Kutatástervezés 1. rész, Hahn István

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Kutatástervezés 1. rész, Hahn István"

Átírás

1 Kutatástervezés 1. rész, Hahn István 1. óra Adattípusok 1. A leggyakoribb változók osztályozása. A bináris változók jelentősége 3. Borításbecslés bináris mintavételi módszerrel 4. A leíró statisztika alapjai. óra Statisztika 1. Néhány jelentős eloszlás. Döntéshozó statisztikák 3. óra Kísérletek tervezése 1. Ismétlésszám. Randomizáció, kísérleti elrendezések 3. Hibás tervezések, hibás következtetések 4. óra Hallgatói beszámolók 1. ZH. Témaismertetések kísérlettervezési és kiértékelési szempontból Ezt a témát célszerű továbbvinnetek!

2 Kutatástervezés. rész, Pásztor Erzsébet Feladat az első alkalomra: Hogyan alakul át a tudományos munka? Mi lesz az én szerepem? szavas reflexió a kötelező olvasmányra (Human Genome Project: Twenty-five years of big biology) saját google dokumentumba, szerkesztésre megosztva: lizpasztor@gmail.com 1. óra A kutatómunka természete 1. Hogyan alakul át a tudományos munka? Egyéni és csoport teljesítmény. Magányos zseni és kooperatív problémamegoldó.. MsC és PhD: hasonlóságok és különbözőségek, MsC és PhD követelmények 3. A kutatás folyamata: a témaválasztástól a publikációig 4. A témaválasztás folyamata,t émagenerálás analógiák, relevancia fák és morfológiai analízis segítségével 5. A potenciális témák értékelése. óra Irodalmazás, kapcsolattartás 1. Hogyan legyünk naprakészek: források, kutatói hálózatok, blogok. Elektronikusan elérhető szakirodalom 3. Keresés kulcsszavakkal és citációk alapján: a szakirodalom feltérképezése 4. Saját bibliográfia felállítása 5. Hogyan olvassunk és mit dokumentáljunk? 3. óra Tervezés és végrehajtás 1. Miért van szükség a tervezésre?. Hálótervek készítése 3. Elkerülhető és elkerülhetetlen problémák a végrehajtás során 4. A témavezetővel való kapcsolattartás módjairól 5. A szükséges pozitív hozzáállásról 4. óra Milyen lesz az én szakdolgozatom? 1. Cím. Irodalmazás, témaelemzés 3. Alkalmazott módszerek 4. Adatbázis, elemzés 5. Diszkusszió 6. Összefoglaló (absztrakt)

3 Kutatástervezés 3. rész, Miklósi Ádám Felkészülés az előző héten Feladat: Téma absztraktjának beküldése (doc), Előadás elküldése (ppt) 1. óra perces előadás saját témából ppt + kérdések. Absztraktírás átbeszélése 3. Cikk, mint a kutatói munka alapja 4. HÁZI: Absztrakt javítása 5. HÁZI: 1 kézirat feldolgozása előadásra (ppt). óra 1. Kutatói munka: együttműködés és verseny. Egyéb kutatói tevékenységek, karrier 3. Hogyan (miért) bírálunk cikket 4. Házi: 1 kézirat bírálatának elkészítése 3. óra perces előadás a kéziratból ppt + kérdések. Pályázatírás szempontjai 3. Házi: Pályázat írása, és bírálata 4. Óra 1. Pályázat bemutatása, bírálatok megbeszélése

4 Változótípusok Skála Definíció Példák Nominális 1.kvalitatív, nevekből áll.nincs rangsor ivar, betegség, fajnév, cselekvési típus, prezencia-abszencia adatok Ordinális Intervallum Arány/ hányados 1.kvalitatív, rangsor lehetséges.értékek közti távolság tetszőleges 1.kvantitatív, rangsor, értékek közti különbség mutatja a távolságot.önkényes nulla pont 3.arányok nem értelmezhetők 1.kvantitatív, rangsor, értékek közti intervallum mutatja a távolságot.valódi nullapont 3.arányok értelmezhetőek agresszivitás: erős, közepes, gyenge, borítás skálák, W-értékek, rangok C hőmérséklet, IQ testsúly, magasság, életkor, mért értékek A megkülönböztetés fontos: kváziátlagok a statisztikában általában mérhető és megállapítható változókat különböztetnek meg. Közöttük egyirányú konverzió lehetséges folytonos vagy diszkrét közöttük átmenet: Simon Levin statisztikus véleménye (termésszám-terméssúly) bináris (előnyei-hátrányai) - borításbecslés

5 Klonális növekedési formák: Falanx Az egyed fogalma nehezen értelmezhető, terepen nem számolható. Egyedszám helyett használható: -Hajtásszám -Biomassza -Borítás Gerilla

6 Tömegesség megadása: borításbecslés bináris értékek sorozatával Belátható, hogy a kis négyzetekből akár válogathatunk is pl. véletlenszerűen, kevésbé pontos eredményhez ez is elég lehet. Elvileg járható út, terepen nem alkalmazható időigényes volta miatt. DE! Ezen alapul a digitális képek kiértékelése!

