Százalék, ötvözet, keverék számolás

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Százalék, ötvözet, keverék számolás"

Átírás

1 Százalék, ötvözet, keverék számolás 1) Egy pár cipő ára 270 Lei. Mivel nagyon fogyott, megemelték az árát 20%-kal. De így már nem fogyott annyira és úgy döntöttek, hogy leszállítják az árát 20%-kal. Mennyi lett a cipő új ára, és ez az ár hány százaléka az eredeti árnak? Megoldás: /100=54 leit emelkedett a cipő ára, ami 324 lei lett. Ennek a 20%- a /100=64,8 tehát az cipő új ára ,8= 259,2 lei. A százalékos arány kiszámítása céljából: 270 lei 100% 259,2 lei.x % ahonnan x= 96 %. 2) Egy boltban egy pár cipő 240 Leibe került. Mivel nem fogyott, ezért leszállították az árát 20%-kal. Ellenben így sem fogyott, így megint leszállították az árát 10%-kal. Egy másik boltban is volt éppen ilyen cipőmodell, és azok úgy döntöttek, hogy egyből leszállítják az árát 30%-kal. Melyik cipős boltban érdemesebb vásárolni a cipőt, az első, vagy a második boltban? Megoldás: Az első boltban a cipő /100=48 lejjel lett olcsóbb, tehát = 192 lei lett, majd a második árcsökkenés után /100= 19,2 lejt esett az ára, ezért a cipő 172,8 leibe kerül. A második boltban /100=72 leit esett a cipő ára, ezért ez 168 leibe került, és olcsóbba kerül, mint az első boltban. 3) Egy akciós leértékeléskor az egyik áru árát 20%-kal leértékelték. Hány százalékkal kell felemelni az akció végén, hogy ismét az eredeti áron adhassák el? Megoldás: Az x lej értékű árú 20%-kal leértékelve 0,8x lejbe kerül. Ahhoz, hogy újra x lej legyen az ára, 0,2x lejjel kell megemelni az árát, ami az akciós ár 25%-a. (hármasszabállyal: a 0,8x az 100%, akkor a 0,2x az 25%). 4) Két szám összege Az egyiknek a 12%-a egyenlő a másiknak a 18%-ával. Melyik ez a két szám? Oldd meg a feladatot egyenlettel és egyenlet rendszerrel is! (E= 1350 és 900). 5) Egy italbolt vezetője tiszta bort vásárol, amit vízzel hígít, hogy eladja. A borhoz 10% vizet tesz, és a keveréket 10%-kal adja többért mint amennyiért a bort vette. Hány százalék a haszna? Megoldás: Legyen x a kezdeti bor mennyiség és y a literenkénti ára. Ezt a mennyiséget eladva az összbevétele xy lei. Másfelől, a vizet hozzáöntve, a 1

2 bormennyiség (x+0,1x)=1,1x liter lesz, amelynek a literenkénti ára (y+0,1y)=1,1y lej lesz. Tehát az összbevétel ebben az esetben 1,1x1,1y=1,21xy vagyis 21% a haszon. 6) Egy dinnye tömege 10 kg, és 99%-a víz. Két nap múlva újra megmérték a dinnye víztartalmát és azt találták, hogy csak 98%-a víz. Mennyi ekkor a gyümölcs tömege? Megoldás: Az elején a 10 kg dinnye= 990 dkg víz+10 dkg szárazanyag. A száradás után amikor 98% víz maradt, akkor a 10 dkg már 2%-ot jelent, így hármasszabállyal a teljes mennyiség ennek az 50 szerese, vagyis 5 kg. 7) Mennyi vízben kell feloldani 400 g sót ahhoz, hogy a sóoldat töménysége 4 %-os legyen? Megoldás: A töménység fogalmát kell tisztázni. A 4%-os sóoldat azt jelenti, hogy 100 g oldatban 4 g só van. Felírjuk a hármasszabályt: 4 g só 96 g víz 400 g só..x g víz ahonnan x= 9600 g vízben kell feloldani, vagyis 9,6 l vízben. 8) 3 liter 80%-os oldathoz hány liter 50%-os oldatot kell öntenünk, hogy 55%-os töménységű oldatot kapjunk? 1. Megoldás: A 3 liter 80%-os oldalt azt jelenti, hogy az első oldatban 3 0,8=2,4 liter az oldott anyag. A második oldat mennyiségét jelöljük x-el. Ebben az oldott anyag: 0,5 x liter. Az összeöntés után 3+x liter oldat lesz, amiben az oldott anyag (3+x) 0,55 liter. Tehát: 2,4+ 0,5 x= (3+x) 0,55 ahonnan x=15 liter. 2. Megoldás: A téglalap szabályt alkalmazzuk. Középre beírjuk a kért koncentrációt, bal felöl pedig a két összekeverendő koncentrációt, jobboldalt ezekből kivonjuk az 55-öt, és a két szám aránya a keverési arány. 5 3 = ahonnan x= 15 liter. 25 x 3. Megoldás: A feladatot megoldjuk a súlyozott középarányosokkal, miszerint: m c + m c c = m + m

