Rekonstrukciós eljárások. Orvosi képdiagnosztika 2018 ősz

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Rekonstrukciós eljárások. Orvosi képdiagnosztika 2018 ősz"

Átírás

1 Rekonstrukciós eljárások Orvosi képdiagnosztika 2018 ősz

2 Előadások témája Röntgen tomográfia fizikai és matematikai alapjai 2D Radon transzformáció, szűrt visszavetítés: Fan beam / Cone beam felvételi elrendezések esete Általánosított (3D) röntgen tomográfia alapjai ART rekonstrukciós eljárások Pozitron emissziós tomográfia alapjai ML-EM statisztikai rekonstrukciós eljárás Modell alapú / CS rekonstrukciós eljárások Tomoszintézis felvételi elrendezés MITS rekonstrukció Rekonstrukciós eljárások minősítése

3 Röntgen tomográfia alapjai Általánosított Beer-Lambert törvény: Emax I 0, 0 0 exp, x y I E E xdxde Emin Px0, y0 I0 E : röntgencsövet elhagyó E energiájú fotonok intenzitása (üres térfogat esetén a detektor által érzékelt fotonok száma) P x, y: pontszerű sugárforrást a detektor xy, koordinátájú pontjával összekötő szakasza a 3d térnek E, x: a vizsgált térfogat x koordinátájú pontjának lineáris csillapítási együtthatója E energián Egyszerűsített Beer-Lambert törvény: I0 Eexp d P (monokróm spektrum esete) x0, y0 : x x

4 Röntgen tomográfia alapjai Monokróm spektrumú sugárzás esete: Általánosan alkalmazott feltételezés Rekonstrukció célja a lin. csillapítási együtthatók meghatározása az alábbi összefüggés invertálásával: ln, I xy 0 Px I x dx 0, y0 Valódi röntgensugarak ezzel szemben: Polikromatikusak sugárkeményedés problémája Szóródnak: nem igaz, hogy csak a vetítősugár mentén elhelyezkedő képletek számítanak. Projekciók egyéb zajjal is terheltek : kis intenzitásnál rossz SNR

5 Röntgen alapú képalkotás Konvencionális P-A röntgen: Nincs rekonstrukció Számítógépes tomográfia (CT): Párhuzamos vetítősugarakon alapuló eljárások (kevés ilyen eszköz van csak forgalomban), cserébe egyszerű elmélet Legyező (Fan-beam) helikális CT leggyakoribb típus Cone-beam CT, ennek speciális változata a Tomoszintézis Orvosi képdiagnosztika alapvető eszköze: Mivel a röntgen sugárzás ionizál, illetve maga a vizsgálat itthon mércével drága, ezért csak indokolt esetben végzik

6 2D Radon transzformáció: Radon transzformáció (2D szelet 1D projekciók): Input: 2D Descartes - koordinátarendszerbeli kép Output: sinogram 2D polár-koordinátarendszerbeli kép Sinogram: t

7 Radon transzformáció Fourier vetítősík tétel Radon transzformáció (2D szelet 1D projekciók): Vetítősugarak merőlegesek az x tengellyel szöget bezáró egyenesre: t x cos y sin Vetítősugarak mentén integráljuk a szelet elemeit: P t f x, y x cos y sin t dxdy xy, Legyen exp 2 Fourier vetítősík tétel származtatása: x, y, t S FT P t P t j t dt S f x, y x cos y sin t exp 2 j t dtdydx, exp 2 cos sin xy, S f x y j x y dydx

8 Fourier vetítősík tétel Lényegében f spektrumának egy szakaszát kaptuk meg: S F cos, sin Vizuális interpretáció:

9 Rekonstrukció FBP alapötlete Rekonstrukció célja: Radon Transzf. invertálása Fourier vetítősík tétel értelmében a vizsgált szelet spektrumainak bizonyos részeit ismerjük: Az ismert részeket illesszük egy üres spektrumba Polár koordinátás frekvencia sugarának függvényében a spektrum mintavételi helyeinek eltérő a távolsága: K 2 2 Korrekció: spektrumba illesztés előtt -val súlyozzunk frekvenciatérben (ez az ún. rámpaszűrés).

10 Szűrt visszavetítés (FBP) származtatása FT inverze:,, exp 2 f x y F u v j ux vy dvdu uv, Fourier vetítősík miatt a spektrumot polárkoordináta-rendszerben ismerjük: u cos ; v sin 2,, exp 2 cos sin f x y F j x y Jdd 0 0 u u J..., dudv Jdd v v Továbbiakban k : x cos y sin 2 f x, y F, exp j2 k d d 0 0

11 Szűrt visszavetítés (FBP) származtatása Vágjuk szét a külső integrált: 2 j 2 k j 2 k f x, y F, e dd F, e dd f, a sinogram egy oszlopa, melynek definíciójából (Radon transzf.) következik, hogy F, F,, hiszen:, exp 2 exp 2 F P t j t dt P t j t dt t t t F, P lexp j2 l dl F, l t l l Felhasználtuk, hogy k x cos y sin, illetve cos cos és sin sin

12 Szűrt visszavetítés (FBP) származtatása Vágjuk szét a külső integrált: 2 j 2 k j 2 k f x, y F, e dd F, e dd P l f l, a sinogram egy oszlopa, S melynek F definíciójából, f, (Radon transzf.) következik, hogy F, F,, hiszen:, exp 2 exp 2 F P t j t dt P t l t 1 j t dt t t t F, P lexp j2 l dl F, l t l l Felhasználtuk, hogy k x cos y sin, illetve cos cos és sin sin

13 Szűrt visszavetítés (FBP) származtatása Alakítsuk át egyszerű behelyettesítésekkel a második integrált: 2 j 2 k j 2 k F, e d d F, e d d j 2 k j, e, e 2 k 1 F d d F dd k cos x sin y j 2k j 2k, e 1, e F dd F dd

14 Szűrt visszavetítés (FBP) származtatása Lássuk mit sikerült kifőznünk: j 2 k j 2 k,, e, e f x y F dd F dd f x, y F, exp j2k dd Q k d : Q k S exp j2 k dekvivalens a projekciók (sinogram oszlopai) rámpa szűrővel történő szűrésével f x, y Q x cos y sin d : az ú.n. visszavetítés

15 Szűrt visszavetítés értékelése Rámpaszűrő: 0, f N 0, fpn f Ideális rekonstrukció feltételei: 180 -ból rögzített projekciók arc sin f Projekciók felbontása elegendően nagy: f 2 f tipikus az 1cyc/mm PN Zajt az eljárás expliciten nem kezeli, ez jelentős problémaforrás. N f PN képtérben

16 Szűrt visszavetítés implementációja Rámpaszűrés frekvenciatérben történik: 5 5-ös szűrő esetén már a frekvenciatartománybeli szűrés a gyorsabb (ennek főleg régebben volt jelentősége). Visszavetítés kép / időtartományban: Frekvenciatartományban interpolálnunk kellene a spektrum ismert egyeneseiből a DFT által mintavett frekvenciák értékét (mely messze nem triviális). Szűrések, projekciók visszavetítése egyenként (sugaranként) jól párhuzamosítható

17 Szűrt visszavetítés zajérzékenysége Detektorok DQE-je a frekvencia függvényében monoton csökken zajos magas frekvencia (PET esetén a röntgenes esetnél jóval rosszabb). Ráadásul magas frekvencián távolabb vannak a spektrum ismert értékei (ezért kell a rámpa szűrés is). Legegyszerűbb megoldás az alul-áteresztés: Az alul-áteresztés és a visszavetítés sorrendje tetszőleges Erőforrásigény miatt érdemes a rámpa szűrőt megszűrni: P h h P h h Ramp Lowpass Ramp Lowpass Klasszikus inverz problémák mely algoritmusaira hasonlít az eljárás?

