Számítástudomány matematikai alapjai segédlet táv és levelező

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Számítástudomány matematikai alapjai segédlet táv és levelező"

Átírás

1 Számítástudomány matematikai alapjai segédlet táv és levelező Horváth Árpád június 18. A segédletek egy része az oldal Számítástudomány kurzusában található, de esetleg a matek honlapon is érdemes végignézni: Kötelező irodalom: Bagyinszki György: Diszkrét matematika főiskolásoknak, TypoTEX Kiadó, Bp György Kárász Sergyán Vajda Záborszky: Diszkrét matematika példatár, Bp. 2003, BMF-NIK-5003, (Továbbiakban Példatár). Levelezősöknek a matek honlapon elérhető NetworkX-es segédlet. Ajánlott irodalom: Tóth Mihály: Számítástudomány algebrai alapjai Tóth Mihály: Bevezetés a formális nyelvek és automaták elméletébe (Handout, 1992.) Fellegi Tibor: Absztrakt algebrai összefoglaló (a matek honlapról utalás van rá) Demetrovics, Denev, Pavlov: A számítástudomány matematikai alapjai (a formális nyelvek és absztrakt automaták részhez) Beadás: a oldalon megadott határidővel papíron vagy a következő elektronikus formákban pdf, png, gif, jpg, odt (OpenOffice, Abiword vagy KWord), Microsoft Word (.doc). Ahol nem tüntetünk fel mást, a feladatsorszámok a Diszkrét matematika példatár feladataira utalnak. 1

2 1. Gráfelmélet 1.1. Mintafeladatok 5.1. fejezetből 1., 2., 3. (három feladat!), Az illeszkedési mátrix E V (4 csúcs, 3 él esetén 4 3-as) típusú mátrix, ij-dik eleme 1, ha i-dik csúcs rajta van j-dik élen, különben 0. 8., 14., 15. (izomorfia), 5.2. fejezetből 1., 4. (csak Euler-séta kell) 5.4. fejezetből 1., 3., 4., 8., 9., 10., 11., 1.2. Beadandó feladatok feladat. Írjuk fel az alábbi gráf szomszédsági mátrixát. Adjunk meg benne egy feszítőfát. Található-e a gráfban Euler-séta? feladat. Ábrázoljuk az alábbi súlymátrix-szal megadott súlyozott mátrixot! Adjunk meg egy lehetséges maximális súlyú feszítőfát az ábrán (élek vastagításával vagy színezésével)! Írjuk fel a feszítőfa súlyát valamint az élek sorrendjét, ahogy hozzávettük a fához! S = feladat. Írjuk fel az alábbi fa Prüfer-kódját! feladat. Az alábbi Prüfer-kódok esetén rajzoljuk fel a fát, amennyiben lehetséges: 62, ,

3 1. ábra. Példa nyílt és zárt Euler-sétára 1.3. Alapfogalmak A fogalmak definíciói megtalálhatóak a feladatgyűjtemény 23. oldalától kezdődően. Ezek és a további részekben szereplőek kellenek: gráf, csúcs fokszáma (mi d(n)-el jelöltük), élsorozat és annak hossza, út, kör, izolált pont, többszörös él, hurokél, teljes gráf, részgráf, feszített részgráf, mátrixreprezentációk, összefüggőség, komponensek definíció. Egy gráfot egyszerű gráfnak nevezünk, ha nincs benne többszörös és hurokél definíció. Euler-sétának vagy Euler-bejárásnak nevezzük azt az élsorozatot a gráfban, amely minden élet pontosan egyszer érint. (Minden élen átmegy, és egyiken sem többször.) Az Euler-sétát zártnak nevezzük, ha az utolsó csúcsa egyezik az elsővel, különben nyílt Euler-sétának nevezzük tétel. Ha egy gráfban zárt Euler-séta van, akkor minden csúcs fokszáma páros. Ha egy gráfban nyílt Euler-séta van, akkor pontosan két csúcs fokszáma páratlan, ezek a séta kezdő és végpontjai. A fenti állítások fordítottjai is igazak összefüggő gráfok esetén. Azaz ha egy összefüggő gráfban a fokszámok párosak, akkor van zárt Euler-séta, ha kettő páratlan, a többi páros, akkor van nyílt Euler-séta a gráfban. Akár az élek (csúcspárok) listáját, akár az illeszkedési mátrixát ismerjük egy nagyobb méretű gráfnak, elég nehéz megállapítani, hogy összefüggő-e. A gyakorlaton használt NetworkX modul szerencsére képes ezt megállapítani. A fokszámokat az illeszkedési mátrixból könnyedén megállapíthatjuk, hiszen csak a megfelelő sorokat kell összegezni. A 1. ábrán található egy-egy példa a zárt és nyílt Euler-sétára Fák 1.3. definíció. Fáknak az összefüggő körmentes gráfokat nevezzük definíció. Egy összefüggő gráf feszítőfáján olyan fákat értünk, melyek részgráfjai az eredeti gráfnak, tartalmazzák annak összes csúcsát, és fák Három fákkal kapcsolatos algoritmus 1.2. tétel. Egy n csúcspontú fát egy olyan n 2 elemű listával (egy számsorozattal) egyértelműen leírhatunk, melyek elemei a számok 1-től n-ig. Ezt a listát nevezzük a fa Prüfer-kódjának Ez az alábbi algoritmussal bizonyítható. 3