3 Esetünkben c=55, m 1 =3, c 1 = 80; m 2 =x és c 2 =50 tehát x 55 = ahonnan x=15 liter. Ez a képlet 2-nél több anyag x + 3 keverésére is alkalmas. 9) Összevegyítenek 5 liter 3 C-os és 7 liter 15 C-os vizet Határozzuk meg a kapott keverék hőmérsékletét Megoldás: Vesszük a súlyozott aritmetikai közép képletét: c = = = 10 ( C) ) Összevegyítenek 5 kg 18 lej/kg-os, 10 kg 15 lej/kg-os és 15 kg 10 lej/kg-os cukorkát. Hány lejbe fog kerülni a keverékből 1 kg? Megoldás: A súlyozott számtani középarányos szerint: c = = 13 lei m c + m c + m c c = m + m + m ) Hány kg 400 lej/kg-os búzát kell összekeverni 6 kg 550 lej/kg-os búzával, hogy a keverék ára 450 lej/kg legyen? 1. Megoldás: Megoldjuk először a súlyozott középarányos képletével: x = 450 x + 6 x = ( x + 6) 450 x = 450x x = 600 x = 12 Tehát a 400 lej/kg-os búzából 12 kg-ot kell összevegyíteni. 2. Megoldás: Megoldjuk a feladatot a téglalap módszerrel. A téglalap módszer lényege az, hogy a feladatban szereplő mennyiségek bizonyos jellemzőit téglalapokkal ábrázoljuk. Felhasználjuk, hogy ezen téglalapok területe egyenlő kell legyen, illetve területeik összeg egyenlő kell legyen egy másik téglalap területével. Ebben a feladatban az egyes búzamennyiségek árát fogjuk téglalappal ábrázolni. 3

4 Az ábrán a 400 lej/kg búza x kg-jának árát ábrázolja az FIJK téglalap területe. Az 550 lej/kg búza 6 kg-jának árát ábrázolja az EFGH téglalap területe. Az összbúzamennyiség (6 + x kg) árát jelöli az EILM téglalap területe. Mivel a kétféle búza összára egyenlő kell legyen a keverék búza árával, kapjuk, hogy: T + T = T FIJK EFGH EILM Mivel ezek a területek egy része fedi egymást, innen kapjuk, hogy a KJLN téglalap területe egyenlő kell legyen az MNGH téglalap területével. Felírjuk a területeket: T T KJLN MNGH = x ( ) = 6 ( ) A kapott egyenlet jóval egyszerűbb, mint amit a súlyozott középarányosnál kaptunk. 50 x = 600 x = ) 68 %-os és 78 %-os kénsav oldatunk van. Milyen arányban kell kevernünk ezeket és melyikből mennyire van szükség ahhoz, hogy 100 g 70 %-os oldatot nyerjünk? 4

5 1. Megoldás: A feladatot először téglalap módszerrel oldjuk meg, aztán ellenőrzésképpen súlyozott középarányossal is. Az ábrán: TEGFGH = a 68%-os kénsav mennyisége TFIJK = a 78%-os kénsav mennyisége = az összekevert mennyiség TEILM T EFGH + T FIJK = T EILM T HGNM = T NLJK (70 68) x = (100 x) (78 70) 2x = (100 x) 8 2x = 800 8x 10x = 800 x = 80 Tehát aa 68%-os kénsavból 80 g szükséges, a 78%-osból 20 g. 2. Megoldás: alkalmazzuk a súlyozott számtani közép képletét, miszerint x 68 + (100 x) 78 = 70 68x x = = 10x x = Feladatok 1.Két rekeszben összesen 90 kg alma van. Mennyi alma van az egyes rekeszekben, ha az első rekesz almáinak 25 %-a ugyanannyi, mint a második rekesz almáinak 20 %-a. 2.Két munkás együtt 1720 alkatrészt készített el. Hány alkatrészt készítettek külön-külön, ha a második munkás 15%-kal többet készített, mint az első 3.Egy iskolában a tanulók 60%-a általános iskolás. A líceumi tanulók 45%-a fiú. A líceumi lányok 50%-a sportol. Hány tanulója van az iskolának, ha 99 líceumi sportoló lány jár ide? 5

6 4.Egy 70 cm tó szélén cölöpöt vernek le a csónakok kikötéséhez. A cölöp 3/5-e mélyül az iszapba, 20%-a kilátszik a vízből. Milyen hosszú a cölöp? 5.Két szám összegének a 40%-a megegyezik a két szám különbségével. Melyik ez a két szám? 6.Kati betett a bankba 720 lejt, egy évre rá kivett 250 lejt. Tudva azt, hogy az éves kamat 48%, számítsuk ki, mennyi pénze lesz a bankban két év múlva. 7.Egy díjazás alkalmával egy pénzösszeget négy tanuló között osztottak szét. Az első tanuló kapta az összeg 35%-át, a másik három tanuló pedig a 6, 5 és 4 számokkal egyenesen arányos pénzösszegeket kapott. Ha az első és második tanuló által kapott pénzösszegek különbsége151,2 lej, határozzuk meg a díjazáskor kiosztott teljes összeget, valamint, hogy mennyi pénzt kaptak a tanulók külön-külön. 8.Összevegyítenek 5 kg 18 lej/kg-os cukorkát 10 kg 15 lej/kg-os cukorkával. Hány lejbe kerül a keverék cukorka egy kg-ja? 9.Összevegyítenek 4 l 80º-os alkoholt, 2,5 l 75º-os alkoholt és 6 l 70º-os alkoholt. Hány fokos lesz az így kapott keverék? 10.Összeolvasztanak egy 0,830 finomságú és egy 0,750 finomságú ötvözetet, így 1260 g 0,810 finomságú ötvözetet nyerve. Milyen tömegű ötvözeteket kellett összeolvasztani? 11.Van egy 48%-os és egy 60%-os oldatunk. Mennyit kell összekeverni ezekből, hogy 10 kg 50%- os oldatot kapjunk? 12.Egy sóoldat tömege 1650 g, töménysége 18%. a.)mennyi vizet kell belekeverni, hogy a töménysége 11 %-os legyen? b.)mennyi sót kell belekeverni, hogy a, hogy az oldat töménysége 24%-os legyen? 13. Egy halálraítélt esélyt kapott a királytól. Ide figyelj, mondta neki a király. Itt van 20 egyforma pohár. Tízben tiszta víz, tízben pedig méreg van. Külsőre nem lehet őket megkülönböztetni. Itt van ugyanakkor két asztal. Helyezd el a poharakat az asztalokon úgy, ahogyan akarod. Én bevezetem a vak szolgám, ő kiválaszt találomra egy poharat, és te kiiszod annak a tartalmát. Hogy helyezze el a poharakat a halálraítélt, és mennyi lesz így a túlélési esélye százalékban? Megoldás: Az egyik asztalra tegyen 1 pohár vizet, a másikra tegye a 19 poharat. Ha a szolga az első asztalhoz megy, akkor a halálraítélt biztosan megmenekül. Ha a második asztalhoz megy, akkor még mindig van 9/19=47,36% esélye a túlélésre. A teljes túlélési esély: 0,5 1+0,5 9/19=73,68%. 6

