Laboratórium mérés Házi feladat. Készítette: Koszó Norbert (GTPL3A) Második (javított) kiadás
|
|
- Sándor Németh
- 8 évvel ezelőtt
- Látták:
Átírás
1 Laboratórium mérés Házi feladat Készítette: Koszó Norbert (GTPL3A) Második (javított) kiadás
2
3 4. mérés Koszó Norbert (GTPL3A) Feladat 1. Adott egy diszkrét jel mintasorozata. A mintavételi idő t = 500 ns. Minimum hány alappontos DFT műveletre van szükség, ha a minta spektrumát f = 20 Hz felbontással szeretnénk vizsgálni? 2. Képezzen 16 mintából álló bemenő mintasorozatokat, melyek a következő jellegzetes jelalakoknak felelnek meg: 1. 50% kitöltésű négyszög 2. Háromszög 3. Fűrész 4. Szinusz Ügyeljen arra, hogy a mintasor pontosan egy periódust adjon meg. Gondolja végig, hogy jellegre milyen spektrum mintát várhat a fenti jelek vizsgálatától. Végezze el a Fourier transzformációt a segédprogrammal és ellenőrizze, hogy helytállóak voltak-e előzetes várakozásai. Foglalja össze, hogy a fenti azonos periódusú jelek között milyen jellegzetes különbségek váltak nyilvánvalóvá. Megoldás 1. feladat f = f s N = 1 t N N = 1 t f = ns 20Hz = feladat 50% kitoltésű négyszög Mintasorozat: 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0. Páratlan harmonikusok kb. 1/x szerint csökkennek, páros harmonikus nincs. Háromszög Mintasorozat: 0, 0.125, 0.250, 0.375, 0.500, 0.625, 0.750, 0.875, 1, 0.875, 0.750, 0.625, 0.500, 0.375, 0.250, Csak páratlan harmonikusok, melyek amplitúdója erősen (1/x^2 szerűen) csökkennek. Fűrész Mintasorozat: , , , , , , , , , , , , , , Páratlan és páros harmonikusok is vannak. 1. oldal
4 Koszó Norbert (GTPL3A) 4. mérés Szinusz Mintasorozat: , , , , , , , , , , , , , , , Nincs felharmonikus. DFTs cuccok Ez nem része a házi feladatnak, de a mérés során szükség van rá. A könyv a feladatok a felkészüléshez bekezdés 4. pontjában írja elő ezt feladatnak. A lent látható kód biztosan hibás. A feladat 1V effektív értékre viszonyítva kér db értékeket. Ez biztosan nem teljesül, sőt, nem is decibelben vannak megadva az értékek. Decibelbe átszámoláskor alapnak az általam használt jel effektív értékével kell osztani, és jó lesz remélem. Én laboron az itteni számértékek logaritmusát vettem, és konstans eltérés volt a mért és a számolt értékek között, tehát a hiba az eltérő amplitúdóból adódott. Ezt beleírtam a jegyzőkönyvbe, nekem elfogadták. octave-3.0.1:1> t=[0:1:99]; octave-3.0.1:2> negyszog=2*(sign(sign(50-t)-1)+0.5) octave-3.0.1:3> haromszog=[[0:1:50],[49:-1:1]]./50 octave-3.0.1:4> furesz=[0:1:99]./99 octave-3.0.1:5> szinusz=sin(2*pi/100*t) octave-3.0.1:6> k=[0:1:9]; octave-3.0.1:7> abs(negyszog*exp(2*pi*i/100*transpose(t)*k)) octave-3.0.1:8> abs(haromszog*exp(2*pi*i/100*transpose(t)*k)) e e e e e e e e e e-01 octave-3.0.1:9> abs(furesz*exp(2*pi*i/100*transpose(t)*k)) octave-3.0.1:10> abs(szinusz*exp(2*pi*i/100*transpose(t)*k)) e e e e e e e e e e oldal