4 1.5. A Prüfer-kód előállítása Kiindulás: egy fa valamilyen formában megadva (ábra, szomszédsági mátrix) 1. Legyen v 0 elemű lista. Sorszámozzuk meg a csúcsokat 1-től n-ig. 2. Keressük meg a legkisebb sorszámú egyfokszámú csúcsot a (maradék) fán. Hagyjuk el az élet, és fűzzük a lista végéhez az él másik végén található csúcs sorszámát. 3. Ismételjük a 2. pontot addig, amíg egy él marad, az így kapott lista lesz a Prüfer-kód tétel. A Prüfer-kód csak egy fához tartozhat, és bármilyen {1,2,...,n} elemekből álló n 2 elemű Prüfer-kód egyetlen fát ír le. Ez az alábbi algoritmussal bizonyítható. A fenti két tételből következik, hogy az ilyen kódok száma n n n = n n 2, és ezzel az n csúcspontú fák száma is ennyi, mivel a Prüfer-kódok és fák között kölcsönösen egyértelmű hozzárendelés, algebrai nyelven bijekció van A Prüfer-kódból a fa visszaállítása 1. Legyen v a Prüfer-kód, számoljuk ki n-et, ha a kód hossza n 2. Legyen E = {1,2,...,n} a csúcsok halmaza. Induljunk ki egy n csúcsú 0 élű gráfból. 2. Vegyük a lista (a Prüfer-kód) első elemét. Kössük össze ezt a sorszámot E halmaznak azzal a legkisebb x sorszámával, ami nem szerepel a listában. 3. Hagyjuk el a lista első elemét, és töröljük x-et az E halmazból. 4. Ismételjük a 2. és 3. pontot addig, amíg el nem fogy a lista összes eleme. 5. Az E megmaradt két elemét kössük össze definíció. (V 1,E 1 ) és (V 2, E 2 ) gráfokat izomorfnak nevezzük, ha létezik a csúcsaik között olyan f : V 1 V 2 bijekció, melynél a,b V 1 pontosan akkor van összekötve, ha f (a) és f (b) is össze vannak kötve. Ha adott csúcsszámú fák közül nem különböztetjük meg az izomorfakat, akkor az így előálló fák száma lényegesen kisebb annál, mint a fentieknél meghatározott n n 2 esetszám. 1 2 a b a c G c G 2 d d A fenti első két gráfábra esetén például lerajzolva máshogy néz ki, mégis izomorfak. A következő az egyik lehetséges bijekció a kettő közül. G 2 2 c, 1 a, 3 d, 4 b Például a {2,1} élnek a másodikban a {c,a} él felel meg, mindkettő össze van kötve. A {2,4} élnek a másodikban a {c,b} él felel meg, egyik sincs összekötve. Végigvizsgálva az összes csúcspárt G 1 -ben, mindegyik G 2 -beli képe pontosan akkor lesz összekötve, ha az eredeti is össze van kötve. Ha két gráf izomorf, akkor át is rajzolhatom őket úgy, hogy ugyanúgy nézzenek ki, ahogy G 2 esetén is tettem. b 4

5 1.7. A legkisebb súlyú feszítőfa létrehozása 1.6. definíció. Az olyan egyszerű gráfokat nevezzük súlyozott gráfoknak, melynek minden éléhez egy pozitív számot rendelünk. A számot az él súlyának nevezzük, az összes él súlyának összegét a gráf súlyának nevezzük definíció. Egy n csúcsú súlyozott gráf súlymátrixának olyan n n-es mátrixot nevezünk, amelyben, ha i és j között él fut, akkor a mátrix ij-edik eleme, és természetesen ji-dik eleme is az él fokszáma. A többi esetben a mátrixelem végtelen. (Programban a végtelent egy olyan szám helyettesítheti, amely biztosan nagyobb a program által kezelt gráfok fokszámánál.) Algoritmus: Feladat: Legyen adott egy összefüggő súlyozott n-csúcsú G gráf például súlymátrix-szal. Keressük meg a minimális feszítőfáját, azaz azt a részgráfját, amely fa, és kisebb súlyú az ilyen fáknál. 1. A kezdőgráfunk legyen egy csúcsú él nélküli G gráf. A pont sorszámát válasszuk 1-nek. (Vagy bárminek 1 és n között.) Ezt a gráfot tekintsük a G részhalmazának. 2. Keressük meg, azokat az éleket a G gráfban, amelyek a G gráfból kivezetnek. Keressük meg ezek közül a minimális súlyút. (Ha több ilyen van, akkor válasszunk közülük.) Vegyük hozzá G -höz ezt az élt és a másik végpontját. 3. Ismételjük a 2. pontot, amíg G-t kifeszítő fát nem kapunk. Ez lesz a minimális súlyú feszítőfa. A fenti algoritmusban minden minimális helyett írhatunk maximálisat. 5

6 2. Halmazok A halmaz alapfogalom. Axiómák vannak rá, elég bonyolult. A középiskolai szintű halmazfogalom elegendő számunkra. Eszerint a halmaz adott, ha bármiről eldönthető, hogy hozzá tartozik-e vagy sem. Tehát a sorrend és a darabszám lényegtelen. {a,b} = {b,a} = {a,b,a} Megadás lehet felsorolással vagy a tulajdonságának megadásával. H = {1;5;7}, P = {x x prímszám}, A = {x x Z, 5 < x 7} A függőleges vonal előtt jelöljük, hogy mivel jelölöm a halmaz elemeit, utána pedig, hogy milyen feltételeket szabok rá ki. A dupla szárú jeleknek speciális jelentésük van, azok állandó jelölések, míg a sima nyomtatott nagybetűket tetszőleges halmazra használhatjuk egy feladatban, bizonyításban. Az egyre bővebb számhalmazok jelölései a következőek: Jel név pár eleme, ami az előzőben nincs benne N természetes számok 0; 1; 2;... Z egész számok 1; 2; 3;... Q racionális számok 1/2; 2/7; 7/3; 0,1 R valós számok 2; e; π C komplex számok 3 + 4i; 5i; lg( 1) A valós számokból ha kivesszük a racionális számokat, tehát azokat, amelyek felírhatóak két szám hányasdosaként, az irracionális számok halmazát kapjuk. Jele Q. R = Q Q, azaz Q = R \ Q Felső indexben gyakran használjuk a + és jeleket, amely arra utal, hogy a halmazt leszűkítjük a pozitív illetve negatív elemeire, hasznájuk továbbá a halmaz többszörösét, valamint halmazhoz szám hozzáadását: Jel név pár eleme N + = Z + pozitív egész számok 1; 2;... Z negatív egész számok 1; 2; 3;... R + pozitív valós számok 2; e; π 2Z páros számok...; 4; 2; 0; 2; 4;... 2Z + 1 páratlan számok...; 3; 1; 1; 3; 5;... 3Z + 1 hárommal osztva egy maradékúak...; 5; 2; 1; 4; 7;... A halmazokon általában három kétváltozós és egy egyváltozós műveletet szoktunk definiálni. Jel név A B unió két változós A B metszet két változós A \ B különbség két változós A (felülvonás) komplementer egy változós A komplementer akkor értelmezhető, ha adva van egy H alaphalmaz. Az A halmaz komplementere A tartalmazza ilyenkor azokat az elemeket, amelyek a H elemei, de A-nak nem. A = H \ A 6

