 O R R 1 ( 3 ) 3 -O-O- / Ti(O i Pr) 4 O R 1 O OEt OEt O O (2R,3R)-(+)-Diethyltartarat R O R R R < R 1 < R 2 S 107

108 O O OEt E R 2 R 1 OEt O O (2S,3S)-(-)-Diethyltartarat Molekularsieb R O O S O R 2 R 1 O R ( 3 ) 3 -O-O- / Ti(O i Pr) 4 O O OEt OEt O O (2R,3R)-(+)-Diethyltartarat R 2 S R O R R 1 R < R 1 < R 2 R 108

109 Alkének oxidatív hasítása 1. Ózonbontás (1,3-dipoláris cikloaddíció) R 1 R 3 R 2 R 1 O 3 O 2 l 2 R 2 v.l 3 O O R 3 ozonid reduktív Zn/ 2 O oxidatív 2 O 2 / 2 O R 1 O + O R 2 R 3 R 1 O R 2 + O R 3 O 109

110 2. KMnO 4 R 1 R 2 R 3 KMnO 4 O R 1 O O + O R 2 R 3 Alkének szubsztitúciója az olefines szénatomon O 3 2 Pdl 2,ul 2 2 O,l 3 3 Pdl 2,ul o 3 O 110

111 Addíció vs. szubsztitúció 3 2 l 2 l 2 l l 25 o 3 2 o 500 addíció l 2 2 szubsztitúció régiószelektív, " allil-helyzetű" klórozás Szubsztitúció: O 2 2 NBr O R 2 2 Br 2 oxidáció SeO 2 R= l 4 R oxidáció (katalitikus) R 2 O OO 2 111

112 es/che232/j/welcome.html 112

113 Alkének nukleofil addíciói 113

114 Nukleofil addíció szén - szén többszörös kötésre EWG: Y EWG bázis Y 2 2 EWG Elektronszívó csoport kell!! O O O O N, NO 2, SOR, SO 2 R, R, OR, N 2 Michael-addíció: a.) 2 N NaOEt EtO 2 5 O 2 2 N b.) OOR 1 R 2 N R 2 N OOR 1 114

115 ikloalkének cisz kettőskötés a pir ossal jelzett atomok egy síkban vannak a) planár is b) nem planár is 115

116 Diének 116

117 Szerkezet Diolefinek A Kumulált B A B allén Konjugált 2 2 buta-1,3-diene 2 2 izoprén 3 Izolált 2 ( 2 ) n 2 117

118 Allének kiralitása π bonds in allenes are perpendicular A B B A hiral compounds with at least two substituents on terminal carbons 118

119 allene mirror cf. spirane N N N N 119

120 Axiális kiralitás Br 3 O2 Br 3 OO OO Br 3 S Br Br OO 3 3 OO 1. Br > és OO > 2. Elülső alacsonyabb felől a hátulsó magasabb felé. 120

121 Előállítások Diolefinek Br Br 2 2 Br Br Br allil-brómozás KO -Br 2 2 Br Br Zn 2 2 allén kumulált 121

122 Előállítások Diolefinek O O Reppe-féle eljárás (csőreaktor, folyamatos üzem, 90%-os összhozam) u atm 100 o Na 2 PO 4 / 3 PO 4 koksz (dehidráló kontakt) O 2 2 O buta-1,3-dién 260 o - 2 O 2 /Ni 200 atm O konjugált O 3 PO 4 70 atm 260 o O 122

123 ofmann-féle kimerítő metilezés és termikus bontás 123

124 Előállítások Diolefinek I I + 2 Na - 2 NaI diallil 2 2 izolált 124

125 ofmann-féle kimerítő metilezés és termikus bontás ofmann elimináció 125

126 Diolefinek Kémiai reakciók Konjugált: 1,2 vs. 1,4 addíció Br 2 5 1,2 1,4 Br 2 2 Br 2 2 Br Br 126

127 KINETIKUS ÉS TERMODINAMIKUS KONTROLL Br A Br B Br Izolált pozitív töltés Mezoméria stabilizált pozitív töltés Kinetikus kontroll: a végtermékek az aktiválási szabadentalpiájuknak megfelelő arányban keletkeznek, azaz képződési sebességüknek megfelelő arányban (a gyorsabban képződő B termékből lesz több, gyorsabban pedig a kisebb aktiválási szabadentalpiával rendelkező reakció fut le, G B *< G *). Termodinamikus kontroll: a végtermékek a képződési szabadentalpiájuknak megfelelő arányban keletkeznek azaz stabilitásuknak megfelelő arányban (a stabilisabb termékből képződik több, azaz a nagyobb képződési szabadentalpiával rendelkező termékből, G B < G ). 127

128 Kinetikus és termodinamikus kontroll G G= -T S G * G * B A G B B G G = G - G B reakciókoordináta Kinetikus kontroll B Termodinamikus kontroll 128

129 G G * G * B A G G B G = GB - G B reakciókoordináta Mind kinetikus, mind termodinamikus kontroll alatt B lesz a főtermék. 129

130 3 2 2 A Br 2 Br 3 2 Br B E B k 1 A k 2 -k 1 -k 2 G B * G B A G * B G G r 130

131 ikloaddíció 131

132 Koncertikus (összehangolt) reakció A reakció egy lépésben (köztitermék képződése nélkül) megy végbe, két vagy több kötésváltozással. A változások szinkron vagy aszinkron módon mehetnek végbe. Gyűrűs átmeneti állapoton keresztül periciklusos reakciók cikloaddíciók elektrociklusos reakciók elektrociklizáció cikloreverzió szigmatróp átrendeződések keletróp reakciók Nem gyűrűs átmeneti állapoton keresztül S N 2 reakció 132

133 Pályaszimmetriák m 2 A S S A A S S A 133

134 Woodward-offmann szabályok pályaszimmetria (orbitálszimmetria) megmaradásának elve 1965 Kémiai Nóbel-díj Azok a reakciók megengedettek (mennek végbe könnyen), amelyekben az eduktumok (kiindulási vegyületek) reakcióban résztvevő pályáinak a produktumokban (keletkezett vegyületek) azonos szimmetriájú pályák felelnek meg. Kísérleti tények adottak, amelyeket elmélettel támasztunk alá. Fukui (1952) Az elv alóli kivételek azt jelentik, hogy az orbitálszimmetria megmaradásának elve szükséges, de nem elégséges feltétele egy adott reakció végbemenetelének. Tehát hiába engedi meg a reakciót az elv, ha más körülmény nem felel meg a reakció végbemeneteléhez. a a reakció másképpen megy, az nem a törvény felfüggesztését jelenti, hanem más, kedvezőbb energetikai út megnyílását ( azok a reakciók megengedettek, mennek végbe könnyen ). A reakciók végbemeneteléért mindig energiatényezők felelősek. Itt aktiválási energiák vannak, amelyeket becsülni tudunk a pályaszimmetriából. Az atomfizikában elemi megmaradási tételek érvényesülnek. A kémiában az aszimmetriának volt jelentősége (optikai izoméria) ez a szabály viszont a kémiának a szívébe hozta be a szimmetriát. A törvények szimmetriája, a kultúra egyik centrális eleme bekerült a kémiába. Szakmai és kulturális jelentőség. 134

135 Diels-Alder reaction pericyclic reaction cycloaddition reaction, [4+2] diene + dienophile 6-membered ring 4π 2π stereospecificity regioselectivity no significant solvent effect high negative entropy of activation 135

136 [4+2] Diels-Alder reakció O O + O melegítés O O O endo exo ROO 2 OOR + OOR 136

137 Elektrociklizáció és cikloreverzió 137

138 hν 1 2 diszrotáció 4 3 konrotáció 4n hν 1 2 diszrotáció 4 3 konrotáció 2 3 hν 1 4 konrotáció diszrotáció 6 5 4n+2 hν konrotáció diszrotáció 138

139 4n elektronos rendszerek konrotáció 139

140 m m m diszrotáció 140

141 4n+2 elektronos rendszerek konrotáció 141

142 m m m diszrotáció 142

143 Átmeneti állapotok ückel szerint elektrociklizáció cikloreverzió 4n+2 n=1 aromás hν 4n n=1 antiaromás 143

144 Poliolefinek a természetben 3 O O E Vitamin O 3 A Vitamin 3 O O 3 3 O O ( ) n ubikinon (koenzim-q) 'polipr enil-kinon' 144

145 Alkinek 145

146 Acetilének (Alkinek) n 2n-2 Kötési energia 200 kcal/mol 1,2 A sp sp Nómenklatúra Főlánc: az alábbi prioritás szerint: 1. a legtöbb telítetlen (kettős és hármas) kötést tartalmazza, 2. a leghosszabb legyen, 3. a legtöbb kettős kötést tartalmazza, 4. a telítetlenségek a legkisebb helyszámot kapják, 5. a kettős kötés kisebb helyszámot kap, mint a hármas kötés, ha van választási lehetőség, 6. a legtöbb előtagként megnevezhető szubsztituenst tartalmazza. 146

147 etil-4-metilhepta-1,3-dién pent-1-én-4-in metilhex-1-in 147

148 Egyértékű csoportok a számozás a szabad vegyértékű szénatomról indul: 2 vinil (etenil) 2 2-propinil 2 2 allil (2-propenil) a főlánc kiválasztása egyébként a szokásos módon történik Többértékű csoportok -ilidén 3 2 propilidén -ilidin 3 2 propilidin 148

149 Előállítás 1., R 2 X 2 R KO, R R, KO, R R, X X, ha R = NaN 2 R 2. R 1.NaN 2, 2.R Br, R R 149

150 Reakciók I. Addíció 1. Elektrofil addíció: X Markovnyikov-szabály R Br Br R 2 O 3 2 l 2 Br Al 2 O 3 2 O Br Br 2 R 3 Br R 2 Anti-Markovnyikov: peroxid v. fény iniciálással Br R R Br 2 O 2 150

151 X 2 (X = l, Br) Br Br 2 Br transz alacsony hőfok sztöchiometrikus Br 2 Szerves sav addíciója 3 OO Zn 2, 3 O O 2 vinil-acetát Vízaddíció 2 SO 4 gso 4 tautomerizáció 2 O 3 O 3 gso4 2 SO O 3 3 O 151