5 4. mérés Koszó Norbert (GTPL3A) DFTs cuccok magyarázat Többen panaszkodtak, hogy a fenti kód nem érthető számukra. Megértem, valóban nem triviális. Egy kis segítség hozzá. Induljunk ki a diszkrét Fourier transzformáció képletéből: N 1 2 i N X k = x n e k n, (1) n=0 ahol N a jel hossza. Ez ugye egy szumma valami szorozva valami, ami tipikusan egy mátrix szorzással oldható meg könnyedén. Nézzük meg egy egyszerű példán, legyen a= 1,2,3 és b= 2,3,4, a kérdés pedig legyen a n b n. Ezt átírhatjuk mátrixok n=1 szorzatára a b'= =20. Octaveban ez a következőképp valósítható meg: octave:7> a=[1:1:3]; b=[2:1:4]; octave:8> a*transpose(b) 20 Amennyiben az 1. képletben k értékét rögzítjük, a fenti szorzást kapjuk vissza: N 1 X 1 = n=0 x n e a n 2 i N n. b n Mi viszont nem csak egy k értékre vagyunk kíváncsiak, hanem sokra. Egyszerűen megfogalmazva, legyen a= 1,2,3, b 1 = 2,3,4, b 2 = 3,4,5, a kérdés pedig 3 n=1 3 a n b 1n és n=1 mátrix ügyeskedéssel megoldható egy lépésben a b ' 1 b ' 2 = Octaveban implementálva: a n b 2n. Nyilván alkalmazhatjuk kétszer a fenti trükköt, de egy is = octave:10> a=[1:1:3]; b1=[2:1:4]; b2=[3:1:5]; octave:11> a*[transpose(b1),transpose(b2)] oldal
6 Koszó Norbert (GTPL3A) 4. mérés A többit már mindenki fantáziájára bízom, nem szeretném elvenni tőletek az örömöt, hogy ezt megértsétek. Egyébként tényleg nem. Rajzoljátok le a mátrixokat, ha máshogy nem megy. Érdemes egyszer végiggondolni szerintem. Itt is felhívnám a figyelmeteket, hogy a második oldalon található eredmények nem helyesek, csak az elvet mutatják be. A házi feladathoz felhasznált eszközök A házi feladat kizárólag ingyenes szoftverekkel, Openoffice.org irodai csomaggal készült, FreeSans, FreeMono és FreeSerif betűtípussal íródott, Ubuntu operációs rendszeren. A feladatokat önállóan, meg nem engedett segítség igénybevétele nélkül oldottam meg:... Koszó Norbert 4. oldal
Mérés 3 - Ellenörzö mérés - 5. Alakítsunk A-t meg D-t oda-vissza (A/D, D/A átlakító)
Mérés 3 - Ellenörzö mérés - 5. Alakítsunk A-t meg D-t oda-vissza (A/D, D/A átlakító) 1. A D/A átalakító erısítési hibája és beállása Mérje meg a D/A átalakító erısítési hibáját! A hibát százalékban adja
Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz
Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 5-7. ea. 2017 ősz 5. Előadás témái Fourier transzformációk és kapcsolataik: FS, FT, DTFT, DFT, DFS Mintavételezés, interpoláció Folytonos
Fourier transzformáció
a Matematika mérnököknek II. című tárgyhoz Fourier transzformáció Fourier transzformáció, heurisztika Tekintsük egy 2L szerint periodikus függvény Fourier sorát: f (x) = a 0 2 + ( ( nπ ) ( nπ )) a n cos
Fehérzajhoz a konstans érték kell - megoldás a digitális szűrő Összegezési súlyok sin x/x szerint (ez akár analóg is lehet!!!)
DSP processzorok: 1 2 3 HP zajgenerátor: 4 Shift regiszter + XOR kapu: 2 n állapot Autókorrelációs függvény: l. pénzdobálás: (sin x/x) 2 burkoló! Fehérzajhoz a konstans érték kell - megoldás a digitális
Shift regiszter + XOR kapu: 2 n állapot
DSP processzorok: 1 2 HP zajgenerátor: 3 Shift regiszter + XOR kapu: 2 n állapot Autókorrelációs függvény: l. pénzdobálás: (sin x/x) 2 burkoló! 4 Fehérzajhoz a konstans érték kell - megoldás a digitális
3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek
3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1
Wavelet transzformáció
1 Wavelet transzformáció Más felbontás: Walsh, Haar, wavelet alapok! Eddig: amplitúdó vagy frekvencia leírás: Pl. egy rövid, Dirac-delta jellegű impulzus Fourier-transzformált: nagyon sok, kb. ugyanolyan
Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata.