a) 4,9 g kénsavat, b) 48 g nikkel(ii)-szulfátot, c) 0,24 g salétromsavat, d) 65 g vas(iii)-kloridot?

a) 4,9 g kénsavat, b) 48 g nikkel(ii)-szulfátot, c) 0,24 g salétromsavat, d) 65 g vas(iii)-kloridot? 2.2. Anyagmennyiség-koncentráció 1. Hány mol/dm 3 koncentrációjú az az oldat, amelynek 200 cm 3 -ében 0,116 mol az oldott anyag? 2. 2,5 g nátrium-karbonátból 500 cm 3 oldatot készítettünk. Számítsuk ki

Részletesebben

A fordított út módszere és a gráfok

A fordított út módszere és a gráfok A fordított út módszere és a gráfok 1. feladat: Ilonka az els nap elköltötte pénzének felét, a második nap a meglév pénzének egyharmadát, a harmadik nap a meglév pénz felét, negyedik nap a meglév pénz

Részletesebben

Az oldatok összetétele

Az oldatok összetétele Az oldatok összetétele Az oldatok összetételét (töménységét) többféleképpen fejezhetjük ki. Ezek közül itt a tömegszázalék, vegyes százalék és a mólos oldat fogalmát tárgyaljuk. a.) Tömegszázalék (jele:

Részletesebben

Vegyjel, képlet 1. Mi az alábbi elemek vegyjele: szilicium, germánium, antimon, ón, rubidium, cézium, ólom, kripton, szelén, palládium

Vegyjel, képlet 1. Mi az alábbi elemek vegyjele: szilicium, germánium, antimon, ón, rubidium, cézium, ólom, kripton, szelén, palládium Vegyjel, képlet 1. Mi az alábbi elemek vegyjele: szilicium, germánium, antimon, ón, rubidium, cézium, ólom, kripton, szelén, palládium 2. Mi az alábbi elemek neve: Ra, Rn, Hf, Zr, Tc, Pt, Ag, Au, Ga, Bi

Részletesebben

Madách Imre Gimnázium Somorja Šamorín, Slnečná 2, Szlovákia Telefon: Feladatok

Madách Imre Gimnázium Somorja Šamorín, Slnečná 2, Szlovákia Telefon: Feladatok G MADÁCH IMRE GIMNÁZIUM SOMORJA G M Madách Imre Gimnázium 931 01 Somorja Šamorín, Slnečná 2, Szlovákia Telefon: 00421-31-5622257 e-mail: mtg@gmadsam.edu.sk Feladatok gyakorlásra a 8 osztályos gimnáziumba

Részletesebben

Hevesy György Kémiaverseny. 8. osztály. megyei döntő 2003.

Hevesy György Kémiaverseny. 8. osztály. megyei döntő 2003. Hevesy György Kémiaverseny 8. osztály megyei döntő 2003. Figyelem! A feladatokat ezen a feladatlapon oldd meg! Megoldásod olvasható és áttekinthető legyen! A feladatok megoldásában a gondolatmeneted követhető

Részletesebben

Feladatlap 6. osztály

Feladatlap 6. osztály Feladatlap 6. osztály Műveletek egész számokkal... 2 Tengelyes tükrözés... 3 Számelmélet... 6 Műveletek törtekkel... 7 Háromszögek, Négyszögek, Sokszögek... 8 Nyitott mondatok... 9 Arányos következtetések,

Részletesebben

MATEMATIKA VERSENY

MATEMATIKA VERSENY Vonyarcvashegyi Eötvös Károly Általános Iskola 2015. 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen, majd oldd meg a feladatokat! A részeredményeket

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT II. 135 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT II. 135 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT II. 135 perc A feladatok megoldására 135 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II/B

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. október 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2008. október 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 008. október 1. KÖZÉPSZINT I. 1) Adja meg a 4 egyjegyű pozitív osztóinak halmazát! A keresett halmaz: {1 4 6 8}. ) Hányszorosára nő egy cm sugarú kör területe, ha a sugarát háromszorosára

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT I. 45 perc A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:...

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:... T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 7. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

Az oldatok összetétele

Az oldatok összetétele Az oldatok összetétele Az oldatok összetételét (töménységét) többféleképpen fejezhetjük ki. Ezek közül itt a tömegszázalék, vegyesszázalék és a mólos oldat fogalmát tárgyaljuk. a.) Tömegszázalék (jele:

Részletesebben

Másodfokú egyenletek. 2. Ábrázoljuk és jellemezzük a következő,a valós számok halmazán értelmezett függvényeket!