7 Cover Monitoring Assistant (CMA) Program

8 Feladat: pontok kijelölésével próbáld megbecsülni, hogy a piros (nyomtatva fekete) foltok a négyzet hány százalékát foglalják el! A lap oldalán tízesével írjál 0-t vagy 1-et, 10x10-et, és számold ki az 1 /összes hányadost tízesével! Készíts ábrát, ahol a az elemszám függvényében ábrázolod a hányadost!

9 Fehér: 4% piros 58%

10 arány Van-e értelme önmagában egy bináris adatsornak? Vízigény megoszlás egy szigetközi területen W Fajszámok alapján borítások alapján

11 A matematikai statisztika elemei illetve ezek felelevenítése David B. Allison, Andrew W. Brown, Brandon J. George, Kathryn A. Kaiser Reproducibility: A tragedy of errors Nature, 03 February 016 To consult the statistician after an experiment is finished is often merely to ask him to conduct a post mortem examination. He can perhaps say what the experiment died of. Sir Ronald Aylmer Fisher ( ) angol statisztikus és biológus

12 Ezért: A rendelkezésre álló információk alapján (szakirodalom, saját elővizsgálatok) nagyon alaposan meg kell tervezni a kísérlet összes körülményét beleértve azt is, hogy a kapott eredményeket milyen statisztikai eljárással fogjuk kiértékelni. Ez meghatározhat jó néhány kísérleti beállítást (mintaelemszám, kontroll vagy kontrollok(!) milyensége, adatsorok függetlensége, figyelembe vehető változók száma, stb.). A kísérletre fordítandó forrásoknak legalább 10%-a kísérlet megtervezésére fordítódjon. Mivel a kiértékeléshez használandó statisztika meghatározza kísérleti elrendezést, ezért időben fordítva a statisztikával kezdünk.

13 STATISZTIKAI ALAPFOGALMAK: Átlag, szórás Legyenek valamely n elemű populáció egy x változójának mért vagy számított értékei: x, 1 x,..., x n x x 1 x... n x n. i1 (s.d.) s n x i n 1 x Számtani átlag szórás A biológiai minták variabilitása nagy

14 Módusz A leggyakrabban előforduló érték. Középérték további mutatói: Medián A sorba rendezett adatok középső értéke. Ha n páratlan, akkor az értékek közül a nagyság szerint rendezett sorban a középső, ha n páros, akkor a két középső érték számtani közepe. Fentiek bármilyen szám-jellegű adatsornál alkalmazhatók. Lentiek arányskála esetén alkalmazhatók. Számtani átlag Mértani átlag Az alapadatok szorzatának annyiadik gyöke, ahány adat van. Harmonikus átlag A reciprok adatok átlagának reciproka. Ezek egybeesnek? Ritka kivételtől eltekintve nem. Az eltérés mértéke az eloszlás ferdeségétől függ. Kváziátlag: ordinális változókból számolt átlag

15 Szóródási tendencia további mutatói: Terjedelem A legnagyobb és a legkisebb érték közötti különbség. Szórás A várható értéktől való eltérés várható értéke dimenziója az eredeti Variancia A szórás négyzete. - számításokhoz Variációs együttható dimenzió nélküli szám V s x, Megadás: az alapadatoknál eggyel több értékes jegyre

16 Egyszerű esetek: Pénz, kocka Bonyolult esetek: más (dobómalac) Valószínűségek megadása A priori a posteriori A nagy számok törvénye A nagy számok törvénye a valószínűségszámítás egyik alapvető tétele. A törvény azt mondja ki, hogy egy kísérletet sokszor elvégezve az eredmények átlaga egyre közelebb lesz a várható értékhez (v.ö. borításbecslés). Nem jelenti ugyanakkor azt, hogy az esélyek kiegyenlítődnek Kapcsolata a mintavételi elemszámmal

17 Egy rövid tűt egy vonalas lapra leejtve, mi a valószínűsége annak, hogy az keresztezni fog egy vonalat? - vetette fel a kérdést George Louis Leclerc, Buffon grófja 1777-ben. Legyen a szakaszok (tűk) hossza L= 49 mm, a vonalak egymástól való távolsága d = 60 mm. Georges-Louis Leclerc ( ), Buffon grófja francia természettudós

18 Ha L d, annak a valószínűsége, hogy a leejtett L hosszúságú tű metszi valamelyik vonalat: * L p = * d SZÁMOLÁS!

19 Pi= 3,

20 Szegélyhatás a mintavételi egységeknél Transzektbe/kvadrátba esés valószínűségének megadása ismert alakú foltok esetében.