18 Szűrt visszavetítés zajérzékenysége Rámpa szűrő módosítottjaival szűrünk: Szűrők átviteli függvényének abszolút értéke: Egy CAT MTF-je a szűrők függvényében (példa):

19 Szűrt visszavetítés működése Demo videó az FBP rekonstrukciójáról: A szinogramban oszlop-folytonosan helyezkednek az 1D projekciók. A videón jól követhető a limitált szögtartomány által okozott artifakt: Magas frekvenciás komponensek (pl. fantom széle) kis szögtartományból is jól rekonstruálódik. Alacsony frekvenciás komponensek viszont erősen szétmosódottak (jellegzetesen V alakban). Vetítősugarakra merőleges élek rekonstruálhatóak jól.

20 FBP Fan-beam geometria esetén Eddig párhuzamosak voltak a vetítősugarak: Gyakorlatban egy ilyen CT nem igazán realizálható Fan-beam vetítősugaras helikális CT (ú.n. CAT):

21 Fan-beam projekciók Virtuális párhuzamos projekciók FBP Fan-beam geometria esetén Alapötlet: a mért intenzitások átcsoportosítása párhuzamos vetítősugár alapú geometria szerint: Lényegében új, párhuzamos vetítősugár szerinti virtuális projekciókat állítunk elő a fan-beam projekciókból. Átcsoportosítás

22 FBP Cone-beam geometria esetén CBCT rendszerek - Cone-Beam geometria: Flat-panel detektort használ, a sugarak kúpszerűen (innen az elnevezés) vetülnek a detektorra:

23 Cone-beam geometria szerinti vetületek FBP rekonstukciója - FDK Feldkamp, Davis, Kress CBCT-s algoritmusa: Klasszikus szűrt visszavetítéssel rekonstruál Közelítően helyes algoritmus ideális esetben sem tökéletes Ideális rekonstrukció esetén is Cone-beam artifakt

24 Projekciók keletkezésének általános 3D modellje Általános modellje a (röntgen) képalkotásnak: g x, y h x, y;, f, d dd x, y,, 0 Mérésekkel rendelkezünk: g x, y Teoretikusan ismerjük a rendszer PSF-jét: Beer- Lambert törvény szerint, ami nem modellez sem szóródást, sem a fotoelektromos kölcsönhatás során keletkező divergáló sugarakat. Rekonstrukció célja f,, meghatározása Érdemes megjegyezni, hogy a Beer-Lambert törvénynél ez egy általánosabb modell, de monokróm sugarakat feltételez, gyakorlatban nem tudunk vele dolgozni túl nagy komplexitás.

25 Projekciók keletkezésének általános 3D modellje Megfigyelési modell diszkretizáltja g H f η : g tartalmazza az összes vetítősugár fotodiódákon mért intenzitások negatív logaritmáltját (tehát minden projekció minden pixeléhez tartozó intenzitását tartalmazó vektor). H a vetítő mátrix,, : i-edik pixelbe csapódó fotonok a j-edik voxeltől mennyire csillapodnak (ez anyag független). η H i j az additív zaj nem modellezett hatások determinálják Lényegében ez is inverz probléma: Ugyanúgy jelentős a zajérzékenység, mint 2D esetben Ellentétben nagyságrendekkel több változó (akár 1E7)

26 Projekciók keletkezésének általános 3D modellje Ez így túl általános, de jobban modellezi a valóságot. Gyakorlatban viszont H az i-edik pixelbe csapódó fotonok i, j által g tartalmazza a j-edik voxelben az összes megtett vetítősugár útnak a fotodiódákon hossza (csak primer mért sugárzás). intenzitások Ezzel negatív a megkötéssel logaritmáltját H egy (tehát ritka, ú.n. minden sávmátrixá projekció válik. minden pixeléhez tartozó intenzitását tartalmazó vektor). Megfigyelési modell diszkretizáltja g H f η : H i j H a vetítő mátrix,, : i-edik pixelbe csapódó fotonok a j-edik voxelben lévő anyagtól mennyire csillapodnak. η az additív zaj nem modellezett hatások determinálják Lényegében ez is inverz probléma: Ugyanúgy jelentős a zajérzékenység, mint 2D esetben Ellentétben nagyságrendekkel több változó (akár 1E7)

27 Algebrai rekonstrukciós technika (Gordon ART) Kaczmarz iterációval történik megoldása: Rekonstrukciónál a f H g megoldás lenne az ideális, de: Túl nagy H mérete a ma elérhető számítási teljesítményhez Ráadásul H nagyon ritka, melyet általános algebrai módszerek nem képesek hatékonyan kihasználni Eljárás alapötlete: g Hf lényegében N db (vetítősugarak száma), M dimenziós hipersík egyenlete Ha létezik egzakt inverz, akkor a hipersíkok az M dimenziós tér ugyanazon pontjában metszik egymást. Ha túlhatározott, akkor nincs metszéspont, ha alulhatározott akkor az M dimenziós teret egy résztartományra szűkítik. g H f

28 Algebrai rekonstrukciós technika (Gordon ART) Az eljárás k+1. iterációban merőlegesen vetíti az aktuális -et g H f hipersíkra ( i k N ): f (mod ) f a -re merőleges azon síkon helyezkedik el, mely távolsága az origótól Tehát i i,: H i,: 1 g f f H H i i,: k k T i,: k g H f H T i i,: i,: H f k g,: H i i i,: Hi,: 1 2, a merőleges vetítés után teljesül, amiből kifejezve: T k k k i,: i,: i T f f H f g H T H, behelyettesítve: H i,: i,:

29 Algebrai rekonstrukciós technika (Gordon ART) k 1 k k i,: interpretációja: k k g H f a rögzített projekciók és az aktuális ( f ) rekonstrukció modell szerinti vetületének a különbsége (vetületi hiba) T T H H H : a vetületi hibát vetíti vissza Eljárás tulajdonságai: Sok, könnyen számolható iteráció, melyek nem párhuzamosíthatóak Konvergál, ha megfigyeléseink konzisztensek, ellentétben limit hurokba szorul, mely belsejében helyezkedik el az f H g. Hátránya, hogy nem kezeli a projekciók zaját, ezért túlilleszkedésre hajlamos (lényegében egy ML becslés Gauss eloszlású likelihood-dal) Szükség van egy f f g H f i,: i,: i,:,: i i T f 0 H H -ra: gyakran FBP / BP eredménye T H i,: i,:

30 Kaczmarz iteráció példa N=2, M=2 esete: i-edik kényszerrel konzsiztens vektorok halmaza Ha a két merőleges hipersík egymásra merőleges, akkor két iteráció alatt megvan a metszéspont Ha a hipersíkok párhuzamosak, akkor az iteráció nem áll le (limit hurokba kerül) Minél nagyobb a két egyenes által bezárt szög, annál gyorsabb a konvergencia.

