Arról, ami nincs A nemlétezés elméletei. 8. Nemlétezőkre vonatkozó mondatok november 4.
|
|
- Vince Deák
- 6 évvel ezelőtt
- Látták:
Átírás
1 Arról, ami nincs A nemlétezés elméletei 8. Nemlétezőkre vonatkozó mondatok november 4.
2 Tanulságok a múlt óráról A modern szimbolikus logika feltárja a kifejezések valódi szerkezetét, ami nem azonos a nyelvtani szerkezettel A filozófia számos problémája látszatprobléma, ami hibás nyelvhasználatból adódik. A modern logikában az ún. kvantorok fejezik ki a létezést létezik, van olyan ; minden, bármely x F(x) ~ x ~F(x) csak tulajdonságok (vagy relációk) teljesülését, ill. nem teljesülését tudja kifejezni, egyedileg megnevezett objektumok létezését nem
3 Mit eredményez a nyelvben a nemlétezés? Alapprobléma: ha egy név vagy leírás nem vonatkozik semmire, akkor az mit jelent az őt tartalmazó kifejezések szempontjából? név (azaz tulajdonnév): funkciója, hogy megnevezzen valamilyen individuumot Mi van akkor, ha ez nem sikerül? Pl. Harry Potter leírás (azaz határozott individuum-leírás, v. deskripció): funkciója, hogy egyértelműen beazonosítson valamilyen individuumot Mi van akkor, ha ez nem sikerül? Pl. Isaac Newton fia, az első jugoszláv űrhajós Mit tudunk mondani az ilyeneket tartalmazó mondatok igazságértékéről?
4 1. Gottlob Frege Mindenesetre várható, hogy vannak olyan mondatok, mint ahogy olyan mondatrészek is vannak, amelyeknek van ugyan jelentésük, de jelöletük nincs. Az olyan mondatok, amelyek jelölet nélküli tulajdonnevet tartalmaznak, valóban ilyenek. A mélyen alvó Odüsszeuszt Ithakában tették partra mondatnak nyilvánvalóan van jelentése. Mivel azonban kétséges, hogy a benne előforduló Odüsszeusz névnek van-e jelölete, így az is kétséges, hogy az egész mondatnak van-e jelölete. Bizonyos azonban, hogy ha valaki a mondatot komolyan hamisnak vagy igaznak tartja, az Odüsszeusz névnek jelöletet is tulajdonít, nemcsak jelentést; hiszen e név jelöletéről állítjuk vagy tagadjuk az állítmányt. [1]
5 Egy kis háttér: a modern szemantika alapjai Frege-háromszög: Nem csak két szint: nyelv valóság Esthajnalcsillag és Vénusz : ugyanaz a két név jelölete, de más a jelentésük Frege lánya : nyilván van jelentése, de nincs jelölete Jelentés Jel Jelölet Nevek jelölete: egy individuum, amit jelölnek jelentése: az az értelem, ami alapján a jelölet beazonosítható Mondatok jelölete: az igazságértékük (Igaz vagy Hamis) jelentése: az az értelem ( gondolat ), melyet kifejeznek
6 A probléma megoldása Kompozicionalitás elve: egy kifejezésben a részek jelölete határozza meg az egész jelöletét Ha a névnek nincs jelölete, akkor a mondatnak nincs igazságértéke? Megoldás: ne engedjünk meg ilyen csúnya eseteket! Ez tehát a nyelv olyan fogyatékosságán múlik, melytől egyébként az analízis jelnyelve sem teljesen mentes. Ott is előfordulhatnak olyan jelkapcsolatok, amelyek azt a látszatot keltik, mintha jelölnének valamit, de legalábbis ez idáig nincsen jelöletük, ilyenek például a divergens végtelen sorok. ( ) Egy logikailag tökéletes nyelv (fogalomírás) esetén indokolt követelmény, hogy minden olyan kifejezés, amely a már bevezetett jelekből grammatikailag helyes módon képzett tulajdonnév, ténylegesen is jelöljön egy meghatározott tárgyat, és hogy semmilyen jelet ne lehessen új tulajdonnévként bevezetni úgy, hogy ne legyen jelölete. A logikai művekben óvnak a kifejezések többértelműségétől mint a logikai hibák egyik forrásától. Legalább ennyire szükséges óvakodni a jelölet nélküli, látszólagos tulajdonnevektől. [2]
7 2. Bertrand Russell Ragaszkodjunk az ún. kétértékűség elvéhez: minden mondat vagy igaz, vagy hamis olyan nincs, hogy egyik sem! Csakhogy vegyük a következő mondatot: A jelenlegi francia király kopasz. Nem lehet igaz, mert a kopasz dolgok közt nincs olyan, hogy a JFK De a tagadása A jelenlegi francia király nem kopasz sem lehet igaz, mert a nem kopasz dolgok közt sincs olyan, hogy a JFK Megsértettük a kétértékűség elvét?