21 Egyenletes eloszlás érme, kocka Binomiális eloszlás Valószínűségek megadása számításokkal lehetséges kimenetel, egyik bekövetkezési valószínűsége p, a másiké q, p+q=1. Annak valószínűsége, hogy n db kiválasztáskor éppen k esetben következik be a p valószínűségű esemény: p k *(1-p) n-k a lehetséges sorozatok száma (ismétléses permutáció) n!/((k!*(n-k)!) P k n k k nk * p (1 p) Az eloszlásnak két paramétere van, n és p. Ez végtelen mintákra vonatkozik, egy egyszerűbb véges urnamodell analóg kérdése

22 Egy urnában levő N darab golyó közül M piros, és visszatevés nélkül kiválasztunk n darabot, mi a valószínűsége annak, hogy a mintában éppen k darab piros golyó lesz? Az eloszlás hipergeometrikus, ha n és s elég nagy, az eloszlás jól közelíthető a binomiálissal. Ha M tart a végtelenhez, akkor a a hipergeometrikus eloszlással számolt valószínűség tart a binomiálissal számolthoz. Olyan esetekben használatis, ahol a a kiválasztott elem a vizsgálat során elhasználódik, azaz nem lehet visszatevéses mintavételnek tekinteni.

23 Tételezzük fel, hogy p nagyon kicsi, de n tart a végtelenhez úgy, hogy szorzatuk konstans: n*p= Poisson eloszlás: annak a valószínűsége, hogy éppen k-szor következik be az esemény: P(k)=(( k )/k!)*e - Az eloszlásnak egy paramétere van,, ami egyben az eloszlás várható értékét és varianciáját is adja. Annak a valószínűsége, hogy egy t-vel jellemezhető intervallumra (pl. szakasz, terület, térfogat, idő) éppen k darab eset jut: P(kt)=(( kt )/k!)*e -t A mintavételezés egyik referencia-eloszlása, ezzel lehet leírni a térbeli és az időbeli véletlen folyamatokat.

24 A véletlen a térben (itt síkban) Három pontmintázat típus: szabályos véletlenszerű csoportosulásos eloszlás (distribution) diszperzió/szétszórtság? (dispersion)

25 Helyi feladat: véletlen pontmintázat előállítása Helyi feladat: véletlen számsor előállítása Írjatok 1 és 100 között (a szélső értékek is beleértendők) száz egész számot, törekedve a véletlenszerűségre. Értékelés (nem helyi): Ábrázoljátok oszlopdiagrammon 1. Az 1-10, 11-0, 1-30, stb. tartományba eső számok darabszámát.. Az 1,, 3, stb. végződésű számok darabszámát. 3. Csináljatok egy ezen adatokból 1-1 összesített diagrammpárt!

26 A megszokott 10-es számrendszer rányomja bélyegét az eredményekre:

27 (Csak előrevéve:) The twenty commonest censusing sins William J. Sutherland School of Biological Sciences, University of East Anglia

28 1. NOT SAMPLING RANDOMLY. It is very satisfying to sample rarities or rich patches but it ruins the exercise. One common error is just to visit the beat sites and use the data to estimate population size.. COLLECTING FAR MORE SAMPLES THAN CAN POSSIBLY BE ANALYSED. This is a waste of time and may raise ethical and conservation issues. 3. CHANGING THE METHODOLOGY IN MONITORING. Unless there is a careful comparison of the different methods, changing the methodology prevents comparisons between years. 4. COUNTING THE SAME INDIVIDUAL IN TWO LOCATIONS AND COUNTING IT AS TWO INDIVIDUALS. 5. NOT KNOWING YOUR SPECIES. Knowing your species is essential for considering biases and understanding the data. 6. NOT HAVING CONTROLS IN MANAGEMENT EXPERIMENTS. This is the greatest problem in interpreting the consequences of management. 7. NOT STORING INFORMATION WHERE IT CAN BE RETRIEVED IN THE FUTURE. The new warden of a national nature reserve in England could find out from old work programmes the days on which his predecessor had counted a rare orchid but could find no record of the actual numbers!