Másodfokú egyenletek. 2. Ábrázoljuk és jellemezzük a következő,a valós számok halmazán értelmezett függvényeket! Másodfokú egyenletek 1. Alakítsuk teljes négyzetté a következő kifejezéseket! a.) - 4 + 4 b.) - 6 + 8 c.) + 8 - d.) - 4 + 9 e.) - + 8 - f.) - - 4 + 3 g.) + 8-5 h.) - 4 + 3 i.) -3 + 6 + 1. Ábrázoljuk és

Részletesebben

Feladatgyűjtemény matematikából

Feladatgyűjtemény matematikából Feladatgyűjtemény matematikából 1. Pótold a számok között a hiányzó jelet: 123: 6 a 45:9.10 2. Melyik az a kifejezés, amelyik 2c-7 tel nagyobb, mint a 3c+7 kifejezés? 3. Határozd meg azt a legnagyobb természetes

Részletesebben

Érettségi feladatok: Szöveges feladatok

Érettségi feladatok: Szöveges feladatok Érettségi feladatok: Szöveges feladatok 2005. május 10. 17. Anna és Zsuzsi is szeretné megvenni az újságosnál az egyik magazint, de egyik lánynak sincs elegendő pénze. Anna pénzéből hiányzik a magazin

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

Arányossággal kapcsolatos feladatok

Arányossággal kapcsolatos feladatok Arányossággal kapcsolatos feladatok 1. Egy régi óra 4 óra alatt 8 percet késik. Mennyivel kell elrevidd az órát este 10 órakor, ha reggel pontosan 7-kor akarsz ébredni?. 6 munkás egy munkát 1 nap alatt

Részletesebben

4b 9a + + = + 9. a a. + 6a = 2. k l = 12 évfolyam javítóvizsgára. 1) Alakítsd szorzattá a következő kifejezéseket!

4b 9a + + = + 9. a a. + 6a = 2. k l = 12 évfolyam javítóvizsgára. 1) Alakítsd szorzattá a következő kifejezéseket! ) Alakítsd szorzattá a következő kifejezéseket! 4 c) d) e) f) 9k + 6k l + l = ay + 7ay + 54a = 4 k l = b 6bc + 9c 4 + 4y + y 4 4b 9a évfolyam javítóvizsgára ) Végezd el az alábbi műveleteket és hozd a

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HARMADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ. Minden feladat helyes megoldása 7 pontot ér.

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HARMADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ. Minden feladat helyes megoldása 7 pontot ér. 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HARMADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Minden feladat helyes megoldása 7 pontot ér. 1. Bence talált öt négyzetet, amelyek egyik oldalán az A,

Részletesebben

Telítetlen oldat: még képes anyagot feloldani (befogadni), adott hőmérsékleten.

Telítetlen oldat: még képes anyagot feloldani (befogadni), adott hőmérsékleten. 2. Oldatkészítés 2.1. Alapfogalmak Az oldat oldott anyagból és oldószerből áll. Az oldott anyag és az oldószer közül az a komponens az oldószer, amelyik nagyobb mennyiségben van jelen az oldatban. Az oldószer

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:...

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:... T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 7. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

feladatmegoldok rovata

feladatmegoldok rovata feladatmegoldok rovata Kémia K. 588. Az 1,2,3 al megszámozott kémcsövekben külön-külön ismeretlen sorrendben a következő anyagok találhatók: nátrium-karbonát, nátrium-szulfát, kalciumkarbonát. Döntsd el,

Részletesebben

8. osztály 2 Hevesy verseny, megyei forduló, 2009.

8. osztály 2 Hevesy verseny, megyei forduló, 2009. 8. osztály 2 Hevesy verseny, megyei forduló, 2009. Figyelem! A feladatokat ezen a feladatlapon oldd meg! Megoldásod olvasható és áttekinthet legyen! A feladatok megoldásában a gondolatmeneted követhet

Részletesebben

K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k

K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k. Az 1,, 3,, elemeknek hány permutációja van, amelynek harmadik jegye 1- es? Írjuk fel őket! Annyi ahányféleképpen

Részletesebben

SZERVETLEN ALAPANYAGOK ISMERETE, OLDATKÉSZÍTÉS

SZERVETLEN ALAPANYAGOK ISMERETE, OLDATKÉSZÍTÉS SZERVETLEN ALAPANYAGOK ISMERETE, OLDATKÉSZÍTÉS ESETFELVETÉS MUNKAHELYZET Az eredményes munka szempontjából szükség van arra, hogy a kozmetikus, a gyakorlatban használt alapanyagokat ismerje, felismerje

Részletesebben

11. Sorozatok. I. Nulladik ZH-ban láttuk:

11. Sorozatok. I. Nulladik ZH-ban láttuk: 11. Sorozatok I. Nulladik ZH-ban láttuk: 1. Egy számtani sorozat harmadik eleme 15, a nyolcadik eleme 30. Mely n természetes számra igaz, hogy a sorozat első n elemének összege 6? A szokásos jelöléseket

Részletesebben

1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc

1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc 1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc 10 325 337 30 103 000 002 2. Végezd el az alábbi műveleteket, ahol jelölve van ellenőrizz!

Részletesebben

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek? Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.

Részletesebben

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Halmazok:. Adott két halmaz: A = kétjegyű pozitív, 4-gyel osztható számok B = 0-nél nagyobb, de 0-nál nem nagyobb pozitív egész

Részletesebben

KOMPLEX KOMMUNIKÁCIÓS ÉS TERMÉSZETTUDOMÁNYI CSOMAG MATEMATIKA TÁMOP-2.2.3-07/1-2F-2008-0011 MATEMATIKA A MINDENNAPI ÉLETBEN 9.