152 2. Nukleofil addíció Az olefinek esetében csak aktivált (erősen elektronszívó csoportot tartalmazó) kettős kötésekre RO KO RO RO RO 2 vinil-éter 3. idrogénezés - Redukció aktív katalizátorral R 1 R 2 R R dezaktivált katalizátor esetén: olefin keletkezik II. Szubsztitúció: - alkilezés III. Oxidatív hasítás - Oxidáció R 1 O O R KMnO 4 p ~ 7 R 1 R KMnO R 1 R OO OO 152

153 IV. A konjugált bázis addíciós reakciója R R O bázis R R O Előfordulás Biológiailag aktív vegyületekben - szintetikus ösztrogén és gesztagénhatású vegyületek 3 3 O 3 O O O 17α-etinil-tesztoszter on 17α-etinil-ösztr adiol gesztagén pl.: születés szab. ösztrogén pl.: fogamzás gátl. 153

154 Acetilén előállítása és felhasználása ao 3 Kõszén hevítés - O 2 ao 3 ívfény 2500 o N 2 an N o kalcium-ciánamid mésznitrogén a 2 + O kalcium-karbid N 4 NO 3 2 N N klórcián N 3 + l N ciánamid 2 O acetilén (az egész szerves kémia felépíthetõ belõle) 2 Na N o Na + N N Na R R l l Na Na N N R R N N hidrolízis R R N OO dekarboxilezés R R N 154

155 Poliacetilének a természetben 2 ( 2 ) 4 ( 2 ) 7 Eritrogénsav Oncogena klaineana (vírus) O O Dihidromatricariasav Matricaria inodora (ebszékfű) 2 O O Nocardia acidophilus (baktérium) 155

156 Aromás szénhidrogének 156

157 Aromás monociklusos szénhidrogének 157

158 1. Benzol hipotetikus ciklohexatrién alternáló egyes- és kettőskötések 2. Rezonancia határszerkezetek 158

159 Benzol indukált tér Külső mágneses tér 1 NMR: δ aromás- : ~ 7-8 ppm δ olefines- : ~ 5-6 ppm 159

160 Rezonancia enegia: tényleges energia - legalacsonyabb energiájú határszerkezet Benzol atomizációs hő: 1323 kcal/mol (mérés) kötési energiákból számítva: 1289 kcal/mol (A v. B) Rezonancia energia: = 34 kcal/mol A B Empirikus rezonancia energia: 2 benzol kj/mol kj/mol 3 (-120)-(-210) =150 kj/mol 160

161 iklusosan delokalizált pályák felépítése 161

162 Antiaromás rendszerek 162

163 Az eddigiekben lineáris delokalizált rendszereket ismertünk meg. Felvetődik a kérdés, hogy megváltozik-e a delokalizáció jellege, ha a rendszer gyűrűs. Ennek tanulmányozására gondolatban építsünk fel azonos kiindulási vegyületekből lineáris és ciklusos delokalizált rendszereket. a két kiindulási vegyület egyesítése csak egy ponton történik, lineáris, ha két ponton, ciklusos delokalizált vegyület jön létre. Az egyesítés helyeiről természetesen gondolatban egy-egy hidrogénatomot el kell vennünk a σ-kötések kialakítása miatt. Az új π-pályák a megfelelő kiindulási pályák kombinálódásából jönnek létre és a szükséges számú elektronnal a legalacsonyabb energiaszintű pályák népesülnek be. Mivel csak az azonos, vagy közel azonos energiaszintű pályák kombinálódnak egymással jelentősebb mértékben, első megközelítésben feltehetjük, hogy a többi pályák energiája nem módosul lényegesen. ogy a kombinálódás során kötő, vagy lazító kölcsönhatás lép-e fel, azt a kombinálódó pályák fáziselőjeleiből eldönthetjük. A kötő kölcsönhatás energiacsökkenéssel, a lazító energianövekedéssel jár. 163

164

165 A fent elmondottak alapján egyesítsük az allilgyököt és a metilgyököt. a az egyesülés az allilgyöknek csak az egyik végén történik, a lineáris szerkezetű 1,3-butadién (továbbiakban: butadién), ha mindkét végén, akkor a ciklusos 1,3-ciklobutadién (továbbiakban: ciklobutadién) keletkezik:

166 Antiaromás rendszer képződhet minden olyan esetben, amikor ciklusos delokalizációra megvannak a feltételek (1. a gyűrűt felépítő valamennyi atom sp 2 -hibrid állapotban van; 2. a gyűrű koplanáris és 3. a delokalizált pályákat 4n π-elektron tölti be). A ciklobutadién (és hasonlóképpen más antiaromás rendszerek is) instabil, igen reakcióképes vegyület, előállítása eddig csak különleges körülmények között sikerült (a ciklobutadién reakcióképességéhez az elmondottakon kívül hozzájárul az erős gyűrűfeszültség is). A ciklobutadién π-pályáinak fáziselőjeleit könnyen megkaphatjuk úgy, hogy a lineáris rendszer pályáit gyűrűbe hajlítjuk. Az ábrából látható, hogy valamennyi pálya ugyanazokra a szimmetriaelemekre (két egymásra merőleges szimmetriasík) szimmetrikus vagy antiszimmetrikus. Az is látható, hogy a degenerált pályákon a fáziselőjel-váltások (vagyis a gyűrű síkjára merőleges csomósíkok) száma azonos, és ez jelzi energiaszintjük azonosságát is. (Az ábrákon az egyszerűség kedvéért a kombinálódó p-pályák egyik felének a fáziselőjelét adtuk meg, a másik felüké természetszerűen ellentétes.) 166

167 E E

168 Aromás rendszerek 168

169 Egyesítsük most a 2,4-pentadienilgyököt (továbbiakban: pentadienilgyök) és metilgyököt a korábban már mondottak szerint. a az egyesülés a pentadienilgyöknek csak az egyik végén történik, a lineáris szerkezetű 1,3,5- hexatrién (továbbiakban: hexatrién), ha mindkét végén, a ciklusos 1,3,5- ciklohexatrién* vagy közismert nevén benzol keletkezik: * Ez valójában egy hipotetikus szerkezet, l. előbb

170 A hexatrién kialakulása lényegében hasonlóan írható le, mint a butadiéné: a pentadienilgyök nemkötőpályája a metilgyök p-pályájával kötő- vagy lazító kölcsönhatásba lép és egy kötő- és egy lazítópálya alakul ki. Mivel az elektronok ismét csak a kötőpályát népesítik be, a kialakuló hatcentrumú delokalizált rendszer π-elektronenergiája ismét alacsonyabb lesz, mint a kiindulási vegyületeké együttesen

171 A benzol π-elektronrendszerének kialakulásakor viszont a változások eltérők a ciklobutadiénétől. A metilgyök a pentadienilgyök mindkét végével kölcsönhatásba lép, de ez a kölcsönhatás mindkét helyen azonos. Vagy mindkét végén kötő kölcsönhatás lép fel, ezért a kialakuló kötőpálya energiaszintje kétszeresen csökken és azonos lesz a pentadienilgyök 2. pályáéval. Vagy mindkét végén lazító kölcsönhatás lép fel, a kialakuló pálya energiaszintje kétszeresen emelkedik és azonos lesz a pentadienilgyök 4. pályájának energiaszintjével. Ismét degenerált pályák jönnek tehát létre, de energiájuk vagy sokkal kisebb, vagy sokkal nagyobb, mint a nemkötő pályáké. Mivel az elektronok csak a kötő pályákat töltik be, a benzol π-elektronenergiája nemcsak a kiindulási vegyületek összegénél, hanem a hexatriénénél is alacsonyabb lesz. 171

172

173 Aromás rendszer képződhet minden olyan esetben, amikor ciklusos delokalizációra megvannak a feltételek (l. az 1-3. feltétel antiaromás vegyületeknél) és a delokalizált pályákat (4n + 2) π-elektron tölti be. Az aromás vegyületek stabilisak, π-elektronjaik gerjesztéséhez magasabb energia szükséges (legmagasabb ultraibolya elnyelési sávjuk alacsonyabb hullámhossznál van, mint a megfelelő lineáris rendszeré), és ha kémiai reakció következtében az aromás rendszer felbomlott, erős hajlam mutatkozik a regenerálódásra. E k + l l k l E k E E l 3 3 Azokat a ciklusos vegyületeket, amelyeknek π-elektronenergiája alacsonyabb, mint a nekik megfelelő lineáris vegyületeké, aromás vegyületeknek nevezzük. Lezárt elektronhéj a jellemző (ückel-rendszer). 173

174 A benzol π-pályáinak fáziselőjeleit ismét könnyen megkaphatjuk úgy, hogy a lineáris rendszer pályáit gyűrűbe hajlítjuk. Mivel valamennyi pályának ismét azonos szimmetriaelemekre (két egymásra merőleges szimmetriasík) kell szimmetrikusnak vagy antiszimmetrikusnak lennie, és így az egyik szimmetriasík két szemközti szénatomon megy keresztül, a harmadik és negyedik pálya felépítésében az ezen két szénatomtól eredő p-pályák nem vesznek részt. Az ábrából az is látható, hogy a degenerált pályákon a fáziselőjel-váltások (vagyis a gyűrű síkjára merőleges csomósíkok) száma azonos. Ez utóbbi ismét jelzi energiaszintjeik azonosságát. 174

175 E E E

176 Benzol Az energiaszegény állapotra való törekvés kényszeríti a szerkezetet közös síkba. 6 π elektron általában: 4n+2 elektron Sokkal stabilisabb, mint a megfelelő nemaromás vegyület Az aromás rendszer kialakulásának feltétele: 1. Folyamatosan konjugált gyűrűs rendszer legyen (p z atompályán) 2. 4n+2 elektron részvétele a delokalizációban (ückel szabály) 3. A gyűrűrendszert alkotó atomváz koplanáris vagy közel koplanáris legyen Aromaticitás: az elektron köráram stabilizálja a rendszert Paramágneses eltolódás: a külső hidrogénatomok kémiai eltolódása magasabb, mint a megfelelő nemaromás rendszer esetén 176