7 A példatárból szükséges még ismerni a hatványhalmaz fogalmát, és a halmazokon értelmezett relációkat (,, =). 3. Relációk, számosság, algebrai struktúrák Definíciók, tételek A következő foglamak és tételek szükségesek pl. a példatár 5. és 19. oldaláról illetve a következő fejezetekből. Descartes-szorzat, reláció (bináris, homogén), homogén bináris reláció tulajdonságai (dichotóm, ha a R b és a R b közül egyik mindig teljesül). Részbenrendezés, teljes rendezés. Ekvivalenciareláció, ekvivalenciaosztályok Függvénytulajdonságok (szürjektív, injektív, bijektív) a osztója b-nek, a kongruens b-vel Kétváltozós művelet, tulajdonságai (asszociativitás, kommutativitás, idempotencia, disztributivitás) Félcsoport, csoport, Abel-csoport, gyűrű, test 3.1. Relációk 3.1. példa. Alább példákat mutatunk a később definiálandó kételemű (binér) relációkra. Számok között: =,,< osztó (a osztója b-nek) akár ez is lehet: a négyzetgyöke b-nek Egyenesek között: párhuzamos, metsző, kitérő Egyenes és sík között: az egyenest tartalmazza a sík az egyenes metszi a síkot az egyenes párhuzamos a síkkal Ember és település között: a település az ember szülőhelye 3.1. feladat. Határozzunk meg binér relációkat a következők között: két ember; két háromszög; determináns és valós szám; ember és egész szám, két egész szám. A relációk általános definíciójának megadásához a Descartes-szorzattal kell kezdenünk definíció. Rendezett n-esnek nevezzük az olyan felsorolásokat, ahol a felsorolt elemek sorrendje és száma lényeges. A felsorolt elemeket ilyenkor kerek zárójelbe tesszük. (1,2,3) (1,3,2) (1,3,2,2) 7

8 3.2. definíció. Legyenek H 1,...,H n halmazok. Ekkor a D = {(h 1,...,h n ) h i H i } halmazt a H i halmazok Descartes-szorzatának nevezzük és a H 1 H n kifejezéssel jelöljük példa. Legyen A = {1, 2} és legyen B = {a,b}. Ekkor a Descartes-szorzat A B = {(1,a),(1,b),(2,a),(1,b)} definíció. Legyen H 1 H n a H i (1 i n) halmazok Descartes-szorzata. Ekkor a R H 1 H n halmazt a H i halmazokon értelmezett relációnak nevezzük példa. Legyen A = B = {1, 2, 3}. Reláció-e ekkor R = {(a i,b i ) a i < b i és a i A valamint b i B}? Igen, mert R = {(1, 2),(1, 3),(2, 3)} A B példa. Legyen A = {Lánczos Kornél, Esterházy Péter, Neumann János, Csoóri Sándor}, T a magyar települések halmaza, E az évszámok halmaza, F a foglalkozások halmaza. Válogassunk ki úgy elemnégyeseket, amelynél az első tag ember A-ból van, a második az ember születési helye, a harmadik a sz. éve, a negyedik a foglalkozása. Ez reláció, mert része az A T E F halmaznak. (Lánczos Kornél, Székesfehérvár, 1893, fizikus) (Esterházy Péter, Csákvár, 1950, író) (Neumann János, Budapest, 1903, matematikus) (Csoóri Sándor, Zámoly, 1930, költő) (Csoóri Sándor, Zámoly, 1930, politikus) És ez már hasonlít egy szokványos relációs adatbázishoz, amelyről más tantárgyban esik szó. Ott tanulják meg, hogy az utolsó két sorban látható ismétlődésekhez hasonlóakat hogyan lehet csökkenteni egy adatbázisban. Az előbbi relációt 4-változósnak nevezzük, és általánosan definiálható az n-változós reláció. Minket a továbbiakban a kétváltozós reláció érdekel amit binér relációnak is nevezünk definíció. Egy relációt homogénnek nevezünk, ha a Descartes-szorzat tényezői mind azonos halmazok feladat. Adjuk meg a következők esetén, hogy hány változósak, és homogének-e. Pont illeszkedik az egyenesre. Egyenesek párhuzamossága. A valós számok a kisebb műveletre nézve. {(x, y,z) ahol egy virágnak x a latin neve, y a hivatalos magyar neve, z a szirmainak a száma} 8

9 3.2. Homogén binér relációk A A alakú szorzatok részhalmazai. Az ilyen relációt úgy szoktuk jelölni, hogy megadjuk az A alaphalmazt, és a rajta értelmezett reláció jelét egy rendezett párban. Például (R, ) A homogén binér relációkat a következő tulajdonságok szerint csoportosíthatjuk: 3.5. definíció. Az alábbiakban R az A halmaz feletti R homogén binér reláció, a, b és c tetszőleges elemei az A-nak (azaz bárhogy is választjuk ezeket A-ból, a tulajdonság feltételének mindig teljesülniük kell). 1. Reflexív: ara 2. (a) Szimmetrikus: Ha arb akkor bra. (b) Antiszimmetrikus: Ha arb és bra akkor a = b. 3. Tranzitív: Ha arb és brc, akkor arc. 4. Dichotóm: arb és bra közül legalább egyik teljesül. Elnevezés Ekvivalenciareláció Rendezés vagy félig-rendezés Teljes rendezés definíció reflexív, szimmetrikus és tranzitív reflexív, antiszimmetrikus és tranzitív reflexív, antiszimmetrikus, tranzitív és dichotóm 3.6. definíció. Legyenek a és b egész számok. Azt mondjuk, hogy a osztója b-nek, ha van olyan c Z, melyre a c = b. Jelölése: a b. Azt mondjuk, hogy a kongruens b mod m, ha m (a b) (azaz azonos maradékot adnak m-mel való osztáskor). Jelölése a b mod m vagy tömörebben a m b definíció. Két halmazt diszjunktnak nevezünk, ha nincs közös elemük (azaz metszetük üres). Egy halmaz diszjunkt felbontásán olyan H 1, H 2...H n halmazokból álló halmazt értünk, melyre H i H j = bármely olyan i és j pár esetén, melyek nem egyenlőek, és az összes halmaz uniója a H halmazt adja tétel. Bármely (H, R) H halmaz feletti R ekvivalenciareláció esetén a H halmaznak létezik H 1, H 2...H n diszjunkt felbontása, melyre 1. arb ha a és b ugyanabban a H i halmazban találhatóak 2. a és b ugyanabban a H i halmazban találhatóak, akkor arb Ezt a felbontást a H halmaz R ekvivalencia-reláció szerinti ekvivalenciaosztályainak nevezzük. A m kongruenciához tartozó ekvivalenciaosztályokat gyakran egyszerűen és kissé pongyolán a 0, 1,... m 1 számokkal jelöljük. Nyilván az adott szám jelöli azt az ekvivalenciaosztályt, amelybe az adott szám tartozik. 9