El. II. 5. mérés. SZIMMETRIKUS ERŐSÍTŐK MÉRÉSE. A mérés célja : Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata. A mérésre való felkészülés során tanulmányozza
Mérési jegyzőkönyv a 5. mérés A/D és D/A átalakító vizsgálata című laboratóriumi gyakorlatról
Mérési jegyzőkönyv a 5. mérés A/D és D/A átalakító vizsgálata című laboratóriumi gyakorlatról A mérés helyszíne: A mérés időpontja: A mérést végezték: A mérést vezető oktató neve: A jegyzőkönyvet tartalmazó
1. ábra a függvénygenerátorok általános blokkvázlata
A függvénygenerátorok nemszinuszos jelekből állítanak elő kváziszinuszos jelet. Nemszinuszos jel lehet pl. a négyszögjel, a háromszögjel és a fűrészjel is. Ilyen típusú jeleket az úgynevezett relaxációs
Néhány fontosabb folytonosidejű jel
Jelek és rendszerek MEMO_2 Néhány fontosabb folytonosidejű jel Ugrásfüggvény Bármely választással: Egységugrás vagy Heaviside-féle függvény Ideális kapcsoló. Signum függvény, előjel függvény. MEMO_2 1
Lineáris algebra. (közgazdászoknak)
Lineáris algebra (közgazdászoknak) 10A103 FELADATOK A GYAKORLATRA (3.) 2018/2019. tavaszi félév Lineáris egyenletrendszerek 3.1. Feladat. Oldjuk meg az alábbi lineáris egyenletrendszereket Gauss-eliminációval
1. Jelgenerálás, megjelenítés, jelfeldolgozás alapfunkciói
1. Jelgenerálás, megjelenítés, jelfeldolgozás alapfunkciói FELADAT Készítsen egy olyan tömböt, amelynek az elemeit egy START gomb megnyomásakor feltölt a program 1 periódusnyi szinuszosan változó értékekkel.
Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató
ÓBUDAI EGYETEM Kandó Kálmán Villamosmérnöki Kar Híradástechnika Intézet Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató A mérést végezte: Neptun kód: A mérés időpontja: A méréshez szükséges eszközök:
Első egyéni feladat (Minta)
Első egyéni feladat (Minta) 1. Készítsen olyan programot, amely segítségével a felhasználó 3 különböző jelet tud generálni, amelyeknek bemenő adatait egyedileg lehet változtatni. Legyen mód a jelgenerátorok
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk váltakozó-áramú alkalmazásai. Elmélet Az integrált mûveleti erõsítõk váltakozó áramú viselkedését a. fejezetben (jegyzet és prezentáció)
Hatványsorok, Fourier sorok
a Matematika mérnököknek II. című tárgyhoz Hatványsorok, Fourier sorok Hatványsorok, Taylor sorok Közismert, hogy ha 1 < x < 1 akkor 1 + x + x 2 + x 3 + = n=0 x n = 1 1 x. Az egyenlet baloldalán álló kifejezés
Értékes jegyek fogalma és használata. Forrás: Dr. Bajnóczy Gábor, BME, Vegyészmérnöki és Biomérnöki Kar Kémiai és Környezeti Folyamatmérnöki Tanszék
Értékes jegyek fogalma és használata Forrás: Dr. Bajnóczy Gábor, BME, Vegyészmérnöki és Biomérnöki Kar Kémiai és Környezeti Folyamatmérnöki Tanszék Értékes jegyek száma Az értékes jegyek számának meghatározását
5. mérés: Diszkrét Fourier Transzformáció (DFT), Gyors Fourier Transzformáció (FFT), számítógépes jelanalízis
Híradástechnika II. laboratóriumi mérések 5. mérés: Diszkrét Fourier Transzformáció (DFT), Gyors Fourier Transzformáció (FFT), számítógépes jelanalízis Összeállította: Kármán József Általános bevezet Az
07. mérés Erősítő kapcsolások vizsgálata.