177 6-tagú aromás gyűrűk Benzol szén-szén kötéstávolság: 1,40 A vö: sp2 - sp2 : 1,48 A sp2 = sp2 : 1,32 A Piridin Piriliumkation N N pir idíniumkation N O 177

178 π - szextettet tartalmazó egyéb aromás rendszerek iklopentadienid-anion bázis pk A = 16! Pirrol, tiofén, furán X X : N pirrol S tiofén O fur án 178

179 Arének Nómenklatúra 3 2 benzol toluol metilbenzol sztirol vinilbenzol kumol izopropilbenzol o-xilol m-xilol p-xilol 179

180 180

181 2 3 fenil benzil o-tolil benzilidén benzilidin Annulén név: benzol [6]-annulén 181

182 Antiaromás vegyületek 4 π elektron általában: 4n elektron Sokkal kevésbé stabilis, mint a megfelelő nemaromás vegyület 1. Folyamatosan konjugált gyűrűs rendszer legyen (p z atompályán) 2. 4n elektron részvétele a delokalizációban (ückel szabály) 3. A gyűrűrendszert alkotó atomváz koplanáris vagy közel koplanáris legyen 182

183 E AO lazító nemkötő kötő ciklobutadién 4π elektron benzol 6π elektron ciklooktatetr aén 8π elektron planár is 1,33 A 1,46 A 183

184 2 1 Na π 10 ar omás 8 ciklooktatetr aén b a δ b = ppm a = = 8.5 omoar omás vegyület (ionok) egy vagy több sp 3 szénatom jelenléte konjugált gyűrűben 184

185 Ag I antiar omás Ag I 185

186 5 4 -O 6 π 6 3 O cikloheptatr ienilium-kation (tr opiliumkation) ar omás 186

187 ückel- és Möbius szerinti aromaticitás 187

188 First Möbius Aromatic (2003) Ajami, D.; Oeckler, O.; Simon, A.; erges, R. Nature 2003,426, astro,.; hen, Z.; Wannere,. S.; Jiao,.; Karney, W. L.; Mauksch, M.; Puchta, R.; ommes, N. J. R. v. E.; Schleyer, P. v. R. J. Am. hem. Soc. 2005,127,

189 Möbius Antiaromatic igashino, T.; Lim, J.; Miura, T.; Saito, S.; Shin, J. Y.; Kim, D.; Osuka, A. Angew. hem. Int. Ed. 2010,49,

190 190

191 191

192 All Möbius systems are chiral. Separation can be obtained using chiral columns. Most syntheses to date have yielded racemic mixtures. 192

193 193

194 194

195 195

196 Kondenzált policiklusos aromás szénhidrogének Naftalin = 1,36 A 2-3 = 1,42 A Rezonanciaenergia: 61 kcal/mol 196

197 Antracén Br 2 Br Br Rezonanciaenergia: 84 kcal/mol Fenantrén Rezonanciaenergia: 92 kcal/mol

198 bázis indén pk a ~ 20 indenid-anion 10π elektron bázis fluorén pk a ~ 23 fluorenidion 14π elektron 198

199 Aromás vegyületek kémiai tulajdonságai 199

200 200

201 1. alogénezés l 2 vagy Br 2 Br 2 FeBr 3 Br FeBr 3 Br 2 [FeBr 4 ] Br Jódozás: I 2 önmagában nem reaktív I 2 + Sbl 5 I 2 + AgNO 3 Il alogénező ágensek reaktivitása: l 2 > Brl > Br 2 > Il > I 2 201

202 2. Nitrálás N O O NO 2 Nitráló ágensek: a) Nitrálósav : benzol, kevésbé reaktív vegyületek 2 SO 4 NO 3 2 NO 3 SO 4 2 O NO 2 2 SO 4 3 O NO 2 SO 4 b) NO 3, aktívabb vegyületek esetében (aminok, fenolok) c) NaNO 2 + F 3 -OO d) Nitróniumsók: + NO 2 BF 4 202

203 3. Szulfonálás 2 SO 4 SO 3 Ágensek: cc. 2 SO 4, SO 3, óleum 4. Friedel-rafts reakció a) Alkilezés Rl All 3 R Alkilezőszerek: R-X (alkil-halogenid) olefinek alkoholok R-X Katalizátor: Lewis-sav R-F > R-l > R-Br > R-I ( 3 ) 3 l Fel 3 ( 3 ) 3 Fel 4 203

204 ( 3 ) 3 ( 3 ) 3 ( 3 ) l All All

205 Olefin X + BF BF 3 X Alkoholok: aktívabbak, mint az alkil-halogenidek, de több katalizátor kell! R O All 3 R (RO All 3 ROAll 2 R OAll 2 ) Katalizátor ativitási sorrend alkilezésben AlBr 3 > All 3 > Fel 3 > Sbl 5 > Snl 4 > BF 3 Mellékreakció veszélye: polialkilezés (lásd: aktiváló szubsztituensek) Intenzív keverés : monoalkilezés preferált 205

206 b) Acilezés O + R O l All 3 R + l Mechanizmus: 3 O + All 3 l 3 O l All O O All 4 All 4 206

207 O All O All 4 +All 3 - All 3 3 All 4 O All l + All 3 jég víz - All 3 O 3 acetofenon Sztöchiometrikus + kat. mennyiségű katalizátor kell! 207

208 1. 2. Intramolekuláris Friedel-rafts r. Bi- és policiklusos gyűrűrendszerek szintézise O 2 O O 2 O 2 red. All 3 2 O O O O O All 3 l 3. Bischler-Napieralski reakció O O R O N POl 3 R N

209 Acilezőszerek: O R R l R O O 2 O R O savklorid savanhidrid ketén sav O O Átrendeződéssel: Fries-átrendeződés: inter v. intramolekuláris O O R All 3 O All 3 O R O Foto-Fr ies: O hν O R O R O O R O O ger jesztett áll. R O OR 209

210 Aromás elektrofil szubsztitúciós reakciók irányítási szabályai 210

211 I) Irányítási szabályok S E Ar reakciókban Monoszubsztituált benzolszármazékok további szubsztitúciós reakciója: 1. Y Y W Y Y W 1,2 (orto) 1,3 (meta) W 1,4 (para) 2. A benzolhoz képest a reakciósebesség lehet lassúbb vagy gyorsabb dezaktiváló, illetve aktiváló szubsztituens 3. A termék képződése legtöbbször kinetikusan kontrollált. 4. A termékarány a reakció irreverzibilitásától függ(het). 211

212 Aktiváló és orto/para irányító 212

213 Aktiváló és orto/para irányító Figyelem: Friedel-rafts alkilezés! 213

214 Dezaktiváló és meta irányító 214

215 Dezaktiváló és orto/para irányító 215

216 216

217 Az aromás elektrofil szubsztitúció (S E Ar) irányítási szabálya (kinetikus kontroll) Irányító szubsztituens Effektusai Eredő hatásuk Irányító hatás -O - +I, +M -N 2, -NR, -NR 2 -O, -OR -NOR -I < +M -OOR alkil +I, + aril +M -F, -l, -Br, -I; - 2 l, - 2 NO 2 -I > +M Aktiváló hatás nő orto és para irányító hatás -ON 2, -ONR, -ONR 2 -OO, -OOR -O, -OR -SO -I, -M 3, -SO 2 N 2, -SO 3 R - N -NO 2 -(N N) + -NR 3+, -N + 3 -I, - Dezaktiváló hatás nő meta irányító hatás 217

218 218

219 219

220 D D + D 2 SO 4 DSO DSO

221 O O l l ~ E E ~ E E +K E +K E +K E O -I +K O -I +K O -I ~ ~ ~ +K O -I O -I O -I E E E > > > O -I O -I O -I E E E E +K > > E +K > > E +K > > l -I l -I l -I E E E ~ ~ ~ +K E +K E +K E l -I l -I l -I > > > l -I l -I l -I E E E > > > O O O -I -I -I E E E > > > -K -K -K O O O -I -I -I E E E ~ ~ ~ O -K -K E O E O -K E -I -I -I I. o. aktiváló benzol I. o. dezaktiváló II. o. dezaktiváló +K > -I +K < -I -K, -I σ-komplexek növekvő stabilitási sorrendje

222 II) Aromás nukleofil szubsztitúció (S N Ar) S N 2-Ar mechanizmus a) l l OEt lassú OEt NO 2 O N O l OEt l OEt l OEt OEt gyors l NO 2 NO 2 NO 2 NO 2 222

223 S N 2 Ar intermedieren keresztül megy! E Meisenheimer komplex alogén r eaktivitás : F>l~Br >I r Példa: l 3 N 3 NO 2 NO 2 ( 3 ) 2 N NO 2 NO 2 223

224 S E 2Ar l l l NO 2 NO 2 NO 2 + NO 2 + B S N 2Ar B NO 2 Wheland intermedier NO 2 l l O O NO 2 NO 2 NO 2 + O + l Meisenheimer intermedier 224

225 S N 1-Ar mechanizmus b) N N lassú N 2 gyors Y Y Balz-Schiemann reakció N 2 N N BF 4 F 1. NaNO 2 /l 2. NaBF 4 BF 3 N 2 225

226 226

227 Aromás policiklusos szénhidrogének Izolált policiklusok Kondenzált policiklusok 227

228 Izolált policiklusos aromás szénhidrogének 1. Bifenil-származékok A A Atropizoméria: pl.: A = OO; B = NO 2 B B 45 o 135 o 225 o 315 o ϕ 2. Di- és trifenilmetán Vegyület Konjugált bázis pk a benzol 43 toluol 2 41 difenilmetán

229 Vegyület Konj. bázis pka trifenilmetán 31 Ph 3 NaN 2 Ph 3 Na nátr ium-(tr ifenil-metanid) Ph 3 l Ph 3 l tr itilkation (tr itil-klor id) Ph 3 l R 2 O Ph 3 O 2 R R R' O R R' O R" tr itil-alkil-éter 2 /Pd v. nincs reakció R 2 O 229

230 3. Fluorén KO K O Na 2 r 2 O 7 3 OO 14 π elektr on ar omás pk A = 23 fluor enon 230