KOMPLEX KOMMUNIKÁCIÓS ÉS TERMÉSZETTUDOMÁNYI CSOMAG MATEMATIKA TÁMOP-2.2.3-07/1-2F-2008-0011 MATEMATIKA A MINDENNAPI ÉLETBEN 9. KOMPLEX KOMMUNIKÁCIÓS ÉS TERMÉSZETTUDOMÁNYI CSOMAG MATEMATIKA TÁMOP-2.2.3-07/1-2F-2008-0011 MATEMATIKA A MINDENNAPI ÉLETBEN 9. ÉVFOLYAM TANÁRI KÉZIKÖNYV MAT9_TK.indd 1 2009.11.05. 13:40:27 A kiadvány a

Részletesebben

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24 OKTATÁSI MINISZTÉRIUM M/D/13 Dolgozók gimnáziuma Dolgozók szakközépiskolája Szakmunkások szakközépiskolája intenzív tagozat) 003. május ) Határozza meg a következő egyenlet racionális gyökét! 1 3 4 + 5

Részletesebben

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4 . Orchidea Iskola VI. Matematika verseny 0/0 II. forduló = x + = x ++ = x +++ = x Ennek ismeretében mennyivel egyenlő ++++...+9+99=? A ) 0. D ) 0 000 6 C ) 0 D ) A Földközi-tengerben a só-víz aránya :

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II. Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:

Részletesebben

Az egyszerűsítés utáni alak:

Az egyszerűsítés utáni alak: 1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű

Részletesebben

Érettségi feladatok: Sorozatok

Érettségi feladatok: Sorozatok Érettségi feladatok: Sorozatok 2005. május 10. 8. Egy mértani sorozat első tagja 8, hányadosa 2. Számítsa ki a sorozat ötödik tagját! 14. Egy számtani sorozat második tagja 17, harmadik tagja 21. a) Mekkora

Részletesebben

Környezeti analitika laboratóriumi gyakorlat Számolási feladatok áttekintése

Környezeti analitika laboratóriumi gyakorlat Számolási feladatok áttekintése örnyezeti analitika laboratóriumi gyakorlat Számolási feladatok áttekintése I. A számolási feladatok megoldása során az oldatok koncentrációjának számításához alapvetıen a következı ismeretekre van szükség:

Részletesebben

148 feladat 21 + + 20 20 ) + ( 1 21 + 2 200 > 1 2. 1022 + 1 51 + 1 52 + + 1 99 2 ) (1 1 100 2 ) =?

148 feladat 21 + + 20 20 ) + ( 1 21 + 2 200 > 1 2. 1022 + 1 51 + 1 52 + + 1 99 2 ) (1 1 100 2 ) =? 148 feladat a Kalmár László Matematikaversenyről 1. ( 1 19 + 2 19 + + 18 19 ) + ( 1 20 + 2 20 + + 19 20 ) + ( 1 21 + 2 21 + + 20 21 ) + ( 1 22 + 2 22 + + 21 22 ) =? Kalmár László Matematikaverseny megyei

Részletesebben

MATEMATIKA ÉRETTSÉGI 2012. május 8. EMELT SZINT I.

MATEMATIKA ÉRETTSÉGI 2012. május 8. EMELT SZINT I. MATEMATIKA ÉRETTSÉGI 01. május 8. EMELT SZINT I. 1) Egy 011-ben készült statisztikai összehasonlításban az alábbiakat olvashatjuk: Ha New York-ban az átlagfizetést és az átlagos árszínvonalat egyaránt

Részletesebben

Egyenletek, egyenlőtlenségek VIII.

Egyenletek, egyenlőtlenségek VIII. Egyenletek, egyenlőtlenségek VIII. 1. Melyik az a szám, amelynek a felét és az ötödét összeszorozva, a szám hétszeresét kapjuk? Legyen a keresett szám:. A szöveg alapján felírhatjuk a következő egyenletet:

Részletesebben

MATEMATIKA a 8. évfolyamosok számára. Mat2 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA a 8. évfolyamosok számára. Mat2 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ 8. évfolyam Mat2 Javítási-értékelési útmutató MTEMTI a 8. évfolyamosok számára Mat2 JVÍTÁSI-ÉRTÉELÉSI ÚTMUTTÓ javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. pontszámok részekre bontása

Részletesebben

MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 007. május 8. KÖZÉPSZINT ) Egyszerűsítse a következő törtet! (a; b valós szám, ab 0)! a b ab ab ab ( a ) a ab I. Összesen: pont ) Egy mértani sorozat második eleme 3, hatodik eleme.

Részletesebben

Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET

Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA a 2011/2012-es tanévben TESZT 1 matematikából

Részletesebben

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi I. rész 45 perc NÉV:... Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:...

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:... T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 7. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

Jelenlegi életkor Életkor 11 év múlva Anya x x + 11 Gyermek x 29 x 29 + 11 = x 18

Jelenlegi életkor Életkor 11 év múlva Anya x x + 11 Gyermek x 29 x 29 + 11 = x 18 Szöveges feladatok Életkori feladatok. Feladat. Egy anya 29 éves volt, amikor a a született. év múlva az életkora évvel lesz kevesebb, mint a a akkori életkorának kétszerese. Hány évesek most? Megoldás.

Részletesebben

Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész

Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész Pataki János, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 005. november I. rész. feladat Egy liter 0%-os alkoholhoz / liter 40%-os alkoholt keverünk.

Részletesebben

Matematika _ 2. Ha feldobunk három különböző pénzérmét, annak 8 különböző eredménye lehet. Az alábbi ábra ezt a 8 lehetséges esetet mutatja.