31 Limit hurok viselkedés Gordon ART inkonzisztens projekciók esetén limit hurokba lép: Stabil limit hurkok viselkedés: a rendszer állapotváltozója hurok trajektóriába ragad

32 Algebrai rekonstrukciós technika Egyidejű ART (SART): (Simultaneous ART) Hibaképzés nem vetítősugaranként, hanem projekciónként: 1 f f g H f k k k S i js j j,: : i-edik projekció pixeleit előállító vetítősugarak halmaza Tetszőleges f 0 esetén is konvergál egy LS becslőhöz: Ha több LS becslő van, akkor az f Jól párhuzamosítható: i -hoz L2 szerinti legközelebbihez Azonos projekcióhoz tartozó vetítősugarak menti levetítés és visszavetítés egymástól független Zajra túlilleszkedés tulajdonsága változatlanul megmaradt Ez az eljárás is ekvivalens egy ML becsléssel H 0 H T j,: H j,: j,: T

33 Algebrai rekonstrukciós technika (Simultaneous Iterative Reconstructive Technique) Egyidejű Iteratív Rekonstrukciós eljárás: Összes projekció, összes pixele szerint egyszerre képez hibát: 1 f f g H f k k k j j j,: Hasonló konvergencia tulajdonságok, mint az SART-nél: Pontosan ugyanazon becsléshez konvergál Jól párhuzamosítható, de: Egyszerre csak egy projekció le / visszavetítése nem módosítja többször u.a. voxelt (egyébként versenyhelyzet). Gyakorlatban több számolás szükséges a konvergenciához, mint a másik két ART-nél Létezik olyan változat, mely kezeli a polikróm energia spektrum miatt kialakuló sugárkeményedés artifaktumot. H H T j,: H j,: j,: T

34 Algebrai rekonstrukciós technika (Multiplikatív ART) Eddig Additív ART-ket néztünk: Kezdeti iterációk során lassabban haladnak Pozitivitási kényszert nem lehet kikényszeríteni Multiplikatív ART-k: Hibát multiplikatív módon származtatják pl.: f k A hibát f k1 j 1 H j,: i i k g 1g H f j j,: k f értéke méri Kezdeti iterációk hatékonyabbak, de gyakran divergál, vagy a végén túlságosan lelassul. H j,i

35 Pozitron emissziós tomográfia alapelve Szervezetbe pozitron kibocsátására képes radioaktív izotópot tartalmazó anyagot visznek cukoroldatban. Sejtek tápanyagfelvétele miatt nagyobb energiaigényű (pl. gyulladt / daganatos) sejtek helyén több pozitron emisszió. Pozitron elektronnal ütközik: Két db, egymással ellentétes irányú foton emittálódik. Detektor ezeknek a beütését méri.

36 Pozitron emissziós tomográfia rekonstrukciója Line of Response : ugyanazon bomló izotóp által kibocsátott γ fotonok beütési helyét összekötő szakasz Érdemes szem előtt tartani, hogy előre nem határozható meg, hogy egy-egy foton milyen irányba fog haladni Elegendően sok kisugárzás esetén viszont hasonlóan viselkedik, mint akármilyen sugárforrás (Poisson folyamat).

37 Pozitron emissziós tomográfia projekciók zajának értelmezése Sokszor téves LOR-t mérünk: Szóródás (rugalmas ütközés) miatt a térfogaton belül megváltoztatja irányát a γ foton. Két, hozzávetőlegesen egy időben történő bomlás is fals látszólagos LOR-t eredményez.

38 Pozitron emissziós tomográfia rekonstrukciója Rekonstrukció során a LOR-ok interpretálhatóak vetítősugaraknak is (intenzitás meg az adott LOR menti gyakorisága a γ beütéseknek). Elegendően sok beütés szükséges az eloszlás becsléséhez: Egy scan kb. 20 perc Nagyságrenddel rosszabb SNR, mint CT esetén

39 ML-EM rekonstrukció (Emissziós tomográfiai értelmezés) EM eljárások alapelve: Vannak megfigyelt adataink (méréseink), esetünkben a PET LOR-ok mentén érzékelt gamma beütési szám ( yd) Vannak becsülni kívánt adataink ( x b), jelenleg ez a vizsgált szövet pozitron emissziójának a gyakorisága Létezik olyan v.v., mely ha ismert lenne leegyszerűsödne az egész feladat: a PET esetén p b d : annak a valószínűsége, hogy a d LOR mentén beütő gamma részecskét a b képlet emittálta. Megoldás iteratív, iterációnként két lépés: Expectation lépés: frissítése Maximization lépés: xb ML becslése p b d

40 ML-EM rekonstrukció (Emissziós tomográfiai értelmezés) E lépés formálisan - Bayes tétel alkalmazása: p k 1 b d b ' k k ' ' p d b x b p d b x b p b d : annak a valószínűsége, hogy a d LOR mentén érzékelt fotonok a b pozíciójú képletből származnak. p d b : annak a valószínűsége, hogy a b pozíciójú képlet által emittált fotonok a d LOR mentén ütnek be a detektorba. Ennek a tagnak a meghatározása előzetesen történik (nem a becslés feladata). Általában Monte-Carlo szimulációkkal becslik, pontos meghatározása fontos.

41 ML-EM rekonstrukció (Emissziós tomográfiai értelmezés) M lépés célja a sűrűségbecslés frissítése: k1 k1 arg max d x b p y x b x k 1 Elvégezve p b d behelyettesítését: k1 x b x b b ' k 1 y d p b d Eljárás előnye, hogy expliciten modellezi a zajt d p d b p d b 1 k ' ' p d b y d k d x b p d b d

42 ML-EM rekonstrukció (Emissziós tomográfiai értelmezés) Módosító összefüggés interpretációja: k1 x b x b b ' p d b 1 k ' ' p d b y d k d x b p d b k x b ' p d b ' : aktuális rekonstrukció alapján becsült b ' LOR beütések k y d x b ' p d b ' : d LOR menti beütések b ' becslésének a hibája y d p d b 1 : hiba visszavetítése k d x b ' p d b ' p d b b ' d d

43 ML-EM és FBP öszehasonlítása (Emissziós tomográfia PET) Kis beütésszám miatt alacsony effektív felbontás Ráadásul jelentős nem Gauss-i zaj FBP rekonstrukció ML-EM rekonstrukció

44 PET/CT modalitás PET funkcionális képet állít elő: Lokalizálhatóak a nagy energiaigényű szövetek Cserébe erősen zajos, rossz minőségű rekonstrukciók Megfelelő zajmodell nélkül lehetetlen értelmezhető rekonstrukciót előállítatni vele CT rekonstrukciók - morfológiai információ: Kisméretű (korai stádiumú, ezért jó hatásfokkal kezelhető) tumorok nehezen különböztethetőek meg más képletektől. Cserébe kevésbé zajos, felbontását tekintve részletgazdagabb felvételek

45 PET/CT modalitás Rekonstrukció lényegében a PET, illetve a CT rekonstrukciók regisztrálását jelenti Balról jobbra: CT, PET, regisztrátum

46 Modell alapú rekonstrukciós eljárások (Röntgen alapú képalkotás) Cél a pácienst érő sugárterhelés minimalizálása: Viszont kisebb dózis zajosabb projekciókat eredményez Limitált szögtartomány problémája jelentősen alulhatározottá teszi a z inverz problémát ( g H f ) MAP becslés alkalmazása szükséges: Emlékeztetőül f g g f f f arg max P arg max P P Likelihood log P g f f bünteti az eltérést f log P f f apriori ismeretek alapján regularizál Prior f

47 Modell alapú rekonstrukciós eljárások (Röntgen alapú képalkotás) Likelihood tag megválasztása: PET-nél Poisson modellt alkalmazzuk (ritka esemény törvény) Röntgen esetén negatív logaritmálást követően Gauss modell Likelihood T -1 f 12 g H f Σ g H f 2 Σ Σ i, i i gyakran diagonális, ekkor : Lényegében az i-edik vetítősugár NSR-jének a négyzete Megfelelő megválasztása nehéz, aktívan kutatott feladat Kvadratikus függvény, minimalizációja analitikus

48 Modell alapú rekonstrukciós eljárások (Röntgen alapú képalkotás) Regularizációs tag megválasztása: Logikusnak tűnik a gradiens energiáját büntetni: T T f f S f, S D D, ahol D a deriválás mtx.-ja Prior Belátható, hogy ekvivalens egy regularizáció nélküli rekonstrukció alul-áteresztettjével. Tehát ez a regularizáció csökkenti az effektív felbontást (mind a rekosntruált szeleteken belül, mind azok között a modalitástól függetlenül). Inkább él őrző regularizációk alkalmazása javallott pl. Teljes Variancia minimalizáció, Huber büntetőfüggvény