231 Bifenil és trifenilmetán előállítása 2 lg 2 u/ 2 u/ 2 N N SO 4 R aril-halogenid ulg R R N 2 + u SO 4 R arildiazóniumhidrogénszulfát l 3 All 3 3 l All ( 6 5 ) l l 231

232 Axiális kiralitás - atropizoméria 2 OO OO 2 ' OO OO 6 Br 6 ' Br Br Br tükörsík c 2 4 OO 2 1 OO Br 3 Br Br OO Br 1 c 2 OO R S 232

233 Kondenzált policiklusos aromás szénhidrogének S E Ar 1. Az első szubsztituens belépése: 1>2 helyzet 2. A második szubsztituens: - ha az első 1-es helyzetű és aktiváló 4-es helyzetbe megy - ha az első 2-es helyzetű és aktiváló 1-es helyzetbe megy 3. A második szubsztituens, ha dezaktiváló (vagy halogénatom) a másik gyűrűbe 5- vagy 8-helyzetbe megy 233

234 α β k α E k β E E E E E 234

235 α-helyzetű δ-komplex 2 ar + 3 nem ar Y Y Y Y Y ar ar β-helyzetű δ-komplex 1 ar + 4 nem ar Y Y Y Y Y ar 235

236 NO 2 NO 2 NO 2 * ** NO 3 1,8 peri-helyzet * * ** ** NO 2 NO 2 ** erősebben dezaktivált helyek * gyengébben dezaktivált helyek * ** NO 3 1,6 epi-helyzet * O ** l - [ N N + NO 2 SO 3 O i) Aktivált*/dezaktivált* helyek ii) Saját gyűrű > kapcsolódó gyűrű iii) α > β komplex * ** N N ** erősebben aktivált helyek * gyengébben aktivált helyek SO 3 SO 3 l - N N * ** O [ N SO 3 N + O * ** 236

237 Nitrálás 8 1 NO NO 3 3 OO + NO 2 90 % 10 % NO 2 NO 3 NO 2 + NO 2 NO 2 2 SO 4 NO 2 237

238 Szulfonálás 2 SO 4 80 o 2 SO o SO SO 4 SO o naftalinszulfonsav 2-naftalinszulfonsav 238

239 kinetikus kontroll 2 SO 4 / + SO 2 O - + SO 2 O 2 SO 4 kinetikus + + kontroll - + termodinamikus kontroll SO 2 O termodinamikus kontroll SO 2 O (ld. lent) SO 2 O X X X X K X N K X N N X K N X K K: kedvezményezett N: nem kedvezményezett 239

240 Acilezés 3 Ol All 3, S Ol All 3, nitr obenzol 40 o O 3 + O 3 O 3 65% 35% 90% 240

241 Addíciós reakciók idrogénezés Birch-redukció Na/N O Pt, nyomás 2 /Ni 1,4-dihidr o tetr alin cisz-dekalin tr ansz-dekalin 241

242 Fontosabb származékok Naphtalene naftalin Anthracene antracén Phenantrene fenantrén hrysene krizén Pyrene pirén fullerén Tetracene tetracén oronene koronén 242

243 Kőszénkátrány (Pix lithanthracis) Szén száraz lepárlása Világítógáz Gázvíz és kőszénkátrány Koksz Kőszénkátrány frakciók Könnyűolaj 90-es benzol toluol szolventnafta I. szolventnafta II. Középolaj Nehézolaj Antracénolaj Szurok 243

244 Kőszén feltételezett szerkezete 244

Szerves kémia 2014/2015

Szerves kémia 2014/2015 Szerves kémia 2014/2015 Szerves vegyületek csoportjai Egyéb tématerületek Szerves vegyületek csoportjai Alifás szénhidrogének Alkánok Alkének Alkinek Aromás vegyületek Karboaromás vegyületek eteroaromás

Részletesebben

Periciklusos reakciók

Periciklusos reakciók Periciklusos reakciók gyűrűs átmeneti állapoton keresztül, köztitermék képződése nélkül, egyetlen lépésben lejátszódó ( koncertáló ) reakciókat Woodward javaslatára periciklusos reakcióknak nevezzük. Ezeknek

Részletesebben

Részletes tematika: I. Félév: 1. Hét (4 óra): 2. hét (4 óra): 3. hét (4 óra): 4. hét (4 óra):

Részletes tematika: I. Félév: 1. Hét (4 óra): 2. hét (4 óra): 3. hét (4 óra): 4. hét (4 óra): Részletes tematika: I. Félév: 1. Hét (4 óra): Szerves Vegyületek Szerkezete. Kötéselmélet Lewis kötéselmélet; atompálya, molekulapálya; molekulapálya elmélet; átlapolódás, orbitálok hibridizációja; molekulák

Részletesebben

R nem hidrogén, hanem pl. alkilcsoport

R nem hidrogén, hanem pl. alkilcsoport 1 Minimumkövetelmények C 4 metán C 3 - metilcsoport C 3 C 3 C 3 metil kation metilgyök metil anion C 3 -C 3 C 3 -C 2 - C 3 -C 2 C 3 -C 2 C 3 -C 2 C 2 5 - C 2 5 C 2 5 C 2 5 etán etilcsoport etil kation

Részletesebben

Helyettesített Szénhidrogének

Helyettesített Szénhidrogének elyettesített Szénhidrogének alogénezett szénhidrogének Alifás halogénvegyületek Szerkezet Kötéstávolság ( ) omolitikus disszociációs energia (kcal/mol) Alkil-F 1,38 116 Alkil-l 1,77 81 Alkil-Br 1,91 66

Részletesebben

R R C X C X R R X + C H R CH CH R H + BH 2 + Eliminációs reakciók

R R C X C X R R X + C H R CH CH R H + BH 2 + Eliminációs reakciók Eliminációs reakciók Amennyiben egy szénatomhoz távozó csoport kapcsolódik és ugyanazon a szénatomon egy (az ábrákon vel jelölt) bázis által protonként leszakítható hidrogén is található, a nukleofil szubsztitúció

Részletesebben

Tantárgycím: Szerves kémia

Tantárgycím: Szerves kémia Eötvös Loránd Tudományegyetem Természettudományi Kar Biológia Szak Kötelező tantárgy TANTÁRGY ADATLAP és tantárgykövetelmények 2005. Tantárgycím: Szerves kémia 2. Tantárgy kódja félév Követelmény Kredit

Részletesebben

Fémorganikus kémia 1

Fémorganikus kémia 1 Fémorganikus kémia 1 A fémorganikus kémia tárgya a szerves fémvegyületek előállítása, szerkezetvizsgálata és kémiai reakcióik tanulmányozása A fémorganikus kémia fejlődése 1760 Cadet bisz(dimetil-arzén(iii))-oxid

Részletesebben

4) 0,1 M koncentrációjú brómos oldat térfogata, amely elszínteleníthető 0,01 mól alkénnel: a) 0,05 L; b) 2 L; c) 0,2 L; d) 500 ml; e) 100 ml

4) 0,1 M koncentrációjú brómos oldat térfogata, amely elszínteleníthető 0,01 mól alkénnel: a) 0,05 L; b) 2 L; c) 0,2 L; d) 500 ml; e) 100 ml 1) A (CH 3 ) 2 C=C(CH 3 ) 2 (I) és CH 3 -C C-CH 3 (II) szénhidrogének esetében helyesek a következő kijelentések: a) A vegyületek racionális (IUPAC) nevei: 2-butén (I) és 2-butin (II) b) Az I-es telített

Részletesebben

Sztereokémia II. Sztereokémia III.

Sztereokémia II. Sztereokémia III. Szerves Kémia (1) kv1n1es1/1, kredit: 4; Jalsovszky István Sztereokémia I. Sztatikus sztereokémia. A szén tetraéderes vegyértékorientációja és ennek következményei. Molekulamodellek használata a sztereokémia

Részletesebben

Összefoglalás. Telített Telítetlen Aromás Kötések Csak -kötések és -kötések és delokalizáció. Kötéshossz Nagyobb Kisebb Átmenet a kettő között

Összefoglalás. Telített Telítetlen Aromás Kötések Csak -kötések és -kötések és delokalizáció. Kötéshossz Nagyobb Kisebb Átmenet a kettő között Összefoglalás Telített Telítetlen Aromás Kötések Csak -kötések és -kötések és delokalizáció Kötéshossz Nagyobb Kisebb Átmenet a kettő között Reakciókészség Paraffin (legkevésbé) Nagy Átmenet a kettő között

Részletesebben

MECHANIZMUSGYŰJTEMÉNY a Szerves kémia I. előadáshoz

MECHANIZMUSGYŰJTEMÉNY a Szerves kémia I. előadáshoz Budapesti Műszaki és Gazdaságtudományi Egyetem Vegyészmérnöki és Biomérnöki Kar Szerves Kémia és Technológia Tanszék MECHANIZMUSGYŰJTEMÉNY a Szerves kémia I. előadáshoz Készítette: Kormos Attila Lektorálta:

Részletesebben

Budapest, június 15. Dr. Hornyánszky Gábor egyetemi docens

Budapest, június 15. Dr. Hornyánszky Gábor egyetemi docens SZERVES KÉMIA BIOMÉRNÖKÖKNEK B.Sc. képzés, kód: BMEVESZA204 Tantárgy követelményei 2016/2017 tanév I. félév A tárgy heti előadásból és 2 óra tantermi gyakorlatból áll. A tárgy szóbeli vizsgával zárul.