Matematika _ 2. Ha feldobunk három különböző pénzérmét, annak 8 különböző eredménye lehet. Az alábbi ábra ezt a 8 lehetséges esetet mutatja. Matematika _ 2. 1. feladat Ha feldobunk három különböző pénzérmét, annak 8 különböző eredménye lehet. z alábbi ábra ezt a 8 lehetséges esetet mutatja. ) Mekkora annak az esélye, hogy legalább két érme

Részletesebben

MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. május 19. du. JAVÍTÁSI ÚTMUTATÓ

MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. május 19. du. JAVÍTÁSI ÚTMUTATÓ MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 00 május 9 du JAVÍTÁSI ÚTMUTATÓ Oldja meg a rendezett valós számpárok halmazán az alábbi egyenletrendszert! + y = 6 x + y = 9 x A nevezők miatt az alaphalmaz

Részletesebben

Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET

Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA a 2011/2012-es tanévben TESZT 3 matematikából

Részletesebben

Permetezőgépek folyadékfogyasztásának mérése és beállítása A permetezés anyagszükséglete

Permetezőgépek folyadékfogyasztásának mérése és beállítása A permetezés anyagszükséglete Permetezőgépek folyadékfogyasztásának mérése és beállítása A permetezés anyagszükséglete Hatásos permetezés csak akkor végezhető, ha pontosan ismert a felületegységre kiszórt folyadékmennyiség. Ugyanis

Részletesebben

Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz. Fejlesztőfeladatok

Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz. Fejlesztőfeladatok Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz Fejlesztőfeladatok MATEMATIKA 4. szint 2015 Oktatáskutató és Fejlesztő Intézet

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

Hevesy György Országos Kémiaverseny Kerületi forduló 2013. február 20. 7. évfolyam A feladatlap megoldásához elektronikus adatok tárolására nem alkalmas zsebszámológép használható. Mobiltelefont számológép

Részletesebben

Mikroökonómia szeminárium 2. Konzultáció

Mikroökonómia szeminárium 2. Konzultáció Mikroökonómia szeminárium 2. Konzultáció Révész Sándor Budapesti Corvinus Egyetem Makroökonómia Tanszék 2011. október 12. Tesztek - Preferenciák, közömbösségi görbék Egy közömbösségi görbe mentén biztosan

Részletesebben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont) 1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)

Részletesebben

Kémia OKTV I. kategória II. forduló A feladatok megoldása

Kémia OKTV I. kategória II. forduló A feladatok megoldása ktatási ivatal Kémia KTV I. kategória 2008-2009. II. forduló A feladatok megoldása I. FELADATSR 1. A 6. E 11. A 16. C 2. A 7. C 12. D 17. B 3. E 8. D 13. A 18. C 4. D 9. C 14. B 19. C 5. B 10. E 15. E

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:...

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:... T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 8. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

Folyadékok és szilárd anyagok sűrűségének meghatározása különböző módszerekkel

Folyadékok és szilárd anyagok sűrűségének meghatározása különböző módszerekkel Folyadékok és szilárd anyagok sűrűségének meghatározása különböző módszerekkel Név: Neptun kód: _ mérőhely: _ Labor előzetes feladatok 20 C-on különböző töménységű ecetsav-oldatok sűrűségét megmérve az

Részletesebben

E1 E2 E3 E4 E5 E6 E7

E1 E2 E3 E4 E5 E6 E7 E1 E2 E3 E4 E5 E6 E7 1. Mekkora tömegű konyhasóra van szükség, hogy annak tömény kénsavas reakciójával egy 500 cm 3 térfogatú lombikot 30 o C-os 0.105 MPa nyomású HCl gázzal töltsünk meg, ha a reakció

Részletesebben

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc MATEMATIKA KISÉRETTSÉGI 2014. Ponthatárok: (5) 83-100 (4) 65-82 (3) 47-64 (2) 30-46 (1) 0-29 Név, osztály Pontszám I. rész - A rendelkezésre álló idő: 45 perc I. rész 30 pont Érdemjegy II. rész 70 pont

Részletesebben

Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint

Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint TÁMOP-.1.4-08/2-2009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint Vasvár,

Részletesebben

Hevesy György Országos Kémiaverseny Kerületi forduló február évfolyam

Hevesy György Országos Kémiaverseny Kerületi forduló február évfolyam 1. feladat (12 pont) Hevesy György Országos Kémiaverseny Kerületi forduló 2012. február 14. 8. évfolyam 212 éve született a dinamó és a szódavíz feltalálója. Töltsd ki a rejtvény sorait és megfejtésül

Részletesebben

Feladatok MATEMATIKÁBÓL a 12. évfolyam számára

Feladatok MATEMATIKÁBÓL a 12. évfolyam számára Feladatok MATEMATIKÁBÓL a. évfolyam számára I.. Egy 35 fős osztályból mindenki részvett valamelyik iskolai kiránduláson. 5-en Debrecenbe utaztak, 8-an pedig Pécsre. Hányan utaztak mindkét városba?. Állapítsa

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.

Részletesebben

MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I.

MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I. 1) Adott két pont: A ; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. MATEMATIKA ÉRETTSÉGI 005. május 10. KÖZÉP SZINT I. és B 1; Írja fel az AB szakasz 1 1 F ; F ;1 ) Az ábrán egy ; intervallumon

Részletesebben

Hetedikesek levelező matematikaversenye IV. forduló

Hetedikesek levelező matematikaversenye IV. forduló Hetedikesek levelező matematikaversenye IV. forduló 1. Tudjuk, hogy A = 3 + és B =. Számítsd ki a következő értékeket: a) A + B b) A B c) d) A B Számítsuk ki A és B értékét, végezzük el a műveleteket:

Részletesebben

S Z I N T V I Z S G A F E L A D A T

S Z I N T V I Z S G A F E L A D A T S Z I N T V I Z S G A F E L A D A T a Magyar Agrár-, Élelmiszergazdasági és Vidékfejlesztési Kamara hatáskörébe tartozó szakképesítéshez, a 41/2013. (V. 28.) VM rendelettel kiadott szakmai és vizsgáztatási

Részletesebben

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

MATEMATIKA C 12. évfolyam 4. modul Még egyszer! MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS Matematika PRÉ megoldókulcs 0. január. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULCS = KÖZÉP SZINT = I. rész: z alábbi feladat megoldása kötelező volt! ) Oldd meg az alábbi egyenletet a valós számok halmazán! tg

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.