29 Számítógépes algoritmusak Igazi véletlenszám generátorok: Radioaktív bomlás alapján

30 kísérleti elrendezések Randomizáció Véletlen számok és mintázatok problematikája - cél: a statisztikai populáció tagjai egyenlő eséllyel kerülhessenek a mintába - használható zavaró tényezők, tendenciák hatásának kiszűrésére - a reprezentativitás legfőbb biztosítéka pontosság és precizitás statisztikus hiba és szisztematikus hiba

31 - torz minta: - bizonyos egyedek nagyobb valószínűséggel kerülnek a mintába - bizonyos egyedek bekerülése befolyásolja más egyedek bekerülését - Példa: botanika-kvadrát Térbeli autokorreláció Tobler amerikai geográfus első törvénye: Minden mindennel összefügg, de a közelebbi dolgok erősebben hatnak egymásra. Azaz várhatóan az egymáshoz közel levő helyek jobban hasonlítanak egymásra, mint a távoliak. Időben is: a holnapi időjárás legnagyobb valószínűséggel olyan, mint a mai. ál-ismétlés, pseudo-replication A véletlenszerűség igen gyakran statisztikai követelmény Haphazard (találomra, vaktában) mintavétel Problémái, szisztematikus és szemiszisztematikus mintavétel

32 Szemiszisztematikus (helytelen) neve térben rétegezett elrendezés

33 Sziklagyepek a képen ördögszántás

34 Kísérleti elrendezések a véletlenszerűség biztosítására véletlen blokkelrendezés: az ismétlések blokkokba vannak osztva úgy, hogy a blokkok minél homogénebbek legyenek előny: egyszerű hátrány: tízféle vagy több kezelésnél nehezen biztosítható a blokkon belüli homogenitás ekkor jobb a tökéletlen, azaz a blokkon belüli homogenitás érdekében lemondanak arról, hogy minden blokkban minden kezelés benne legyen példa 1. parcellakísérlet gradiens mentén példa. laborkísérlet időben: pl. vérszérum elemzés box: Ali fotoszintézis vizsgálatai: napi és évi ciklus

35 Latin-négyzet Az elnevezés Eulertől származik, aki latin betűket használt szimbólumokként Matematikai elmélete van. Régen a misztikában, jelenleg a kísérlettervezésben és a kódolásban alkalmazzák. ha a kezelések száma egyenlő az ismétlésszámmal, soronként és oszloponként 1-1 lehet. mágikus és szupermágikus latin négyzetek latin tégla a kezelésszám (1-8) az ismétlésszám (4) egész számú többszöröse kell legyen

36 Normális eloszlás (család) paraméter: A várható érték (m) és a szórás (σ) sűrűségfüggvény A görbék magasságai azért különbözőek, hogy a görbe alatti terület 1 legyen (teljes valószínűség). Centrális határeloszlás tétel: Független valószínűségi változók összege aszimptotikusan normális eloszlású, ha az összeghez képest kicsik azaz ha sok eloszlás szuperponálódik. Galton deszka

37

38 A normális eloszlás (és vizsgálata) a biológiában nagyon gyakori: - Egy-egy tulajdonságot sok genetikai és környezeti tényező határoz meg - Gyakran vizsgálunk olyan jelenséget, amit sok körülmény határoz meg -A mérési/becslési hibák általában normális eloszlásúak - Egyes statisztikai próbák megkövetelik az adatsorok normális eloszlását Standard normális eloszlás Az adatsor minden egye eleméből kivonjuk az adatsor átlagát, és elosztjuk a szórásával. Az eredmény eloszlás normális marad, de átlaga=0, szórása=1.

39 Hipotézisvizsgálatok Nullhipotézis Populáció, minta. Elméleti és tapasztalati középértékek és szóródási mutatók. Szabadsági fok A döntéshozó statisztikai próbák eredménye nem egy egyértelmű ítélet, hanem annak a valószínűsége, hogy egy nullhipotézis igaz avagy hamis. ÉRTÉKELÉSE KUTATÓI FELADAT, ALAPVETŐEN NEM AUTOMATIKUS. Konfidenciaintervallumok Azt az intervallumot, amelyik egy ismeretlen értéket (középérték, medián, szórás, variációs együttható, relatív gyakoriság, stb.) egy meghatározott valószínűséggel tartalmaz, megbízhatósági tartománynak vagy konfidencia-intervallumnak nevezzük.

40

41 Szignifikanciaszint általában 5% (p<0,05) első- és másodfajú hiba. Elsőfajú: elvetjük a nullhipotézist, pedig igaz. Mértéke ismert. Másodfajú: megtartjuk a nullhipotézist, pedig hamis. Mértéke ismeretlen. Nullhipotézis: az alany nem terhes. Mennyire lehet automatikasan igazodni az 5%--os határhoz? Minél jelentősebb egy felfedezés, annál erősebb alátámasztás kell. Nem életidegen a változó határ? (szerencsejáték csalás esélye)

42 próbák ereje Egymintás t-próba Kétmintás t-próba F-próba Maximális F, vagy Bartlett-próba Egyszempontos varianaciaanalízis elve

43 A t-eloszlás táblázata és az egymintás t-próba próbastatisztikája 1. Kiszámolom az adatokból t értékét.. A szabadsági fok ismeretében 3. kikeresem az adott sorban azt az értéket, amit a t meghalad. 4. A táblázat vízszintes fejlécén megnézem a valószínűségi értéket.