8 Deskripció-elmélet Vegyük elő azt az elvet (lásd pl. Carnap), hogy a kifejezések valódi szintaxisa nem azonos a nyelvtani szerkezettel Minden határozott individuum-leírás két feltételt is kifejez: hogy van olyan dolog, amire az adott leírás vonatkozik, és hogy csak egy olyan dolog van, amire a leírás vonatkozik Vagyis A jelenlegi francia király kopasz mondat rejtett logikai szerkezete a következő: x(f(x) & y(f(y) (x = y)) & K(x)) ahol F: jelenlegi francia király, K: kopasz tehát x F(x) által feltételezzük, hogy van az a dolog, és y(f(y) (x = y)) által feltételezzük, hogy csak egy ilyen dolog van
9 A deskripció-elmélet mint megoldás A jelenlegi francia király kopasz mondat hamis, hiszen a létezési feltétel nem teljesül A jelenlegi francia király kopasz mondat tagadása nem az, hogy A jelenlegi francia király nem kopasz x(f(x) & y(f(y) (x = y)) & ~K(x)) hanem az, hogy Nem igaz, hogy a jelenlegi francia király nem kopasz ~ x(f(x) & y(f(y) (x = y)) & K(x)) ami pedig igaz, mert ez (átalakítva) azt jelenti, hogy: Vagy nincs francia király, vagy nem csak egy van, vagy nem kopasz. Így a kétértékűség elve sértetlen marad: minden sikertelenül jelölő leírást tartalmazó mondat hamis, és ezek tagadása mindig igaz
10 A nevek és leírások viszonya Russell: a tulajdonnevek helyettesíthetők leírásokkal Egy Apollónról szóló kijelentés jelentését úgy kapjuk meg, hogy behelyettesítjük azt, amit a megfelelő lexikon szerint Apollón, vagyis a napisten jelent. Mindazokat a kijelentéseket, amelyekben Apollón előfordul, a denotáló [=jelölő] kifejezések fenti szabályai alapján kell értelmezni. [3] Néhány lehetséges ellenvetés: nem ismerem a dolog leírását ( Az a dolog ott kék ) nem elég pontosan ismerem (pl. Caesar nagy hadvezér volt nem tudom Caesart pontosan leírni) rosszul ismerem (Galilei: aki azt mondta, hogy mégis mozog a Föld ) a név kevésbé specifikus, mint bármilyen definíció-szerű leírás
11 3. Peter Strawson Szimbolikus logika talán alkalmas arra, hogy filozófiai kritikát gyakoroljunk vele, és hogy megalapozzuk a matematikát de nem alkalmas arra, hogy felfedje a valóság szerkezetét hogy a természetes nyelv kifejezéseit joggal helyettesítse Sem az arisztotelészi, sem a russelli szabályok nem adják meg a hétköznapi nyelv egyetlen kifejezésének sem az egzakt logikáját; a hétköznapi nyelvnek ugyanis nincs egzakt logikája. [4] A jelentés legfontosabb kontextusa nem a logika, hanem a használat pragmatika: a nyelv használatának vizsgálata
12 Leíró kifejezések és mondatok használata A kifejezéseket különböztessük meg a használatuktól francia király : egy dolog a jelentése, ami konkrét használattól független, és más dolog az, hogy mire vonatkozik, ami a használat függvénye (mikor) A francia király kopasz : jelentése független a használattól, igazsága nem Mondatokat (pl. Éhes vagyok ) egészen különböző kontextusokban eltérő állítások megtételére használhatunk A nevek jelentése általános utasításokat tartalmaz arra nézve, hogy a név használata milyen körülmények között referál sikeresen a mondatok jelentése általános utasításokat tartalmaz arra nézve, hogy a mondat használata milyen körülmények között állít igazat
13 Preszuppozíciók Minden leírás vagy név használata előfeltételezi (preszupponálja), hogy létezik az a dolog, amire hivatkozik, de ez az előfeltétel a használathoz tartozik, nem pedig a kifejezés jelentésének a része Sokféle egyéb preszuppozíció is lehet, pl.: Látom a szemeden, hogy már megint megittad a sörömet. Előfeltételek: volt söröm már nincs söröm megittad a sörömet már máskor is megittad a sörömet Mindezeket nem állítom, de ahhoz, hogy amit állítok, az igaz legyen, ezeknek a feltételeknek előzetesen teljesülniük kell.
14 4. Értékréses logika Ne vessük el a logikát (pontosabban ne a használatot nézzük), de ne fogadjuk el Russell deskripció-elméletét, hanem függesszük fel a kétértékűség elvét (Frege alapján, de könyörtelenül) Ha egy mondatban egy névnek (tulajdonnév vagy leírás) nincs jelölete, akkor a mondatnak nincs igazságértéke alternatív logikai rendszer Egy lehetséges probléma: Zsákos Frodó egy hobbit se nem igaz, se nem hamis Zsákos Frodó vagy egy hobbit, vagy nem ezek szerint ez sem i/h pedig logikai igazság, hogy F(a) v ~F(a), függetlenül F és a jelentésétől
15 A jelenlegi francia király kopasz. Szerintem ez hamis. Szerintem nem teljesülnek az előfeltételei. Szerintem tökéletlen a nyelv. Szerintem nincs igazságértéke. É r t é k r é s
16 Idézett szövegek forrásai [1] [2] G. Frege: Jelentés és jelölet In I.M. Copi, J.A. Gould (szerk.): Kortárstanulmányok a logikaelmélet kérdéseiről. Gondolat kiadó, ; 130. o. [3] B. Russell: A denotálásról In Copi, Gould 162. o. [4] P. Strawson: A referálásról In Copi, Gould 206. o.