Részletesebben

Szerves kémiai reakciók csoportosítása Kinetikus és termodinamikus kontroll Szubsztituens hatások Sav-bázis tulajdonságokat befolyásoló tényezők

Szerves kémiai reakciók csoportosítása Kinetikus és termodinamikus kontroll Szubsztituens hatások Sav-bázis tulajdonságokat befolyásoló tényezők Alapismeretek 4. Szerves kémiai reakciók csoportosítása Kinetikus és termodinamikus kontroll Szubsztituens hatások Sav-bázis tulajdonságokat befolyásoló tényezők Reaktivitás és stabilitás Kísérlettervezés

Részletesebben

SZERVES KÉMIAI REAKCIÓEGYENLETEK

SZERVES KÉMIAI REAKCIÓEGYENLETEK SZERVES KÉMIAI REAKCIÓEGYENLETEK Budapesti Reáltanoda Fontos! Sok reakcióegyenlet több témakörhöz is hozzátartozik. Szögletes zárójel jelzi a reakciót, ami más témakörnél található meg. Alkánok, cikloalkánok

Részletesebben

Szerves kémia Fontosabb vegyülettípusok

Szerves kémia Fontosabb vegyülettípusok Fontosabb vegyülettípusok Szénhidrogének: alifás telített (metán, etán, propán, bután, ) alifás telítetlen (etén, etin, ) aromás (benzol, toluol, naftalin) Oxigéntartalmú vegyületek: hidroxivegyületek

Részletesebben

Bevezetés. Szénvegyületek kémiája Organogén elemek (C, H, O, N) Életerő (vis vitalis)

Bevezetés. Szénvegyületek kémiája Organogén elemek (C, H, O, N) Életerő (vis vitalis) Szerves kémia Fontos tudnivalók Tárgy neve: Kémia alapjai I. Neptun kód: SBANKE1050 Előadó: Borzsák István C121 szerda 11-12 e-mail: iborzsak@ttk.nyme.hu http://www.bdf.hu/ttk/fldi/iborzsak/dokumentumok/

Részletesebben

Alkánok összefoglalás

Alkánok összefoglalás Alkánok összefoglalás Nem vagyok különösebben tehetséges, csak szenvedélyesen kíváncsi. Albert Einstein Rausch Péter kémia-környezettan tanár Szénhidrogének Szénhidrogének Telített Telítetlen Nyílt láncú

Részletesebben

Cikloalkánok és származékaik konformációja

Cikloalkánok és származékaik konformációja 1 ikloalkánok és származékaik konformációja telített gyűrűs szénhidrogének legegyszerűbb képviselője a ciklopropán. Gyűrűje szabályos háromszög alakú, ennek megfelelően szénatomjai egy síkban helyezkednek

Részletesebben

A KÉMIA ÚJABB EREDMÉNYEI

A KÉMIA ÚJABB EREDMÉNYEI A KÉMIA ÚJABB EREDMÉNYEI A KÉMIA ÚJABB EREDMÉNYEI 98. kötet Szerkeszti CSÁKVÁRI BÉLA A szerkeszt bizottság tagjai DÉKÁNY IMRE, FARKAS JÓZSEF, FONYÓ ZSOLT, FÜLÖP FERENC, GÖRÖG SÁNDOR, PUKÁNSZKY BÉLA, TÓTH

Részletesebben

Olyan magkedvelő részecske, amely (legalább) két különböző atomján képes kötést létesíteni a(z elektrofil) reakciópartnerrel.

Olyan magkedvelő részecske, amely (legalább) két különböző atomján képes kötést létesíteni a(z elektrofil) reakciópartnerrel. akceptorszám (akceptivitás) aktiválási energia (E a ) activation energy aktiválási szabadentalpia (ΔG ) Gibbs energy of activation aktivált komplex activated complex ambidens nukleofil amfiprotikus (oldószer)

Részletesebben

SZERVES KÉMIA. Szénvegyületek kémiája Lavoisier: az élő természetből származó anyagok elemi összetétele: Antoine Lavoisier 1743-1794

SZERVES KÉMIA. Szénvegyületek kémiája Lavoisier: az élő természetből származó anyagok elemi összetétele: Antoine Lavoisier 1743-1794 SZERVES KÉMIA Szénvegyületek kémiája Lavoisier: az élő természetből származó anyagok elemi összetétele: szén, hidrogén, oxigén, nitrogén organogén elemek Antoine Lavoisier 1743-1794 Egy fejet levágni csak

Részletesebben

5. Előadás. Szénhidrogének: alkánok, alkének, alkinek

5. Előadás. Szénhidrogének: alkánok, alkének, alkinek 5. Előadás Szénhidrogének: alkánok, alkének, alkinek 19. Szénhidrogének 19.1.Alkánok (paraffinok), cikloalkánok omológ sor: eltérés egyetlen metilén ( 2 ) csoportban metán 4 1 etán 2 6 1 propán 3 8 1 ciklopropán

Részletesebben

O 2 R-H 2 C-OH R-H 2 C-O-CH 2 -R R-HC=O

O 2 R-H 2 C-OH R-H 2 C-O-CH 2 -R R-HC=O Funkciós csoportok, reakcióik II C 4 C 3 C 2 C 2 R- 2 C- R- 2 C--C 2 -R C 2 R-C= ALKLK, ÉTEREK Faszesz C 3 Toxikus 30ml vakság LD 50 értékek alkoholokra patkányokban LD 50 = A populáció 50%-ának elhullásához

Részletesebben

Szerves kémiai alapfogalmak

Szerves kémiai alapfogalmak BEVEZETÉS A kémiai tudományok fejlődését végigtekintve látható, hogy közöttük a szerves kémia az egyik legfiatalabb. Bár a természetet figyelő ember első tapasztalata között már évezredekkel ezelőtt is

Részletesebben

6. Monoklór származékok száma, amelyek a propán klórozásával keletkeznek: A. kettő B. három C. négy D. öt E. egy

6. Monoklór származékok száma, amelyek a propán klórozásával keletkeznek: A. kettő B. három C. négy D. öt E. egy 1. Szerves vegyület, amely kovalens és ionos kötéseket is tartalmaz: A. terc-butil-jodid B. nátrium-palmitát C. dioleo-palmitin D. szalicilsav E. benzil-klorid 2. Szénhidrogén elegy, amely nem színteleníti

Részletesebben

III. Telítetlen szénhidrogének (alkének, alkinek)

III. Telítetlen szénhidrogének (alkének, alkinek) III. Telítetlen szénhidrogének (alkének, alkinek) Szerkezeti szempontból legjellegzetesebb sajátságuk az, hogy a molekula egy vagy több szénatompárja kettős (σπ, alkének), vagy hármas (σ2π, alkinek) kötéssel

Részletesebben

1. Önkéntes felmérő (60 perc)

1. Önkéntes felmérő (60 perc) 1. Önkéntes felmérő (60 perc) 2. Időpont: 2016 április 4 A. csoport 10:20 perc B. csoport 11:40 perc 3. Jelentkezés: 2016 március 31 éjfélig email: Dókus Levente dokuslevente@gmail.com 4. Mindenki visszaigazolást

Részletesebben

Palládium-organikus vegyületek

Palládium-organikus vegyületek Palládium-organikus vegyületek 1894 Phillips: C 2 H 4 + PdCl 2 + H 2 O CH 3 CHO + Pd + 2 HCl 1938 Karasch: (C 6 H 5 CN) 2 PdCl 2 + RCH=CHR [(π-rhc=chr)pdcl 2 ] 2 Cl - Cl Pd 2+ Pd 2+ Cl - - Cl - H O 2 2

Részletesebben

A kovalens kötés elmélete. Kovalens kötésű molekulák geometriája. Molekula geometria. Vegyértékelektronpár taszítási elmélet (VSEPR)

A kovalens kötés elmélete. Kovalens kötésű molekulák geometriája. Molekula geometria. Vegyértékelektronpár taszítási elmélet (VSEPR) 4. előadás A kovalens kötés elmélete Vegyértékelektronpár taszítási elmélet (VSEPR) az atomok kötő és nemkötő elektronpárjai úgy helyezkednek el a térben, hogy egymástól minél távolabb legyenek A központi

Részletesebben

Polimerizáció. A polimerizáci jellemzőit. t. Típusai láncpolimerizáció lépcsős polimerizáció Láncpolimerizációs módszerek. Monomerek szerkezete vinil

Polimerizáció. A polimerizáci jellemzőit. t. Típusai láncpolimerizáció lépcsős polimerizáció Láncpolimerizációs módszerek. Monomerek szerkezete vinil Polimerizáció Bevezetés Gyökös polimerizáció alapvető lépések kinetika mellékreakciók Ionos polimerizáció kationos polimerizáció anionos polimerizáció Sztereospecifikus polimerizáció Kopolimerizáció Ipari

Részletesebben

KONJUGÁLT KÖTÉSŰ POLIMEREK ÉS SZÉN-NANOSZERKEZETEK I. FULLERÉNEK

KONJUGÁLT KÖTÉSŰ POLIMEREK ÉS SZÉN-NANOSZERKEZETEK I. FULLERÉNEK ÓBUDAI EGYETEM ANYAGTUDOMÁNYI SZEMINÁRIUMOK, 2014. MÁJUS 12. PEKKER SÁNDOR MTA WIGNER SZFI KONJUGÁLT KÖTÉSŰ POLIMEREK ÉS SZÉN-NANOSZERKEZETEK I. FULLERÉNEK KONJUGÁLT KÖTÉSŰ POLIMEREK ÉS SZÉN-NANOSZERKEZETEK

Részletesebben

Heterociklusos vegyületek

Heterociklusos vegyületek Szerves kémia A gyűrű felépítésében más atom (szénatomon kívül!), ún. HETEROATOM is részt vesz. A gyűrűt alkotó heteroatomként leggyakrabban a nitrogén, oxigén, kén szerepel, (de ismerünk arzént, szilíciumot,

Részletesebben

Szalai István. ELTE Kémiai Intézet 1/74

Szalai István. ELTE Kémiai Intézet 1/74 Elsőrendű kötések Szalai István ELTE Kémiai Intézet 1/74 Az előadás vázlata ˆ Ismétlés ˆ Ionos vegyületek képződése ˆ Ionok típusai ˆ Kovalens kötés ˆ Fémes kötés ˆ VSEPR elmélet ˆ VB elmélet 2/74 Periodikus

Részletesebben

Laboratóriumi technikus laboratóriumi technikus Drog és toxikológiai

Laboratóriumi technikus laboratóriumi technikus Drog és toxikológiai A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

A kovalens kötés polaritása

A kovalens kötés polaritása Általános és szervetlen kémia 4. hét Kovalens kötés A kovalens kötés kialakulásakor szabad atomokból molekulák jönnek létre. A molekulák létrejötte mindig energia csökkenéssel jár. A kovalens kötés polaritása