10 3.3. Függvények A már megszokott függvényeket most a relációkból származtatjuk úgy, hogy elhagyjuk a többértékű függvényeket : egy értékhez csak egy másikat rendelhet a függvény. Például a négyzetgyök függvénynél csak a nemnegatív értéket hagyom meg. A továbbiakban a relációknál megszokott R jelölés helyett a függvényekhez jobban illeszkedő f jelölést használjuk definíció. Az olyan nem feltétlenül homogén, de binér relációkat nevezzük függvényeknek, amelyben egy elem csak egyszer lehet a reláció bal oldalán. Másképpen fogalmazva, ahol a f b és a f c csak akkor teljesülhet, ha b = c. A függvényeknél az a f b jelölés helyett f (a) = b jelölésmódot vezetünk be. Az f (x) = y esetén azt mondjuk, hogy f az x változóhoz az y-t rendeli, vagy másképp, az x képe y. Egy f függvény esetén a zárójelben szereplő elemek halmazát a függvény értelmezési tartományának nevezzük és D f -el jelöljük. (Angolul domain of f.) Egy f függvény esetén a képként fellépő elemek elemek halmazát a függvény értékkészletének nevezzük és R f -el jelöljük. (Angolul range of f.) Ha egy f függvény az A B Descartes-szorzatból származik és D f = A, akkor a függvényt A B típusúnak nevezzük és így jelöljük ezt: f : A B Egy f : A B függvényt bijekciónak (vagy kölcsönösen egyértelmű függvénynek) nevezünk, ha minden elem egyszer lép fel képként. Kissé precízebben: ha f (a) = b és f (c) = b csak akkor teljesülhet, ha a = c. és B a függvény értékkészlete (nem bővebb annál) Halmazok számossága A halmazok egyenlőségének definíciója azon a nyilvánvaló tényen alapul, hogyha egy katonai táborban minden katona felül egy lóra és nem marad üres ló, akkor ugyanannyi a lovak és katonák száma. A pontos definíció azonban a végtelen számosságú halmazok szövevényes világában is alkalmazható. Érdemes tudatosítani, hogy míg a számok határértékeként csak egyféle pozitív végtelen szerepel, addig a halmazok számosságában többféle definíció. A és B halmazokat egyenlő számosságúnak nevezzük, ha létezik közöttük f : A B bijekció. Jele: A = B. Egy A halmaz számossága A = n Z +, ha A = {1,2,...,n}. Ha van ilyen n, vagy üres halmaz esetén a halmazt véges halmaznak nevezzük (az üres halmaz számossága 0) definíció. A természetes számok számosságát megszámlálhatóan végtelen számosságnak nevezzük tétel. Az egész számok, a páros számok, a prímszámok és a racionális számok számossága is megszámlálhatóan végtelen. N = {páros számok} bizonyítása: az n 2n bijekció létezik a két halmaz között. N = Q bizonyítása kell. Lásd Példatár c) megoldása. 10

11 3.3. tétel. A valós számok számossága nagyobb, mint megszámlálhatóan végtelen. Ezt kontinuum számosságnak nevezzük definíció. Halmaz hatványhalmaza: az összes részhalmazaiból álló halmaz. Az A halmaz hatványhalmazásnak jelölése P(A) vagy 2 A példa. P({a,b}) = { ;{a};{b};{a,b}} tétel. Egy n elemű halmaz hatványhalmaza 2 n elemű tétel. Minden halmaz hatványhalmaza nagyobb számosságú az eredeti halmaznál Absztrakt algebra Az absztrakt algebrában az a célunk, hogy a mveletek tulajdonságaiból származó következményeket egyszerre tárjuk fel különböző matematikai objektumok esetén. Nem érdemes ugyanis ugyanazt külön bizonyítani számokra, mátrixokra, vektorokra és más pl. a kvantummechanikában szükséges bonyolultabb struktúrákra, érdemesebb ezeket egyszerre kezelni. n-változós művelet Algebrai struktúra 3.6. Egyműveletes struktúrák definíció. Félcsoportnak nevezünk egy halmazt egy műveletre nézve, ha a művelet 1. nem vezet ki soha a halmazból, 2. a művelet asszociatív a halmaz felett, azaz bármely a,b,c G elemek esetén (a b) c = a (b c). Azaz mindegy melyik melyik művelete végzem el előbb, ugyanazt kapom. Példák: a valós számok az osztásra nézve (R,/) zárt, az egész számok az osztásra nézve (Z,/) nem az, mert ott például a 3/2 kivezet a számhalmazból definíció. Egy (G, ) félcsoportot csoportnak nevezünk, ha 3. létezik egységeleme, azaz olyan e G melyre bármely G-beli a elem esetén e a = a e = a. Azaz van olyan elem, amivel a halmaz bármely másik elemét megszorozva ármelyik oldalról, azt a másik elemet kapjuk vissza. 4. minden G-beli a elemnek létezik (a 1 -nel jelölt) inverzeleme, melyre a 1 a = a a 1 = e definíció. Egy (G, ) csoportot Kommutatív csoportnak vagy Abel-csoportnak nevezünk, ha a művelet kommutatív a csoport felett, azaz bármely G-beli a és b esetén a b = b a. 11