07. mérés Erősítő kapcsolások vizsgálata. A leggyakrabban használt üzemi paraméterek a következők: - a feszültségerősítés Au - az áramerősítés Ai - a teljesítményerősítés Ap - a bemeneti impedancia Rbe
Hang terjedési sebességének meghatározása állóhullámok vizsgálata Kundt csőben
Hang terjedési sebességének meghatározása állóhullámok vizsgálata Kundt csőben Akusztikai állóhullámok levegőben vagy egyéb gázban történő vizsgálatához és azok hullámhosszának meghatározására alkalmas
1. megold s: A keresett háromjegyű szám egyik számjegye a 3-as, a két ismeretlen számjegyet jelölje a és b. A feltétel szerint
A 004{005. tan vi matematika OKTV I. kateg ria els (iskolai) fordul ja feladatainak megold sai 1. feladat Melyek azok a 10-es számrendszerbeli háromjegyű pozitív egész számok, amelyeknek számjegyei közül
RC tag mérési jegyz könyv
RC tag mérési jegyz könyv Mérést végezte: Csutak Balázs, Farkas Viktória Mérés helye és ideje: ITK 320. terem, 2016.03.09 A mérés célja: Az ELVIS próbapanel és az ELVIS m szerek használatának elsajátítása,
NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez
NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez Számadó László (Budapest) 1. Számold ki! a) 1 2 3 + 4 5 6 ; b) 1 2 3 + 4 5 6. 2 3 4 5 6 7 2 3 5 6 7 a) 1 2 3 4 2 3 4 +5
A tervfeladat sorszáma: 1 A tervfeladat címe: ALU egység 8 regiszterrel és 8 utasítással
.. A tervfeladat sorszáma: 1 A ALU egység 8 regiszterrel és 8 utasítással Minimálisan az alábbi képességekkel rendelkezzen az ALU 8-bites operandusok Aritmetikai funkciók: összeadás, kivonás, shift, komparálás
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Passzív alkatrészek és passzív áramkörök. Elmélet A passzív elektronikai alkatrészek elméleti ismertetése az. prezentációban található. A 2. prezentáció
Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz
2018/2019 ősz Elérhetőségek Előadó: (safaro@math.bme.hu) Fogadóóra: hétfő 9-10 (H épület 3. emelet 310-es ajtó) A pontos tárgykövetelmények a www.math.bme.hu/~safaro/kalkulus oldalon találhatóak. A mátrix
A gyakorlat célja a fehér és a színes zaj bemutatása.
A gyakorlat célja a fehér és a színes zaj bemutatása. 1.@. FFT begyakorlása n = [:9]; % Harminc minta x = cos(*pi*n/1); % 1 mintát veszünk periodusonként N1 = 64; % Három módon számoljuk az FFT-t N = 18;
1. témakör. A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban
1. témakör A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban A hírközlés célja, általános modellje Üzenet: Hír: Jel: Zaj: Továbbításra szánt adathalmaz
Hangfrekvenciás mechanikai rezgések vizsgálata
Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk
Mérési és Értékelési Bizonylat
VILLBITSZOLG VILLAMOS BIZTONSÁGTECHNIKAI ÉS SZOLGÁLTATÓ KFT 1141 BUDAPEST Gödöllői u. 71 sz. T/F : 3 427-135 M:06 70 2116617 ; e-mail: villbit.ravai@t-online.hu Munkaszám:0000 Telephely:1 4 oldal értékelés
Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 25. A mérés száma és címe: 5. ESR (Elektronspin rezonancia) Értékelés: A beadás dátuma: 2011. nov. 16. A mérést végezte: Szőke Kálmán Benjamin
KRL Kontrol Kft Érd, Bajcsy-Zs. út 81. Tel: ; Fax: ; Web: KRL.HU
KRL Kontrol Kft. 2030 Érd, Bajcsy-Zs. út 81. Tel: +36 23 381-818; Fax: +36 23 381-542; E-mail: KRL@KRL.HU; Web: KRL.HU Mérési jegyzőkönyv Dátum: 2015.06.01. Iktatószám: 150601j01 Ügyintéző: KRL Kontrol
EGYENÁRAMÚ TÁPEGYSÉGEK
dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan
ÁRAMKÖRÖK SZIMULÁCIÓJA
ÁRAMKÖRÖK SZIMULÁCIÓJA Az áramkörök szimulációja révén betekintést nyerünk azok működésébe. Meg tudjuk határozni az áramkörök válaszát különböző gerjesztésekre, különböző üzemmódokra. Végezhetők analóg
A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató
Oktatási Hivatal 04/0 tanévi Országos Középiskolai Tanulmányi Verseny első forduló MTEMTIK I KTEGÓRI (SZKKÖZÉPISKOL) Javítási-értékelési útmutató Határozza meg a tízes számrendszerbeli x = abba és y =
illetve, mivel előjelét a elnyeli, a szinuszból pedig kiemelhető: = " 3. = + " 2 = " 2 % &' + +
DFT 1. oldal A Fourier-sorfejtés szerint minden periodikus jel egyértelműen felírható különböző amplitúdójú és fázisú szinusz és koszinusz jelek összegeként: = + + 1. ahol az együtthatók, szintén a definíció
PKN Controls Kft. 2008-08-10
PKN Controls Kft. 2008-08-10 Belső mérési jegyzőkönyv Kimeneti paraméterek mérése Termék megnevezése: Xe szériás Professzionális Audió Végfokozatok Modellek: XE 2500 XE 4000 XE 6000 A méréshez felhasznált
Műszertechnikai és Automatizálási Intézet MÉRÉSTECHNIKA LABORATÓRIUMI MÉRÉSEK ÚTMUTATÓ
Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Műszertechnikai és Automatizálási Intézet MÉRÉSTECHNIKA LABORATÓRIUMI MÉRÉSEK ÚTMUTATÓ 20/7. sz. mérés HAMEG HM-5005 típusú spektrumanalizátor vizsgálata
A gyors Fourier-transzformáció (FFT)
A gyors Fourier-transzformáció (FFT) Egy analóg jel spetrumát az esete döntő többségében számítástechniai eszözöel határozzu meg. A jelet mintavételezzü és elvégezzü a mintasorozat diszrét Fouriertranszformációját.