Arról, ami nincs A nemlétezés elméletei. 7. A modern logika és a létezés október 21.
Arról, ami nincs A nemlétezés elméletei 7. A modern logika és a létezés 2013. október 21. Ismétlés Az ontológiai istenérv modern kritikája: a létezés nem tulajdonság nem lehet feltenni a kérdést, hogy
LOGIKA ÉS ÉRVELÉSTECHNIKA
LOGIKA ÉS ÉRVELÉSTECHNIKA ELTE TáTK Közgazdaságtudományi Tanszék Logika és érveléstechnika NULLADREND LOGIKA 1. Készítette: Szakmai felel s: 2011. február Készült a következ m felhasználásával: Ruzsa
Arról, ami nincs A nemlétezés elméletei. 10. Mindaz, ami van. Meinong dzsungele: A létezéstől a fennálláson át az adva levésig november 25.
Arról, ami nincs A nemlétezés elméletei 10. Mindaz, ami van. Meinong dzsungele: A létezéstől a fennálláson át az adva levésig. 2013. november 25. Alexius Meinong ( Ritter von Handschuchsheim) 1853-1920
MILOVÁN ANDREA VALÓ KEZELÉSÉNEK LEHETİSÉGEIRİL
MILOVÁN ANDREA A SZEMANTIKA ÉS A PRAGMATIKA HATÁRÁN A PRESZUPPOZÍCIÓK ÉS AZ IMLIKATÚRÁK EGYSÉGES, SZEMANTIKAI KERETBEN VALÓ KEZELÉSÉNEK LEHETİSÉGEIRİL Az elıfeltevés (preszuppozíció) fogalma Hispániai
HARMADIK RÉSZ / 5. FEJEZET A RUSSELL-FÉLE LÉTEZÉSI PARADOXON
HARMADIK RÉSZ / 5. FEJEZET A RUSSELL-FÉLE LÉTEZÉSI PARADOXON C: \ WORDWO80 SELENE PR_F_DIAMANT VVxxx vv05xxx.doc 97792 14327 2063 9 2011.08.11. 09:48:45 1 / 13 TARTALOMJEGYZÉK HARMADIK RÉSZ / 5. FEJEZET...1
A matematika nyelvér l bevezetés
A matematika nyelvér l bevezetés Wettl Ferenc 2012-09-06 Wettl Ferenc () A matematika nyelvér l bevezetés 2012-09-06 1 / 19 Tartalom 1 Matematika Matematikai kijelentések 2 Logikai m veletek Állítások
Kijelentéslogika, ítéletkalkulus
Kijelentéslogika, ítéletkalkulus Arisztotelész (ie 4. sz) Leibniz (1646-1716) oole (1815-1864) Gödel (1906-1978) Neumann János (1903-1957) Kalmár László (1905-1976) Péter Rózsa (1905-1977) Kijelentés,
Arról, ami nincs A nemlétezés elméletei. 11. A semmi semmít december 2.
Arról, ami nincs A nemlétezés elméletei 11. A semmi semmít 2013. december 2. Martin Heidegger 1889-1976, Németország Filozófiai fenomenológia, hermeneutika, egzisztencializmus kiemelkedő alakja 1927: Lét
Kijelentéslogika I. 2004. szeptember 24.