49 Compressive Sensing Nyquist mintavételnek megfelelő interpoláció: Régebben láttuk a kernelét De ez csak egy interpolációs lehetőség Compressive Sensing alapú megközelítés: Nem szükséges Nyquist tétel szerint mintavételezni Két általános megvalósítása létezik: Megszorítjuk a rekonstruálni kívánt jel bázisát (erre lesz példa a Mátrix Inverziós Tomoszintézis) Keresünk egy olyan operátort / ábrázolást ami felett ritka a rekonstruálni kívánt jel (pl. TV minimalizációs)

50 Teljes variancia minimalizáció Rekonstrukció, mint optimalizálási feladat: f arg min g H f D f f D diszkrét differencia / wavelet transzformációk mátrxia Lényegi változás, hogy a regularizáció L2 norma szerinti Alternating Direction Methode: f, z g H f z z Df változóval Alternálva minimalizáljuk f -et és z-t iterációnként: 1 z Df 2 f n n n f arg min f, z arg min g H f z Df f z arg min f, z arg min z z Df n 1 n 1 n 1 z z 1 2

51 Teljes variancia minimalizáció Az iterációk első lépése kicsit átalakítva: min. f T n T T T T g z H D f Formálisan visszajutottunk az alapproblémához, csak most már biztosan túl-határozott (additív ART probléma) Minimalizálása erőforrásigény miatt sokszor SART-vel Iterációk második lépésének optimuma egy lépésben, analitikusan meghatározható: arg min z z Df Az úgynevezett lágy küszöb operátor használatával A minimalizálás voxelenként történik z T 2 2 n

52 Teljes variancia minimalizáció Jobb SNR az ML-EM és az FBP-hez képest: FBP-nél kevésbé zajos, de hasonló kontrasztú kép ML-EM-nél jelentősen jobb kontraszt FBP ML-EM TV-ART

53 Huber büntetőfüggvény Huber büntetőfüggvénnyel regularizálunk: Prior f LHuber D f x L Huber 2 x 2 x x 2 x 2 2 Pet fantom MAP L2 prior MAP Huber prior

54 Kvadratikus és abszolútérték hiba/büntetőfüggvény Két hibafüggvény jelentősen eltérő eloszlást kényszerít ki: Abszolútérték büntetőfüggvény Kvadratikus büntetőfüggvény

55 Élet a konvex optimalizáción túl CT-s szimuláció, 10 projekcióból (ΔΘ=18 ): Konvex: L2-TV Valóban ritkasági priorral

56 Lineáris tomoszintézis Speciális CBCT változatnak tekinthető: Detektor és a sugárforrás egymással és a flat-panel detektor oszlopaival párhuzamosan mozog. Projekciók limitált szögtartományból (±10-40 ) Irányfüggő felbontás / képminőség: Detektorral párhuzamos szeletek felbontása megegyezik a detektor felbontásával Detektorra merőleges irányban nagyon rossz felbontás : limitált szögtartomány ára

57 Shift And Add (Lineáris tomoszintézis esetén) A térfogat 0 vastagságú szeleteinek vetületei a felvételi geometria és a szelet magasságának függvényében eltolódnak. SAA rekonstrukciója egy adott szeletnek: 1. Projekciók eltolása úgy, hogy a rekonstruálni kívánt sík vetülete minden projekción azonos legyen 2. Eltolt projekciók összegzése Mind az összegzés, mind az eltolás LTI művelet: Soros kaszkádjuk, tehát a rekonstrukció egy MIMO LTI rendszer (bemenetek a projekciók, kimenetek a szeletek) Létezik PSF/MTF-je, mellyel analitikusan minősíthető

58 Shift And Add (Lineáris tomoszintézis esetén) SAA szeleteken fókuszba kerülnek a rekonstruálni kívánt sík képleteinek vetületei De jelentős átmosódás marad a térfogat többi síkjáról Piros ellipszis: szelten belüli képlet vetülete Kék ellipszis: szeleten kívüli képletek bemosódása

59 Mátrix Inverziós Tomoszintézis Alapötletet ugyanaz a megfigyelés adja, mint ami az SAA algoritmusét: g 1 :, i n :,i 11, :,i 1, 2 :,i 1,n f t f t f t n :,i :,i 2, 1 :,i 2, 2 :,i 2,n g f t f t f t n... m 1 2 t f f t :,i :,i m, 1 :,i m, 2 :,i m,n g f t g j :,i j-edik projekció i-edik oszlopának intenzitásaiból képzett vektor

60 Mátrix Inverziós Tomoszintézis Alapötletet ugyanaz a megfigyelés adja, mint ami az SAA algoritmusét: 1 n 1 2 f... :,i :,i 11, :,i 1, 2 :,i 1,n g t f t f t g n f t f t f t :,i :,i 2, 1 :,i 2, 2 :,i 2,n 1 n... 2 m 1 2 :,i :,i m, :,i m, :,i m,n g f t f t f t f j :,i j-edik modellezett és rekonstruálni kívánt 0 vastagságú szelet projekciójának i-edik oszlopának intenzitásaiból képzett vektor

61 Mátrix Inverziós Tomoszintézis Alapötletet ugyanaz a megfigyelés adja, mint ami az SAA algoritmusét: 11 n t... :,i :,i, :,i 1, 2 :,i 1,n g f f t f t n :,i :,i 2, 1 :,i 2, 2 :,i 2,n g f t f t f t 1 2 n... m :,i :,i m, 1 :,i m, 2 :,i m,n g f t f t f t t j,i i-edik rekonstruálandó szelet vetületének j-edik projekcióbeli impulzusválaszát leíró vektor, mivel csak eltolást modellez, ezért egy dirac-delta diszkretizáltja.

62 Mátrix Inverziós Tomoszintézis Jelentősen egyszerűsödik a feladat, ha a vektor egyenletrendszert frekvenciatérben vizsgáljuk: g T f j j 1 2 j j f T g m :, :, :, T 1 2 n :, :, :, g j FT g j FT g FT j g j f j FT f j FT f FT j f j T FT t j,i Összegezve a MITS alapötlete, hogy lineáris tomo esetén a frekvenciatérbeli felírás jelentősen kompaktabb az inverz probléma képtérbeli felírásánál. T

63 Mátrix Inverziós Tomoszintézis gyakorlati megvalósítása Diszkretizálás és a DFT okozta problémák: Mintavételezés: t mintavételezése az egész rendszer i, j viselkedését jelentősen befolyásolja: Energiája nem változhat a mintavételezés hatására, ellentétben jelentősen torzítunk Figyelembe véve a frekvenciatérbeli műveletvégzést, a mintavételezés frekvenciatartományban történik (ideális - sinc interpolációval ekvivalens képtérben). DFT által okozott spektrumszivárgás is jelentős probléma: Klasszikus megoldás, az ablakozás natívan nem adekvát.

64 Mátrix Inverziós Tomoszintézis spektrumszivárgás Felvételi elrendezés miatt oszloponként történik az inverz szűrés, elegendő a függőleges cirkularitás: Az projekciók extrapolációja nem úszható meg, ellenkező esetben a csavarodás artefekt történik. Extrapoláció szükséges mértéke t tartóinak a maximuma, j,i ezzel elérhető, hogy csak extrapolált terület csavarodhat be. Probléma projekciók extrapolálásával kezelhető: Extrapoláció olyan képterülettel terjeszti ki a projekciókat, mely a legsimább átmenetet és cirkuláris projekciót generál.