12 Niels Henrik Abel norvég matematikusról matematikai díjat is neveztek el. A díjat odaítélő öt fős nemzetközi bizottság tagja volt 2004 és 2006 között a jelenleg élő egyik legnagyobb magyar matematikusunk, Lovász László is feladat. Mi lesz a valós számok körében egy szám inverze, ha a művelet az összeadás, és mi lesz, ha a művelet a szorzás? Nézzük meg, hogy a természetes, egész, racionális, valós és komplex számok körében az összeadás illetve a szorzás művelettel csoportot, Abel-csoportot alkotnak-e? Csoportot alkotnak-e a sík adott pont körüli elforgatásai? Ha igen, mi lesz az egységelem és egy adott forgatás inverze? Hogyan definiálhatnánk a kivonást és az osztást az összeadás és szorzás segítségével? Gondoljunk az inverzelemekre. És egy nehezebb kérdés: Vajon miért csak az utóbbi kettő alapművelet tulajdonságait vizsgáljuk a számok esetében? 3.7. Kétműveletes struktúrák Ezt még sajnos a feladatgyűjteményből kell megnézni. gyűrű, test 3.6. tétel. Az alábbi fontosabb algebrai struktúrákat érdemes ismerni: (Z, +, ) gyűrű (Q, +, ) test (R, +, ) test (C, +, ) test Megjegyzések a feladatmegoldáshoz és mintafeladatok Gyakori feladat, hogy valamely véges halmaz feletti struktúrát műveleti táblázattal (kétműveletesnél két táblázattal) adunk meg, és meg kell állapítani, hogy milyen algebrai struktúrát alkot a halmaz az adott egy vagy két műveletre. Általában az asszociativitás megállapítása a legnehezebb, ezért általában meg szoktuk adni a feladatban, hogy asszociatív a művelet a halmazon. A további tulajdonságok esetén indokolni kell, hogy miért mondjuk. Egységelem esetén meg kell adni, hogy a struktúra melyik eleme az. Ha minden elemnek van inverzeleme, akkor azokat meg kell adni. A kommutativitást is indokolni kell (a táblázat szimmetrikus a főátlóra) ; ; ( megérteni a megoldást); a) b) ; ( és ) b) e) h); a) f); ; 4.2.6; 4.3.1; 4.3.3; a) c) Döntsük el, hogy igaz-e az alábbi állítás. Válaszunkat indokoljuk! 1. Van olyan halmaz, amelynek számossága egyezik valamely valódi részhalmazásnak számosságával. 12

13 4. Beadandó feladatok 2a) Halmazok, relációk 4.1. feladat b) (részletezve, szöveges magyarázattal) 4.2. feladat. Legyen H = P({0; 1; 2}) halmaz a {0; 1; 2} halmaz hatványhalmaza, Igaz-e az efelett értelmezett részhalmaz relációra, hogy a) kétváltozós b) reflexiv c) szimmetrikus d) antiszimmetrikus e) tranzitív f) dichotóm? Ezek alapján milyen típusú reláció? 4.3. feladat. Ugyanilyen módon vizsgáljuk meg a valós számok felett értelmezett < relációt és a feljebb definiált mod 3 maradékosztályokon értelmezett m kongruenciát feladat. Írjuk fel H = P({0; 1; 2; 3}) hatványhalmazt elemeinek felsorolásával. Hány eleme van? 4.5. feladat. Döntsük el, hogy igazak-e az alábbi állítások. Válaszunkat indokoljuk! (Nemleges válasz esetén általában ellenpéldával indokolhatunk.) 1. Minden rendezés teljes rendezés. 2. A mod 5 kongruenciareláció ekvivalenciareláció. 3. Van a komplex számok halmazáénál nagyobb számosság. 5. Beadandó feladatok 2b) Absztrakt algebra 5.1. feladat. Döntsük el, hogy igazak-e az alábbi állítások. Válaszunkat indokoljuk! (Nemleges válasz esetén általában ellenpéldával indokolhatunk.) 1. A valós számok a szorzásra nézve Abel-csoportot alkotnak. 2. Az adott pont körüli elforgatások csoportot alkotnak a két forgatás egymás utáni végzésére nézve. (Jelöljük az indoklásban az α szögű elforgatást f α jellel, a forgatások egymás utáni végzését művelettel ( f α f β ) feladat. Határozza meg, milyen algebrai struktúrát alkot az {a; b; c; d} halmaz az alábbi műveletre nézve. Az asszociativitás teljesül, azt nem kell vizsgálni. (Ha van, meg kell adni a neutrális elemet és az inverzeket is, nem elég megállapítani, hogy létezik.) a b c d a a b c d b b a d c c c d b a d d c a b 5.3. feladat. Határozza meg, milyen algebrai struktúrát alkot az ({0;1;2;3},+, ). Az asszociativitás mindkét műveletre teljesül, azt nem kell vizsgálni. A disztributivitás is teljesül, egy példán ellenőrizzük. (Ha van, meg kell adni a neutrális elemeket és az inverzeket is, nem elég megállapítani, hogy létezik.) Határozzuk meg (2 + 3) (3 + 3) értékét! 13

14 5.4. feladat. Milyen algebrai struktúrát alkotnak a reguláris mátrixok a mátrixszorzás műveletére nézve? (Reguláris mátrixok azok a négyzetes (n n-es) mátrixok, amelyeknek nem nulla a determinánsuk.) 5.5. feladat. A mod 5 maradékoszályokra írjuk fel a szorzás és az összeadás műveleti tábláját. ({0;1;2;3;4}, 5, 5 ) milyen algebrai struktúrát alkot? 5, 5 az összeadás és szorzás maradéka öttel való osztás után. 14

15 6. Formális nyelvek, automaták A formális nyelvek rész egy külön Formális nyelvek és automaták segédletben találhatóak. Az ott látható követelményrendszer más tárgyra vonatkozik, Számítástudományhoz csupán az ott látható elméleti anyag és a feladatok kellenek. 7. Beadandó feladatok 3. Formális nyelvek és absztrakt automaták A Formális nyelvek segédletben található feladatok. 15

16 Tartalomjegyzék 1. Gráfelmélet Mintafeladatok Beadandó feladatok Alapfogalmak Fák Három fákkal kapcsolatos algoritmus A Prüfer-kód előállítása A Prüfer-kódból a fa visszaállítása A legkisebb súlyú feszítőfa létrehozása Halmazok 6 3. Relációk, számosság, algebrai struktúrák Definíciók, tételek Relációk Homogén binér relációk Függvények Halmazok számossága Absztrakt algebra Egyműveletes struktúrák Kétműveletes struktúrák Beadandó feladatok 2a) Halmazok, relációk Beadandó feladatok 2b) Absztrakt algebra Formális nyelvek, automaták Beadandó feladatok 3. Formális nyelvek és absztrakt automaták 15 16

Számítástudomány matematikai alapjai segédlet táv és levelező

Számítástudomány matematikai alapjai segédlet táv és levelező Számítástudomány matematikai alapjai segédlet táv és levelező Horváth Árpád 2008. december 16. A segédletek egy része a matek honlapon található: http://www.roik.bmf.hu/matek Kötelező irodalom: Bagyinszki