Részletesebben

Szerves kémiai szintézismódszerek

Szerves kémiai szintézismódszerek Szerves kémiai szintézismódszerek 5. Szén-szén többszörös kötések kialakítása: alkének Kovács Lajos 1 Alkének el állítása X Y FGI C C C C C C C C = = a d C O + X C X C X = PR 3 P(O)(OR) 2 SiR 3 SO 2 R

Részletesebben

KARBONSAV-SZÁRMAZÉKOK

KARBONSAV-SZÁRMAZÉKOK KABNSAV-SZÁMAZÉKK Karbonsavszármazékok Karbonsavak H X Karbonsavszármazékok X Halogén Savhalogenid l Alkoxi Észter ' Amino Amid N '' ' Karboxilát Anhidrid Karbonsavhalogenidek Tulajdonságok: - színtelen,

Részletesebben

2004.március A magyarországi HPV lista OECD ajánlás szerint 1/6. mennyiség * mennyiség* kategória ** (Use pattern)

2004.március A magyarországi HPV lista OECD ajánlás szerint 1/6. mennyiség * mennyiség* kategória ** (Use pattern) 2004.március A magyarországi HPV lista OECD ajánlás szerint 1/6 1 74-86-2 Acetilén Disszugáz 2 107-13-1 Akrilnitril 2-propénnitril Zárt rendszerben használva 3 7664-41-7 Ammónia 1A Nem izolált intermedierek

Részletesebben

Tartalomjegyzék. Szénhidrogének... 1

Tartalomjegyzék. Szénhidrogének... 1 Tartalomjegyzék Szénhidrogének... 1 Alkánok (Parafinok)... 1 A gyökök megnevezése... 2 Az elágazó szénláncú alkánok megnevezése... 3 Az alkánok izomériája... 4 Előállítás... 4 1) Szerves magnéziumvegyületekből...

Részletesebben

KARBONSAVAK. A) Nyílt láncú telített monokarbonsavak (zsírsavak) O OH. karboxilcsoport. Példák. pl. metánsav, etánsav, propánsav...

KARBONSAVAK. A) Nyílt láncú telített monokarbonsavak (zsírsavak) O OH. karboxilcsoport. Példák. pl. metánsav, etánsav, propánsav... KABNSAVAK karboxilcsoport Példák A) Nyílt láncú telített monokarbonsavak (zsírsavak) "alkánsav" pl. metánsav, etánsav, propánsav... (nem használjuk) omológ sor hangyasav 3 2 2 2 valeriánsav 3 ecetsav 3

Részletesebben

Beszélgetés a szerves kémia eméleti alapjairól IV.

Beszélgetés a szerves kémia eméleti alapjairól IV. Beszélgetés a szerves kémia eméleti alapjairól IV. Az alkének elektrofil addiciós reakciói Az alkénekben levő kettős kötés pi-elekronrendszerének jellegzetes térbeli orientáltsága kifejezetten nukleofil

Részletesebben

AMINOK. Aminok rendűsége és típusai. Levezetés. Elnevezés. Alkaloidok (fiziológiailag aktív vegyületek) A. k a. primer RNH 2. szekunder R 2 NH NH 3

AMINOK. Aminok rendűsége és típusai. Levezetés. Elnevezés. Alkaloidok (fiziológiailag aktív vegyületek) A. k a. primer RNH 2. szekunder R 2 NH NH 3 Levezetés AMIK 2 primer 2 2 3 2 3 3 2 3 2 3 3 2 3 2 2 3 3 1 amin 1 amin 2 amin 3 amin 1aminobután butánamin nbutilamin Aminok rendűsége és típusai 2amino2metilpropán 2metil2propánamin tercierbutilamin

Részletesebben

KARBONIL-VEGY. aldehidek. ketonok O C O. muszkon (pézsmaszarvas)

KARBONIL-VEGY. aldehidek. ketonok O C O. muszkon (pézsmaszarvas) KABNIL-VEGY VEGYÜLETEK (XVEGYÜLETEK) aldehidek ketonok ' muszkon (pézsmaszarvas) oxocsoport: karbonilcsoport: Elnevezés Aldehidek szénhidrogén neve + al funkciós csoport neve: formil + triviális nevek

Részletesebben

OXOVEGYÜLETEK. Levezetés. Elnevezés O CH 2. O R C H aldehid. O R C R' keton. Aldehidek. propán. karbaldehid CH 3 CH 2 CH 2 CH O. butánal butiraldehid

OXOVEGYÜLETEK. Levezetés. Elnevezés O CH 2. O R C H aldehid. O R C R' keton. Aldehidek. propán. karbaldehid CH 3 CH 2 CH 2 CH O. butánal butiraldehid XVEGYÜLETEK Levezetés 2 aldehid ' keton Elnevezés Aldehidek propán karbaldehid 3 2 2 butánal butiraldehid oxo karbonil formil Példák 3 3 2 metanal etanal propanal formaldehid acetaldehid propionaldehid

Részletesebben

Atomszerkezet. Atommag protonok, neutronok + elektronok. atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok

Atomszerkezet. Atommag protonok, neutronok + elektronok. atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok Atomszerkezet Atommag protonok, neutronok + elektronok izotópok atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok periódusos rendszer csoportjai Periódusos rendszer A kémiai kötés Kémiai

Részletesebben

Beszélgetés a szerves kémia elméleti alapjairól III.

Beszélgetés a szerves kémia elméleti alapjairól III. Beszélgetés a szerves kémia elméleti alapjairól III. Csökkentett vagy fokozott reakciókészségű halogénszármazékok? A középiskolai szerves kémiai tananyag alapján, a telített alkil-halogenidek reakcióképes

Részletesebben

Sztereokémia, királis molekulák: (királis univerzum, tükörképi világ?) memo: a földi élet királis elemek sokasága!

Sztereokémia, királis molekulák: (királis univerzum, tükörképi világ?) memo: a földi élet királis elemek sokasága! Sztereokémia, királis molekulák: (királis univerzum, tükörképi világ?) memo: a földi élet királis elemek sokasága! (pl. a földön az L-aminosavak vannak túlnyomó többségben. - Az enantiomer szelekció, módját

Részletesebben

Szerves kémiai szintézismódszerek

Szerves kémiai szintézismódszerek Szerves kémiai szintézismódszerek. Bevezetés Kovács Lajos Problémafelvetés Egy szintézis akkor jó, ha... a legjobb hozamban a legkevesebb lépésben a legszelektívebben a legolcsóbban a legflexibilisebben

Részletesebben

Kémia OKTV I. kategória II. forduló A feladatok megoldása

Kémia OKTV I. kategória II. forduló A feladatok megoldása ktatási ivatal Kémia KTV I. kategória 2008-2009. II. forduló A feladatok megoldása I. FELADATSR 1. A 6. E 11. A 16. C 2. A 7. C 12. D 17. B 3. E 8. D 13. A 18. C 4. D 9. C 14. B 19. C 5. B 10. E 15. E

Részletesebben

Kémiai kötések. Kémiai kötések. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

Kémiai kötések. Kémiai kötések. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 Kémiai kötések A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 Cl + Na Az ionos kötés 1. Cl + - + Na Klór: 1s 2 2s 2 2p 6 3s 2 3p 5 Kloridion: 1s2 2s2 2p6 3s2 3p6 Nátrium: 1s 2 2s

Részletesebben

SZERVES KÉMIA: BEVEZETÉS SZTEREOKÉMIA. Debreceni Egyetem ÁOK Orvosi Vegytani Intézet

SZERVES KÉMIA: BEVEZETÉS SZTEREOKÉMIA. Debreceni Egyetem ÁOK Orvosi Vegytani Intézet SZERVES KÉMIA: BEVEZETÉS SZTEREOKÉMIA Debreceni Egyetem ÁOK Orvosi Vegytani Intézet www.medchem.unideb.hu A szén allotróp módusulatai a) gyémánt b) grafit c) amorf szén (nincs ábrázolva) A grafénő egyetlen

Részletesebben

Atomszerkezet. Atommag protonok, neutronok + elektronok. atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok

Atomszerkezet. Atommag protonok, neutronok + elektronok. atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok Atomszerkezet Atommag protonok, neutronok + elektronok izotópok atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok periódusos rendszer csoportjai Periódusos rendszer energia szintek atomokban

Részletesebben

Ciklusok bűvöletében Katalizátorok a szintetikus kémia szolgálatában

Ciklusok bűvöletében Katalizátorok a szintetikus kémia szolgálatában Ciklusok bűvöletében Katalizátorok a szintetikus kémia szolgálatában Novák Zoltán Eötvös oránd Tudományegyetem, Kémiai Intézet Szerves Kémiai Tanszék Alkímiai Ma, 2011. Március 17. Ciklusok - Katalízis

Részletesebben

H H 2. ábra: A diazometán kötésszerkezete σ-kötések: fekete; π z -kötés: kék, π y -kötés: piros sp-hibrid magányos elektronpár: rózsaszín

H H 2. ábra: A diazometán kötésszerkezete σ-kötések: fekete; π z -kötés: kék, π y -kötés: piros sp-hibrid magányos elektronpár: rózsaszín 3. DIAZ- ÉS DIAZÓIUMSPRTT TARTALMAZÓ VEGYÜLETEK 3.1. A diazometán A diazometán ( 2 2 ) egy erősen mérgező (rákkeltő), robbanékony gázhalmazállapotú anyag. 1. ábra: A diazometán határszerkezetei A diazometán

Részletesebben

1. KARBONILCSOPORTOT TARTALMAZÓ VEGYÜLETEK

1. KARBONILCSOPORTOT TARTALMAZÓ VEGYÜLETEK 1. KARBILSPRTT TARTALMAZÓ VEGYÜLETEK 1.1. A karbonilcsoport szerkezete A szénsav acilcsoportja a karbonilcsoport: vagy 1. ábra: A karbonilcsoport A karbonilcsoport az alábbi vegyületcsaládokban fordul

Részletesebben

C N H H C O C C O H O O O O C C O C

C N H H C O C C O H O O O O C C O C X.-XII. osztály, IV. forduló - megoldás 010 / 011 es tanév, XVI. évfolyam 1. a) Az alkánok telítettsége - maximális. Az alkánok azért maximális telítettségüeg, mert a -atomok mind a 4 vegyértékükkel külön-külön