44 Magyar tudomány cikk Science cikk

45 Kétmintás t-próba n n s n s n n n n n Y Y n s n s Y Y A kapott próbastatisztika n 1 +n - szabadsági fokú t-eloszlású Ha a minták függetlenek, normális eloszlásúak és szórásaik nem különböznek szignifikánsan, tekinthetjük egyetlen minta két részének. Ez alapján a magasabb elemszám miatt jobb becslését adhatjuk a szórásnak.

46 A t-próba feltételei: Egymintás esetben: a valószínűségi változók normális eloszlásúak a mintaelemek függetlenek Kétmintás esetben ezeken felül: a két valószínűségi változó szórása azonos

47 Welsch-próba Ha a két minta varianciája nem azonos, a próbastatisztika: d= Y 1 s n 1 1 Y s n Ha a null-hipotézis igaz a próbastatisztika közelítőleg t-eloszlású a szabadsági fok függ a varianciák közötti különbségtől is Nem paraméteres: Mann-Whitney próba

48 F-próba Két variancia összehasonlítása a mintából kapott becslések alapján Követelmény: normális eloszlás. F= s s 1 Mindig a nagyobbat kell a kisebbel osztani. Maximális F, Bartlett-próba

49 Egyszempontos varianciaanalízis elvi vázlata Alapja egyetlen F-próba, ami az átlagok eltérésére karakterisztikus csoportok közötti varianciát veti össze a random ingadozást leíró csoportokon belüli varianciával. Kezeléstípusok a b c d e f g Alapadatok átlagok varianciák Belső- és külső varianciák elemszámmal súlyozott sorozatának összevetése EGYETLEN F-próbával. Nem paraméteres: Kruskal-Wallis próba

50 Khi-négyzet próbával végezhető szignifikanciavizsgálatok: Homogenitásvizsgálat Összefüggésvizsgálat Illeszkedésvizsgálat fertőzött Nem fertőzött Összesen Hím 18 0 Nőstény Összesen

51 A Khi eloszlás táblázata Aggregációs index pl. a helyi feladat eredményének szignifikanciavizsgálatához.

52 n i i n i i n i i n i i n i i n i i n i i i y n y x n x y x n y x r Lineáris korreláció és regresszió Korreláltság, korrelálatlanság Legkisebb négyzetek módszere r = Cov(xy)/SQRT(var(x)*var(y))

53 A becslésre fordított idő érdemben nem befolyásolta az elért pontosságot (r~0.)

54 Interpoláció és extrapoláció Konfidencia-intervallumok

55 Oksági összefüggést takar-e? függő és független változó: MINDIG!!! utánagondolni A vagyonosabb embereknek drágább autója van. példa 1. sajtó: a sokat TV-ző gyerekek nehezebben olvasnak példa. talajnedvesség: a nedvesebb talajban több a gyökér, és a több gyökér jobban kiszárítja a talajt Pszeudokorreláció - látszatösszefüggés búza-rozs termésmennyiség gólyafészek - születésszám kökény megcsípte a dér

56 ZH-minta feladatok Megadandó az alkalmazandó statisztikai próba neve, elvégzésének feltétele vagy feltételei, továbbá, ha a kérdés eldöntésére többféle eljárás is alkalmas, akkor ezeknek mi a rangsora. Utóbbi alatt azt értem, hogy melyik lenne a legjobb, de ha az nem végezhető valami miatt, akkor mi lenne a következő, stb. 1. A Szerencsejáték Rt. Honlapjáról letölthetők az eddigi lottóhúzások néhány statisztikája, pl. az, hogy melyik számot hányszor húzták ki eddig összesen. Hogyan lehetne megvizsgálni, nem volt-e esetleg csalás, azaz nem szerepeltek-e egyes számok az elvárhatónál szignifikánsan többször vagy kevesebbszer?. Egy cég új reagenst kínál, amelyről azt állítja, hogy az eddig forgalmazottnál hatékonyabban növeli egy oldat vezetőképességét (teljesen mindegy, hogy miért és hogyan, ). Milyen módszerrel (vagy módszerekkel!!!) lehet eldönteni, hogy igaz-e az állítás? 3. Egy vállalkozó olyan segédanyagot forgalmaz, mely (állítása szerint) növeli a búza terméseredményét. Milyen módszerrel (vagy módszerekkel!!!) lehet eldönteni, hogy igaz-e az állítás? 4. Kutyafajták termetét akarjuk összehasonlítani. Tételezzük fel, hogy létezik egy szempontrendszer, melynek segítségével 0-től 4-ig osztályozni lehet a megvizsgált állatokat: 0 - mini, 1 - kicsi, - közepes - 3 nagy, 4 - hatalmas. Nyolc kiválasztott fajta 366 példányának eredményéből milyen statisztikai próbával lehet a fajták között meglevő méretkülönbség meglétét kimutatni avagy elvetni?