Kijelentéslogika I. 2004. szeptember 24. Funktorok A természetesnyelvi mondatok gyakran összetettek: további mondatokból, végső soron pedig atomi mondatokból épülnek fel. Az összetevő mondatokat mondatkonnektívumok
Horváth Zoltán: A logika hétköznapi nyelvéről
Horváth Zoltán: A logika hétköznapi nyelvéről Lehet, hogy ez az értelmezés hihetetlennek tűnik szól olvasójához Russell nem csekély empátiáról téve tanúbizonyságot, miután a II. Károlynak az apját kivégezték
A TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeş-Bolyai Tudományegyetem 1.2 Kar Történelem és Filozófia 1.3 Intézet Magyar Filozófiai Intézet 1.4 Szakterület Filozófia
Bertrand Russell A denotálásról
Világosság 2005/12. Bertrand Russell A denotálásról Bertrand Russell A denotálásról Denotáló kifejezés -en a következők valamelyikéhez hasonló kifejezést értek: egy ember, némely ember, bármely ember,
Kijelentéslogika, ítéletkalkulus
Kijelentéslogika, ítéletkalkulus Kijelentés, ítélet: olyan kijelentő mondat, amelyről egyértelműen eldönthető, hogy igaz vagy hamis Logikai értékek: igaz, hamis zürke I: 52-53, 61-62, 88, 95 Logikai műveletek
LOGIKA ÉS ÉRVELÉSTECHNIKA
LOGIKA ÉS ÉRVELÉSTECHNIKA Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA
Matematikai logika és halmazelmélet
Matematikai logika és halmazelmélet Wettl Ferenc előadása alapján 2015-09-07 Wettl Ferenc előadása alapján Matematikai logika és halmazelmélet 2015-09-07 1 / 21 Tartalom 1 Matematikai kijelentések szerkezete
I.2. ROZSOMÁK. A feladatsor jellemzői
I.2. ROZSOMÁK Tárgy, téma A feladatsor jellemzői Kombinatorikai alapfeladatok, halmazok használata. Logikai kijelentések vizsgálata, értelmezése. A szövegértés képességének fejlesztése. Előzmények Cél
A matematika nyelvéről bevezetés
A matematika nyelvéről bevezetés Wettl Ferenc 2006. szeptember 19. Wettl Ferenc () A matematika nyelvéről bevezetés 2006. szeptember 19. 1 / 17 Tartalom 1 Matematika Kijelentő mondatok Matematikai kijelentések
Predikátumkalkulus. 1. Bevezet. 2. Predikátumkalkulus, formalizálás. Predikátumkalkulus alapfogalmai, formalizálás, tagadás, logikailag igaz formulák.
Predikátumkalkulus Predikátumkalkulus alapfogalmai, formalizálás, tagadás, logikailag igaz formulák. 1. Bevezet Nézzük meg a következ két kijelentést: Minden almához tartozik egy fa, amir l leesett. Bármely
Mit tanultunk eddig? Mit tanultunk eddig? Mit tanultunk eddig? Mit tanultunk eddig? 4/14/2014. propozicionális logikát
roozicionális logikát roozicionális logikát Legfontosabb logikai konnektívumok: roozíció=állítás nem néztünk a tagmondatok belsejébe, csak a logikai kacsolatuk érdekelt minket Legfontosabb logikai konnektívumok:
Az informatika logikai alapjai
Az informatika logikai alapjai Várterész Magda DE, Informatikai Kar PTI BSc és informatikatanár hallgatók számára 2017. A logika szó hétköznapi jelentése: rendszeresség, következetesség Ez logikus beszéd
Ítéletkalkulus. 1. Bevezet. 2. Ítéletkalkulus
Ítéletkalkulus Logikai alapfogalmak, m veletek, formalizálás, logikai ekvivalencia, teljes diszjunktív normálforma, tautológia. 1. Bevezet A matematikai logikában az állításoknak nem a tényleges jelentésével,
Logika nyelvészeknek, 11. óra A kvantifikáció kezelése a klasszikus és az általánosított kvantifikációelméletben
Logika nyelvészeknek, 11. óra A kvantifikáció kezelése a klasszikus és az általánosított kvantifikációelméletben I. A kvantifikáció a klasszikus Frege-féle kvantifikációelméletben A kvantifikáció klasszikus
Logika és informatikai alkalmazásai
Logika és informatikai alkalmazásai 2. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2011 tavasz Irodalom Szükséges elmélet a mai gyakorlathoz Előadás
1. LOGIKAI (FORMÁLIS) SZEMANTIKA
- Gombocz: jelentés = funkciófogalom - más jelentéstanok: jelentés = viszonyfogalom 1. LOGIKAI (FORMÁLIS) SZEMANTIKA - jelek vonatkozásából indul ki (referencia, denotátum) - nyelvi kifejezések világ -
Predikátumkalkulus. Predikátumkalkulus alapfogalmai, formalizálás, tagadás, logikailag igaz formulák. Vizsgáljuk meg a következ két kijelentést.
Predikátumkalkulus Predikátumkalkulus alapfogalmai, formalizálás, tagadás, logikailag igaz formulák. 1. Bevezet Vizsgáljuk meg a következ két kijelentést. Minden almához tartozik egy fa, amir l leesett.
Bizonyítási módszerek ÉV ELEJI FELADATOK
Bizonyítási módszerek ÉV ELEJI FELADATOK Év eleji feladatok Szükséges eszközök: A4-es négyzetrácsos füzet Letölthető tananyag: Emelt szintű matematika érettségi témakörök (2016) Forrás: www.mozaik.info.hu
A TULAJDONNÉV KETTŐSSÉGE. KRIPKE A TULAJDONNEVEK JELENTÉSÉRŐL DANYI RÓBERT. Bevezetés
A TULAJDONNÉV KETTŐSSÉGE. KRIPKE A TULAJDONNEVEK JELENTÉSÉRŐL DANYI RÓBERT Bevezetés A tulajdonnevek jelentésével kapcsolatban Gottlob Frege fogalmazta meg az újkori nyelvfilozófia meghatározó téziseit,
2. Logika gyakorlat Függvények és a teljes indukció
2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció
Elsőrendű logika. Mesterséges intelligencia március 28.