Részletesebben

ELTE IK Esti képzés tavaszi félév. Tartalom

ELTE IK Esti képzés tavaszi félév. Tartalom Diszkrét Matematika 2 vizsgaanyag ELTE IK Esti képzés 2017. tavaszi félév Tartalom 1. Számfogalom bővítése, homomorfizmusok... 2 2. Csoportok... 9 3. Részcsoport... 11 4. Generátum... 14 5. Mellékosztály,

Részletesebben

SZÁMÍTÁSTUDOMÁNY ALAPJAI

SZÁMÍTÁSTUDOMÁNY ALAPJAI SZÁMÍTÁSTUDOMÁNY ALAPJAI INBGM0101-17 Előadó: Dr. Mihálydeák Tamás Sándor Gyakorlatvezető: Kovács Zita 2017/2018. I. félév 2. gyakorlat Az alábbi összefüggések közül melyek érvényesek minden A, B halmaz

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 3. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Relációk Diszkrét matematika I. középszint 2014.

Részletesebben

Itt és a továbbiakban a számhalmazokra az alábbi jelöléseket használjuk:

Itt és a továbbiakban a számhalmazokra az alábbi jelöléseket használjuk: 1. Halmazok, relációk, függvények 1.A. Halmazok A halmaz bizonyos jól meghatározott dolgok (tárgyak, fogalmak), a halmaz elemeinek az összessége. Azt, hogy az a elem hozzátartozik az A halmazhoz így jelöljük:

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2015. tavasz 1. Diszkrét matematika 2.C szakirány 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu Komputeralgebra Tanszék 2015. tavasz Gráfelmélet Diszkrét

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében?

1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében? Definíciók, tételkimondások 1. Mondjon legalább három példát predikátumra. 2. Sorolja fel a logikai jeleket. 3. Milyen kvantorokat ismer? Mi a jelük? 4. Mikor van egy változó egy kvantor hatáskörében?

Részletesebben

Diszkrét matematika 1. estis képzés

Diszkrét matematika 1. estis képzés Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma

Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Készítette: Laczik Sándor János Gráfelmélet I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Definíció: a G=(V,E) párt egyszerű gráfnak nevezzük, (V elemeit a gráf csúcsainak/pontjainak,e elemeit

Részletesebben

1. tétel - Gráfok alapfogalmai

1. tétel - Gráfok alapfogalmai 1. tétel - Gráfok alapfogalmai 1. irányítatlan gráf fogalma A G (irányítatlan) gráf egy (Φ, E, V) hátmas, ahol E az élek halmaza, V a csúcsok (pontok) halmaza, Φ: E {V-beli rendezetlen párok} illeszkedési

Részletesebben

Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1

Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1 Halmazelmélet 1. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Halmazelmélet p. 1/1 A halmaz fogalma, jelölések A halmaz fogalmát a matematikában nem definiáljuk, tulajdonságaival

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. március 9. 1. Diszkrét matematika 2. 4. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. március 9. Gráfelmélet Diszkrét

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak

Részletesebben

HALMAZELMÉLET feladatsor 1.

HALMAZELMÉLET feladatsor 1. HALMAZELMÉLET feladatsor 1. Egy (H,, ) algebrai struktúra háló, ha (H, ) és (H, ) kommutatív félcsoport, és teljesül az ún. elnyelési tulajdonság: A, B H: A (A B) = A, A (A B) = A. A (H,, ) háló korlátos,

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 5. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Számfogalom bővítése Diszkrét matematika I. középszint

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1 Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,

Részletesebben

1. előadás: Halmazelmélet, számfogalom, teljes

1. előadás: Halmazelmélet, számfogalom, teljes 1. előadás: Halmazelmélet, számfogalom, teljes indukció Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető,

Részletesebben

Bevezetés a számításelméletbe (MS1 BS)

Bevezetés a számításelméletbe (MS1 BS) Matematika szigorlat - konzultációs szeminárium Azoknak, akik másodszorra vagy többedszerre veszik fel a Matematika szigorlat (NAMMS1SAND) tárgyat. Bevezetés a számításelméletbe (MS1 BS) FŐBB TÉMAKÖRÖK

Részletesebben

1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata.

1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata. 1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata. HLMZOK halmaz axiomatikus fogalom, nincs definíciója. benne van valami a halmazban szintén axiomatikus fogalom,

Részletesebben

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor

Részletesebben

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 1. előadás Gráfok halmaza, gráf, ahol a csúcsok halmaza, az élek illesztkedés reláció: illesztkedik az élre, ha ( -él illesztkedik

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 4-6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. szeptember 21. 1. Diszkrét matematika 2. 2. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. szeptember 21. Gráfelmélet

Részletesebben

Matematika szigorlat június 17. Neptun kód:

Matematika szigorlat június 17. Neptun kód: Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat

Részletesebben

Diszkrét matematika gyakorlat 1. ZH október 10. α csoport

Diszkrét matematika gyakorlat 1. ZH október 10. α csoport Diszkrét matematika gyakorlat 1. ZH 2016. október 10. α csoport 1. Feladat. (5 pont) Adja meg az α 1 β szorzatrelációt, amennyiben ahol A {1, 2, 3, 4}. α {(1, 2), (1, 3), (2, 1), (3, 1), (3, 4), (4, 4)}

Részletesebben

Diszkrét matematika 1. középszint

Diszkrét matematika 1. középszint Diszkrét matematika 1. középszint 2017. sz 1. Diszkrét matematika 1. középszint 3. el adás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az

Részletesebben

Matematikai logika és halmazelmélet

Matematikai logika és halmazelmélet Matematikai logika és halmazelmélet Wettl Ferenc előadása alapján 2015-09-07 Wettl Ferenc előadása alapján Matematikai logika és halmazelmélet 2015-09-07 1 / 21 Tartalom 1 Matematikai kijelentések szerkezete

Részletesebben

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai 1.a. A B B A 2.a. (A B) C A (B C) 3.a. A (A B) A 4.a. I A I 5.a. A (B C) (A B) (A C) 6.a. A A I 1.b. A B B A 2.b. (A B) C A (B C) 3.b. A

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Dr. Vincze Szilvia;

Dr. Vincze Szilvia; 2014. szeptember 17. és 19. Dr. Vincze Szilvia; vincze@agr.unideb.hu https://portal.agr.unideb.hu/oktatok/drvinczeszilvia/oktatas/oktatott_targyak/index/index.html 2010/2011-es tanév I. féléves tematika

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2016. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Halmazelméleti alapfogalmak

Halmazelméleti alapfogalmak Halmazelméleti alapfogalmak halmaz (sokaság) jól meghatározott, megkülönböztetett dolgok (tárgyak, fogalmak, stb.) összessége. - halmaz alapfogalom. z azt jelenti, hogy csak példákon keresztül magyarázzuk,

Részletesebben

Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy

Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy 1. előadás: Halmazelmélet Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy hozzátartozik-e,

Részletesebben

Klasszikus algebra előadás. Waldhauser Tamás április 28.