Kutatástervezés 1. rész, Hahn István

Kutatástervezés 1. rész, Hahn István Kutatástervezés 1. rész, Hahn István 1. óra Adattípusok 1. A leggyakoribb változók osztályozása 2. A bináris változók jelentősége 3. Borításbecslés bináris mintavételi módszerrel 4. A leíró statisztika

Részletesebben

Változótípusok. bináris (előnyei-hátrányai) - borításbecslés

Változótípusok. bináris (előnyei-hátrányai) - borításbecslés Változótípusok Skála Definíció Példák Nominális 1.kvalitatív, nevekből áll 2.nincs rangsor ivar, betegség, fajnév, cselekvési típus, prezencia-abszencia adatok Ordinális Intervallum Arány/ hányados 1.kvalitatív,

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris

Részletesebben

y ij = µ + α i + e ij

y ij = µ + α i + e ij Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

Hipotézis vizsgálatok

Hipotézis vizsgálatok Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

Bevezetés a hipotézisvizsgálatokba

Bevezetés a hipotézisvizsgálatokba Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -

Részletesebben

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

Biometria, haladó biostatisztika EA+GY biometub17vm Szerda 8:00-9:00, 9:00-11:00 Déli Tömb 0-804, Lóczy Lajos terem

Biometria, haladó biostatisztika EA+GY biometub17vm Szerda 8:00-9:00, 9:00-11:00 Déli Tömb 0-804, Lóczy Lajos terem Biometria, haladó biostatisztika EA+GY biometub17vm Szerda 8:00-9:00, 9:00-11:00 Déli Tömb 0-804, Lóczy Lajos terem Előadások-gyakorlatok 2018-ban (13 alkalom) IX.12, 19, 26, X. 3, 10, 17, 24, XI. 7, 14,

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

6. Előadás. Vereb György, DE OEC BSI, október 12.

6. Előadás. Vereb György, DE OEC BSI, október 12. 6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás

Részletesebben

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely. Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak

Részletesebben

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58

Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58 u- t- Matematikai statisztika Gazdaságinformatikus MSc 2. előadás 2018. szeptember 10. 1/58 u- t- 2/58 eloszlás eloszlás m várható értékkel, σ szórással N(m, σ) Sűrűségfüggvénye: f (x) = 1 e (x m)2 2σ

Részletesebben

Populációbecslés és monitoring. Eloszlások és alapstatisztikák

Populációbecslés és monitoring. Eloszlások és alapstatisztikák Populációbecslés és monitoring Eloszlások és alapstatisztikák Eloszlások Az eloszlás megadja, hogy milyen valószínűséggel kapunk egy adott intervallumba tartozó értéket, ha egy olyan populációból veszünk

Részletesebben

Biostatisztika Összefoglalás

Biostatisztika Összefoglalás Biostatisztika Összefoglalás A biostatisztika vizsga A biostatisztika vizsga az Orvosi fizika és statisztika I. fizika vizsgájával egy napon történik. A vizsga keretében 30 perc alatt 0 kérdésre kell válaszolni

Részletesebben

Biostatisztika Összefoglalás

Biostatisztika Összefoglalás Biostatisztika Összefoglalás A biostatisztika vizsga A biostatisztika vizsga az Orvosi fizika és statisztika I. fizika vizsgájával egy napon történik. A vizsga keretében 30 perc alatt 0 kérdésre kell válaszolni

Részletesebben

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi fizika és statisztika I. előadás 2016.11.09 Orvosi

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

Kettőnél több csoport vizsgálata. Makara B. Gábor

Kettőnél több csoport vizsgálata. Makara B. Gábor Kettőnél több csoport vizsgálata Makara B. Gábor Három gyógytápszer elemzéséből az alábbi energia tartalom adatok származtak (kilokalória/adag egységben) Három gyógytápszer elemzésébô A B C 30 5 00 10

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév

Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév A pirossal írt anyagrészeket nem fogom közvetlenül számon kérni a vizsgán, azok háttérismeretként,