65 Mátrix Inverziós Tomoszintézis spektrumszivárgás Extrapoláció nélkül Extrapoláció alkalmazásával

66 Mátrix Inverziós Tomoszintézis Dekonvolúció numerikus problémái T zajérzékenysége jelentős problémaforrás cond T max min Kondíciós szám származtatása: T e T b T e e cond T max, 1 eb e b T b b Legyen T U Σ V SVD felbontás, ekkor T V Σ U Mivel U és V oszlopvektorai ortonormált bázisok, ezért 1 max T e e 1 és 1 min min T b b 1 e 2 2 b 2 2 max Zajcsökkentő regularizáció célja cond T minimalizálása

67 Mátrix Inverziós Tomoszintézis Dekonvolúció zajérzékenysége T előállítása csonkolt SVD-vel: 1 i i T V Σ U, ahol Σ ii, 0 i Kísértetiesen hasonlít a csonkolt dekonvolúcióra: Joggal, a különbség annyi, hogy ott a DFT mátrixával diagonalizálunk, míg SVD esetén a bal, illetve jobboldali sajátvektor mtx.-okkal diagonalizálunk T regularizált Moore- Penrose pszeudoinverze a Wiener dekonvolúció általánosítottja

68 Mátrix Inverziós Tomoszintézis Kondíció lineáris tomoszintézis esetén Korlátolt szögtartomány miatt alacsony frekvencia esetén a projekciókon kisebb a változás, aminek következménye a nagyobb zajérzékenység.

69 Mátrix inverziós tomoszintézis Csonkolt SVD hatása Jól látható, hogy a magasfrekvenciás tartomány zaja dominál a direkt dekonvolúciónál, míg a Csonkolt SVD jelentősen javít a helyzeten.

70 Limitált szögtartomány (±40, 50 projekció) - MAP becslés FBP Ritkasági regularizáció

71 Rekonstrukciókkal szembeni elvárások Kvalitatív képet kapjunk: Adott voxel / pixel intenzitása csak az ott jelenlévő szövet felépítésétől (CT, MRI) / viselkedésétől (PET, SPE(C)T) függjön. Valójában ez sosem teljesül, de ez lenne a cél Hounsfield Unit Röntgenes eset abszolút szürkeségi skálája: víz HU 1000 víz levegő

72 Különböző anyagok lin. csill. Együtthatói HU-ban Anyag neve [HU] Levegő 1000 Tüdő szövet 500 Zsír Víz 0 Agy-gerincvelői folyadék 15 Vese 30 Vér Izom Szürke állomány Fehér állomány Máj Lágyrész Csont

73 Sugárkeményedés artifakt Röntgensugár intenzitás spektruma Csésze artifakt Sugárkeményedés miatti streaking

74 Sugárkeményedés artifakt Kompenzációs módszerek: Keményítő szűrő alkalmazása a sugárforráson Tipikusan nagy csillapítású homogén fémekkel (ólom, réz, wolfram, stb.) Kalibrálással Pl. hengeres vízfantommal valódi páciens sosem hengeres uniform víz Szoftveresen Pl. csontok sugárkeményítésének modellezése levetítésnél (ez is csak közelítő módszer)

75 Részleges térfogat artifakt Széles kollimálású nyalábnál csak a szelet projekciók egy részére vetül az objektum

76 Foton éhezés artifakt Vizsgált térfogaton belüli anyagok teljesen elnyelik a röntgen fotonokat (tipikusan fémek, sűrű csontok). Streaking a rekonstruált szeleteken a kulcscsont miatt Kompenzálás: problémásabb sugaraknál nagyobb csőáram (nagyobb dózis)

77 Foton éhezés artifakt Szoftveres korrekciók: Adaptív filtráció: problémás sugarakhoz tartozó voxelek csillapítási együtthatóinak elmosása MAP becslés Normál rekonstrukció Adaptív filtráció

78 Fém artifakt Probléma: fémek teljesen elnyelhetik a sugarat / keményen csillapíthatják / részleges térfogat / Kompenzálása szoftveresen: Pl. projekciókon a fémek szegmentálása, majd az intenzitásaik felülbecslése MAP becslés erős regularizációval

79 Fém artifakt Gerinc implantátum és az ART ART a szinogram kompenzációja után

80 Páciens bemozdulása Szív, mellkas mozgása elkerülhetetlen Létezik EKG kapuzott CT, illetve speciális anyaggal lelassítható maradandó károsodás nélkül a szív Az utóbbi minimalizálható levegő visszatartással A vízszintes streaking a páciens bemozdulásának a következménye

81 Vizsgálati mezőn kívüli objektum A vizsgált páciens egy testrésze olyan területen van, melyet üresnek feltételez a rekonstrukció Erősen inkozisztens projekciók Elkerülhető a beállítások megfelelő módosításával

82 Compton szóródás Flat panel detektornál, több soros detektornál A szóródó fotonok detektorba csapódva kisebb relatív csillapodások érzékelését eredményezik HW (moduláció alapú)/ SW (modell alapú) kompenzáció

83 3D Röntgen tomográfia rekonstrukciós eljárásainak minősítése Rekonstrukció metrikái: Szeleten belüli effektív felbontása (emlékeztetőül ) Irányfüggő átviteli függvény közelíthető az élpár fantom / él fantom rekonstrukciójából. Szeletek effektív vastagsága: Mind CT, mind Tomo esetén a rekonstruált szeletekre merőleges irány menti kiterjedése a szeleteknek. Felhasználási területfüggő optimális értéke. bw h Minél kisebb, annál több szelet kell, hogy minden képlet láthatóvá váljon (legalább egy szeleten). Mérése tipikusan ferde fémlemezzel / fémhuzallal.

84 CT Szeletvastagság Slice Sensitivity Profile mérése a lemezek rekonstrukciójára merőlegesen: szeletvastagság FWHM elvvel becsülhető

85 3D Röntgen tomográfia rekonstrukció Modulációs Átviteli Függvénye Ferde huzal fantommal (elvben) mérhető: Ha az eljárás az X-Y síkokat rekonstruálja, akkor a huzal ne legyen párhuzamos a Z tengellyel. Lineáris tomo MITS rekonstrukció MTF-e

Rekonstrukciós eljárások. Orvosi képdiagnosztika 2017 ősz

Rekonstrukciós eljárások. Orvosi képdiagnosztika 2017 ősz Rekonstrukciós eljárások Orvosi képdiagnosztika 2017 ősz Élet a konvex optimalizáción túl CT-s szimuláció, 10 projekcióból (ΔΘ=18 ): Konvex: L2-TV Valóban ritkasági priorral Lineáris tomoszintézis Speciális

Részletesebben

Rekonstrukciós eljárások. Orvosi képdiagnosztika 2017 ősz

Rekonstrukciós eljárások. Orvosi képdiagnosztika 2017 ősz Rekonstrukciós eljárások Orvosi képdiagnosztika 2017 ősz Pozitron emissziós tomográfia alapelve Szervezetbe pozitron kibocsátására képes radioaktív izotópot tartalmazó anyagot visznek cukoroldatban. Sejtek

Részletesebben

Rekonstrukciós eljárások. Orvosi képdiagnosztika 2017 ősz

Rekonstrukciós eljárások. Orvosi képdiagnosztika 2017 ősz Rekonstrukciós eljárások Orvosi képdiagnosztika 2017 ősz Előadások témája Röntgen tomográfia fizikai és matematikai alapjai 2D Radon transzformáció, szűrt visszavetítés: Fan beam / Cone beam felvételi

Részletesebben

Rekonstrukciós eljárások. Orvosi képdiagnosztika előadás 2015 ősz

Rekonstrukciós eljárások. Orvosi képdiagnosztika előadás 2015 ősz Rekonstrukciós eljárások Orvosi képdiagnosztika 14.-15. előadás 2015 ősz Előadások témája Röntgen tomográfia fizikai és matematikai alapjai 2D Radon transzformáció, szűrt visszavetítés: Fan beam / Cone

Részletesebben

Rekonstrukciós eljárások. Orvosi képdiagnosztika előadás 2016 ősz

Rekonstrukciós eljárások. Orvosi képdiagnosztika előadás 2016 ősz Rekonstrukciós eljárások Orvosi képdiagnosztika 14.-15. előadás 2016 ősz Előadások témája Röntgen tomográfia fizikai és matematikai alapjai 2D Radon transzformáció, szűrt visszavetítés: Fan beam / Cone