Elsőrendű logika Mesterséges intelligencia 2014. március 28. Bevezetés Ítéletkalkulus: deklaratív nyelv (mondatok és lehetséges világok közti igazságrelációk) Részinformációkat is kezel (diszjunkció, negáció)
Matematika Logika
Matematika Logika 1 Állítások - Kijelentések Az alábbi kijelentő mondatok közül válaszd ki az állításokat! 1. Minden prímszám páratlan 2. Holnap jó műsor lesz a tv-ben. 3. Az óvodában a legszebb lány Veronika.
A JOGI NYELV NYELVÉSZETI MEGKÖZELÍTÉSE VINNAI EDINA
Sectio Juridica et Politica, Miskolc, Tomus XXVIII. (2010). pp. 145-171 A JOGI NYELV NYELVÉSZETI MEGKÖZELÍTÉSE VINNAI EDINA Ebben a tanulmányban arra vállalkozom, hogy bemutassam azt a nyelvészeti hátteret,
11. fejezet A logika nyelvtana. Már az első fejezetben felmerült, hogy a logika nyelvtana nem egyezik meg a szokásos értelemben vett nyelvtannal.
11. fejezet A logika nyelvtana Már az első fejezetben felmerült, hogy a logika nyelvtana nem egyezik meg a szokásos értelemben vett nyelvtannal. A #11.1 Néhány lány énekel és a #11.2 Kati énekel mondatok
Diszkrét matematika I.
Diszkrét matematika I. középszint 2013 ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László merai@compalg.inf.elte.hu compalg.inf.elte.hu/ merai Komputeralgebra Tanszék 2013 ősz Kombinatorika
MATEMATIK A 9. évfolyam. 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR
MATEMATIK A 9. évfolyam 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR Matematika A 9. évfolyam. 2. modul: LOGIKA Tanári útmutató 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 2. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Matematikai logika Diszkrét matematika I. középszint
Logika es sz am ıt aselm elet I. r esz Logika 1/36
1/36 Logika és számításelmélet I. rész Logika 2/36 Elérhetőségek Tejfel Máté Déli épület, 2.606 matej@inf.elte.hu http://matej.web.elte.hu Tankönyv 3/36 Tartalom 4/36 Bevezető fogalmak Ítéletlogika Ítéletlogika
Az ellenpéldával történő cáfolás az elemi matematikában
Az ellenpéldával történő cáfolás az elemi matematikában Tuzson Zoltán, Székelyudvarhely Ismeretes, hogy a logika a helyes gondolkodás törvényeit leíró tudomány, ezért más tudományágakban sem nélkülözhető.
Logika és informatikai alkalmazásai
Logika és informatikai alkalmazásai 4. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2011 tavasz Irodalom Szükséges elmélet a mai gyakorlathoz Előadás
Matematikai logika NULLADRENDŰ LOGIKA
Matematikai logika NULLADRENDŰ LOGIKA Kijelentő mondatokhoz, melyeket nagy betűkkel jelölünk, interpretáció (egy függvény) segítségével igazságértéket rendelünk (I,H). Szintaxisból (nyelvtani szabályok,
Logika és informatikai alkalmazásai
Logika és informatikai alkalmazásai 2. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2008 tavasz Irodalom Szükséges elmélet a mai gyakorlathoz Előadás
Elsőrendű logika szintaktikája és szemantikája. Logika (3. gyakorlat) 0-adrendű szemantika 2009/10 II. félév 1 / 1
Elsőrendű logika szintaktikája és szemantikája Logika és számításelmélet, 3. gyakorlat 2009/10 II. félév Logika (3. gyakorlat) 0-adrendű szemantika 2009/10 II. félév 1 / 1 Az elsőrendű logika Elemek egy
S0-02 Típusmodellek (Programozás elmélet)
S0-02 Típusmodellek (Programozás elmélet) Tartalom 1. Absztrakt adattípus 2. Adattípus specifikációja 3. Adattípus osztály 4. Paraméterátadás 5. Reprezentációs függvény 6. Öröklődés és polimorfizmus 7.
Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.
HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak
Logika és informatikai alkalmazásai
Logika és informatikai alkalmazásai 4. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2011 tavasz Irodalom Szükséges elmélet a mai gyakorlathoz Előadás
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Logikai Emberi ágens tudás és problémái gépi reprezentálása Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
A logika, és a matematikai logika alapjait is neves görög tudós filozófus Arisztotelész rakta le "Analitika" című művében, Kr.e. IV. században.