Részletesebben

STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba

STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba Egymintás u-próba STATISZTIKA 2. Előadás Középérték-összehasonlító tesztek Tesztelhetjük, hogy a valószínűségi változónk értéke megegyezik-e egy konkrét értékkel. Megválaszthatjuk a konfidencia intervallum

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

STATISZTIKA. A Föld pályája a Nap körül. Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)

STATISZTIKA. A Föld pályája a Nap körül. Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687) STATISZTIKA 10. Előadás Megbízhatósági tartományok (Konfidencia intervallumok) Sir Isaac Newton, 1643-1727 Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)

Részletesebben

[Biomatematika 2] Orvosi biometria. Visegrády Balázs

[Biomatematika 2] Orvosi biometria. Visegrády Balázs [Biomatematika 2] Orvosi biometria Visegrády Balázs 2016. 03. 27. Probléma: Klinikai vizsgálatban három különböző antiaritmiás gyógyszert (ß-blokkoló) alkalmaznak, hogy kipróbálják hatásukat a szívműködés

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

Hipotézis vizsgálatok

Hipotézis vizsgálatok Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

Mi az adat? Az adat elemi ismeret. Az adatokból információkat

Mi az adat? Az adat elemi ismeret. Az adatokból információkat Mi az adat? Az adat elemi ismeret. Tények, fogalmak olyan megjelenési formája, amely alkalmas emberi eszközökkel történő értelmezésre, feldolgozásra, továbbításra. Az adatokból gondolkodás vagy gépi feldolgozás

Részletesebben

Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás

Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x

Részletesebben

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision

Részletesebben

Biomatematika 13. Varianciaanaĺızis (ANOVA)

Biomatematika 13. Varianciaanaĺızis (ANOVA) Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

Tartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE

Tartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE Tartalomjegyzék 5 Tartalomjegyzék Előszó I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE 1. fejezet: Kontrollált kísérletek 21 1. A Salk-oltás kipróbálása 21 2. A porta-cava sönt 25 3. Történeti kontrollok 27 4. Összefoglalás

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika

Részletesebben

Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév

Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév 1. A várható érték és a szórás transzformációja 1. Ha egy valószínűségi változóhoz hozzáadunk ötöt, mínusz ötöt, egy b konstanst,

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

Egyszempontos variancia analízis. Statisztika I., 5. alkalom

Egyszempontos variancia analízis. Statisztika I., 5. alkalom Statisztika I., 5. alkalom Számos t-próba versus variancia analízis Kreativitás vizsgálata -nık -férfiak ->kétmintás t-próba I. Fajú hiba=α Kreativitás vizsgálata -informatikusok -építészek -színészek

Részletesebben

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő

Részletesebben

Kísérlettervezés alapfogalmak

Kísérlettervezés alapfogalmak Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

Kettőnél több csoport vizsgálata. Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet

Kettőnél több csoport vizsgálata. Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet Kettőnél több csoport vizsgálata Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet Gyógytápszerek (kilokalória/adag) Három gyógytápszer A B C 30 5 00 10 05 08 40 45 03 50 35 190 Kérdések: 1. Van-e

Részletesebben

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI, Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus. KOKI, 2015.09.17. Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze.

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus

Részletesebben

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.

Részletesebben

Kísérlettervezés alapfogalmak

Kísérlettervezés alapfogalmak Kísérlettervezés alapfogalmak Rendszermodellezés Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement

Részletesebben

2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!

2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK A 3. ZH-HOZ 2013 ŐSZ Elméleti kérdések összegzése 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! 2. Mutassa be az

Részletesebben

A leíró statisztikák

A leíró statisztikák A leíró statisztikák A leíró statisztikák fogalma, haszna Gyakori igény az, hogy egy adathalmazt elemei egyenkénti felsorolása helyett néhány jellemző tulajdonságának megadásával jellemezzünk. Ezeket az

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

Statisztikai alapok. Leíró statisztika Lineáris módszerek a statisztikában

Statisztikai alapok. Leíró statisztika Lineáris módszerek a statisztikában Statisztikai alapok Leíró statisztika Lineáris módszerek a statisztikában Tudományosan és statisztikailag tesztelhető állítások? A keserűcsokoládé finomabb, mint a tejcsoki. A patkány a legrondább állat,

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel

Részletesebben

Statisztika I. 10. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 10. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 10. előadás Előadó: Dr. Ertsey Imre Varianciaanalízis A különböző tényezők okozta szórás illetőleg szórásnégyzet összetevőire bontásán alapszik Segítségével egyszerre több mintát hasonlíthatunk

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

Egymintás próbák. Alapkérdés: populáció <paramétere/tulajdonsága> megegyezik-e egy referencia paraméter értékkel/tulajdonsággal?