Részletesebben

Képrekonstrukció 3. előadás

Képrekonstrukció 3. előadás Képrekonstrukció 3. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem Computed Tomography (CT) Elv: Röntgen-sugarak áthatolása 3D objektum 3D térfogati kép Mérések

Részletesebben

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 5-7. ea. 2017 ősz 6. Előadás tartalma Spektrumszivárgás Képfeldolgozás frekvencia tartományban: 2D Spektrum gépi ábrázolása Szűrések frekvenciatartományban

Részletesebben

7. Előadás tartalma. Lineáris szűrők: Inverz probléma dekonvolúció: Klasszikus szűrők súly és átviteli függvénye Gibbs jelenség

7. Előadás tartalma. Lineáris szűrők: Inverz probléma dekonvolúció: Klasszikus szűrők súly és átviteli függvénye Gibbs jelenség 7. Előadás tartalma Lineáris szűrők: Klasszikus szűrők súly és átviteli üggvénye Gibbs jelenség Inverz probléma dekonvolúció: Inverz probléma ormális elírása Dekonvolúció nehézsége Közismert algoritmusok:

Részletesebben

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 5-7. ea. 2017 ősz 5. Előadás témái Fourier transzformációk és kapcsolataik: FS, FT, DTFT, DFT, DFS Mintavételezés, interpoláció Folytonos

Részletesebben

Képrekonstrukció 4. előadás

Képrekonstrukció 4. előadás Képrekonstrukció 4. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem Vetület-szelet tétel szemléletesen A θ szögű vetület 1D FT-ja az eredeti kép 2D FT-jának

Részletesebben

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 6-8. ea ősz

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 6-8. ea ősz Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 6-8. ea. 2016 ősz 6. előadás tartalma Fourier transzformációk és kapcsolataik: FS, FT, DTFT, DFT, DFS Mintavételezés, interpoláció Spektrumszivárgás

Részletesebben

Képalkotás modellezése, metrikái. Orvosi képdiagnosztika 6. ea ősz

Képalkotás modellezése, metrikái. Orvosi képdiagnosztika 6. ea ősz Képalkotás modellezése, metrikái Orvosi képdiagnosztika 6. ea. 2015 ősz Jelölésjegyzék Rendszer válasza f gerjesztésre: Dirac-delta: x ; egységugrás: 0 idejű Dirac-delta gerjesztése a rendszer válasza:

Részletesebben

PET gyakorlati problémák. PET rekonstrukció

PET gyakorlati problémák. PET rekonstrukció CT Computed Tomography 3D képalkotó eljárások Csébfalvi Balázs E-mail: cseb@iit.bme.hu Irányítástechnika és Informatika Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2 / 26 CT Történeti áttekintés

Részletesebben

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 7-8. ea ősz

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 7-8. ea ősz Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 7-8. ea. 2015 ősz 7. előadás tartalma Fourier transzformációk és kapcsolataik: FS, FT, DTFT, DFT, DFS Mintavételezés, interpoláció Frekvenciaszivárgás

Részletesebben

ACM Snake. Orvosi képdiagnosztika 11. előadás első fele

ACM Snake. Orvosi képdiagnosztika 11. előadás első fele ACM Snake Orvosi képdiagnosztika 11. előadás első fele ACM Snake (ismétlés) A szegmentáló kontúr egy paraméteres görbe: x Zs s X s, Y s,, s A szegmentáció energia funkcionál minimalizálása: E x Eint x

Részletesebben

Képalkotás modellezése, metrikái. Orvosi képdiagnosztika 2017 ősz

Képalkotás modellezése, metrikái. Orvosi képdiagnosztika 2017 ősz Képalkotás modellezése, metrikái Orvosi képdiagnosztika 2017 ősz Jelölésjegyzék Rendszer válasza f gerjesztésre: Dirac-delta: x ; egységugrás: 0 idejű Dirac-delta gerjesztése a rendszer válasza: h x x

Részletesebben

Jelfeldolgozás bevezető. Témalaboratórium

Jelfeldolgozás bevezető. Témalaboratórium Jelfeldolgozás bevezető Témalaboratórium Tartalom Jelfeldolgozás alapjai Lineáris rendszerelmélet Fourier transzformációk és kapcsolataik Spektrális képek értelmezése Képfeldolgozás alapjai Néhány nevezetesebb

Részletesebben

Hadházi Dániel.

Hadházi Dániel. Hadházi Dániel hadhazi@mit.bme.hu Orvosi képdiagnosztika: Szerepe napjaink orvoslásában Képszegmentálás orvosi kontextusban Elvárások az adekvát szegmentálásokkal szemben Verifikáció és validáció lehetséges

Részletesebben

Nem roncsoló tesztelés diszkrét tomográfiával

Nem roncsoló tesztelés diszkrét tomográfiával Nem roncsoló tesztelés diszkrét tomográfiával Dr. Balázs Péter, adjunktus Képfeldolgozás és Számítógépes Grafika Tanszék SZTE TTIK, Informatikai Tanszékcsoport A teszteléshez használt CT berendezés lapdetektor

Részletesebben

Képalkotó diagnosztikai eljárások:

Képalkotó diagnosztikai eljárások: Képalkotó diagnosztikai eljárások: Soroljon fel néhány orvosi képalkotáson alapuló diagnosztikai eljárást, mely o Transzmissziós o Indukciós o Emissziós alkalmazásán alapul. Mire szolgálnak az egyes diagnosztikai

Részletesebben

Képalkotó diagnosztikai eljárások

Képalkotó diagnosztikai eljárások Képalkotó diagnosztikai eljárások Soroljon fel néhány orvosi képalkotáson alapuló diagnosztikai eljárást, mely o transzmissziós o reflexiós o emissziós elv alkalmazásán alapul. Mire szolgálnak az egyes

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

A röntgendiagnosztika alapjai

A röntgendiagnosztika alapjai A fotonenergia növelésével csökken az elnyelődés. A röntgendiagnosztika alapjai A csökkenés markánsabb a fotoeffektusra nézve. Kis fotonenergiáknál τ m dominál. τ m markánsan változik az abszorbens rendszámával.

Részletesebben

Képalkotó diagnosztikai eljárások:

Képalkotó diagnosztikai eljárások: Képalkotó diagnosztikai eljárások: Soroljon fel néhány orvosi képalkotáson alapuló diagnosztikai eljárást, mely o Transzmissziós o Indukciós o Emissziós elv alkalmazásán alapul. Mire szolgálnak az egyes

Részletesebben

A röntgendiagnosztika alapjai

A röntgendiagnosztika alapjai A röngtgendiagnosztika alapja: a sugárzás elnyelődése A röntgendiagnosztika alapjai A foton kölcsönhatásának lehetőségei: Compton-szórás Comptonszórás elnyelődés fotoeffektusban fotoeffektus nincs kölcsönhatás

Részletesebben

Least Squares becslés

Least Squares becslés Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás

Részletesebben

Dekonvolúció a mikroszkópiában. Barna László MTA Kísérleti Orvostudományi Kutatóintézet Nikon-KOKI képalkotó Központ

Dekonvolúció a mikroszkópiában. Barna László MTA Kísérleti Orvostudományi Kutatóintézet Nikon-KOKI képalkotó Központ Dekonvolúció a mikroszkópiában Barna László MTA Kísérleti Orvostudományi Kutatóintézet Nikon-KOKI képalkotó Központ 2015 Fourier-Sorok Minden 2π szerint periodikus függvény előállítható f x ~ a 0 2 + (a

Részletesebben

Diszkréten mintavételezett függvények

Diszkréten mintavételezett függvények Diszkréten mintavételezett függvények A függvény (jel) értéke csak rögzített pontokban ismert, de köztes pontokban is meg akarjuk becsülni időben mintavételezett jel pixelekből álló műholdkép rácson futtatott