Döntéselőkészítés. VII. előadás. Döntéselőkészítés. Egyszerű Kőnig-feladat (házasság feladat)
VII. előadás Legyenek adottak Egyszerű Kőnig-feladat (házasság feladat) I, I 2,, I i,, I m személyek és a J, J 2,, J j,, J n munkák. Azt, hogy melyik személy melyik munkához ért ( melyik munkára van kvalifikálva)
Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Folyadékkristályok vizsgálata.
Modern Fizika Labor A mérés dátuma: 2005.11.16. A mérés száma és címe: 17. Folyadékkristályok vizsgálata Értékelés: A beadás dátuma: 2005.11.30. A mérést végezte: Orosz Katalin Tóth Bence 1 A mérés során
2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
2. Rugalmas állandók mérése jegyzőkönyv javított Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 17. Leadás dátuma: 2008. 10. 08. 1 1. Mérések ismertetése Az első részben egy téglalap keresztmetszetű
Gyakorló többnyire régebbi zh feladatok. Intelligens orvosi műszerek október 2.
Gyakorló többnyire régebbi zh feladatok Intelligens orvosi műszerek 2018. október 2. Régebbi zh feladat - #1 Az ábrán látható két jelet, illetve összegüket mozgóablak mediánszűréssel szűrjük egy 11 pontos
ANTAL Margit. Sapientia - Erdélyi Magyar Tudományegyetem. Jelfeldolgozás. ANTAL Margit. Adminisztratív. Bevezetés. Matematikai alapismeretek.
Jelfeldolgozás 1. Sapientia - Erdélyi Magyar Tudományegyetem 2007 és jeleket generáló és jeleket generáló és jeleket generáló Gyakorlatok - MATLAB (OCTAVE) (50%) Írásbeli vizsga (50%) és jeleket generáló
SHk rövidítéssel fogunk hivatkozni.
Nevezetes függvény-határértékek Az alábbiakban a k sorszámú függvény-határértékek)re az FHk rövidítéssel, a kompozíció határértékéről szóló első, illetve második tételre a KL1, illetve a KL rövidítéssel,
I. Egyenlet fogalma, algebrai megoldása
11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk egyenáramú jellemzése és alkalmazásai. Elmélet Az erõsítõ fogalmát valamint az integrált mûveleti erõsítõk szerkezetét és viselkedését
CSAPADÉK ÉS TALAJVÍZSZINT ÉRTÉKEK SPEKTRÁLIS ELEMZÉSE A MEZŐKERESZTES-I ADATOK ALAPJÁN*
A Miskolci Egyetem Közleménye A sorozat, Bányászat, 66. kötet, (2004) p. 103-108 CSAPADÉK ÉS TALAJVÍZSZINT ÉRTÉKEK SPEKTRÁLIS ELEMZÉSE A MEZŐKERESZTES-I ADATOK ALAPJÁN* Dr.h.c.mult. Dr. Kovács Ferenc az
Mérés és adatgyűjtés
Mérés és adatgyűjtés 4. óra Mingesz Róbert Szegedi Tudományegyetem 2012. február 27. MA - 4. óra Verzió: 2.1 Utolsó frissítés: 2012. március 12. 1/41 Tartalom I 1 Jelek 2 Mintavételezés 3 A/D konverterek
3. el adás: Determinánsok
3. el adás: Determinánsok Wettl Ferenc 2015. február 27. Wettl Ferenc 3. el adás: Determinánsok 2015. február 27. 1 / 19 Tartalom 1 Motiváció 2 A determináns mint sorvektorainak függvénye 3 A determináns
Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) 1. Számítsd ki a következő kifejezések pontos értékét!
Megoldások. Számítsd ki a következő kifejezések pontos értékét! 8 8 ( ) ( ) ( ) Használjuk a gyökvonás azonosságait. 0 8 8 8 8 8 8 ( ) ( ) ( ) 0 8 . Határozd meg a következő kifejezések értelmezési tartományát!
Tiszta hálózatok a modern épületekben!