Részletesebben

Tartalomjegyzék Szénhidrogének

Tartalomjegyzék Szénhidrogének Tartalomjegyzék Szénhidrogének... 1 20 Alkánok (Parafinok)... 1 7 A gyökök megnevezése...2 Az elágazó szénláncú alkánok megnevezése...3 Az alkánok izomériája...3 Előállítás...4 1) Szerves magnéziumvegyületekből...4

Részletesebben

1,3,5-trimetil-benzol. 2 3 m-metil-etil-benzol vagy m-etil-toluol CH3. izopropil-benzol(kumol) 1,8-dimetil-naftalin

1,3,5-trimetil-benzol. 2 3 m-metil-etil-benzol vagy m-etil-toluol CH3. izopropil-benzol(kumol) 1,8-dimetil-naftalin X.-XII. osztály, III. forduló, megoldás 011 / 01 es tanév, XVII. évfolyam 1. a) 1,,-trimetil-benzol o-metil-etil-benzol vagy o-etil-toluol 1,,4-trimetil-benzol 1,,5-trimetil-benzol m-metil-etil-benzol

Részletesebben

CHO CH 2 H 2 H HO H H O H OH OH OH H

CHO CH 2 H 2 H HO H H O H OH OH OH H 2. Előadás A szénhidrátok kémiai reakciói, szénhidrátszármazékok Áttekintés 1. Redukció 2. xidáció 3. Észter képzés 4. Reakciók a karbonil atomon 4.1. iklusos félacetál képzés 4.2. Reakció N-nukleofillel

Részletesebben

A pót zh megírásakor egy témakör választható a kettőből. A pót zh beadása esetén annak

A pót zh megírásakor egy témakör választható a kettőből. A pót zh beadása esetén annak SZERVES KÉMIA I. B.Sc. képzés, kód: BMEVESKA202 és BMEVESZA301 Tantárgy követelményei 2015/2016 tanév II. félév Az alaptárgy heti 3 óra előadásból és heti tantermi gyakorlatból áll. A tárgy szóbeli vizsgával

Részletesebben

2. Szénhidrogén elegy, amely nem színteleníti el a brómos vizet: A. CH4 és C2H4 B. C2H6 és C2H2. E. C2H4 és C2H2. D. CH4 és C2H6

2. Szénhidrogén elegy, amely nem színteleníti el a brómos vizet: A. CH4 és C2H4 B. C2H6 és C2H2. E. C2H4 és C2H2. D. CH4 és C2H6 1. Szerves vegyület, amely kovalens és ionos kötéseket is tartalmaz: A. terc-butil-jodid B. nátrium-palmitát C. dioleo-palmitin D. szalicilsav E. benzil-klorid 2. Szénhidrogén elegy, amely nem színteleníti

Részletesebben

8. Előadás. Karbonsavak. Karbonsav származékok.

8. Előadás. Karbonsavak. Karbonsav származékok. 8. Előadás Karbonsavak. Karbonsav származékok. 24. Karbonsavak α H X H H X N karbonsav nitril X Név F, Br, l halogénsav H hidroxisav oxosav NH 2 aminosav X Név F, Br, l savhaloid R észter R anhidrid NH

Részletesebben

A tételek: Elméleti témakörök. Általános kémia

A tételek: Elméleti témakörök. Általános kémia A tételek: Elméleti témakörök Általános kémia 1. Az atomok szerkezete az atom alkotórészei, az elemi részecskék és jellemzésük a rendszám és a tömegszám, az izotópok, példával az elektronszerkezet kiépülésének

Részletesebben

Szerves kémiai szintézismódszerek

Szerves kémiai szintézismódszerek Szerves kémiai szintézismódszerek 6. Szén-szén többszörös kötések kialakítása: alkinek és kumulének. Periciklusos reakciók Kovács Lajos 1 Bergman-reakció Éndiin antibiotikumok 200 ravasz aktív rész t 1/2

Részletesebben

6. változat. 3. Jelöld meg a nem molekuláris szerkezetű anyagot! A SO 2 ; Б C 6 H 12 O 6 ; В NaBr; Г CO 2.

6. változat. 3. Jelöld meg a nem molekuláris szerkezetű anyagot! A SO 2 ; Б C 6 H 12 O 6 ; В NaBr; Г CO 2. 6. változat Az 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Jelöld meg azt a sort, amely helyesen

Részletesebben

Tartalom. Szénhidrogének... 1

Tartalom. Szénhidrogének... 1 Tartalom Szénhidrogének... 1 Alkánok (Parafinok)... 1 A gyökök megnevezése... 2 Az elágazó szénláncú alkánok megnevezése... 2 Az alkánok izomériája... 3 Előállítás... 3 1) Szerves magnéziumvegyületekből...

Részletesebben

Konstitúció, izoméria, konfiguráció, konformáció

Konstitúció, izoméria, konfiguráció, konformáció Konstitúció, izoméria, konfiguráció, konformáció Konstitúció: A molekula színezett gráffal leírható szerkezete De: a konstitúciós képlet kifejezhet egyéb információt is: cisz-transz izomériát (Z - zusammen,

Részletesebben

Halogénezett szénhidrogének

Halogénezett szénhidrogének Halogénezett szénhidrogének - Jellemző kötés (funkciós csoport): X X = halogén, F, l, Br, I - soportosítás: - halogénatom(ok) minősége szerint (X = F, l, Br, I) - halogénatom(ok) száma szerint (egy-, két-

Részletesebben

Budapesti Műszaki és Gazdaságtudományi Egyetem Vegyészmérnöki és Biomérnöki Kar Szerves Kémia és Technológia Tanszék SZERVES KÉMIA I.

Budapesti Műszaki és Gazdaságtudományi Egyetem Vegyészmérnöki és Biomérnöki Kar Szerves Kémia és Technológia Tanszék SZERVES KÉMIA I. Budapesti Műszaki és Gazdaságtudományi Egyetem Vegyészmérnöki és Biomérnöki Kar Szerves Kémia és Technológia Tanszék Huszthy Péter Tóth Tünde Móczár Ildikó Kupai József Kormos Attila SZERVES KÉMIA I. egyetemi

Részletesebben

Spektroszkópiai módszerek 2.

Spektroszkópiai módszerek 2. Spektroszkópiai módszerek 2. NMR spektroszkópia magspinek rendeződése külső mágneses tér hatására az eredő magspin nem nulla, ha a magot alkotó nukleonok közül legalább az egyik páratlan a szerves kémiában

Részletesebben

4. KÉN- ÉS FOSZFORTARTALMÚ VEGYÜLETEK

4. KÉN- ÉS FOSZFORTARTALMÚ VEGYÜLETEK 4. KÉN- É FZFTATALMÚ VEGYÜLETEK 4.1. Kéntartalmú vegyületek szerkezete, elnevezése A kén a periódusos rendszerben a harmadik periódusban, az oxigén oszlopában található, ezért a legtöbb oxigéntartalmú

Részletesebben

Kémia a kétszintű érettségire

Kémia a kétszintű érettségire Korrekciók a 2017-től érvényes módosított érettségi követelmények a Kémia a kétszintű érettségire című kiadványban Műszaki Könyvkiadó Villányi Attila, Műszaki Könyvkiadó, 2016 Műszaki Könyvkiadó Kft. 2519

Részletesebben

Kémiai kötés Lewis elmélet

Kémiai kötés Lewis elmélet Kémiai kötés 10-1 Lewis elmélet 10-2 Kovalens kötés: bevezetés 10-3 Poláros kovalens kötés 10-4 Lewis szerkezetek 10-5 A molekulák alakja 10-6 Kötésrend, kötéstávolság 10-7 Kötésenergiák Általános Kémia,

Részletesebben

Kötések kialakítása - oktett elmélet

Kötések kialakítása - oktett elmélet Kémiai kötések Az elemek és vegyületek halmazai az atomok kapcsolódásával - kémiai kötések kialakításával - jönnek létre szabad atomként csak a nemesgázatomok léteznek elsődleges kémiai kötések Kötések

Részletesebben

Newman-projekció: háromdimenziós szerkezetet úgy ábrázol, hogy két egymáshoz kapcsolódó atomot egymás mögé helyez:

Newman-projekció: háromdimenziós szerkezetet úgy ábrázol, hogy két egymáshoz kapcsolódó atomot egymás mögé helyez: 11. Szerves kémia 601 Síkképlet: Ábrázolásmódok: Fűrészbak-projekció: perspektivikus ábrázolásmód: l Br F ewman-projekció: háromdimenziós szerkezetet úgy ábrázol, hogy két egymáshoz kapcsolódó atomot egymás

Részletesebben

1. változat. 4. Jelöld meg azt az oxidot, melynek megfelelője a vas(iii)-hidroxid! A FeO; Б Fe 2 O 3 ; В OF 2 ; Г Fe 3 O 4.

1. változat. 4. Jelöld meg azt az oxidot, melynek megfelelője a vas(iii)-hidroxid! A FeO; Б Fe 2 O 3 ; В OF 2 ; Г Fe 3 O 4. 1. változat z 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Melyik sor fejezi be helyesen az állítást:

Részletesebben

ORVOSI KÉMIA I. VIZSGA TÉTELSORA

ORVOSI KÉMIA I. VIZSGA TÉTELSORA ORVOSI KÉMIA I. VIZSGA TÉTELSORA ÁLTALÁNOS KÉMIA 1. Az atomok felépítése. Tömegszám, rendszám. Kémiai elemek, vegyületek. Izotópok. Radioaktivitás. Avogadro-állandó. A mol fogalma. Az elektronhéj felépítése,

Részletesebben

Szerves kémia A szerves kémia a kémia azon ága, mely a széntartalmú vegyületekkel foglalkozik. Az elnevezés onnan ered, hogy sokáig azt hitték csak az

Szerves kémia A szerves kémia a kémia azon ága, mely a széntartalmú vegyületekkel foglalkozik. Az elnevezés onnan ered, hogy sokáig azt hitték csak az Szerves kémia Szerves kémia A szerves kémia a kémia azon ága, mely a széntartalmú vegyületekkel foglalkozik. Az elnevezés onnan ered, hogy sokáig azt hitték csak az élő szervezet képes előállítani az őket

Részletesebben

ÁTSZIVÁRGÁS ÁTTÖRÉSI IDEJE AZ EN374-3:2003 SZABVÁNYNAK MEGFELELŐEN (PERCEKBEN) Védelmi mutatószám

ÁTSZIVÁRGÁS ÁTTÖRÉSI IDEJE AZ EN374-3:2003 SZABVÁNYNAK MEGFELELŐEN (PERCEKBEN) Védelmi mutatószám 0,7% ditranol kis viszkozitású folyékony paraffinban 1.6 0 Centexbel 374-3:2003 1% metilibolya > 480 6 8004-87-3 Centexbel 374-3:2003 1,2-dibrómetán < 1 0 106-93-4 Centexbel 374-3:2003 1,2-diklóretán (?)