Részletesebben

Számítási feladatok a Számítógépi geometria órához

Számítási feladatok a Számítógépi geometria órához Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát

Részletesebben

Q 1 D Q 2 (D x) 2 (1.1)

Q 1 D Q 2 (D x) 2 (1.1) . Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol

Részletesebben

Az Orvosi Fizika Szigorlat menete a 2012/2. tanévtől

Az Orvosi Fizika Szigorlat menete a 2012/2. tanévtől Az Orvosi Fizika Szigorlat menete a 2012/2. tanévtől 1. A szigorlat menete A szigorlatot a Fizikus MSc orvosi fizika szakirányos hallgatók a második vagy harmadik szemeszterük folyamán tehetik le. A szigorlat

Részletesebben

Függvények Megoldások

Függvények Megoldások Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény

Részletesebben

Abszolút és relatív aktivitás mérése

Abszolút és relatív aktivitás mérése Korszerű vizsgálati módszerek labor 8. mérés Abszolút és relatív aktivitás mérése Mérést végezte: Ugi Dávid B4VBAA Szak: Fizika Mérésvezető: Lökös Sándor Mérőtársak: Musza Alexandra Török Mátyás Mérés

Részletesebben

Haladó lineáris algebra

Haladó lineáris algebra B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Haladó lineáris algebra BMETE90MX54 Lineáris leképezések 2017-02-21 IB026 Wettl Ferenc

Részletesebben

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT) Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Pontműveletek. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar február 20.

Pontműveletek. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar február 20. Pontműveletek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. február 20. Sergyán (OE NIK) Pontműveletek 2012. február 20. 1 / 40 Felhasznált irodalom

Részletesebben

Képszegmentáló eljárások. Orvosi képdiagnosztika 2018 ősz

Képszegmentáló eljárások. Orvosi képdiagnosztika 2018 ősz Képszegmentáló eljárások Orvosi képdiagnosztika 2018 ősz Képszegmentálás Anatómiai részek elkülönítés: pl. csontok, szív, erek, szürkefehér állomány, stb Vizsgálandó terület körbehatárolása: pl. tüdőterület

Részletesebben

Képrestauráció Képhelyreállítás

Képrestauráció Képhelyreállítás Képrestauráció Képhelyreállítás Képrestauráció - A képrestauráció az a folyamat mellyel a sérült képből eltávolítjuk a degradációt, eredményképpen pedig az eredetihez minél közelebbi képet szeretnénk kapni

Részletesebben

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31 Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

Folyadékszcintillációs spektroszkópia jegyz könyv

Folyadékszcintillációs spektroszkópia jegyz könyv Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés

Részletesebben

Képfeldolgozó eljárások áttekintés. Orvosi képdiagnosztika

Képfeldolgozó eljárások áttekintés. Orvosi képdiagnosztika Képfeldolgozó eljárások áttekintés Orvosi képdiagnosztika Tartalomjegyzék Képmanipulációs eljárások Képjavítás (kontraszt módosítás, intenzitásviszonyok módosításahisztogram módosítás, zajszűrés) Képelemzés

Részletesebben

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III. Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak

Részletesebben

Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei

Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei Indukált mátrixnorma Definíció A. M : R n n R mátrixnormát a. V : R n R vektornorma által indukált mátrixnormának nevezzük, ha A M = max { Ax V : x V = 1}. Az indukált mátrixnorma geometriai jelentése:

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok LinAlgZh1 feladatok 01 3d vektorok Adott három vektor ā = (0 2 4) b = (1 1 4) c = (0 2 4) az R 3 Euklideszi vektortérben egy ortonormált bázisban 1 Mennyi az ā b skalárszorzat? 2 Mennyi az n = ā b vektoriális

Részletesebben

Konjugált gradiens módszer

Konjugált gradiens módszer Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK

Részletesebben

8. előadás. Kúpszeletek

8. előadás. Kúpszeletek 8. előadás Kúpszeletek Kör A k kört egyértelműen meghatározza C(a,b) középpontja és r sugara. A P pont pontosan akkor van k-n, ha CP=r. Vektoregyenlet: p-c = r. Koordinátás egyenlet: (X-a)2 + (Y-b)2 =

Részletesebben

Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán

Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán MTA KFKI Részecske és Magfizikai Intézet, Biofizikai osztály Az egy adatsorra (idősorra) is alkalmazható módszerek Példa: Az epileptikus

Részletesebben

Éldetektálás, szegmentálás (folytatás) Orvosi képdiagnosztika 11_2 ea

Éldetektálás, szegmentálás (folytatás) Orvosi képdiagnosztika 11_2 ea Éldetektálás, szegmentálás (folytatás) Orvosi képdiagnosztika 11_2 ea Geometrikus deformálható modellek Görbe evolúció Level set módszer A görbe evolúció parametrizálástól független mindössze geometriai

Részletesebben

Wavelet transzformáció

Wavelet transzformáció 1 Wavelet transzformáció Más felbontás: Walsh, Haar, wavelet alapok! Eddig: amplitúdó vagy frekvencia leírás: Pl. egy rövid, Dirac-delta jellegű impulzus Fourier-transzformált: nagyon sok, kb. ugyanolyan

Részletesebben

Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz

Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz 1. Hogyan lehet osztályozni a jeleket időfüggvényük időtartama szerint? 2. Mi a periodikus jelek definiciója? (szöveg, képlet, 3. Milyen

Részletesebben

Numerikus módszerek beugró kérdések

Numerikus módszerek beugró kérdések 1. Definiálja a gépi számok halmazát (a tanult modellnek megfelelően)! Adja meg a normalizált lebegőpontos szám alakját. (4 pont) Az alakú számot normalizált lebegőpontos számnak nevezik, ha Ahol,,,. Jelöl:

Részletesebben

Röntgendiagnosztikai alapok

Röntgendiagnosztikai alapok Röntgendiagnosztikai alapok Dr. Voszka István A röntgensugárzás keltésének alternatív lehetőségei (röntgensugárzás keletkezik nagy sebességű, töltéssel rendelkező részecskék lefékeződésekor) Röntgencső:

Részletesebben

Orvosi tomográkus képalkotás/ct technika alapja

Orvosi tomográkus képalkotás/ct technika alapja Orvosi tomográkus képalkotás/ct technika alapja Kis Sándor Attila DEOEC, Nukléáris Medicina Intézet Outline 1 Bevezetés 2 A planáris transzmissziós leképzési technikák esetén a vizsgált objektumról összegképet

Részletesebben

Lineáris regressziós modellek 1

Lineáris regressziós modellek 1 Lineáris regressziós modellek 1 Ispány Márton és Jeszenszky Péter 2016. szeptember 19. 1 Az ábrák C.M. Bishop: Pattern Recognition and Machine Learning c. könyvéből származnak. Tartalom Bevezető példák

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

Abszorpciós spektroszkópia

Abszorpciós spektroszkópia Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Line aris f uggv enyilleszt es m arcius 19.

Line aris f uggv enyilleszt es m arcius 19. Lineáris függvényillesztés 2018. március 19. Illesztett paraméterek hibája Eddig azt néztük, hogy a mérési hiba hogyan propagál az illesztett paraméterekbe, ha van egy konkrét függvényünk. a hibaterjedés

Részletesebben

Compressed Sensing. Sipos Roland Adatbányászat szeminárium Május 22.