Tiszta hálózatok a modern épületekben! Alkalmazási példa: Modern épületek, Irodaházak a KRL kivitelezésében A felharmonikus szûrés kiemelt jelentôségû a modern épületek villamos hálózatában! Budapest egyik
Szent István Egyetem Fizika és folyamatirányítási Tanszék FIZIKA. rezgések egydimenziós hullám hangok fizikája. Dr. Seres István
Szent István Egyetem Fizika és folyamatirányítási Tanszék rezgések egydimenziós hullám hangok fizikája Dr. Seres István Harmonikus rezgőmozgás ( sin(ct) ) ( c cos(ct) ) c sin(ct) ( cos(ct) ) ( c sin(ct)
Jegyzőkönyv. hangfrekvenciás mechanikai rezgések vizsgálatáról (3)
Jegyzőkönyv a hangfrekvenciás mechanikai rezgések vizsgálatáról () Készítette: Tüzes Dániel Mérés ideje: 2008-11-19, szerda 14-18 óra Jegyzőkönyv elkészülte: 2008-11-26 A mérés célja A feladat két anyag
O ( 0, 0, 0 ) A ( 4, 0, 0 ) B ( 4, 3, 0 ) C ( 0, 3, 0 ) D ( 4, 0, 5 ) E ( 4, 3, 5 ) F ( 0, 3, 5 ) G ( 0, 0, 5 )
1. feladat Írjuk föl a következő vektorokat! AC, BF, BG, DF, BD, AG, GB Írjuk föl ezen vektorok egységvektorát is! a=3 m b= 4 m c= m Írjuk föl az egyes pontok koordinátáit: O ( 0, 0, 0 ) A ( 4, 0, 0 )
Numerikus módszerek 1.
Numerikus módszerek 1. 3. előadás: Mátrixok LU-felbontása Lócsi Levente ELTE IK 2013. szeptember 23. Tartalomjegyzék 1 Alsó háromszögmátrixok és Gauss-elimináció 2 Háromszögmátrixokról 3 LU-felbontás Gauss-eliminációval
III. Vályi Gyula Emlékverseny december
III. Vályi Gyula Emlékverseny 1996. december 14 15. VI osztály A feladatok szövege után öt lehetséges válasz (A, B, C, D és E) található, amelyek közül csak pontosan egy helyes. A helyes válasz betűjelét
9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:
9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y
Modern Fizika Labor Fizika BSC
Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. február 23. A mérés száma és címe: 17. Folyadékkristályok Értékelés: A beadás dátuma: 2009. március 2. A mérést végezte: Zsigmond Anna Márton Krisztina
Transzformátor rezgés mérés. A BME Villamos Energetika Tanszéken
Transzformátor rezgés mérés A BME Villamos Energetika Tanszéken A valóság egyszerűsítése, modellezés. A mérés tervszerűen végrehajtott tevékenység, ezért a bonyolult valóságos rendszert először egyszerűsítik.
ÖNÁLLÓ LABOR Mérésadatgyűjtő rendszer tervezése és implementációja
ÖNÁLLÓ LABOR Mérésadatgyűjtő rendszer tervezése és implementációja Nagy Mihály Péter 1 Feladat ismertetése Általános célú (univerzális) digitális mérőműszer elkészítése Egy- vagy többcsatornás feszültségmérés
Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!
Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el
Következõ: Lineáris rendszerek jellemzõi és vizsgálatuk. Jelfeldolgozás. Lineáris rendszerek jellemzõi és vizsgálatuk
1 1 Következõ: Lineáris rendszerek jellemzõi és vizsgálatuk Jelfeldolgozás 1 Lineáris rendszerek jellemzõi és vizsgálatuk 2 Bevezetés 5 Kérdések, feladatok 6 Fourier sorok, Fourier transzformáció 7 Jelek
1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)
1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)
50. modul 1. melléklet 2. évfolyam tanítói fólia
50. modul 1. melléklet 2. évfolyam tanítói fólia 50. modul 2. melléklet 2. évfolyam tanítói fólia 50. modul 3. melléklet 2. évfolyam tanítói fólia 50. modul 4. melléklet 2. évfolyam tanítói fólia és csoport
Digitális Fourier-analizátorok (DFT - FFT)
6 Digitális Fourier-analizátoro (DFT - FFT) Eze az analizátoro digitális műödésűe és a Fourier-transzformálás elvén alapulna. A digitális Fourier analizátoro a folytonos időfüggvény mintavételezett jeleit
Akusztikus mérőműszerek
Akusztikus mérőműszerek Hangszintmérő: méri a frekvencia súlyozott, és nyomásátlagolt hangnyomás szintet (hangszintet). Felépítése Mikrofon + Erősítő Frekvencia Szint tartomány Időátlagolás Kijelzés Előerősítő
Jelgenerálás virtuális eszközökkel. LabVIEW 7.1
Jelgenerálás virtuális eszközökkel (mágneses hiszterézis mérése) LabVIEW 7.1 3. előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 EA-3/1 Folytonos idejű jelek diszkrét idejű mérése A mintavételezési
II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés
II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés Nagyon könnyen megfigyelhetjük, hogy akármilyen két számmal elindítunk egy Fibonacci sorozatot, a sorozat egymást követő tagjainak
Matematika osztályozó vizsga témakörei 9. évfolyam II. félév:
Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: 7. Függvények: - függvények fogalma, megadása, ábrázolás koordináta- rendszerben - az elsőfokú függvény, lineáris függvény - a másodfokú függvény
<mérésvezető neve> 8 C s z. 7 U ki TL082 4 R. 1. Neminvertáló alapkapcsolás mérési feladatai
MÉRÉSI JEGYZŐKÖNYV A mérés tárgya: Egyszerű áramkör megépítése és bemérése (1. mérés) A mérés időpontja: 2004. 02. 10 A mérés helyszíne: BME, labor: I.B. 413 A mérést végzik: A Belso Zoltan B Szilagyi
5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével
5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével 5.1. Átismétlendő anyag 1. Adszorpció (előadás) 2. Langmuir-izoterma (előadás) 3. Spektrofotometria és Lambert Beer-törvény
Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. (
FELADATOK A LEKÉPEZÉSEK, PERMUTÁCIÓK TÉMAKÖRHÖZ Diszkrét Matematika 4. LEKÉPEZÉSEK Értelmezési tartomány és értékkészlet meghatározása : Összefoglaló feladatgyűjtemény matematikából ( zöld könyv ): XIII.
5. előadás. Skaláris szorzás
5. előadás Skaláris szorzás Bevezetés Két vektor hajlásszöge: a vektorokkal párhuzamos és egyirányú, egy pontból induló félegyenesek konvex szöge. φ Bevezetés Definíció: Két vektor skaláris szorzata abszolút
Az 5-2. ábra két folyamatos jel (A és B) azonos gyakoriságú mintavételezését mutatja. 5-2. ábra
Az analóg folyamatjeleken - mielőtt azok további feldolgozás (hasznosítás) céljából bekerülnének a rendszer adatbázisába - az alábbi műveleteket kell elvégezni: mintavételezés, átkódolás, méréskorrekció,
Bevezetés a méréstechinkába, és jelfeldologzásba jegyzőkönyv
Bevezetés a méréstechinkába, és jelfeldologzásba jegyzőkönyv Lódi Péter(D1WBA1) 2015 Március 18. Bevezetés: Mérés helye: PPKE-ITK 3. emeleti 321-es Mérőlabor Mérés ideje: 2015.03.25. 13:15-16:00 Mérés
Diszkrét matematika 2.
Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 4. előadás Eulerséta: Olyan séta, mely a gráf minden élét pontosan egyszer tartalmazza. Tétel: egy összefüggő gráf. Ha minden
Megoldások 9. osztály
XXV. Nemzetközi Magyar Matematikaverseny Budapest, 2016. március 1115. Megoldások 9. osztály 1. feladat Nevezzünk egy számot prímösszeg nek, ha a tízes számrendszerben felírt szám számjegyeinek összege
Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése
Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Dr. Kallós Gábor 2014 2015 1 Az Ordó jelölés Azt mondjuk, hogy az f(n) függvény eleme az Ordó(g(n)) halmaznak, ha van olyan c konstans (c
1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
BME MOGI Gépészeti informatika 1.