Részletesebben

Áldott Karácsonyi ünnepeket és boldog Új Évet kívánok!

Áldott Karácsonyi ünnepeket és boldog Új Évet kívánok! Áldott Karácsonyi ünnepeket és boldog Új Évet kívánok! Név:........................Helység / Iskola.............................. Kémiatanár neve:...................................... Beküldési határidő:

Részletesebben

ENOLOK & FENOLOK. Léránt István

ENOLOK & FENOLOK. Léránt István ENLK & FENLK Léránt István ENLK Alapvegyület: R - CH = CH - Az enolok nem igazán létképes vegyületek! 2 ENLK sp 2 -es C atomhoz kapcsolódó csoport Az enolok gyenge savak Keto enol tautomer átalakulás R1

Részletesebben

2. SZÉNSAVSZÁRMAZÉKOK. Szénsav: H 2 CO 3 Vízvesztéssel szén-dioxiddá alakul, a szén-dioxid a szénsav valódi anhidridje.

2. SZÉNSAVSZÁRMAZÉKOK. Szénsav: H 2 CO 3 Vízvesztéssel szén-dioxiddá alakul, a szén-dioxid a szénsav valódi anhidridje. 2. ZÉAVZÁMAZÉKK 2.1. zénsavszármazékok szerkezete, elnevezése zénsav: 2 3 Vízvesztéssel szén-dioxiddá alakul, a szén-dioxid a szénsav valódi anhidridje. 2 + 1. ábra: A szénsav szén-dioxid egyensúly A szén-dioxid

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2009/2010. Kémia I. kategória II. forduló A feladatok megoldása

Országos Középiskolai Tanulmányi Verseny 2009/2010. Kémia I. kategória II. forduló A feladatok megoldása Oktatási Hivatal I. FELADATSOR Országos Középiskolai Tanulmányi Verseny 2009/2010. Kémia I. kategória II. forduló A feladatok megoldása 1. B 6. E 11. A 16. E 2. A 7. D 12. A 17. C 3. B 8. A 13. A 18. C

Részletesebben

SZAK: KÉMIA Általános és szervetlen kémia 1. A periódusos rendszer 14. csoportja. a) Írják le a csoport nemfémes elemeinek az elektronkonfigurációit

SZAK: KÉMIA Általános és szervetlen kémia 1. A periódusos rendszer 14. csoportja. a) Írják le a csoport nemfémes elemeinek az elektronkonfigurációit SZAK: KÉMIA Általános és szervetlen kémia 1. A periódusos rendszer 14. csoportja. a) Írják le a csoport nemfémes elemeinek az elektronkonfigurációit b) Tárgyalják összehasonlító módon a csoport első elemének

Részletesebben

Szerves Kémiai Technológia kommunikációs dosszié SZERVES KÉMIAI TECHNOLÓGIA TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ KÉMIAI INTÉZET

Szerves Kémiai Technológia kommunikációs dosszié SZERVES KÉMIAI TECHNOLÓGIA TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ KÉMIAI INTÉZET SZERVES KÉMIAI TECHNOLÓGIA ANYAGMÉRNÖK BSC KÉPZÉS VEGYIPARI TECHNOLÓGIAI SZAKIRÁNY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI INTÉZET Vegyipari Technológia BorsodChem

Részletesebben

Szerves kémiai szintézismódszerek

Szerves kémiai szintézismódszerek Szerves kémiai szintézismódszerek 3. Alifás szén-szén egyszeres kötések kialakítása báziskatalizált reakciókban Kovács Lajos 1 C-H savak Savas hidrogént tartalmazó szerves vegyületek H H 2 C α C -H H 2

Részletesebben

Az anyagi rendszer fogalma, csoportosítása

Az anyagi rendszer fogalma, csoportosítása Az anyagi rendszer fogalma, csoportosítása A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 1 A rendszer fogalma A körülöttünk levő anyagi világot atomok, ionok, molekulák építik

Részletesebben

Szerves kémia II. kommunikációs dosszié SZERVES KÉMIA II. ANYAGMÉRNÖK MESTERKÉPZÉS TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ

Szerves kémia II. kommunikációs dosszié SZERVES KÉMIA II. ANYAGMÉRNÖK MESTERKÉPZÉS TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ SZERVES KÉMIA II. ANYAGMÉRNÖK MESTERKÉPZÉS TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŐSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI TANSZÉK Miskolc, 2008 Tartalomjegyzék 1. Tantárgyleírás, tárgyjegyzı, óraszám,

Részletesebben

C CB V X.-X. osztály V. forduló - megoldás 00 / 00 es tanév XV. évfolyam. z oxidációfok a molekulák esetében (= nem ionos vegyületek) az elektroneloszlást tükrözi: mindig az adott összetételben szereplő

Részletesebben

Veszprémi Egyetem, Ásványolaj- és Széntechnológiai Tanszék

Veszprémi Egyetem, Ásványolaj- és Széntechnológiai Tanszék Petrolkémiai alapanyagok és s adalékok eláll llítása manyag m hulladékokb kokból Angyal András PhD hallgató Veszprémi Egyetem, Ásványolaj és Széntechnológiai Tanszék Veszprém, 2006. január 13. 200 Mt manyag

Részletesebben

Tartalmi követelmények kémia tantárgyból az érettségin K Ö Z É P S Z I N T

Tartalmi követelmények kémia tantárgyból az érettségin K Ö Z É P S Z I N T 1. Általános kémia Atomok és a belőlük származtatható ionok Molekulák és összetett ionok Halmazok A kémiai reakciók A kémiai reakciók jelölése Termokémia Reakciókinetika Kémiai egyensúly Reakciótípusok

Részletesebben

Kémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol

Kémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol Kémiai kötések A természetben az anyagokat felépítő atomok nem önmagukban, hanem gyakran egymáshoz kapcsolódva léteznek. Ezeket a kötéseket összefoglaló néven kémiai kötéseknek nevezzük. Kémiai kötések

Részletesebben

A szervetlen vegyületek

A szervetlen vegyületek 5. Vegyületek osztályozása, egyszerű szerves funkciós csoportok, fontosabb szervetlen és szerves vegyületek nagyon sokféle vegyület van, többféle csoportosítás lehet hasznos szervetlen vegyületek - szerves

Részletesebben

Ki tud többet a kőolajfeldolgozásról? 2. forduló Kőolaj-feldolgozás

Ki tud többet a kőolajfeldolgozásról? 2. forduló Kőolaj-feldolgozás Ki tud többet a kőolajfeldolgozásról? 2. forduló Kőolaj-feldolgozás 2016.10.27 Az OLAJIPAR számokban A 2. legfontosabb iparág a világon 4 milliárd t/év kőolaj felhasználás a világon 1,8 milliárd l/év benzin

Részletesebben

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1999

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1999 1999 1. oldal KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1999 Figyelem! A kidolgozáskor tömör és lényegre törő megfogalmazásra törekedjék. A megadott tematikus sorrendet szigorúan tartsa be! Csak a

Részletesebben

Táptalaj E. coli számára (1000 ml vízben) H 2 O 70% Fehérje 15% Nukleinsav 7% (1+6) Szénhidrát 3% Lipid 2% Szervetlen ion 1%

Táptalaj E. coli számára (1000 ml vízben) H 2 O 70% Fehérje 15% Nukleinsav 7% (1+6) Szénhidrát 3% Lipid 2% Szervetlen ion 1% Az E. coli kémiai összetétele Táptalaj E. coli számára (1000 ml vízben) Na 2 P 4 6,0 g K 2 P 4 3,0 g Glükóz 4,0 g N 4 l 1,0 g MgS 4 0,13g 2 70% Fehérje 15% Nukleinsav 7% (1+6) Szénhidrát 3% Lipid 2% Szervetlen

Részletesebben

ÚJ NAFTOXAZIN-SZÁRMAZÉKOK SZINTÉZISE ÉS SZTEREOKÉMIÁJA

ÚJ NAFTOXAZIN-SZÁRMAZÉKOK SZINTÉZISE ÉS SZTEREOKÉMIÁJA PhD értekezés tézisei ÚJ AFTXAZI-SZÁMAZÉKK SZITÉZISE ÉS SZTEEKÉMIÁJA Tóth Diána Szegedi Tudományegyetem Gyógyszerkémiai Intézet Szeged 2010 Szegedi Tudományegyetem Gyógyszertudományok Doktori Iskola Ph.D

Részletesebben

Szerves kémiai összefoglaló. Szerkesztette: Varga Szilárd

Szerves kémiai összefoglaló. Szerkesztette: Varga Szilárd Szerves kémiai összefoglaló Szerkesztette: Varga Szilárd 2 Bevezetés Az alábbi szerves kémiai összefoglaló a emzetközi Kémiai Diákolimpián résztvevő magyar csapat felkészítésére készült. Két részből áll:

Részletesebben

KÉMIA ÍRÁSBELI ÉRETTSÉGI FELVÉTELI FELADATOK 2004.

KÉMIA ÍRÁSBELI ÉRETTSÉGI FELVÉTELI FELADATOK 2004. KÉMIA ÍRÁSBELI ÉRETTSÉGI FELVÉTELI FELADATOK 2004. JAVÍTÁSI ÚTMUTATÓ Az írásbeli felvételi vizsgadolgozatra összesen 100 (dolgozat) pont adható, a javítási útmutató részletezése szerint. Minden megítélt

Részletesebben