LOGIKA A logika tudománnyá válása az ókori Görögországban kezdődött. Maga a logika szó is görög eredetű, a logosz szó jelentése: szó, fogalom, ész, szabály. Már az első tudósok, filozófusok, és politikusok
LOGIKA ÉS ÉRVELÉSTECHNIKA
LOGIKA ÉS ÉRVELÉSTECHNIKA Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA
,..., e n. ),..., µ(e n
Világosság 2005/12. Metafizika, avagy természetes nyelvi szemantika? Kálmán László Engedetlen alanyok A nyelvész szemével nézve Russell (1905) egészen megdöbbentő módon elemzi a határozott leírásokat (és
MAGYAR NYELVÉSZETI TÁRGYAK ISMERTETÉSE BA NYELVTECHNOLÓGIAI SZAKIRÁNY
MAGYAR NYELVÉSZETI TÁRGYAK ISMERTETÉSE BA NYELVTECHNOLÓGIAI SZAKIRÁNY Tantárgy neve: BBNMT00300 Fonetika 3 A tantárgy célja, hogy az egyetemi tanulmányaik kezdetén levő magyar szakos hallgatókat megismertesse
Logikai filozófiai értekezés
Ludwig Wittgenstein Logikai filozófiai értekezés (TRACTATUS LOGICO PHILOSOPHICUS) A Tractatus világa nem valós világ. Sivár logikai geometriai tájék, melynek határait a logika cövekeli ki. A nyelv hiánytalanul
TUDOMÁNYOS MÓDSZERTAN ÉS ÉRVELÉSTECHNIKA
TUDOMÁNYOS MÓDSZERTAN ÉS ÉRVELÉSTECHNIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi
Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.
2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az
Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1
Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,
Logika. Mihálydeák Tamás szeptember 27. Tartalomjegyzék. 1.
Logika Mihálydeák Tamás mihalydeak@inf.unideb.hu www.inf.unideb.hu/szamtud/tagok/?mihalydeak 2007. szeptember 27. Tartalomjegyzék 1. Irodalom 3 2. A logika feladata 3 3. A helyes következtetés 3 4. Történeti
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Logika
Logika Indukció: A fogalomalkotásnak azt a módját, amikor a konkrét tapasztalatokra támaszkodva jutunk el az általános fogalomhoz, indukciónak nevezzük. Dedukció: A fogalomalkotásnak azt a módját, amikor
Bevezetés a nyelvtudományba Mondattan (szintaxis) Kiegészítés
Bevezetés a nyelvtudományba Mondattan (szintaxis) Kiegészítés Az egyszerű mondat szerkezete (É. Kiss 1992) a fő összetevők lehetséges sorrendje: Imre ismeri Erzsit. Erzsit ismeri Imre. Imre Erzsit ismeri.
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Pöntör Jenõ. 1. Mi a szkepticizmus?
Pöntör Jenõ Szkepticizmus és externalizmus A szkeptikus kihívás kétségtelenül az egyik legjelentõsebb filozófiai probléma. Hogy ezt alátámasszuk, elég csak arra utalnunk, hogy az újkori filozófiatörténet
- megnyilatkozás értelmezéséhez kell: 1. a világ ismerete pl.: vág 2. kommunikációs ismeret pl.: udvariasság - a beszédhelyzet szerepe pl.
Pragmatika - Alapegység: formális (logikai) szemantika: kijelentés (propozíció) strukturális szemantika: mondat beszédben, írásban: megnyilatkozás a.) mint nyelvi viselkedés kapcsolat a beszédaktussal
Leképezések. Leképezések tulajdonságai. Számosságok.
Leképezések Leképezések tulajdonságai. Számosságok. 1. Leképezések tulajdonságai A továbbiakban legyen A és B két tetszőleges halmaz. Idézzünk fel néhány definíciót. 1. Definíció (Emlékeztető). Relációknak
Matematikai logika Arisztotelész Organon logika feladata Leibniz Boole De Morgan Frege dedukció indukció kijelentésnek
Matematikai logika A logika tudománnyá válása az ókori Görögországban kezd dött. Maga a logika szó is görög eredet, a logosz szó jelentése: szó, fogalom, ész, szabály. Kialakulása ahhoz köthet, hogy már
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Logika
Logika Indukció: A fogalomalkotásnak azt a módját, amikor a konkrét tapasztalatokra támaszkodva jutunk el az általános fogalomhoz, indukciónak nevezzük. Dedukció: A fogalomalkotásnak azt a módját, amikor
AZ ON DENOTING EGY ÉRTELMEZÉSE
AZ ON DENOTING EGY ÉRTELMEZÉSE MOLNÁR ZOLTÁN GÁBOR 1. Bevezetés 1.1. A köznyelv szemantikai zártsága. Beleolvasva az 1905-ös cikkbe számos olyan furcsasággal találkozunk, ami Alfred Tarski harmincas évekbeli
FILOZÓFIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Filozófia középszint 1511 ÉRETTSÉGI VIZSGA 2015. október 15. FILOZÓFIA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A rész (30 pont) 1. feladat Írja
Modern matematikai paradoxonok
Modern matematikai paradoxonok Juhász Péter ELTE Matematikai Intézet Számítógéptudományi Tanszék 2013. január 21. Juhász Péter (ELTE) Modern paradoxonok 2013. január 21. 1 / 36 Jelentés Mit jelent a paradoxon
Bevezetés a nyelvtudományba. 5. Szintaxis
Bevezetés a nyelvtudományba 5. Szintaxis Gerstner Károly Magyar Nyelvészeti Tanszék Szintaxis Mondattan Hangok véges elemei a nyelvnek Szavak sok, de nyilván véges szám Mondatok végtelen sok Mi a mondat?