Részletesebben

Keresztnév: Vezetéknév:

Keresztnév: Vezetéknév: Keresztnév: Vezetéknév: ertifikáltmérésmatematikai feladatlapja ertifikač nýtestzmatematiky eloslovenskétestovanie ž iakov9.roč níkazš T9-200 Kedvestanulók, amatematikaifeladatlapotkaptátokézez.teszt20feladatotartalmaz.

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyz jeligéje:... Megye:...

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyz jeligéje:... Megye:... T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 8. osztály A versenyz jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

MATEMATIKA ÉRETTSÉGI 2009. október 20. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2009. október 20. EMELT SZINT MATEMATIKA ÉRETTSÉGI 009. október 0. EMELT SZINT ) Oldja meg az alábbi egyenleteket! a), ahol és b) log 0,5 0,5 7 6 log log 0 I., ahol és (4 pont) (7 pont) log 0,5 a) Az 0,5 egyenletben a hatványozás megfelelő

Részletesebben

MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 005. május 9. KÖZÉPSZINT 1) Mely x valós számokra igaz, hogy x I. 9? x 1 3. x 3. Összesen: pont ) Egy háromszög egyik oldalának hossza 10 cm, a hozzá tartozó magasság hossza 6 cm.

Részletesebben

- x - o - x - o - x - o - x - o - x - o - x - o - x - o - x - o - x - o - x - o - x - o - x - o - x - o - x -

- x - o - x - o - x - o - x - o - x - o - x - o - x - o - x - o - x - o - x - o - x - o - x - o - x - o - x - Bozóki Mihály hf_06 Egy oldatot gravimetriásan vizsgáltunk. Adja meg a keresett anyag mennyiségét a csapadék tömege g-ban, az eredmény mértékegysége. Ba BaSO4 65 cm3 0,1234 g/dm3 hf_07 Készíteni sűrűsége

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0513 ÉRETTSÉGI VIZSGA 005. május 8. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

XVIII. Nemzetközi Magyar Matematika Verseny

XVIII. Nemzetközi Magyar Matematika Verseny 9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.

Részletesebben

PRÓBAÉRETTSÉGI VIZSGA 2014. január 18.

PRÓBAÉRETTSÉGI VIZSGA 2014. január 18. MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2014. január 18. EMELT SZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név E-mail cím Tanárok neve Pontszám 2014. január 18. Időtartam: 240 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ Matematika

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I. 1) Adja meg a Például: 1 ; 8 8 M 1 ; 10 5 MATEMATIKA ÉRETTSÉGI 008. május 06. KÖZÉPSZINT I. nyílt intervallum két különböző elemét! ( pont) ( pont) ) Egy 7-tagú társaságban mindenki mindenkivel egyszer

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2011. NOVEMBER 26.) 3. osztály

BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2011. NOVEMBER 26.) 3. osztály 3. osztály Egy fa tövétől a fára mászik fel egy csiga. Nappalonként 3 métert mászik felfelé, de éjszakánként 2 métert visszacsúszik. Az indulástól számított 10. nap délutánjáig felér a csúcsra. Milyen

Részletesebben

A százalékszámítás 620 15 15 620 620 0,15 93 100 100 93 93 100 93 : 0,15 620 15 15 100

A százalékszámítás 620 15 15 620 620 0,15 93 100 100 93 93 100 93 : 0,15 620 15 15 100 A százalékszámítás A következő alapfeladatokkal találkozhatsz: 1. Mennyi a 620-nak a 15%-a? 100 % 620 1% 620:100 = 6,2 15% 15 6,2 = 93 Vedd észre! Ahány százalék, annyi századrész! 620 15 15 620 620 0,15

Részletesebben

Sztöchiometriai feladatok. 4./ Nagy mennyiségű sósav oldathoz 60 g 3 %-os kálcium-hidroxidot adunk. Mennyi kálciumklorid keletkezik?

Sztöchiometriai feladatok. 4./ Nagy mennyiségű sósav oldathoz 60 g 3 %-os kálcium-hidroxidot adunk. Mennyi kálciumklorid keletkezik? 1./ 12 g Na-hidroxid hány g HCl-dal lép reakcióba? Sztöchiometriai feladatok 2./ 80 g 3 %-os salétromsav hány g Na-hidroxidot semlegesít? 3./ 55 g 8%-os kénsav oldat hány g kálium-hidroxiddal semlegesíthető?

Részletesebben

Számítások ph-val kombinálva

Számítások ph-val kombinálva Bemelegítő, gondolkodtató kérdések Igaz-e? Indoklással válaszolj! A A semleges oldat ph-ja mindig éppen 7. B A tömény kénsav ph-ja 0 vagy annál is kisebb. C A 0,1 mol/dm 3 koncentrációjú sósav ph-ja azonos

Részletesebben

Curie Matematika Emlékverseny 8. évfolyam I. forduló 2011/2012.