Klasszikus algebra előadás. Waldhauser Tamás április 28. Klasszikus algebra előadás Waldhauser Tamás 2014. április 28. 5. Számelmélet integritástartományokban Oszthatóság Mostantól R mindig tetszőleges integritástartományt jelöl. 5.1. Definíció. Azt mondjuk,

Részletesebben

2014. szeptember 24. és 26. Dr. Vincze Szilvia

2014. szeptember 24. és 26. Dr. Vincze Szilvia 2014. szeptember 24. és 26. Dr. Vincze Szilvia Mind a hétköznapi, mind a tudományos életben gyakran előfordul, hogy bizonyos halmazok elemei között kapcsolat figyelhető meg. A kapcsolat fogalmának matematikai

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Mikor van egy változó egy kvantor hatáskörében? Milyen tulajdonságokkal rendelkezik a,,részhalmaz fogalom?

Mikor van egy változó egy kvantor hatáskörében? Milyen tulajdonságokkal rendelkezik a,,részhalmaz fogalom? Definíciók, tételkimondások Mondjon legalább három példát predikátumra. Sorolja fel a logikai jeleket. Milyen kvantorokat ismer? Mi a jelük? Hogyan kapjuk a logikai formulákat? Mikor van egy változó egy

Részletesebben

A relációelmélet alapjai

A relációelmélet alapjai A relációelmélet alapjai A reláció latin eredet szó, jelentése kapcsolat. A reláció, két vagy több nem feltétlenül különböz halmaz elemei közötti viszonyt, kapcsolatot fejez ki. A reláció értelmezése gráffal

Részletesebben

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)

Részletesebben

DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes

DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes 1. Algebrai alapok: DISZKRÉT MATEMATIKA: STRUKTÚRÁK Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b. 1. Oszthatóság, legnagyobb közös osztó Ebben a jegyzetben minden változó egész számot jelöl. 1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy

Részletesebben

HALMAZOK. A racionális számok halmazát olyan számok alkotják, amelyek felírhatók b. jele:. A racionális számok halmazának végtelen sok eleme van.

HALMAZOK. A racionális számok halmazát olyan számok alkotják, amelyek felírhatók b. jele:. A racionális számok halmazának végtelen sok eleme van. HALMAZOK Tanulási cél Halmazok megadása, halmazműveletek megismerése és alkalmazása, halmazok ábrázolása Venn diagramon. Motivációs példa Egy fogyasztó 80 000 pénzegység jövedelmet fordít két termék, x

Részletesebben

Leképezések. Leképezések tulajdonságai. Számosságok.

Leképezések. Leképezések tulajdonságai. Számosságok. Leképezések Leképezések tulajdonságai. Számosságok. 1. Leképezések tulajdonságai A továbbiakban legyen A és B két tetszőleges halmaz. Idézzünk fel néhány definíciót. 1. Definíció (Emlékeztető). Relációknak

Részletesebben

Diszkrét matematika II. feladatok

Diszkrét matematika II. feladatok Diszkrét matematika II. feladatok 1. Gráfelmélet 1.1. Könnyebb 1. Rajzold le az összes, páronként nem izomorf 3, 4, illetve 5 csúcsú egyszerű gráfot! 2. Van-e olyan (legalább kétpontú) gráf, melyben minden

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika

Részletesebben

Gráfelméleti alapfogalmak

Gráfelméleti alapfogalmak 1 Gráfelméleti alapfogalmak Gráf (angol graph= rajz): pontokból és vonalakból álló alakzat. pontok a gráf csúcsai, a vonalak a gráf élei. GRÁ Irányítatlan gráf Vegyes gráf Irányított gráf G H Izolált pont

Részletesebben

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet   takach november 30. 1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Relációk. 1. Descartes-szorzat. 2. Relációk

Relációk. 1. Descartes-szorzat. 2. Relációk Relációk Descartes-szorzat. Relációk szorzata, inverze. Relációk tulajdonságai. Ekvivalenciareláció, osztályozás. Részbenrendezés, Hasse-diagram. 1. Descartes-szorzat 1. Deníció. Tetsz leges két a, b objektum

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF

EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF Összefoglaló Gráfok / EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF Adott a G = (V, E) gráf ahol a V a csomópontok, E az élek halmaza E = {(x, y) x, y V, x y (nincs hurokél) és (x, y) = (y, x)) Jelölések:

Részletesebben

2011. szeptember 14. Dr. Vincze Szilvia;

2011. szeptember 14. Dr. Vincze Szilvia; 2011. szeptember 14. Dr. Vincze Szilvia; vincze@fin.unideb.hu https://portal.agr.unideb.hu/oktatok/drvinczeszilvia Első pillantásra hihetetlennek tűnik, hogy egy olyan tiszta és érzelmektől mentes tudomány,

Részletesebben

1. Részcsoportok (1) C + R + Q + Z +. (2) C R Q. (3) Q nem részcsoportja C + -nak, mert más a művelet!

1. Részcsoportok (1) C + R + Q + Z +. (2) C R Q. (3) Q nem részcsoportja C + -nak, mert más a művelet! 1. Részcsoportok A részcsoport fogalma. 2.2.15. Definíció Legyen G csoport. A H G részhalmaz részcsoport, ha maga is csoport G műveleteire nézve. Jele: H G. Az altér fogalmához hasonlít. Példák (1) C +

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Általános algebra. 1. Algebrai struktúra, izomorfizmus. 3. Kongruencia, faktoralgebra március Homomorfizmus, homomorfiatétel

Általános algebra. 1. Algebrai struktúra, izomorfizmus. 3. Kongruencia, faktoralgebra március Homomorfizmus, homomorfiatétel 1. Algebrai struktúra, izomorfizmus Általános algebra 2. Részalgebra, generálás 3. Kongruencia, faktoralgebra 2013 március 8. 4. Homomorfizmus, homomorfiatétel 1. Algebrai struktúra, izomorfizmus 2. Részalgebra,