Menet. A konfirmáció Hempel paradoxonai. Hempel véleménye a konformációs paradoxonokról
1 Kvalitatív konfirmáció Menet Konfirmációs kritériumok 2 A konfirmáció Hempel paradoxonai Hempel véleménye a konformációs paradoxonokról Hempel konfirmáció fogalma A konfirmáció problémája: 3 Mit jelent
HARMADIK RÉSZ / 4. FEJEZET AZ EGZISZTENCIAKIJELENTÉSEK NÉHÁNY JELLEMZŐJE
HARMADIK RÉSZ / 4. FEJEZET AZ EGZISZTENCIAKIJELENTÉSEK NÉHÁNY JELLEMZŐJE 1 / 31 TARTALOMJEGYZÉK HARMADIK RÉSZ / 4. FEJEZET...1 TARTALOMJEGYZÉK...2 4. AZ EGZISZTENCIAKIJELENTÉSEK NÉHÁNY JELLEMZŐJE...3 4.1.
Knoch László: Információelmélet LOGIKA
Mi az ítélet? Az ítélet olyan mondat, amely vagy igaz, vagy hamis. Azt, hogy az adott ítélet igaz vagy hamis, az ítélet logikai értékének nevezzük. Jelölése: i igaz h hamis A 2 páros és prím. Logikai értéke
Exponenciális, logaritmikus függvények
Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)
Matematika szigorlat június 17. Neptun kód:
Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat
ÍTÉLETKALKULUS (NULLADRENDŰ LOGIKA)
ÍTÉLETKALKULUS SZINTAXIS ÍTÉLETKALKULUS (NULLADRENDŰ LOGIKA) jelkészlet elválasztó jelek: ( ) logikai műveleti jelek: ítéletváltozók (logikai változók): p, q, r,... ítéletkonstansok: T, F szintaxis szabályai
FILOZÓFIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Filozófia középszint 1112 ÉRETTSÉGI VIZSGA 2014. május 21. FILOZÓFIA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A rész (30 pont) 1. Írja a megfelelő
Egyenletek, egyenlőtlenségek X.
Egyenletek, egyenlőtlenségek X. DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, 1 - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak
Adatbázis rendszerek 6.. 6. 1.1. Definíciók:
Adatbázis Rendszerek Budapesti Műszaki és Gazdaságtudományi Egyetem Fotogrammetria és Térinformatika 6.1. Egyed relációs modell lényegi jellemzői 6.2. Egyed relációs ábrázolás 6.3. Az egyedtípus 6.4. A
Logika és informatikai alkalmazásai
Logika és informatikai alkalmazásai 1. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2011 tavasz Követelmények A tárgy (ea+gyak) teljesítésének követlményeit
Logika es sz am ıt aselm elet I. r esz Logika Negyedik el oad as 1/26
1/26 Logika és számításelmélet I. rész Logika Negyedik előadás Tartalom 2/26 Az elsőrendű logika szemantikája Formulák és formulahalmazok szemantikus tulajdonságai Elsőrendű logikai nyelv interpretációja
NEM-DETERMINISZTIKUS PROGRAMOK HELYESSÉGE. Szekvenciális programok kategóriái. Hoare-Dijkstra-Gries módszere
Szekvenciális programok kategóriái strukturálatlan strukturált NEM-DETERMINISZTIKUS PROGRAMOK HELYESSÉGE Hoare-Dijkstra-Gries módszere determinisztikus valódi korai nem-determinisztikus általános fejlett
Dr. Jelasity Márk. Mesterséges Intelligencia I. Előadás Jegyzet (2008. október 6) Készítette: Filkus Dominik Martin
Dr. Jelasity Márk Mesterséges Intelligencia I Előadás Jegyzet (2008. október 6) Készítette: Filkus Dominik Martin Elsőrendű logika -Ítéletkalkulus : Az elsőrendű logika egy speciális esete, itt csak nullad
Wittgenstein két fő műve
Szakdolgozat Eötvös Lóránd Tudományegyetem Bölcsészettudományi Kar Filozófia szak Írta: Szecsődy Kristóf Témavezető: Faragó-Szabó István egyetemi docens 2010. Tartalom 1. Bevezetés 3. o. 2. Wittgenstein
Bevezetés a Formális Logikába Érveléstechnika-logika 7.
Bevezetés a Formális Logikába Érveléstechnika-logika 7. Elemi és összetett állítások Elemi állítások Állítás: Jelentéssel bíró kijelentő mondat, amely információt közöl a világról. Az állítás vagy igaz
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldás
Megoldás 1. Melyik mondat állítás a következőek közül? A: Szép idő van ma? B: A 100 szép szám. C: Minden prímszám páratlan. D: Bárcsak újra nyár lenne! Az állítás olyan kijelentő mondat, melyről egyértelműen
3. előadás. Programozás-elmélet. A változó fogalma Kiterjesztések A feladat kiterjesztése A program kiterjesztése Kiterjesztési tételek Példa
A változó fogalma Definíció Legyen A = A 1 A 2... A n állapottér. A pr Ai projekciós függvényeket változóknak nevezzük: : A A i pr Ai (a) = a i ( a = (a 1, a 2,..., a n ) A). A változók jelölése: v i =
Mindenki tud úszni. Nincs olyan, aki ne tudna úszni.