BME MOGI Gépészeti informatika 1. 1. feladat Végezze el a következő feladatokat! Olvassa be a nevét és írjon üdvözlő szöveget a képernyőre! Generáljon két 1-100 közötti egész számot, és írassa ki a hányadosukat
Ortogonalizáció. Wettl Ferenc Wettl Ferenc Ortogonalizáció / 41
Ortogonalizáció Wettl Ferenc 2016-03-22 Wettl Ferenc Ortogonalizáció 2016-03-22 1 / 41 Tartalom 1 Ortonormált bázis 2 Ortogonális mátrix 3 Ortogonalizáció 4 QR-felbontás 5 Komplex skaláris szorzás 6 Diszkrét
2018/2019. Matematika 10.K
Egész éves dolgozat szükséges felszerelés: toll, ceruza, radír, vonalzó, körző, számológép, függvénytáblázat 2 órás, 4 jegyet ér 2019. május 27-31. héten Aki hiányzik, a következő héten írja meg, e nélkül
Modern fizika laboratórium
Modern fizika laboratórium 11. Az I 2 molekula disszociációs energiája Készítette: Hagymási Imre A mérés dátuma: 2007. október 3. A beadás dátuma: 2007. október xx. 1. Bevezetés Ebben a mérésben egy kétatomos
Modern Fizika Labor Fizika BSC
Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. május 4. A mérés száma és címe: 9. Röntgen-fluoreszencia analízis Értékelés: A beadás dátuma: 2009. május 13. A mérést végezte: Márton Krisztina Zsigmond
összeadjuk 0-t kapunk. Képletben:
814 A ferde kifejtés tétele Ha egy determináns valamely sorának elemeit egy másik sor elemeihez tartozó adjungáltakkal szorozzuk meg és a szorzatokat összeadjuk 0-t kapunk Képletben: n a ij A kj = 0, ha
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Különleges analóg kapcsolások. Elmélet Közönséges és precíz egyenirányítók-, mûszer-erõsítõk-, audio erõsítõk, analóg szorzók-, modulátorok és demodulátorok-,
Hangfrekvenciás mechanikai rezgések vizsgálata
KLASSZIKUS FIZIKA LABORATÓRIUM 3. MÉRÉS Hangfrekvenciás mechanikai rezgések vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 23. Szerda délelőtti csoport 1. A
π π A vivőhullám jelalakja (2. ábra) A vivőhullám periódusideje T amplitudója A az impulzus szélessége szögfokban 2p. 2p [ ]
Pulzus Amplitúdó Moduláció (PAM) A Pulzus Amplitúdó Modulációról abban az esetben beszélünk, amikor egy impulzus sorozatot használunk vivőhullámnak és ezen a vivőhullámon valósítjuk meg az amplitúdómodulációt
Szórt spektrumú adatátvitel modellezése
Elméleti összefoglaló: Szórt spektrumú adatátvitel modellezése A CDMA rendszerek spektrumkiterjesztése. A spektrumkiterjesztő eljárásoknak több lehetséges megoldása van, de a katonai s persze a polgári
1 pont Bármely formában elfogadható pl.:, avagy. 24 4
2012. február 2. 8. évfolyam TMat2 feladatlap Javítókulcs / 1 Javítókulcs MATEMATIKA FELADATOK 8. évfolyamosok számára, tehetséggondozó változat TMat2 A javítókulcsban feltüntetett válaszokra a megadott
Ellenállásmérés Wheatstone híddal
Ellenállásmérés Wheatstone híddal A nagypontosságú elektromos ellenállásmérésre a gyakorlatban sokszor szükség van. Nagyon sok esetben nem elektromos mennyiségek mérését is visszavezethetjük ellenállásmérésre.
Informatika Rendszerek Alapjai
Informatika Rendszerek Alapjai Dr. Kutor László Alapfogalmak Információ-feldolgozó paradigmák Analóg és digitális rendszerek jellemzői Jelek típusai Átalakítás rendszerek között http://uni-obuda.hu/users/kutor/
Informatika Rendszerek Alapjai
Informatika Rendszerek Alapjai Dr. Kutor László Jelek típusai Átalakítás analóg és digitális rendszerek között http://uni-obuda.hu/users/kutor/ IRA 2014 2014. ősz IRA3/1 Analóg jelek digitális feldolgozhatóságának
Függvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
Fourier transzformáció
Fourier transzformáció A szeizmikus hullámok tanulmányozása során igen nagy jelentősége van a hullámok frekvencia tartalmának. Ezt használjuk a hullámok alakjának mintavételezésekor, lineáris szűrések
Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai
Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív
Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén
Matematikai modellek, I. kisprojekt Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén Unger amás István B.Sc. szakos matematikus hallgató ungert@maxwell.sze.hu, http://maxwell.sze.hu/~ungert
1. Determinánsok. Oldjuk meg az alábbi kétismeretlenes, két egyenletet tartalmaz lineáris egyenletrendszert:
1 Determinánsok 1 Bevezet definíció Oldjuk meg az alábbi kétismeretlenes, két egyenletet tartalmaz lineáris egyenletrendszert: a 11 x 1 +a 12 x 2 = b 1 a 21 x 1 +a 22 x 2 = b 2 Szorozzuk meg az első egyenletet