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 4. előadás Eulerséta: Olyan séta, mely a gráf minden élét pontosan egyszer tartalmazza. Tétel: egy összefüggő gráf. Ha minden

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben

1.1 Halmazelméleti fogalmak, jelölések

1.1 Halmazelméleti fogalmak, jelölések 1.1 Halmazelméleti fogalmak, jelölések Alapfogalmak (nem definiáljuk) Halmaz x eleme az A halmaznak x nem eleme A halmaznak Jelölések A,B,C, x A x A SiUDWODQ V]iRN Halmaz megadása: Elemeinek felsorolásával:

Részletesebben

Diszkrét matematika HALMAZALGEBRA. Halmazalgebra

Diszkrét matematika HALMAZALGEBRA. Halmazalgebra Halmazalgebra Ebben a fejezetben összefoglaljuk a halmazokról tanult középiskolai ismeretanyagot, és néhány érdekességgel, módszerrel ki is egészítjük. A halmaz alapfogalom. Mondhatjuk, hogy tárgyak, fogalmak,

Részletesebben

SzA II. gyakorlat, szeptember 18.

SzA II. gyakorlat, szeptember 18. SzA II. gyakorlat, 015. szeptember 18. Barátkozás a gráfokkal Drótos Márton drotos@cs.bme.hu 1. Az előre megszámozott (címkézett) n darab pont közé hányféleképp húzhatunk be éleket úgy, hogy egyszerű gráfhoz

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)

Részletesebben

Diszkrét matematika II., 8. előadás. Vektorterek

Diszkrét matematika II., 8. előadás. Vektorterek 1 Diszkrét matematika II., 8. előadás Vektorterek Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2007.??? Vektorterek Legyen T egy test (pl. R, Q, F p ). Definíció.

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

HHF0CX. k darab halmaz sorbarendezésének a lehetősége k! Így adódik az alábbi képlet:

HHF0CX. k darab halmaz sorbarendezésének a lehetősége k! Így adódik az alábbi képlet: Gábor Miklós HHF0CX 5.7-16. Vegyük úgy, hogy a feleségek akkor vannak a helyükön, ha a saját férjeikkel táncolnak. Ekkor már látszik, hogy azon esetek száma, amikor senki sem táncol a saját férjével, megegyezik

Részletesebben

Matematika alapjai; Feladatok

Matematika alapjai; Feladatok Matematika alapjai; Feladatok 1. Hét 1. Tekintsük a,, \ műveleteket. Melyek lesznek a.) kommutativok b.) asszociativak c.) disztributívak-e a, műveletek? Melyik melyikre? 2. Fejezzük ki a műveletet a \

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

KISLEXIKON : HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK. Tárgymutató: I.

KISLEXIKON : HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK. Tárgymutató: I. Matematika érettségi kislexikon I. 1 Huszk@ Jenő I. \ \ KISLEXIKON : HLMZOK, SZÁMHLMZOK, PONTHLMZOK Tárgymutató: I. oldal sorszám téma oldal sorszám téma 3 12 Halmazok ábrázolása 4 14 Halmazok metszete

Részletesebben

Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz

Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz 2018/2019 ősz Elérhetőségek Előadó: (safaro@math.bme.hu) Fogadóóra: hétfő 9-10 (H épület 3. emelet 310-es ajtó) A pontos tárgykövetelmények a www.math.bme.hu/~safaro/kalkulus oldalon találhatóak. A mátrix

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika 1. estis képzés

Diszkrét matematika 1. estis képzés Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ

DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ B szakirány 2014 június Tartalom 1. Fák definíciója ekvivalens jellemzései... 3 2. Hamilton-kör Euler-vonal... 4 3. Feszítőfa és vágás... 6 4. Címkézett

Részletesebben

Logika és informatikai alkalmazásai

Logika és informatikai alkalmazásai Logika és informatikai alkalmazásai 2. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2008 tavasz Irodalom Szükséges elmélet a mai gyakorlathoz Előadás

Részletesebben

Klasszikus algebra előadás. Waldhauser Tamás április 14.

Klasszikus algebra előadás. Waldhauser Tamás április 14. Klasszikus algebra előadás Waldhauser Tamás 2014. április 14. Többhatározatlanú polinomok 4.3. Definíció. Adott T test feletti n-határozatlanú monomnak nevezzük az ax k 1 1 xk n n alakú formális kifejezéseket,

Részletesebben

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27 Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek

Részletesebben

Alapfogalmak a Diszkrét matematika II. tárgyból

Alapfogalmak a Diszkrét matematika II. tárgyból Alapfogalmak a Diszkrét matematika II. tárgyból (A szakirány, 2015-2016 tavaszi félév) A számonkérés során ezeknek a definícióknak, tételkimondásoknak az alapos megértését is számon kérjük. A példakérdések

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. - Vizsga anyag 1 EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR Diszkrét matematika I. Vizsgaanyag Készítette: Nyilas Árpád Diszkrét matematika I. - Vizsga anyag 2 Bizonyítások 1)

Részletesebben

Gy ur uk aprilis 11.

Gy ur uk aprilis 11. Gyűrűk 2014. április 11. 1. Hányadostest 2. Karakterisztika, prímtest 3. Egyszerű gyűrűk [F] III/8 Tétel Minden integritástartomány beágyazható testbe. Legyen R integritástartomány, és értelmezzünk az

Részletesebben

Vizsgatematika Bevezetés a matematikába II tárgyhoz tavasz esti tagozat

Vizsgatematika Bevezetés a matematikába II tárgyhoz tavasz esti tagozat 8.2. Gyűrűk Fogalmak, definíciók: Gyűrű, kommutatív gyűrű, integritási tartomány, test Az (R, +, ) algebrai struktúra gyűrű, ha + és R-en binér műveletek, valamint I. (R, +) Abel-csoport, II. (R, ) félcsoport,

Részletesebben

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 2. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Matematikai logika Diszkrét matematika I. középszint

Részletesebben

A fontosabb definíciók

A fontosabb definíciók A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. EÖTVÖS LORÁND TUDOMÁNYEGYETEM - INFORMATIKAI KAR Diszkrét matematika I. Vizsgaanyag Cserép Máté 2009.01.20. A dokumentum a programtervező informatikus szak Diszkrét matematika I. kurzusának vizsgaanyagát

Részletesebben