Mindenki tud úszni. Nincs olyan, aki ne tudna úszni. Kvantoros logikai ekvivalenciák Mindenki tud úszni. Nincs olyan, aki ne tudna úszni. x(úx) ~ x(~úx) Kvantoros logikai ekvivalenciák Mindenki tud úszni.
I.4. BALATONI NYARALÁS. A feladatsor jellemzői
I.4. BALATONI NYARALÁS Tárgy, téma A feladatsor jellemzői Logikai fogalmak: logikai kijelentés; minden; van olyan; ha, akkor; és; vagy kifejezések jelentése. Egyszerű logikai kapcsolatok mondatok között.
1. Bevezetés* * Külön köszönettel tartozom Madácsy Istvánnak és Murányi Tibornak a szöveg előkészítésében nyújtott baráti segítségéért.
1. Bevezetés* Ha nem is minden előzmény nélkül, de a tradicionális iskola magyar ágában jelent meg az a nézet, amely az európai filozófia egyik kifejezését, a szolipszizmust alkalmazta a tradicionális
Formális szemantika. Kifejezések szemantikája. Horpácsi Dániel ELTE Informatikai Kar
Formális szemantika Kifejezések szemantikája Horpácsi Dániel ELTE Informatikai Kar 2016-2017-2 Az előadás témája Egyszerű kifejezések formális szemantikája Az első lépés a programozási nyelvek szemantikájának
1. A matematikai logika alapfogalmai. 2. A matematikai logika műveletei
1. A matematikai logika alapfogalmai Megjegyzések: a) A logikában az állítás (kijelentés), valamint annak igaz vagy hamis voltát alapfogalomnak tekintjük, nem definiáljuk. b) Minden állítással kapcsolatban
egyenlőtlenségnek kell teljesülnie.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
Csima Judit október 24.
Adatbáziskezelés Funkcionális függőségek Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2018. október 24. Csima Judit Adatbáziskezelés Funkcionális függőségek 1 / 1 Relációs sémák
Változók. Mennyiség, érték (v. objektum) szimbolikus jelölése, jelentése Tulajdonságai (attribútumai):
Javascript Változók Mennyiség, érték (v. objektum) szimbolikus jelölése, jelentése Tulajdonságai (attribútumai): Név Érték Típus Memóriacím A változó értéke (esetleg más attribútuma is) a program futása
AZ INFORMATIKA LOGIKAI ALAPJAI
AZ INFORMATIKA LOGIKAI ALAPJAI Előadó: Dr. Mihálydeák Tamás Sándor Gyakorlatvezető: Kovács Zita 2017/2018. I. félév 4. gyakorlat Interpretáció A ϱ függvényt az L (0) = LC, Con, Form nulladrendű nyelv egy
Egyenletek, egyenlőtlenségek, egyenletrendszerek I.
Egyenletek, egyenlőtlenségek, egyenletrendszerek I. DEFINÍCIÓ: (Nyitott mondat) Az olyan állítást, amelyben az alany helyén változó szerepel, nyitott mondatnak nevezzük. A nyitott mondatba írt változót
Márton Miklós. Bevezetés
Márton Miklós A referencia problémái Bevezetés kellék 27-28 Egy adott nyelvi kifejezés (x) referenciáján legtágabb értelemben a Mire utal x? kérdésre adható választ értjük. Ezt Frege óta szokás szembeállítani
Russell leíráselmélete mint metafizika
Világosság 2005/12. Metafizika, avagy természetes nyelvi szemantika? Huoranszki Ferenc Russell leíráselmélete mint metafizika In philosophy especially the tyranny of traditional words is dangerous, and
Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések
1 Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések A matematikában alapfogalmaknak tekintjük azokat a fogalmakat, amelyeket nem határozunk meg, nem definiálunk más fogalmak segítségével
Bizonytalanság. Mesterséges intelligencia április 4.
Bizonytalanság Mesterséges intelligencia 2014. április 4. Bevezetés Eddig: logika, igaz/hamis Ha nem teljes a tudás A világ nem figyelhető meg közvetlenül Részleges tudás nem reprezentálható logikai eszközökkel
Matematikai logika. 3. fejezet. Logikai m veletek, kvantorok 3-1
3. fejezet Matematikai logika Logikai m veletek, kvantorok D 3.1 A P és Q elemi ítéletekre vonatkozó logikai alapm veleteket (konjunkció ( ), diszjunkció ( ), implikáció ( ), ekvivalencia ( ), negáció
Matematikai logika. Jegyzet. Összeállította: Faludi Anita 2011.
Matematikai logika Jegyzet Összeállította: Faludi Anita 2011. Tartalomjegyzék Bevezetés... 3 Előzmények... 3 Augustus de Morgan (1806-1871)... 3 George Boole(1815-1864)... 3 Claude Elwood Shannon(1916-2001)...