Egymintás próbák. Alapkérdés: populáció <paramétere/tulajdonsága> megegyezik-e egy referencia paraméter értékkel/tulajdonsággal? Egymintás próbák σ s μ m Alapkérdés: A populáció egy adott megegyezik-e egy referencia paraméter értékkel/tulajdonsággal? egymintás t-próba Wilcoxon-féle előjeles

Részletesebben

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015 A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel

Részletesebben

Statisztika Elıadások letölthetık a címrıl

Statisztika Elıadások letölthetık a címrıl Statisztika Elıadások letölthetık a http://www.cs.elte.hu/~arato/stat*.pdf címrıl Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább 1-α valószínőséggel

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek tesztelése I.

Többváltozós lineáris regressziós modell feltételeinek tesztelése I. Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós

Részletesebben

BIOMETRIA (H 0 ) 5. Előad. zisvizsgálatok. Hipotézisvizsg. Nullhipotézis

BIOMETRIA (H 0 ) 5. Előad. zisvizsgálatok. Hipotézisvizsg. Nullhipotézis Hipotézis BIOMETRIA 5. Előad adás Hipotézisvizsg zisvizsgálatok Tudományos hipotézis Nullhipotézis feláll llítása (H ): Kétmintás s hipotézisek Munkahipotézis (H a ) Nullhipotézis (H ) > = 1 Statisztikai

Részletesebben

A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra

A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra Vörös Zsuzsanna NÉBIH RFI tervezési referens 2013. április 17. Egy kis felmérés nem kor Következtetések: 1. a jelenlevők nemi megoszlása:

Részletesebben

Korreláció és lineáris regresszió

Korreláció és lineáris regresszió Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =

Részletesebben

egyetemi jegyzet Meskó Balázs

egyetemi jegyzet Meskó Balázs egyetemi jegyzet 2011 Előszó 2. oldal Tartalomjegyzék 1. Bevezetés 4 1.1. A matematikai statisztika céljai.............................. 4 1.2. Alapfogalmak......................................... 4 2.

Részletesebben

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma: Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:

Részletesebben

Elemszám becslés. Kaszaki József Ph.D. SZTE ÁOK Sebészeti Műtéttani Intézet

Elemszám becslés. Kaszaki József Ph.D. SZTE ÁOK Sebészeti Műtéttani Intézet Elemszám becslés Kaszaki József Ph.D. SZTE ÁOK Sebészeti Műtéttani Intézet Miért fontos? Gazdasági okok: Túl kevés elem esetén nem tudjuk kimutatni a kívánt hatást Túl kevés elem esetén olyan eredmény

Részletesebben

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 9. előadás Előadó: Dr. Ertsey Imre Statisztikai hipotézis vizsgálatok elsősorban a biometriában alkalmazzák, újabban reprezentatív jellegű ökonómiai vizsgálatoknál, üzemi szinten élelmiszeripari

Részletesebben

Statisztikai alapfogalmak a klinikai kutatásban. Molnár Zsolt PTE, AITI

Statisztikai alapfogalmak a klinikai kutatásban. Molnár Zsolt PTE, AITI Statisztikai alapfogalmak a klinikai kutatásban Molnár Zsolt PTE, AITI Bevezetés Research vs. Science Kutatás Tudomány Szerkezeti háttér hiánya Önkéntesek (lelkes kisebbség) Beosztottak (parancsot teljesítő

Részletesebben

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem.

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem. Kabos: Statisztika II. ROC elemzések 10.1 ROC elemzések Szenzitivitás és specificitás a jelfeldolgozás szóhasználatával A riasztóberendezés érzékeli, ha támadás jön, és ilyenkor riaszt. Máskor nem. TruePositiveAlarm:

Részletesebben

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze. Célja: - a sokaságot

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel

Részletesebben

Statisztikai módszerek 7. gyakorlat

Statisztikai módszerek 7. gyakorlat Statisztikai módszerek 7. gyakorlat A tanult nem paraméteres próbák: PRÓBA NEVE Illeszkedés-vizsgálat Χ 2 próbával Homogenitás-vizsgálat Χ 2 próbával Normalitás-vizsgálataΧ 2 próbával MIRE SZOLGÁL? A val.-i

Részletesebben

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László Gyakorló feladatok Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László I/. A vizsgaidőszak második napján a hallgatók %-ának az E épületben, %-ának a D épületben,

Részletesebben

A Statisztika alapjai

A Statisztika alapjai A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati

Részletesebben

Nemparaméteres próbák

Nemparaméteres próbák Nemparaméteres próbák Budapesti Mőszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Mőegyetem rkp. 3. D ép. 334. Tel: 463-16-80 Fax: 463-30-91 http://www.vizgep.bme.hu

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

Statisztika elméleti összefoglaló

Statisztika elméleti összefoglaló 1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11

Részletesebben