Curie Matematika Emlékverseny 8. évfolyam I. forduló 2011/2012. Curie Matematika Emlékverseny 8. évfolyam I. forduló 2011/2012. A feladatokat írta: Kozma Lászlóné, Sajószentpéter Tóth Jánosné, Szolnok Lektorálta: Lengyel Lászlóné, Nádudvar Név:........ Iskola:.. Beküldési

Részletesebben

EGYENLETTEL MEGOLDHATÓ SZÖVEGES FELADATOK

EGYENLETTEL MEGOLDHATÓ SZÖVEGES FELADATOK EGYENLETTEL MEGOLDHATÓ SZÖVEGES FELADATOK 1. Béla zebében 20 é 50 Ft-o pénzérmék vannak, özeen 24 db, értékük 720 Ft. Hány 20 é ány 50 Ft-o pénzérméje van? 2. Béla zebében 10 é 20 Ft-o pénzérmék vannak,

Részletesebben

EGYENLETEK. Mérleg-elv. = + x 1. = x + 12 2. 2 x + = 1 3x 10. = 1. 17. 13 3x. 5 x 11. ( ) Abszolutértékes egyenletek, egyenlőtlenségek. 28.

EGYENLETEK. Mérleg-elv. = + x 1. = x + 12 2. 2 x + = 1 3x 10. = 1. 17. 13 3x. 5 x 11. ( ) Abszolutértékes egyenletek, egyenlőtlenségek. 28. EGYENLETEK Mérleg-elv..... 6. + = 7 = + = 7+ 7+ 6 + = + = = ( ) 7. = + + 6 8 6 8. = 7 7 9.. 7 = + ( ) + + =. + Abszolutértékes egyenletek, egyenlőtlenségek. = 7. =. =. 8 = 6. 7 9 = 7. = 8. 8 = 9. =. 6.

Részletesebben

45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY HARMADIK OSZTÁLY

45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY HARMADIK OSZTÁLY 45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló Javítási útmutató HARMADIK OSZTÁLY 1. Marci tolltartójában fekete, piros és kék ceruzák vannak, összesen 20 darab. Hány fekete ceruza van

Részletesebben

Talpra magyar, hí a haza!

Talpra magyar, hí a haza! 7. osztály 2 Hevesy verseny, megyei forduló, 2009 Figyelem! A feladatokat ezen a feladatlapon oldd meg! Megoldásod olvasható és áttekinthet legyen! A feladatok megoldásában a gondolatmeneted követhet legyen!

Részletesebben

2 2 = 2 p. = 2 p. 2. Végezd el a kijelölt műveleteket! 3. Végezd el a kijelölt műveleteket! 4. Alakítsad szorzattá az összeget!

2 2 = 2 p. = 2 p. 2. Végezd el a kijelölt műveleteket! 3. Végezd el a kijelölt műveleteket! 4. Alakítsad szorzattá az összeget! Matematika vizsga 014. 9. osztály Név: Az 1-1. feladatok megoldását a feladatlapra írd! A 1-19. feladatokat a négyzetrácsos lapon oldd meg! 1. Számítsd ki az alábbi kifejezések pontos értékét! 0, = = p

Részletesebben

1. Gázok oldhatósága vízben: 101 325 Pa nyomáson g/100 g vízben

1. Gázok oldhatósága vízben: 101 325 Pa nyomáson g/100 g vízben 1. Gázok oldhatósága vízben: 101 325 Pa nyomáson g/100 g vízben t/ 0 C 0 20 30 60 O 2 0,006945 0,004339 0,003588 0,002274 H 2S 0,7066 0,3846 0,2983 0,148 HCl 82,3 72 67,3 56,1 CO 2 0,3346 0,1688 0,1257

Részletesebben

Szent István Tanulmányi Verseny Matematika 3.osztály

Szent István Tanulmányi Verseny Matematika 3.osztály SZENT ISTVÁN RÓMAI KATOLIKUS ÁLTALÁNOS ISKOLA ÉS ÓVODA 5094 Tiszajenő, Széchenyi út 28. Tel.: 56/434-501 OM azonosító: 201 669 Szent István Tanulmányi Verseny Matematika 3.osztály 1. Hányféleképpen lehet

Részletesebben

MATEMATIKA a 8. évfolyamosok számára. Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA a 8. évfolyamosok számára. Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ 8. évfolyam Mat1 Javítási-értékelési útmutató MATEMATIKA a 8. évfolyamosok számára Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A javítási-értékelési útmutatóban feltüntetett válaszokra a megadott pontszámok adhatók.

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 161 ÉRETTSÉGI VIZSGA 016. május. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:

Részletesebben

MATEMATIKA VERSENY --------------------

MATEMATIKA VERSENY -------------------- Eötvös Károly Közös Fenntartású Általános Iskola 2013. és Alapfokú Művészetoktatási Intézmény 831 Vonyarcvashegy, Fő u. 8/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,

Részletesebben

MATEMATIKA VERSENY

MATEMATIKA VERSENY Eötvös Károly Közös Fenntartású Óvoda, Általános Iskola 2012. és Alapfokú Művészetoktatási Intézmény 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,

Részletesebben

Próbaérettségi feladatsor_a NÉV: osztály Elért pont:

Próbaérettségi feladatsor_a NÉV: osztály Elért pont: Próbaérettségi feladatsor_a NÉV: osztály Elért pont: I. rész A feladatsor 1 példából áll, a megoldásokkal maximum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy osztály tanulói a

Részletesebben

1. A MÁSODIK OSZTÁLYBAN TANULTAK ISMÉTLÉSE

1. A MÁSODIK OSZTÁLYBAN TANULTAK ISMÉTLÉSE 1. A MÁSODIK OSZTÁLYBAN TANULTAK ISMÉTLÉSE 1. Írd le számokkal! Hat, tizenhat,,hatvan, hatvanhat, ötven, száz, tizenhét, húsz nyolcvankettı, nyolcvanöt. 2. Tedd ki a vagy = jelet! 38 40 2 42 50+4

Részletesebben