Compressed Sensing. Sipos Roland Adatbányászat szeminárium Május 22. Compressed Sensing Sipos Roland Adatbányászat szeminárium 2014 Május 22. Bevezetés Túl sok az adat! Generált adatmennyiség > összes tárhely Adat generálásának üteme (mérések sebessége) >> Adatátvitel fejlődése

Részletesebben

Röntgensugárzás. Röntgensugárzás

Röntgensugárzás. Röntgensugárzás Röntgensugárzás 2012.11.21. Röntgensugárzás Elektromágneses sugárzás (f=10 16 10 19 Hz, E=120eV 120keV (1.9*10-17 10-14 J), λ

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

A diplomaterv keretében megvalósítandó feladatok összefoglalása

A diplomaterv keretében megvalósítandó feladatok összefoglalása A diplomaterv keretében megvalósítandó feladatok összefoglalása Diplomaterv céljai: 1 Sclieren résoptikai módszer numerikus szimulációk validálására való felhasználhatóságának vizsgálata 2 Lamináris előkevert

Részletesebben

Grafikonok automatikus elemzése

Grafikonok automatikus elemzése Grafikonok automatikus elemzése MIT BSc önálló laboratórium konzulens: Orosz György 2016.05.18. A feladat elsődleges célkitűzései o eszközök adatlapján található grafikonok feldolgozása, digitalizálása

Részletesebben

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 15. Digitális Alakzatrekonstrukció Méréstechnológia, Ponthalmazok regisztrációja http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav54

Részletesebben

(Independence, dependence, random variables)

(Independence, dependence, random variables) Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,

Részletesebben

3D számítógépes geometria és alakzatrekonstrukció

3D számítógépes geometria és alakzatrekonstrukció 3D számítógépes geometria és alakzatrekonstrukció 15. Digitális Alakzatrekonstrukció Méréstechnológia, Ponthalmazok regisztrációja http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01

Részletesebben

Végeselem modellezés alapjai 1. óra

Végeselem modellezés alapjai 1. óra Végeselem modellezés alapjai. óra Gyenge alak, Tesztfüggvény, Lagrange-féle alakfüggvény, Stiness mátrix Kivonat Az óra célja, hogy megismertesse a végeselem módszer (FEM) alkalmazását egy egyszer probléma,

Részletesebben

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

ADAT- ÉS INFORMÁCIÓFELDOLGOZÁS

ADAT- ÉS INFORMÁCIÓFELDOLGOZÁS ADAT- ÉS INFORMÁCIÓFELDOLGOZÁS Földtudományi mérnöki MSc mesterszak 2018/19 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ Miskolci Egyetem Műszaki Földtudományi Kar Geofizikai és Térinformatikai Intézet A tantárgy

Részletesebben

12. előadás. Egyenletrendszerek, mátrixok. Dr. Szörényi Miklós, Dr. Kallós Gábor

12. előadás. Egyenletrendszerek, mátrixok. Dr. Szörényi Miklós, Dr. Kallós Gábor 12. előadás Egyenletrendszerek, mátrixok Dr. Szörényi Miklós, Dr. Kallós Gábor 2015 2016 1 Tartalom Matematikai alapok Vektorok és mátrixok megadása Tömbkonstansok Lineáris műveletek Mátrixok szorzása

Részletesebben

Diagnosztikai röntgen képalkotás, CT

Diagnosztikai röntgen képalkotás, CT Diagnosztikai röntgen képalkotás, CT ALAPELVEK A röntgenkép a röntgensugárzással átvilágított test árnyéka. A detektor vagy film az áthaladó, azaz nem elnyelt sugarakat érzékeli. A képen az elnyelő tárgyaknak

Részletesebben

Képrekonstrukció 6. előadás

Képrekonstrukció 6. előadás Képrekonstrukció 6. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem Diszkrét tomográfia (DT) A CT-hez több száz vetület szükséges időigényes költséges károsíthatja

Részletesebben

Digitális képek szegmentálása. 5. Textúra. Kató Zoltán.

Digitális képek szegmentálása. 5. Textúra. Kató Zoltán. Digitális képek szegmentálása 5. Textúra Kató Zoltán http://www.cab.u-szeged.hu/~kato/segmentation/ Textúra fogalma Sklansky: Egy képen egy területnek állandó textúrája van ha a lokális statisztikák vagy

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

Gyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi

Gyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi Gyakorló feladatok Agbeko Kwami Nutefe és Nagy Noémi 25 Tartalomjegyzék. Klasszikus hibaszámítás 3 2. Lineáris egyenletrendszerek 3 3. Interpoláció 4 4. Sajátérték, sajátvektor 6 5. Lineáris és nemlineáris

Részletesebben

Saj at ert ek-probl em ak febru ar 26.

Saj at ert ek-probl em ak febru ar 26. Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre

Részletesebben

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Vektorterek. =a gyakorlatokon megoldásra ajánlott Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,

Részletesebben

Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István

Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István Sajátértékek és sajátvektorok A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris transzformáció Vektorok lineáris transzformációja: általános esetben az x vektor iránya és nagysága

Részletesebben

Akusztikai tervezés a geometriai akusztika módszereivel

Akusztikai tervezés a geometriai akusztika módszereivel Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R n vektortér Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. R n vektortér/1 Vektorok Rendezett szám n-esek: a = (a 1, a 2,, a n ) sorvektor a1 a = a2 oszlopvektor... a n a 1, a 2,,

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

Problémás regressziók

Problémás regressziók Universitas Eotvos Nominata 74 203-4 - II Problémás regressziók A közönséges (OLS) és a súlyozott (WLS) legkisebb négyzetes lineáris regresszió egy p- változós lineáris egyenletrendszer megoldása. Az egyenletrendszer

Részletesebben

MRI áttekintés. Orvosi képdiagnosztika 3. ea ősz

MRI áttekintés. Orvosi képdiagnosztika 3. ea ősz MRI áttekintés Orvosi képdiagnosztika 3. ea. 2015 ősz MRI Alapelv: hogyan lehet mágneses vizsgálattal valamilyen anyag (jelen esetben az élő emberi szervezet) belső felépítéséről információt kapni? A mágneses

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok Lin.Alg.Zh. feladatok 0.. d vektorok Adott három vektor ā (0 b ( c (0 az R Euklideszi vektortérben egy ortonormált bázisban.. Mennyi az ā b skalárszorzat? ā b 0 + + 8. Mennyi az n ā b vektoriális szorzat?

Részletesebben

6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján

6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján Közelítő és szimbolikus számítások 6. gyakorlat Sajátérték, Gersgorin körök Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján . Mátrixok sajátértékei

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA

Részletesebben

Keresztmetszet másodrendű nyomatékainak meghatározása

Keresztmetszet másodrendű nyomatékainak meghatározása BUDAPEST MŰSZAK ÉS GAZDASÁGTUDOMÁNY EGYETEM Keresztmetszet másodrendű nyomatékainak meghatározása Segédlet a Szilárdságtan c tárgy házi feladatához Készítette: Lehotzky Dávid Budapest, 205 február 28 ábra

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

1. ábra. 24B-19 feladat

1. ábra. 24B-19 feladat . gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,

Részletesebben

Geofizikai kutatómódszerek I.

Geofizikai kutatómódszerek I. Geofizikai kutatómódszerek I. A gravitációs és mágneses kutatómódszer Dr. Szabó Norbert Péter egyetemi docens Miskolci Egyetem Geofizikai Intézeti Tanszék e-mail: norbert.szabo.phd@gmail.com 1. A gravitációs

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Térbeli transzformációk, a tér leképezése síkra

Térbeli transzformációk, a tér leképezése síkra Térbeli transzformációk, a tér leképezése síkra Homogén koordináták bevezetése térben A tér minden P pontjához kölcsönösen egyértelműen egy valós (x, y, z) számhármast rendeltünk hozzá. (Descartes-féle

Részletesebben

Panorámakép készítése

Panorámakép készítése Panorámakép készítése Képregisztráció, 2009. Hantos Norbert Blaskovics Viktor Összefoglalás Panoráma (image stitching, planar mosaicing): átfedő képek összeillesztése Lépések: Előfeldolgozás (pl. intenzitáskorrekciók)

Részletesebben